KR100367346B1 - Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof - Google Patents

Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof Download PDF

Info

Publication number
KR100367346B1
KR100367346B1 KR10-2001-0002574A KR20010002574A KR100367346B1 KR 100367346 B1 KR100367346 B1 KR 100367346B1 KR 20010002574 A KR20010002574 A KR 20010002574A KR 100367346 B1 KR100367346 B1 KR 100367346B1
Authority
KR
South Korea
Prior art keywords
thin film
precursor
metal
vapor deposition
chemical vapor
Prior art date
Application number
KR10-2001-0002574A
Other languages
Korean (ko)
Other versions
KR20020016748A (en
Inventor
민요셉
조영진
김대식
이익모
임선권
이완인
최보현
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP01307025A priority Critical patent/EP1184365A3/en
Priority to US09/933,736 priority patent/US6689427B2/en
Priority to JP2001252429A priority patent/JP2002145836A/en
Publication of KR20020016748A publication Critical patent/KR20020016748A/en
Application granted granted Critical
Publication of KR100367346B1 publication Critical patent/KR100367346B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/02Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C225/14Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Abstract

본 발명은 하기 화학식 1로 표시되는 -2가의 세자리 리간드(L)과 +4가의 IV족 금속(M)으로 이루어지며, 화학식 M(L)2로 표시되는 것을 특징으로 하는 금속산화물 박막 제조용 유기금속 전구체와 이를 사용하여 금속산화물 박막을 형성함을 특징으로 하는 화학기상 증착법에 관한 것으로, 본 발명에 의해 우수한 휘발성과 열적 특성을 나타내며, 가수분해에 대한 화학적 안정성이 탁월하고 특히 티타늄과 같은 IV족 금속을 포함하는 다성분계 금속산화물 박막의 증착에 적합한 IV족 금속의 전구체를 제공할 수 있다.The present invention consists of a -divalent tridentate ligand (L) and a + 4-valent group IV metal (M) represented by the following formula (1), the organic metal for producing a metal oxide thin film, characterized in that represented by the formula M (L) 2 The present invention relates to a chemical vapor deposition method characterized by forming a metal oxide thin film using a precursor, and exhibits excellent volatility and thermal properties by the present invention, excellent chemical stability against hydrolysis, and especially a Group IV metal such as titanium. It is possible to provide a precursor of a Group IV metal suitable for deposition of a multi-component metal oxide thin film comprising a.

[화학식 1][Formula 1]

상기 식에서 R1와 R2는 각각 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬기이고, R3는 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬렌기이다.Wherein R 1 and R 2 are each a linear or branched alkyl group having 1 to 8 carbon atoms, and R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms.

Description

신규한 IV족 금속 전구체 및 이를 사용한 화학기상 증착법 {Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof}Novel Group IV Metal Precursor and Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof

본 발명은 신규한 IV족 금속 전구체 및 이를 사용한 화학기상 증착법에 관한 것으로, 보다 상세하게는 N-알콕시-β-케토이미네이트가 -2 전하를 갖는 세자리 리간드(terdentate ligands)로 결합된 IV족 금속 전구체를 사용하여 금속산화물 박막을 형성함을 특징으로 하는 화학기상 증착법에 관한 것이다.The present invention relates to a novel Group IV metal precursor and a chemical vapor deposition method using the same. More specifically, the Group IV metal in which N-alkoxy-β-ketoiminate is bound with tertiary ligands having a -2 charge It relates to a chemical vapor deposition method characterized by forming a metal oxide thin film using a precursor.

정보 통신 산업의 발전에 따라 새로운 전자재료의 개발에 대한 수요가 증대되고 있으며, 전자소자의 소형화, 박막화에 따라 금속산화물의 가공기술, 특히 박막의 제조 기술의 확보는 중요한 문제가 되었다. 휘발성 유기금속 화합물을 전구체로 사용하는 MOCVD(Metal-Organic Chemical Vapor Deposition)법은 고유전체 박막, 강유전체 박막, 초전도 박막, 전극 등에 사용되는 금속 산화물 박막의 증착에 널리 사용되고 있다. 일반적으로 MOCVD법은 원료 물질의 기화 및 이송 방식에 따라 크게두 가지로 분류되는데, 고체 또는 액체 상의 전구체 물질을 이송기체로 버블링 (bubbling)하여 승화시키는 버블러(bubbler) 방식과 전구체 물질을 적당한 용매에 녹인 용액을 고온으로 가열된 열판 위에 적하하여 용매와 함께 기화되게 하므로서 전구체의 휘발효율을 높인 기화기(vaporizer) 방식이 그것이다. 기화기 방식은 전구체를 액체상태로 이송하기 때문에 액체이송(liquid delivery)방식이라고도 불린다. 화학 기상 증착에 의해 박막을 제조하기 위해서는 먼저 우수한 특성을 갖는 전구체(precusor)가 제공되어야 할 뿐만 아니라 그 전구체를 사용하여 제조된 박막의 표면 형상, 조성, 단차 피복특성(step coverage) 등이 우수하여야 실질적으로 소자에 응용가능하다.With the development of the information and telecommunications industry, the demand for the development of new electronic materials is increasing. As the size of electronic devices becomes smaller and thinner, the processing technology of metal oxides, especially the manufacturing technology of thin films, has become an important problem. MOCVD (Metal-Organic Chemical Vapor Deposition) method using a volatile organometallic compound as a precursor is widely used for the deposition of metal oxide thin films used in high-k dielectric thin film, ferroelectric thin film, superconducting thin film, electrode. Generally, the MOCVD method is classified into two types according to the vaporization and transport methods of raw materials, and a bubbler method and a precursor material for bubbling and subliming solid or liquid precursor materials with a transfer gas are appropriate. A vaporizer method is used to increase the volatilization efficiency of a precursor by dropping a solution dissolved in a solvent onto a hot plate heated to a high temperature to vaporize with a solvent. The vaporizer method is also called liquid delivery method because the precursor is transported in the liquid state. In order to prepare a thin film by chemical vapor deposition, not only a precursor having excellent characteristics should be provided, but also the surface shape, composition, and step coverage of the thin film manufactured using the precursor must be excellent. It is practically applicable to the device.

이때 전구체가 갖추어야 할 조건으로는 높은 기화 특성, 기화 온도와 분해 온도의 큰 격차, 낮은 독성, 화학적 안정성, 열적 안정성 및 전구체 합성과 열분해의 용이함을 들 수 있다. 또한 기화하는 과정 및 기체상으로 이송하는 과정에서 자발적으로 분해되거나 다른 물질과 반응하는 등의 부반응이 없어야 하며, 특히 다성분계 박막의 제조시에 박막내에 유입되는 각각의 성분 금속의 조성이 용이하게 조절되어야 하며 증착 온도에서 각각의 금속 전구체들의 분해 거동이 유사해야 양질의 박막을 형성할 수 있다.Precursor conditions include high vaporization properties, large gaps between vaporization and decomposition temperatures, low toxicity, chemical stability, thermal stability, and ease of precursor synthesis and pyrolysis. In addition, there should be no side reactions such as spontaneous decomposition or reaction with other substances in the process of vaporization and transfer to the gas phase, and in particular, the composition of each component metal introduced into the thin film during the preparation of the multi-component thin film is easily controlled. The decomposition behavior of the respective metal precursors at the deposition temperature must be similar to form a high quality thin film.

지금까지 금속 알킬, 금속 알콕사이드, 금속 카르복실레이트, 금속 베타-디케토네이트 등 다양한 유기금속 화합물이 전구체로서 연구되어 왔으나, 휘발성, 화학적-열적 안정성, 독성 등의 특성을 충분히 만족시키지 못하였다. 최근에는 금속β-디케토네이트 화합물(M(β-디케토네이트)n)과 금속 알콕사이드를 β-디케토네이트와 같은 두자리 리간드로 일부를 치환시킨 M(OR)x(β-디케토네이트)y형태의 전구체가 보고된 바 있다. 그러나 휘발성이 낮고, 금속에 남아 있는 알콕사이드 리간드로 인해 수분에 민감하며, 불포화된 다른 금속과의 반응성이 높다는 점 등의 문제점이 여전히 남아 있다.Various organometallic compounds such as metal alkyls, metal alkoxides, metal carboxylates, and metal beta-diketonates have been studied as precursors, but have not sufficiently satisfied properties such as volatility, chemical-thermal stability, and toxicity. Recently, M (OR) x (β-diketonate) in which a metal β-diketonate compound (M (β-diketonate) n ) and a metal alkoxide are partially substituted with a bidentate ligand such as β-diketonate. y form of precursor has been reported. However, problems such as low volatility, alkoxide ligands remaining in the metal, which are sensitive to moisture, and high reactivity with other unsaturated metals remain.

일반적으로 전구체의 수소원자를 전기음성도가 큰 불소 원자로 치환시킨 불소화 알킬 등을 사용하여 분자간 반발력을 크게 하면 휘발성이 향상된다. 특별히 바륨, 스트론튬과 같이 높은 배위수를 갖는 거대 금속 이온의 휘발성을 높이기 위해서는 벌키 알킬(bulky alkyl)기가 포함된 리간드를 도입하거나 여러자리 루이스 염기(polydendate Lewis base)를 도입하여 불포화된 배위구(coordination sphere)를 포화시킴으로서 올리고머화(oligomerization) 및 수화물 형성을 억제하고 분자간 상호작용을 줄여주는 방법이 사용되고 있다. 그러나 이러한 방법들은 성장된 박막에 불소가 포함될 가능성이 있고, 전구체를 기상에서 이송하는 도중에 루이스 염기가 해리되는 등의 새로운 문제점을 발생시켰다.In general, volatility is improved by increasing the intermolecular repulsive force by using a fluorinated alkyl or the like in which a hydrogen atom of a precursor is substituted with a fluorine atom having a high electronegativity. In order to increase the volatility of high coordination metal ions such as barium and strontium, unsaturated coordination may be introduced by introducing a ligand containing a bulky alkyl group or by introducing a polydendate Lewis base. By saturating spheres, a method of inhibiting oligomerization and hydrate formation and reducing intermolecular interactions has been used. However, these methods have the potential to contain fluorine in the grown thin film and create new problems such as dissociation of the Lewis base during transport of the precursor in the gas phase.

Air Products and Chemicals社에 의해 개발된 금속 β-케토이미네이트 화합물 Mn+(β-케토이미네이트)n(미국특허 제 4,950,790 호)에서는 β-케토이미네이트를 두자리 리간드로 활용하여 고리화 효과(chelate effect)에 의하여 비어있는 배위자리(vacant coordination site)를 채워주어 전구체의 열 및 화학적 안정성이 향상되었으나, 가수분해에 대한 안정성이 작은 것이 문제시되고 있다.In the metal β-ketoiminate compound M n + (β-ketoiminate) n (US Pat. No. 4,950,790) developed by Air Products and Chemicals, the chelate effect was obtained by utilizing β-ketoiminate as a bidentate ligand. effect), the vacant coordination site (filled vacant coordination site) to improve the thermal and chemical stability of the precursor, but a small stability to hydrolysis is a problem.

N-알콕시-β-케토이미네이트(N-alkoxy-β-ketoiminate)와 같이 -2의 전하를 갖는 세자리 리간드를 활용한 Ta(N-알콕시-β-케토이미네이트)(OEt)3와 Nb(N-알콕시-β-케토이미네이트)(OEt)3의 전구체도 연구되고 있으나 상기 전구체들은 반응성이 큰 알콕사이드와 N-알콕시-β-케토이미네이트를 함께 사용하고 있기 때문에 N-알콕시-β-케토이미네이트 만을 리간드로 사용한 경우의 장점을 살릴 수 없다.Ta (N-alkoxy-β-ketoiminate) (OEt) 3 and Nb (using N-alkoxy-β-ketoiminate) utilizing a tridentate ligand with a charge of -2 Precursors of N-alkoxy-β-ketoiminate) (OEt) 3 have also been studied, but since these precursors use a highly reactive alkoxide and N-alkoxy-β-ketoiminate together, N-alkoxy-β-keto The advantage of using only iminate as a ligand cannot be utilized.

또한, 일반적으로 BST(barium strontium titanate)와 같은 다성분계 금속 산화물 박막을 MOCVD법에 의해 증착할 때, 전구체들의 휘발특성 차이가 크기 때문에 바륨과 스트론튬에 비해 티타늄을 과량으로 사용하여 박막의 금속 조성을 맞추게 된다. 그러나 과량으로 사용된 티타늄은 박막 표면에 티타늄이 주성분인 돌기가 존재하도록 하여 박막표면이 매끈하지 못하도록 하는 원인이 된다(Janpanese Journal of Applied Physics 36, 6946 (1997)). 더우기 BST 박막을 DRAM과 같은 반도체 소자에 적용하기 위해서는 증착된 박막내에 탄소 등의 불순물이 거의 없어야 하며, 소자의 구조를 형성하기 위하여 단차 피복특성(step coverage)이 좋아야 하나, 현재까지 개발된 전구체로부터 제조된 다성분계 금속산화물 박막은 티타늄 전구체의 과량 사용에 의해 표면형상이 거칠며, 탄소 등의 불순물들로 인해 박막의 누설전류가 크고 단차 피복특성이 좋지 않아 소자 제작시 문제점으로 지적되고 있다.Also, when the multi-component metal oxide thin film such as barium strontium titanate (BST) is deposited by MOCVD, the volatilization characteristics of the precursors are large, so that titanium is used in excess of barium and strontium to match the metal composition of the thin film. do. However, excessively used titanium causes the surface of the thin film to have a titanium-based protrusion, which causes the surface of the thin film to become unstable ( Janpanese Journal of Applied Physics 36 , 6946 (1997)). Furthermore, in order to apply the BST thin film to a semiconductor device such as DRAM, there should be almost no impurities such as carbon in the deposited thin film, and the step coverage should be good to form the structure of the device. The manufactured multi-component metal oxide thin film has a rough surface shape due to the excessive use of titanium precursor, has a high leakage current of the thin film due to impurities such as carbon and poor step coverage characteristics have been pointed out as a problem when manufacturing the device.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 우수한휘발성과 열적 특성을 나타내며, 가수분해에 대한 화학적 안정성이 탁월하고, 특히 티타늄과 같은 IV족 금속을 포함하는 다성분계 금속산화물 박막의 형성에 적합한 IV족 금속 전구체 및 이를 사용한 화학기상 증착법을 제공함을 그 목적으로 한다.The present invention is to solve the problems of the prior art as described above, exhibits excellent volatility and thermal properties, excellent chemical stability against hydrolysis, particularly of multi-component metal oxide thin film containing a Group IV metal such as titanium It is an object of the present invention to provide a Group IV metal precursor suitable for formation and a chemical vapor deposition method using the same.

상기와 같은 목적을 달성하기 위한 본 발명의 하나의 측면은 하기 화학식 1로 표시되는 -2가의 세자리 리간드(L)에 관한 것이다.One aspect of the present invention for achieving the above object relates to a -divalent tridentate ligand (L) represented by the following formula (1).

상기 식에서 R1와 R2는 각각 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬기이고, R3는 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬렌기이다.Wherein R 1 and R 2 are each a linear or branched alkyl group having 1 to 8 carbon atoms, and R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms.

상기와 같은 목적을 달성하기 위한 본 발명의 다른 측면은 상기 화학식 1로 표시되는 -2가의 세자리 리간드(L)과 +4가의 IV족 금속(M)으로 이루어지며, 화학식 M(L)2로 표시되는 것을 특징으로 하는 금속산화물 박막 제조용 유기금속 전구체에 관한 것이다.Another aspect of the present invention for achieving the above object consists of a -divalent tridentate ligand (L) and + tetravalent Group IV metal (M) represented by the formula (1), represented by the formula M (L) 2 The present invention relates to an organometallic precursor for producing a metal oxide thin film.

상기와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면은 티타늄과 같은 IV족 금속(M)과 상기 화학식 1로 표시되는 세자리 리간드(L)로 이루어지는, 화학식 M(L)2의 착물을 IV족 금속의 전구체로 사용하여 금속산화물 박막을 형성함을 특징으로 하는 화학기상 증착법에 관한 것이다.Another aspect of the present invention for achieving the above object, the IV-group metal (M) in the general formula consisting of a tridentate ligand (L) represented by 1, the formula M (L) complexes of 2 Group IV such as titanium It relates to a chemical vapor deposition method characterized by forming a metal oxide thin film using as a precursor of a metal.

도 1a는 본 발명에 따른 Ti(eip)2(티타늄 비스[4-(에톡시)이미노-2-펜타노네이트]) 전구체의 질소 분위기에서의 온도 상승에 따른 TG-DSC (Thermal Gravimetry-Differential Scanning Calorimetry) 그래프,1A is a thermal gradient-differential (TG-DSC) temperature increase in a nitrogen atmosphere of a Ti (eip) 2 (titanium bis [4- (ethoxy) imino-2-pentanoate]) precursor according to the present invention. Scanning Calorimetry graph,

도 1b는 본 발명에 따른 Ti(2meip)2(티타늄 비스[4-(2-메틸에톡시)이미노-2-펜타노네이트]) 전구체의 질소 분위기에서의 온도 상승에 따른 TG-DSC 그래프,1B is a TG-DSC graph of temperature rise in a nitrogen atmosphere of a Ti (2meip) 2 (titanium bis [4- (2-methylethoxy) imino-2-pentanoate]) precursor according to the present invention;

도 2a는 본 발명에 따른 Ti(eip)2전구체의 감압(약 1.3 mbar) 하에서 온도 상승에 따른 TG-DSC 그래프,2a is a TG-DSC graph with temperature rise under reduced pressure (about 1.3 mbar) of the Ti (eip) 2 precursor according to the present invention;

도 2b는 본 발명에 따른 Ti(2meip)2전구체의 감압(약 1.3 mbar) 하에서 온도 상승에 따른 TG-DSC 그래프,2b is a graph of TG-DSC with temperature rise under reduced pressure (about 1.3 mbar) of the Ti (2meip) 2 precursor according to the present invention;

도 3은 본 발명에 따른 Ti(2meip)2전구체의 공기 중에서의 온도 상승에 따른 TG-DSC 그래프,3 is a TG-DSC graph according to a temperature rise in air of a Ti (2meip) 2 precursor according to the present invention;

도 4는 본 발명에 따른 전구체 Ti(2meip)2와 상업적으로 구입한 전구체 Ti(mpd)(thd)2(티타늄 (2-메틸-2,4-디옥시-펜탄)-비스[(2,2,6,6-테트라메틸-3,5-헵탄디오네이트)]), Ti(thd)2(O-iPr)2(티타늄 비스(이소-프로폭사이드) 비스[(2,2,6,6 -테트라메틸-3,5-헵탄디오네이트)]), Ba(methd)2(바륨 비스[1-메톡시에톡시-2,2,6,6-테트라메틸-3,5-헵탄디오네이트]), Sr(methd)2(스트론튬 비스[1-메톡시에톡시-2,2,6,6-테트라메틸-3,5-헵탄디오네이트])의 등온 열분석에서 유도된 온도에 따른 전구체의 휘발 속도를 나타낸 그래프,4 is a precursor Ti (2meip) 2 and a commercially available precursor Ti (mpd) (thd) 2 (titanium (2-methyl-2,4-dioxy-pentane) -bis [(2,2) , 6,6-tetramethyl-3,5-heptanedionate)]), Ti (thd) 2 (O-iPr) 2 (titanium bis (iso-propoxide) bis [(2,2,6,6 -Tetramethyl-3,5-heptanedionate)]), Ba (methd) 2 (barium bis [1-methoxyethoxy-2,2,6,6-tetramethyl-3,5-heptanedionate] ), The temperature-dependent precursors of Sr (methd) 2 (strontium bis [1-methoxyethoxy-2,2,6,6-tetramethyl-3,5-heptanedionate]) Graph showing volatilization rate,

도 5a는 Ti(2meip)2를 사용하여 BST(Barium strontium titanate) 박막 증착시 증착온도에 따른 티타늄과 바륨 함량의 변화를 나타낸 그래프,5a is a graph showing the change of titanium and barium content according to deposition temperature when depositing Barium strontium titanate (BST) thin film using Ti (2meip) 2 ,

도 5b는 Ti(mpd)(thd)2사용하여 BST 박막 증착시 증착 온도에 따른 티타늄과 바륨 함량의 변화를 나타낸 그래프,Figure 5b is a graph showing the change in titanium and barium content according to the deposition temperature when depositing BST thin film using Ti (mpd) (thd) 2 ,

도 6은 실시예 24에서 430℃에서 증착된 BST 박막의 XRD(X-Ray Diffraction) 기록도,FIG. 6 is an X-ray diffraction (XRD) recording diagram of a BST thin film deposited at 430 ° C. in Example 24; FIG.

도 7a는 실시예 24에서 430℃에서 평판형 기판에 증착된 BST 박막의 주사 전자 현미경에 의한 평면사진,7A is a planar photograph taken by a scanning electron microscope of a BST thin film deposited on a flat substrate at 430 ° C. in Example 24,

도 7b는 실시예 24에서 430℃에서 평판형 기판에 증착된 BST 박막의 원자간 힘 현미경(Atomic Force Microscope)에 의한 평면 이미지,7B is a planar image by an Atomic Force Microscope of a BST thin film deposited on a flat substrate at 430 ° C. in Example 24,

도 8은 실시예 24에서 430℃에서 미세 패턴구조 기판에 증착된 BST 박막의 주사 전자 현미경 측면사진,8 is a scanning electron microscope side view of a BST thin film deposited on a fine pattern structure substrate at 430 ° C. in Example 24,

도 9는 실시예 24에서 430℃에서 증착된 BST 박막의 SIMS (Secondary IonMass Spectroscopy) 기록도,9 is a Secondary IonMass Spectroscopy (SIMS) recording diagram of a BST thin film deposited at 430 ° C. in Example 24;

도 10은 실시예 24에서 430℃에서 증착된 BST 박막을 이용하여 제작된 Pt/BST/Pt 커패시터의 전기적 유전 특성을 나타내는 도면, 및FIG. 10 is a view showing electrical dielectric properties of a Pt / BST / Pt capacitor fabricated using a BST thin film deposited at 430 ° C. in Example 24; and

도 11은 실시예 24에서 430℃에서 증착된 BST 박막을 이용하여 제작된 Pt/BST/Pt 커패시터의 누설 전류 밀도이다.FIG. 11 is a leakage current density of a Pt / BST / Pt capacitor fabricated using a BST thin film deposited at 430 ° C. in Example 24.

이하 본 발명을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 Organometallics,18, 1018 (1999)에서 촉매로의 사용을 위하여 보고된 바 있는 티타늄(N-알콕시-β-케토이미네이트)2를 박막 제조용 전구체로 사용한 화학기상 증착법을 제공한다. 상기 티타늄 전구체는 두자리 리간드보다 뛰어난 고리화 효과를 가지고 있는 세자리 리간드를 활용하여 중심 금속의 빈 배위자리를 포화시키고 있으므로 가수분해에 대한 안정성이 탁월하고 열적 특성이 우수하여 휘발후 잔류물이 남지 않는다. 또한 세자리 리간드의 비대칭 요소를 조절함에 따라 전구체의 기화온도, 휘발후 잔유물 등 열적 특성을 조절할 수 있기 때문에 티타늄을 포함하는 다성분계 금속 산화물 박막 증착시 요구되는 전구체 간의 휘발 및 분해 거동의 유사성을 확보할 수 있도록 한다. 또한 화학식 1의 리간드는 Ti, Zr, Hf, Ge, Sn, Pb등과 같은 IV족 금속에 적용될 수 있다.The present invention provides a chemical vapor deposition method using titanium (N-alkoxy-β-ketoiminate) 2 , which has been reported for use as a catalyst in Organometallics, 18 , 1018 (1999), as a precursor for thin film production. Since the titanium precursor saturates the empty coordination site of the central metal by using a tridentate ligand having a superior cyclization effect than the bidentate ligand, the titanium precursor has excellent stability against hydrolysis and excellent thermal properties, thereby leaving no residue after volatilization. In addition, by controlling the asymmetric elements of the tridentate ligand, thermal properties such as vaporization temperature of the precursor and residues after volatilization can be controlled. To help. In addition, the ligand of Formula 1 may be applied to Group IV metals such as Ti, Zr, Hf, Ge, Sn, Pb, and the like.

즉 본 발명에서는 화학식 M(L)2로 표시되는 IV족 금속과 리간드(L)의 착물을 IV족 금속의 전구체로 사용한다. 리간드 L은 화학식 1에 도시한 바와 같이 -2의 전하를 갖는 N-알콕시-β-케토이미네이트(N-alkoxy-β-ketoiminate)이며 +4가의 IV족 금속에 대하여 -2가의 세자리 리간드(terdentate ligand)로 배위하는 것을 특징으로 한다.That is, in the present invention, a complex of a group IV metal and a ligand (L) represented by the formula M (L) 2 is used as a precursor of the group IV metal. Ligand L is N-alkoxy-β-ketoiminate with a charge of -2 as shown in Formula 1 and is a -divalent tridentate ligand for a + 4-valent IV group metal. ligand).

[화학식 1][Formula 1]

상기 식에서 R1와 R2는 각각 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬기이고, R3는 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬렌기이다. 이때 R1과 R2는 상기 리간드에 비대칭성을 주기 위해서 서로 다를 수도 있고 같을 수도 있다.Wherein R 1 and R 2 are each a linear or branched alkyl group having 1 to 8 carbon atoms, and R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms. In this case, R 1 and R 2 may be different from each other or the same to give asymmetry to the ligand.

본 발명에서는 리간드의 고리화 효과를 더욱 증가시키기 위해서 β-케토이미네이트의 질소원자에 -1의 전하를 갖는 선형 또는 가지달린 N-알콕시기를 도입하므로서 β-케토이미네이트를 -2의 전하를 가지는 세자리 리간드로 활용하여 금속이온과 강한 결합을 형성하면서 빈 배위자리가 포화되도록 하므로서 우수한 화학적, 열적 안정성을 가지도록 하였다.In the present invention, in order to further increase the cyclization effect of the ligand, the β-ketoiminate has a charge of -2 by introducing a linear or branched N-alkoxy group having a charge of -1 to the nitrogen atom of the β-ketoiminate. It is used as a tridentate ligand to form a strong bond with the metal ion and to saturate the empty coordination site to have excellent chemical and thermal stability.

일반적으로 M(OR)n과 M(OR)x(β-디케토네이트)y형태의 전구체는 공기중에 방치시 가수분해에 의해 금속 하이드록사이드 착물로 변화하는데 비해서 본 발명에 의한 세자리 리간드를 갖는 전구체는 가수분해 반응에 대해 탁월한 안정성을 지니며 특히 하기에서 설명되는 실시예 12에 의한 전구체 Ti(2meip)2는 공기중에서 3개월 이상 방치하여도 전구체의 구조가 변하지 않는 화학적 안정성을 갖고 있다.In general, precursors of the form M (OR) n and M (OR) x (β-diketonate) y have a tridentate ligand according to the invention as compared to a metal hydroxide complex by hydrolysis upon standing in air. The precursor has excellent stability to the hydrolysis reaction, and in particular, the precursor Ti (2meip) 2 according to Example 12 described below has a chemical stability that does not change the structure of the precursor even when left in the air for three months or more.

본 발명에 의한 티타늄 전구체는 일반적인 유기 용매인 벤젠, 톨루엔, 클로로포름, 알코올, 테트라히드로퓨란와 n-부틸 아세테이트 등에 용해되므로 액체 이송 화학 기상 증착(Liquid Delivery MOCVD)법을 사용하여 박막을 형성할 수 있다. 특히 LSCVD(Liquid Source Chemical Vapor Deposition)법에 범용적으로 사용되는 n-부틸 아세테이트등의 용매에 대한 용해도는 세자리 리간드의 비대칭 요소를 조절하므로서 증가시킬 수 있다.Since the titanium precursor according to the present invention is dissolved in common organic solvents such as benzene, toluene, chloroform, alcohol, tetrahydrofuran and n-butyl acetate, the titanium precursor may be formed using a liquid delivery chemical vapor deposition (Liquid Delivery MOCVD) method. In particular, the solubility in a solvent such as n-butyl acetate which is commonly used in the liquid source chemical vapor deposition (LSCVD) method can be increased by controlling the asymmetric element of the tridentate ligand.

본 발명에 의한 전구체는 열 안정성, 내습성 및 가수분해에 대한 저항성이 매우 향상된 특성을 나타내는데, 이러한 특성은 리간드에 도입된 비대칭 요소와 치환기 R1, R2, R3의 종류에 따라 상당히 달라진다. 세자리 리간드에 비대칭 요소를 갖고 있지 않은 전구체 Ti(eip)2의 경우, 증착 후 8% 정도의 잔류물이 남지만, 전구체 Ti(2meip)2와 Ti(22dm2meih)2(티타늄 비스[2,2-디메틸-5-(2-메틸에톡시)이미노-3-헵타노네이트])은 각각 대기압에서 198℃, 218℃에서 녹은 이후 290℃, 287℃에서 급격히 기화되어 열분해가 일어나지 않기 때문에 휘발 후 잔유물이 남지 않는 우수한 열적 특성을 지니고 있다.Precursors according to the present invention exhibit a very improved property of thermal stability, moisture resistance and resistance to hydrolysis, which are highly dependent on the asymmetric elements introduced into the ligand and the kinds of substituents R 1 , R 2 , R 3 . For precursor Ti (eip) 2 , which does not have an asymmetric element in the tridentate ligand, about 8% of residue remains after deposition, but precursors Ti (2meip) 2 and Ti (22dm2meih) 2 (titanium bis [2,2-dimethyl -5- (2-methylethoxy) imino-3-heptanonate]) melted at 198 ℃ and 218 ℃ at atmospheric pressure, and then rapidly evaporated at 290 ℃ and 287 ℃, so that no pyrolysis occurred. It has excellent thermal properties that remain.

일반적으로 화학 기상 증착(CVD)법으로 다성분계 박막을 증착할 때, 각 금속전구체들의 기화 온도가 서로 다르고 분해 거동이 유사하지 못하기 때문에 상대적으로 높은 휘발성(volatility)을 갖는 금속의 전구체를 과량으로 공급하여야 박막의 조성을 조절하고 있다. 따라서 다성분계 물질의 증착에서 양질의 박막을 제조하기 위해서는 각 전구체들의 휘발 및 분해 거동이 유사한 조합을 선택하는 것이 매우 중요하다. 특별히 Ba, Sr 등과 같이 크기가 크고 전하수가 작은 금속들은 배위자리가 리간드들에 의해서 충분히 배위되지 못하므로 표 2에 나타난 것처럼 티타늄 전구체에 비해서 약 100도 이상의 기화 온도 차이가 나타난다. 그러나 본 발명에 의한 전구체들은 기존의 티타늄 전구체에 비해 상대적으로 높은 온도에서 기화되면서도 휘발 후 잔류량이 없고, 산소 분위기에서 열 분해시 특정 온도 이상에서 매우 깨끗하게 분해되기 때문에 휘발성이 적은 금속과 다성분계 박막을 형성하고자 할 때 특히 유용하여, 표면 형상이 매끄럽고, 단차 피복특성이 우수하며 박막내에 탄소 또는 질소등의 불순물이 거의 없는 양질의 박막을 얻을 수 있다.In general, when depositing a multi-component thin film by chemical vapor deposition (CVD), the precursors of metals having relatively high volatility are excessive because the vaporization temperatures of the metal precursors are different from each other and the decomposition behavior is not similar. It is necessary to supply the composition of the thin film. Therefore, in order to produce high quality thin films in the deposition of multicomponent materials, it is very important to select combinations similar in volatilization and decomposition behavior of the respective precursors. Particularly, the large and small charge metals such as Ba, Sr, and the like have a coordination site that is not sufficiently coordinated by ligands, so that the difference in vaporization temperature is about 100 degrees or more compared to the titanium precursor as shown in Table 2. However, the precursors according to the present invention have no residual amount after volatilization even though they are vaporized at a relatively high temperature compared to the conventional titanium precursor, and are decomposed very cleanly above a certain temperature when thermally decomposed in an oxygen atmosphere. Particularly useful when forming, it is possible to obtain a high quality thin film having a smooth surface shape, excellent step coverage characteristics and almost no impurities such as carbon or nitrogen in the thin film.

한편, BST와 같은 다성분계 금속 산화물 박막을 증착할 때 대면적 기판의 온도는 실질적으로 동일하게 유지되지 않으며, 또한 단차가 큰 구조의 소자를 제작할 때 역시 단차의 상하부의 온도가 동일하지 못하므로 기존의 방법으로는 대면적 기판 또는 단차가 큰 박막의 상하부에서의 티타늄 조성을 동일하게 유지하기가 어려웠다. 그러나 본 발명에 의한 전구체의 경우 기존의 상용 티타늄 전구체에 비해 박막내 티타늄 조성의 온도 의존성이 적기 때문에 대면적의 박막 제작 및 단차가 큰 박막의 조성 조절이 용이하다.On the other hand, when depositing a multi-component metal oxide thin film such as BST, the temperature of the large-area substrate does not remain substantially the same, and also when manufacturing a device having a large step, the temperature of the top and bottom of the step is not the same. It was difficult to maintain the same titanium composition in the upper and lower parts of a large-area substrate or a thin film having a large step by the method. However, in the case of the precursor according to the present invention, since the temperature dependency of the titanium composition in the thin film is less than that of the conventional commercial titanium precursor, it is easy to manufacture a large area thin film and to control the composition of the thin film having a large step.

이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.

실시예 1. CH3C(O)CHC(HNCH2CH2OH)CH3의 제조 Example 1 . Preparation of CH 3 C (O) CHC (HNCH 2 CH 2 OH) CH 3

참고문헌 (Organometallics, 1999, 18, 1018)에 기재된 방법과 같이 에탄올아민 (NH2CH2CH2OH) (6.71g, 109.8mmol), 2,4-펜탄디온(CH3C(O)CH2C(O)CH3) (10g, 99.88mmol)을 출발물질로 하여, 이를 CH2Cl2120ml에 혼합하고 상온에서 하루동안 교반하였다. 다음, H2O/CH2Cl2(15ml/150ml) 혼합용액을 이용하여 생성물질을 유기층으로 추출하고, 남아 있는 수층을 CH2Cl2용액 100ml로 세번 더 추출하였다. MgSO4로 건조후 수집된 용액 중 용매를 제거하고 CH2Cl2/n-hexane (10ml/140ml)를 첨가하여 -20℃에서 재결정하여 CH3C(O)CHC(HNCH2CH2OH)CH312.88 g(수율 90%)을 제조하였다.Ethanolamine (NH 2 CH 2 CH 2 OH) (6.71 g, 109.8 mmol), 2,4-pentanedione (CH 3 C (O) CH 2 , as in the method described in (Organometallics, 1999, 18, 1018) Using C (O) CH 3 ) (10 g, 99.88 mmol) as a starting material, it was mixed with 120 ml of CH 2 Cl 2 and stirred at room temperature for one day. Next, using H 2 O / CH 2 Cl 2 (15ml / 150ml) mixed solution to extract the product into an organic layer, the remaining aqueous layer was extracted three times more with 100ml of CH 2 Cl 2 solution. The solvent was removed from the collected solution was dried with MgSO 4 and CH 2 Cl 2 / n-hexane was added to (10ml / 140ml) and recrystallized in -20 ℃ CH 3 C (O) CHC (HNCH 2 CH 2 OH) CH 3 12.88 g (90% yield) were prepared.

실시예 2. CH3C(O)CHC(HNCH2CH(CH3)OH)CH3의 제조 Example 2 . Preparation of CH 3 C (O) CHC (HNCH 2 CH (CH 3 ) OH) CH 3

1-아미노-2-프로판올(NH2CH2CH(CH3)OH) (22.51g, 299.7mmol), 2,4-펜탄디온 (20g, 199.8mmol)을 출발물질로 하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여 CH3C(O)CHC(HNCH2CH(CH3)OH)CH329.83g (수율 95%)을 제조하였다.Example except 1-amino- 2 -propanol (NH 2 CH 2 CH (CH 3 ) OH) (22.51 g, 299.7 mmol), 2,4-pentanedione (20 g, 199.8 mmol) as starting material 29.83 g (yield 95%) of CH 3 C (O) CHC (HNCH 2 CH (CH 3 ) OH) CH 3 was prepared in the same manner as in Example 1 .

실시예 3. CH3C(O)CHC(HNCH(CH3)CH2OH)CH3의 제조 Example 3 . Preparation of CH 3 C (O) CHC (HNCH (CH 3 ) CH 2 OH) CH 3

DL-2-아미노-1-프로판올(NH2CH(CH3)CHOH) (10.0g, 13.31mmol), 2,4-펜탄디온(11.11g, 11.10mmol)을 CH3OH 용액 100ml 에 혼합하고 HCOOH 0.51g을 첨가한 후 85℃에서 교반하면서 하루동안 환류시켰다. 용매를 제거한 후 H2O/CH2Cl2(20ml/150ml) 혼합용액을 이용하여 생성물질을 유기층으로 추출하고 남아 있는 H2O 층을 세 번 더 CH2Cl2용액 100ml로 추출하였다. MgSO4로 건조후 수집된 용액에서 용매를 제거하고 에틸아세테이트를 전개 용액으로 하여 실리카로 충진된 칼럼을 통해 분리하여 CH3C(O)CHC(HNCH(CH3)CH2OH)CH315.52g (수율 89%)을 제조하였다.DL-2-amino-1-propanol (NH 2 CH (CH 3 ) CHOH) (10.0 g, 13.31 mmol) and 2,4-pentanedione (11.11 g, 11.10 mmol) were mixed in 100 ml of CH 3 OH solution and HCOOH 0.51 g was added and then refluxed for one day with stirring at 85 ° C. After the solvent was removed, the product was extracted into the organic layer using H 2 O / CH 2 Cl 2 (20ml / 150ml) mixed solution, and the remaining H 2 O layer was extracted three times with 100ml of CH 2 Cl 2 solution. After drying with MgSO 4 , the solvent was removed from the collected solution, ethyl acetate was used as a developing solution, and the resultant was separated through a column packed with silica, and CH 3 C (O) CHC (HNCH (CH 3 ) CH 2 OH) CH 3 was 15.52 g. (Yield 89%) was prepared.

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3): 10.8(br s, 1H, C(O)CH=C(NH)), 4.93(s, 1H, C(O)CH=C(NH)), 3.72(m, 1H, HNCH(Me)CH2OH), 3.62(dd, 1H, NCHMeCH a HbOH), 3.52(dd, 1H, NCHMeCH a H bOH), 3.35(br s, 1H, NCH(Me)CH2OH), 1.98(s, 3H, CH=C(NH)CH 3), 1.97(s, 3H, CH 3C(O)CH), 1.18(d, 3H, HNCH(CH 3)CH2OH);13C-NMR (50.289 MHz, CDCl3): 192.45(s, CH3 C(O)CH), 160.69(s, CH=C(NH)CH3), 93.19(s, C(O)CH=C(NH), 64.57(s, HNCH(Me)CH2OH), 48.45(s, HNCH(Me)CH2OH), 26.19(s,CH3C(O)CH), 16.69(s, CH=C(NH)CH3), 15.7(s, NHCH(CH3)CH2OH) 1 H-NMR (199.976 MHz, CDCl 3 ): 10.8 (br s, 1H, C (O) CH = C (N H )), 4.93 (s, 1H, C (O) C H = C (NH)) , 3.72 (m, 1H, HNC H (Me) CH 2 OH), 3.62 (dd, 1H, NCHMeC H a H b OH), 3.52 (dd, 1H, NCHMeCH a H b OH), 3.35 (br s, 1H , NCH (Me) CH 2 O H ), 1.98 (s, 3H, CH = C (NH) C H 3 ), 1.97 (s, 3H, C H 3 C (O) CH), 1.18 (d, 3H, HNCH (C H 3 ) CH 2 OH); 13 C-NMR (50.289 MHz, CDCl 3 ): 192.45 (s, CH 3 C (O) CH), 160.69 (s, CH = C (NH) CH 3 ), 93.19 (s, C (O) C H = C (NH), 64.57 (s, HNCH (Me) C H 2 OH), 48.45 (s, HN C H (Me) CH 2 OH), 26.19 (s, C H 3 C (O) CH), 16.69 ( s, CH = C (NH) C H 3 ), 15.7 (s, NHCH ( C H 3 ) CH 2 OH)

실시예 4. CH3C(O)CHC(HNC(CH3)2CH2OH)CH3의 제조 Example 4 Preparation of CH 3 C (O) CHC (HNC (CH 3 ) 2 CH 2 OH) CH 3

2-아미노-2-메틸-1-프로판올 (NH2C(CH3)2CHOH) (13.35g, 149.8mmol), 2,4-펜탄디온 (10.0g, 99.88mmol)을 CH3OH 용액 100ml 에 혼합하고 HCOOH 0.51g을 첨가한 후 85℃에서 교반하면서 하루동안 환류시켰다. 용매를 제거한 후 에틸 에테르 200ml로 상온에서 재결정하여 CH3C(O)CHC(HNC(CH3)2CH2OH)CH310.95g (수율 64%)을 제조하였다.2-amino-2-methyl-1-propanol (NH 2 C (CH 3 ) 2 CHOH) (13.35 g, 149.8 mmol), 2,4-pentanedione (10.0 g, 99.88 mmol) in 100 ml of CH 3 OH solution Mix and add 0.51 g of HCOOH and reflux for one day with stirring at 85 ° C. After removing the solvent and recrystallized with 200 ml of ethyl ether at room temperature 10.95g (yield 64%) of CH 3 C (O) CHC (HNC (CH 3 ) 2 CH 2 OH) CH 3 .

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3): 11.32(br s, 1H, C(O)CH=C(NH)), 4.88(s, 1H, C(O)CH=C(NH)), 4.35(br s, 1H, HNC(Me)2CH2OH), 3.53(s, 2H, NC(Me)2CH 2OH), 2.04(s, 3H, CH=C(N)CH 3), 1.94(s, 3H, CH 3C(O)), 1.33(s, 6H, (HNC(CH 3)2CH2OH) ;13C-NMR (50.289 MHz, CDCl3): 194.24(s, CH3 C(O)CH), 163.88(s, CH=C(NH)CH3), 97.07(s, C(O)CH=(NH)), 70.93(s, NHC(Me)2 CH2OH), 56.44(s, HNC(Me)2CH2OH), 28.67(s, CH=C(NH)CH3), 25.72(s, HNC(CH3)2CH2OH), 20.96(s,CH3C(O)CH); EA (cal C: 63.13, H: 10.01, N: 8.18 , found C: 63.38, H: 10.57, N: 8.23) 1 H-NMR (199.976 MHz, CDCl 3 ): 11.32 (br s, 1H, C (O) CH = C (N H )), 4.88 (s, 1H, C (O) C H = C (NH)) , 4.35 (br s, 1H, HNC (Me) 2 CH 2 O H ), 3.53 (s, 2H, NC (Me) 2 C H 2 OH), 2.04 (s, 3H, CH = C (N) C H 3 ), 1.94 (s, 3H, C H 3 C (O)), 1.33 (s, 6H, (HNC (C H 3 ) 2 CH 2 OH); 13 C-NMR (50.289 MHz, CDCl 3 ): 194.24 (s, CH 3 C (O) CH), 163.88 (s, CH = C (NH) CH 3 ), 97.07 (s, C (O) C H = (NH)), 70.93 (s, NHC (Me) 2 C H 2 OH), 56.44 (s, HN C (Me) 2 CH 2 OH), 28.67 (s, CH = C (NH) C H 3 ), 25.72 (s, HNC ( C H 3 ) 2 CH 2 OH), 20.96 (s, C H 3 C (O) CH); EA (cal C: 63.13, H: 10.01, N: 8.18, found C: 63.38, H: 10.57, N: 8.23)

실시예 5. CH3C(O)CHC(HNCH(CH2CH3)CH2OH)CH3의 제조 Example 5 . Preparation of CH 3 C (O) CHC (HNCH (CH 2 CH 3 ) CH 2 OH) CH 3

2-아미노-1-부탄올 (13.35g, 149.8mmol), 2,4-펜탄디온 (10.0g, 99.88mmol)을 사용하여 에탄올 하에서 실시예 3과 같은 방법으로 합성하고, 진공 증류하여 노란색 액체의 CH3C(O)CHC(HNCH(CH2CH3)CH2OH)CH314.54g (수율 85%)을 제조하였다.Synthesis was carried out in the same manner as in Example 3 using 2-amino-1-butanol (13.35g, 149.8mmol), 2,4-pentanedione (10.0g, 99.88mmol) under ethanol, and vacuum distillation to give CH of the yellow liquid. 14.54 g (85% yield) of 3 C (O) CHC (HNCH (CH 2 CH 3 ) CH 2 OH) CH 3 were prepared.

제조된 물질의 NMR 측정결과는 다음과 같다.The NMR measurement results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3): 10.74(br s, 1H, C(O)CH=C(NH)), 4.94(s, 1H, C(O)CH=C(NH)), 4.06(d, 2H, NCH(CH2CH3)CH 2OH), 3.60(m, 1H, NCH(CH2CH3)CH 2OH), 3.25(br s, 1H, HNCH(CH2CH3)CH2OH), 1.99(s, 3H, CH=C(N)CH 3), 1.93(s, 3H, CH 3C(O)), 1.59(m, 2H, (HNCH(CH 2CH3)CH2OH), 0.95(t, 3H, HNCH(CH2CH 3)CH2OH) ;13C-NMR (50.289 MHz, CDCl3): 195.15(s, CH3 C(O)CH), 163.86(s, CH=C(NH)CH3), 95.87(s, C(O)CH=C(NH)), 65.91(s, HNCH(CH2CH3)CH2OH), 57.23(s, HNCH(CH2CH3)CH2OH), 28.90(s,CH3C(O)CH), 25.54(s, HNCH(CH2CH3)CH2OH), 19.66(s, CH=C(NH)CH3), 10.56(s, NHCH(CH2 CH3)CH2OH) 1 H-NMR (199.976 MHz, CDCl 3 ): 10.74 (br s, 1H, C (O) CH = C (N H )), 4.94 (s, 1H, C (O) C H = C (NH)) , 4.06 (d, 2H, NCH (CH 2 CH 3 ) C H 2 OH), 3.60 (m, 1H, NC H (CH 2 CH 3 ) C H 2 OH), 3.25 (br s, 1H, HNCH (CH 2 CH 3 ) CH 2 O H ), 1.99 (s, 3H, CH = C (N) C H 3 ), 1.93 (s, 3H, C H 3 C (O)), 1.59 (m, 2H, (HNCH (C H 2 CH 3 ) CH 2 OH), 0.95 (t, 3H, HNCH (CH 2 C H 3 ) CH 2 OH); 13 C-NMR (50.289 MHz, CDCl 3 ): 195.15 (s, CH 3 C (O) CH), 163.86 (s, CH = C (NH) CH 3 ), 95.87 (s, C (O) C H = C (NH)), 65.91 (s, HNCH (CH 2 CH 3 ) C H 2 OH), 57.23 (s, HN C H (CH 2 CH 3 ) CH 2 OH), 28.90 (s, C H 3 C (O) CH), 25.54 (s, HN C H (CH 2 CH 3 ) CH 2 OH), 19.66 (s, CH = C (NH) C H 3 ), 10.56 (s, NHCH (CH 2 C H 3 ) CH 2 OH)

실시예 6. CH3C(O)CHC(HNCH2CH2CH2OH)CH3의 제조 Example 6 Preparation of CH 3 C (O) CHC (HNCH 2 CH 2 CH 2 OH) CH 3

3-아미노-1-프로판올 (9.0g, 119.8mmol), 2,4-펜탄디온 (10.0g, 99.88mmol)을 사용하여 실시예 1과 같은 방법으로 합성하고 에틸아세테이트/헥산 80% 전개 용액으로 하여 실리카로 충진된 칼럼을 통해 분리하여 CH3C(O)CHC(HNCH2CH2CH2OH)CH314.00g (수율 93%)을 제조하였다.Synthesis was carried out in the same manner as in Example 1 using 3-amino-1-propanol (9.0g, 119.8mmol), 2,4-pentanedione (10.0g, 99.88mmol), and 80% ethylacetate / hexane solution was developed. separated through a column filled with silica to prepare a CH 3 C (O) CHC ( HNCH 2 CH 2 CH 2 OH) CH 3 14.00g ( 93% yield).

제조된 물질의 NMR 측정결과는 다음과 같다.The NMR measurement results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3): 10.86(br s, 1H, C(O)CH=C(NH)), 4.96(s, 1H, C(O)CH=C(NH)), 3.74(t, 2H, NCH2CH2CH 2OH), 3.38(dt, 2H, NCH 2CH2CH2OH), 2.67(br s, 1H, NCH2CH2CH2OH), 1.98(s, 3H, CH=C(NH)CH 3), 1.94(s, 3H, CH 3C(O)CH), 1.83(m, 2H, NCH2CH 2CH2OH) ;13C-NMR (50.289 MHz, CDCl3): 194.94(s, CH3 C(O)CH), 163.80(s, CH=C(NH)CH3), 95.46(s, C(O)CH=C(NH)), 59.62(s, HNCH2CH2 CH2OH), 39.92(s, HNCH2CH2CH2OH), 32.85(s, HNCH2 CH2CH2OH), 28.85(s,CH3C(O)CH), 18.99(s, CH=C(NH)CH3) 1 H-NMR (199.976 MHz, CDCl 3 ): 10.86 (br s, 1H, C (O) CH = C (N H )), 4.96 (s, 1H, C (O) C H = C (NH)) , 3.74 (t, 2H, NCH 2 CH 2 C H 2 OH), 3.38 (dt, 2H, NC H 2 CH 2 CH 2 OH), 2.67 (br s, 1H, NCH 2 CH 2 CH 2 O H ), 1.98 (s, 3H, CH = C (NH) C H 3 ), 1.94 (s, 3H, C H 3 C (O) CH), 1.83 (m, 2H, NCH 2 C H 2 CH 2 OH); 13 C-NMR (50.289 MHz, CDCl 3 ): 194.94 (s, CH 3 C (O) CH), 163.80 (s, CH = C (NH) CH 3 ), 95.46 (s, C (O) CH = C (NH)), 59.62 (s, HNCH 2 CH 2 C H 2 OH), 39.92 (s, HN C H 2 CH 2 CH 2 OH), 32.85 (s, HNCH 2 C H 2 CH 2 OH), 28.85 ( s, C H 3 C (O) CH), 18.99 (s, CH = C (NH) C H 3 )

실시예 7. (CH3)2CHC(O)CHC(HNCH2CH(CH3)OH)(CH(CH3)2)의 제조 Example 7 Preparation of (CH 3 ) 2 CHC (O) CHC (HNCH 2 CH (CH 3 ) OH) (CH (CH 3 ) 2 )

1-아미노-2-프로판올 (NH2CH2CH(CH3)OH) (5.77 g, 76.8 mmol)과 2,6-디메틸-3,5-헵탄디온 ((CH3)2CHC(O)CH2C(O)(CH(CH3)2)) (10.0g, 64.0 mmol)을 벤젠 용액 180ml 에 혼합하고 H2SO40.63g(1drop), 또는 HCOOH를 첨가하여 교반하면서 110℃에서 6시간 동안 환류시켜 Dean-Stark 장치를 통해 H2O를 수집하였다. H2O/벤젠 (20ml/200ml) 혼합용액을 이용하여 생성물질을 유기층으로 추출하고 남아 있는 H2O층을 세 번 더 벤젠 용액 100ml로 추출하였다. MgSO4로 건조후 수집된 용액에서 용매를 제거하고 n-헥산 100ml를 첨가하여 -20℃에서 재결정하여 (CH3)2CHC(O)CHC(HNCH2CH(CH3)OH)(CH(CH3)2) 11.61g (수율 85%)을 제조하였다.1-amino- 2 -propanol (NH 2 CH 2 CH (CH 3 ) OH) (5.77 g, 76.8 mmol) and 2,6-dimethyl-3,5-heptanedione ((CH 3 ) 2 CHC (O) CH 2 C (O) (CH (CH 3 ) 2 )) (10.0 g, 64.0 mmol) was mixed in 180 ml of benzene solution and 0.63 g (1 drop) of H 2 SO 4 , or HCOOH was added and stirred for 6 hours at 110 ° C. Was refluxed to collect H 2 O through the Dean-Stark apparatus. The product was extracted into an organic layer using a H 2 O / benzene (20 ml / 200 ml) mixed solution, and the remaining H 2 O layer was extracted three more times with 100 ml of a benzene solution. After drying with MgSO 4 , the solvent was removed from the collected solution and recrystallized at -20 ° C. by adding 100 ml of n-hexane, and then (CH 3 ) 2 CHC (O) CHC (HNCH 2 CH (CH 3 ) OH) (CH (CH 3 ) 2 ) 11.61 g (yield 85%) was prepared.

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H NMR (CDCl3): 11.21 (br s, 1H, C(O)CH=CNH), 5.01 (s, 1H, C(O)CH=CNH), 3.95 (q, 1H, HNCH2CHMeOH), 3.42 (br s, 1H, NCH2CH2OH), 3.22 (m, 2H, HNCH 2 CHMeOH), 2.70 (h, 1H, HNCCHMe2), 2.42 (h, 1H, Me2CHC(O)CH), 1.23 (d, 3H, NCH2CH(CH 3)OH), 1.10 (d, 6H, HNCCH(CH 3 ) 2 ), 1.05 (d, 6H, (CH 3 ) 2 CHC(O)CH);13C NMR (CDCl3): 200.82 (s, Me2CHC(O)CH), 171.90 (s, HNCCHMe2), 86.42 (s, C(O)CH=CN), 65.13 (s, NCH2 CHMeOH), 47.92 (s, HNCH2CHMeOH), 38.12 (s, Me2 CHC(O)CH), 26.85 (s, HNCCHMe2), 19.56 (s, HNCCH(C a H3)(CbH3)), 19.47 (s, HNCCH(CaH3)(C b H3)), 19.20 (s, NCH2CH(CH3)OH), 18.27 (s, (CH3)2CHC(O)CH), EA(cal C: 67.57 , H: 10.87, N: 6.56 , Found C: 67.44, H: 11.33, N: 6.48) 1 H NMR (CDCl 3 ): 11.21 (br s, 1 H, C (O) CH = CN H ), 5.01 (s, 1H, C (O) C H = CNH), 3.95 (q, 1H, HNCH 2 C H MeOH), 3.42 (br s, 1H, NCH 2 CH 2 O H ), 3.22 (m, 2H, HNC H 2 CHMeOH), 2.70 (h, 1H, HNCC H Me 2 ), 2.42 (h, 1H, Me 2 C H C (O) CH), 1.23 (d, 3H, NCH 2 CH (C H 3 ) OH), 1.10 (d, 6H, HNCCH (C H 3 ) 2 ), 1.05 (d, 6H, (C H 3 ) 2 CHC (O) CH); 13 C NMR (CDCl 3 ): 200.82 (s, Me 2 CH C (O) CH), 171.90 (s, HN C CHMe 2 ), 86.42 (s, C (O) C H = CN), 65.13 (s, NCH 2 C HMeOH), 47.92 (s, HN C H 2 CHMeOH), 38.12 (s, Me 2 C HC (O) CH), 26.85 (s, HNC C HMe 2 ), 19.56 (s, HNCCH ( C a H 3 ) (C b H 3 )), 19.47 (s, HNCCH (C a H 3 ) ( C b H 3 )), 19.20 (s, NCH 2 CH ( C H 3 ) OH), 18.27 (s, ( C H 3 ) 2 CHC (O) CH), EA (cal C: 67.57, H: 10.87, N: 6.56, Found C: 67.44, H: 11.33, N: 6.48)

실시예 8. (CH3)2CHC(O)CHC(HNCH(CH3)CH2OH)(CH(CH3)2)의 제조 Example 8 . Preparation of (CH 3 ) 2 CHC (O) CHC (HNCH (CH 3 ) CH 2 OH) (CH (CH 3 ) 2 )

DL-2-아미노-1-프로판올 (7.21g, 95.99mmol), 2,6-디메틸-3,5-헵탄디온(10.0g, 64.0mmol)을 사용하여 실시예 7과 같은 방법으로(CH3)2CHC(O)CHC(HNCH(CH3)CH2OH)(CH(CH3)2) 11.65g (수율 81%)을 제조하였다.DL-2-amino-1-propanol (7.21 g, 95.99 mmol), 2,6-dimethyl-3,5-heptanedione (10.0 g, 64.0 mmol) in the same manner as in Example 7 (CH 3 ) 11.65 g (yield 81%) of 2 CHC (O) CHC (HNCH (CH 3 ) CH 2 OH) (CH (CH 3 ) 2 ) were prepared.

제조된 물질의 NMR 측정결과는 다음과 같다.The NMR measurement results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3): 11.12(br d, 1H, C(O)CH=C(NHCH(Me))), 5.03(s, 1H, C(O)CH=C(NH)), 3.79(m, 1H, HNCH(Me)CH2OH), 3.59(br m, 2H, NCHMeCH 2OH) 2.89(br s, 1H, NCH(Me)CH2OH), 2.78(m, 1H, CH=C(NH)CH(CH3)2), 2.45(m, 1H, (CH3)2CHC(O)CH), 1.22(d, 3H, NCH(CH 3)CH2OH), 1.15(d, 6H, CH=C(N)CH(CH 3)2), 1.07 (dd, 6H (CH 3)2CHC(O)) ;13C NMR (CDCl3): 202.57 (s, Me2CHC(O)CH), 173.73 (s, HNCCHMe2), 88.24 (s, C(O)CH=CN), 67.28 (s, NCH(Me)CH2OH), 50.00 (s, HNCH(Me)CH2OH), 39.93 (s, Me2 CHC(O)CH), 28.75 (s, HNCCHMe2), 22.03 (s, HNCCH(C a H3)(CbH3)), 21.72 (s, HNCCH(CaH3)(C b H3)), 20.16 (s, (CH3)2CHC(O)CH) 18.90 (s, NCH(CH3)CH2OH) ; EA( cal C: 67.57, H: 10.87, N: 6.57. Found C: 67.44, H: 11.70, N: 6.52) 1 H-NMR (199.976 MHz, CDCl 3 ): 11.12 (br d, 1H, C (O) CH = C (N H CH (Me))), 5.03 (s, 1H, C (O) C H = C (NH)), 3.79 (m, 1H, HNC H (Me) CH 2 OH), 3.59 (br m, 2H, NCHMeC H 2 OH) 2.89 (br s, 1H, NCH (Me) CH 2 O H ), 2.78 (m, 1H, CH = C (NH) C H (CH 3 ) 2 ), 2.45 (m, 1H, (CH 3 ) 2 C H C (O) CH), 1.22 (d, 3H, NCH (C H 3 ) CH 2 OH), 1.15 (d, 6H, CH = C (N) CH (C H 3 ) 2 ), 1.07 (dd, 6H (C H 3 ) 2 CHC (O)); 13 C NMR (CDCl 3 ): 202.57 (s, Me 2 CH C (O) CH), 173.73 (s, HN C CHMe 2 ), 88.24 (s, C (O) C H = CN), 67.28 (s, N C H (Me) CH 2 OH), 50.00 (s, HNCH (Me) C H 2 OH), 39.93 (s, Me 2 C HC (O) CH), 28.75 (s, HNC C HMe 2 ), 22.03 (s, HNCCH ( C a H 3 ) (C b H 3 )), 21.72 (s, HNCCH (C a H 3 ) ( C b H 3 )), 20.16 (s, ( C H 3 ) 2 CHC (O ) CH) 18.90 (s, NCH ( C H 3 ) CH 2 OH); EA (cal C: 67.57, H: 10.87, N: 6.57.Found C: 67.44, H: 11.70, N: 6.52)

실시예 9. (CH3)3CC(O)CHC(HNCH2CH2OH)CH3의 제조 Example 9 . Preparation of (CH 3 ) 3 CC (O) CHC (HNCH 2 CH 2 OH) CH 3

에탄올 아민(9.73 g, 68.44 mmol)과 2,2-디메틸-3,5-헥산디온 (8.11 g, 57.03 mmol)을 사용하여 실시예 7과 같은 방법으로 (CH3)3CC(O)CHC(HNCH2CH2OH)CH39.40g (수율 89 %) 을 제조하였다.Using ethanol amine (9.73 g, 68.44 mmol) and 2,2-dimethyl-3,5-hexanedione (8.11 g, 57.03 mmol) in the same manner as in Example 7, (CH 3 ) 3 CC (O) CHC ( 9.40 g (89% yield) of HNCH 2 CH 2 OH) CH 3 were prepared.

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H NMR (CDCl3): 11.04 (br s, 1H, C(O)CH=CNH), 5.14 (s, 1H, C(O)CH=CNH), 3.76 (t, 2H, HNCH2CH 2 OH), 3.39 (dt, 1H, HNCH 2 CH2OH), 3.11 (br s, 1H, HNCH2CH2OH), 1.97 (s, 3H, HNCCH 3 ), 1.11(s, 9H, (CH 3 ) 3 CC(O)CH);13C NMR (CDCl3): 202.39 (s, Me3CC(O)CH), 162.54 (s, HNCCH3), 89.32 (s, C(O)CH=CNH), 60.02 (s, NCH2 CH2OH), 43.63 (s, HNCH2CH2OH), 39.58 (s, (CH3)3 CC(O)CH), 26.25 (s, (CH3)3CC(O)CH), 17.82 (s, HNCCH3); EA(cal C: 64.83, H: 10.34, N: 7.56. Found C: 64.76, H: 10.82, N: 7.60) 1 H NMR (CDCl 3 ): 11.04 (br s, 1 H, C (O) CH = CN H ), 5.14 (s, 1H, C (O) C H = CNH), 3.76 (t, 2H, HNCH 2 C H 2 OH), 3.39 (dt, 1H, HNC H 2 CH 2 OH), 3.11 (br s, 1H, HNCH 2 CH 2 O H ), 1.97 (s, 3H, HNCC H 3 ), 1.11 (s, 9H , (C H 3 ) 3 CC (O) CH); 13 C NMR (CDCl 3 ): 202.39 (s, Me 3 C C (O) CH), 162.54 (s, HN C CH 3 ), 89.32 (s, C (O) C H = CNH), 60.02 (s, NCH 2 C H 2 OH), 43.63 (s, HN C H 2 CH 2 OH), 39.58 (s, (CH 3 ) 3 C C (O) CH), 26.25 (s, ( C H 3 ) 3 CC ( O) CH), 17.82 (s, HNC C H 3 ); EA (cal C: 64.83, H: 10.34, N: 7.56.Found C: 64.76, H: 10.82, N: 7.60)

실시예 10. (CH3)3CC(O)CHC(HNCH2CH(CH3)OH)CH3의 제조 Example 10 . Preparation of (CH 3 ) 3 CC (O) CHC (HNCH 2 CH (CH 3 ) OH) CH 3

1-아미노-2-프로판올 (6.34g, 84.38mmol)과 2,2-디메틸-3,5-헥산디온 (10.0g, 70.32mmol)을 사용하여 에탄올에서 실시예 3과 동일한 방법으로 실시하고 n-헥산 80 ml로 -20℃하에서 재결정하여 (CH3)3CC(O)CHC(HNCH2CH(CH3)OH)CH310.93g (수율 78%)을 제조하였다.1-amino-2-propanol (6.34g, 84.38mmol) and 2,2-dimethyl-3,5-hexanedione (10.0g, 70.32mmol) were carried out in the same manner as in Example 3 in ethanol and n- Recrystallized with 80 ml of hexane at -20 ° C to prepare 10.93 g (yield 78%) of (CH 3 ) 3 CC (O) CHC (HNCH 2 CH (CH 3 ) OH) CH 3 .

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H NMR (CDCl3): 11.04 (br s, 1H, C(O)CH=CNH), 5.13 (s, 1H, C(O)CH=CNH), 3.96 (m, 1H, HNCH2CH(Me)OH), 3.26 (dd, 1H, HNCH a HbCH(Me)OH), 3.20 (dd, 1H, HNCHa H b CH(Me)OH), 3.19 (br s, 1H, HNCH2CH(Me)OH), 1.96 (s, 3H, HNCCH 3 ), 1.23(d, 3H, HNCH2CH(CH 3 )OH), 1.11(s, 9H, (CH 3 ) 3 CC(O)CH);13C NMR (CDCl3): 204.16 (s, Me3CC(O)CH), 164.20 (s, HNCCH3), 91.18 (s, C(O)CH=CNH), 67.11 (s, NCH2 CH(Me)OH), 50.71 (s, HNCH2CH(Me)OH), 41.46(s, (CH3)3 CC(O)CH), 28.16(s, (CH3)3CC(O)CH), 21.00 (s, HNCCH3), 19.77 (s, HNCH2CH(CH3)OH) ; EA (cal C: 66.29, H: 10.62, N: 7.03 , found C: 65.72, H: 11.08, N: 7.12) 1 H NMR (CDCl 3 ): 11.04 (br s, 1 H, C (O) CH = CN H ), 5.13 (s, 1H, C (O) C H = CNH), 3.96 (m, 1H, HNCH 2 C H (Me) OH), 3.26 (dd, 1H, HNC H a H b CH (Me) OH), 3.20 (dd, 1H, HNCH a H b CH (Me) OH), 3.19 (br s, 1H, HNCH 2 CH (Me) O H ), 1.96 (s, 3H, HNCC H 3 ), 1.23 (d, 3H, HNCH 2 CH ( CH 3 ) OH), 1.11 (s, 9H, (C H 3 ) 3 CC ( O) CH); 13 C NMR (CDCl 3 ): 204.16 (s, Me 3 C C (O) CH), 164.20 (s, HN C CH 3 ), 91.18 (s, C (O) C H = CNH), 67.11 (s, NCH 2 C H (Me) OH), 50.71 (s, HN C H 2 CH (Me) OH), 41.46 (s, (CH 3 ) 3 C C (O) CH), 28.16 (s, ( C H 3 ) 3 CC (O) CH), 21.00 (s, HNC C H 3 ), 19.77 (s, HNCH 2 CH ( C H 3 ) OH); EA (cal C: 66.29, H: 10.62, N: 7.03, found C: 65.72, H: 11.08, N: 7.12)

실시예 11. Ti(CH3C(O)CHC(NCH2CH2O)CH3)2: Ti(eip)2의 제조 Example 11 . Ti (CH 3 C (O) CHC (NCH 2 CH 2 O) CH 3 ) 2 : Preparation of Ti (eip) 2

실시예 1에서 제조된 세 자리 리간드 CH3C(O)CHC(CH3)(HNCH2CH2OH) 3.67g(25.61mmol)을 20ml의 메틸렌 디클로라이드에 녹였다. Ti(O-iPr)4(티타늄(이소-프로폭사이드)4) 3.31g (11.64mmol)이 메틸렌 디클로라이드 25ml에 섞여있는 용액을 상온에서 잘 교반시키면서 상기 용액을 캐뉼라(cannular)를 통해 투입시켰다. 노란색을 나타내는 혼합 용액을 4시간이상 교반 후, 감압하에서 용매를 제거하고메틸렌 디클로라이드와 n-헥산의 혼합용액으로 -20℃에서 재결정하여 순수한 노란색의 고상 Ti(CH3C(O)CHC(NCH2CH2O)CH3)2를 95% (3.72g)의 수득률로 얻었다.3.67 g (25.61 mmol) of the tridentate ligand CH 3 C (O) CHC (CH 3 ) (HNCH 2 CH 2 OH) prepared in Example 1 was dissolved in 20 ml of methylene dichloride. 3.31 g (11.64 mmol) of Ti (O-iPr) 4 (titanium (iso-propoxide) 4 ) was mixed in 25 ml of methylene dichloride, and the solution was added via cannular while stirring well at room temperature. . After stirring the yellow colored solution for 4 hours or more, the solvent was removed under reduced pressure and recrystallized at -20 ° C. with a mixed solution of methylene dichloride and n-hexane to obtain pure yellow solid Ti (CH 3 C (O) CHC (NCH). 2 CH 2 O) CH 3 ) 2 was obtained at a yield of 95% (3.72 g).

실시예 12. Ti(CH3C(O)CHC(NCH2CHMeO)CH3)2: Ti(2meip)2의 제조 Example 12 . Ti (CH 3 C (O) CHC (NCH 2 CHMeO) CH 3 ) 2 : Preparation of Ti (2meip) 2

실시예 2에서 제조된 CH3C(O)CHC(CH3)(HNCH2CH(Me)OH) 11.06g(70.36mmol)와 Ti(O-iPr)410.0g (35.18mmol)을 사용하여 실시예 11과 동일한 방법으로 실시하여 Ti(CH3C(O)CHC(NCH2CHMeO)CH3)212.18g (수율 96%)을 제조하였다.11.06 g (70.36 mmol) of CH 3 C (O) CHC (CH 3 ) (HNCH 2 CH (Me) OH) prepared in Example 2 and 10.0 g (35.18 mmol) of Ti (O-iPr) 4 were used. 12.18 g (yield 96%) of Ti (CH 3 C (O) CHC (NCH 2 CHMeO) CH 3 ) 2 was prepared in the same manner as in Example 11.

실시예 13. Ti(CH3C(O)CHC(NCHMeCH2O)CH3)2: Ti(1meip)2의 제조 Example 13 . Ti (CH 3 C (O) CHC (NCHMeCH 2 O) CH 3 ) 2 : Preparation of Ti (1meip) 2

실시예 3에서 제조된 리간드 CH3C(O)CH2C(CH3)(NCHMeCH2OH) 8.0g (50.89mmol)과 Ti(O-iPr)47.23g (25.44mmol)을 사용하여 실시예 11과 동일한 방법으로 실시하여 Ti(CH3C(O)CHC(NCHMeCH2O)CH3)28.38g (수율 92%)을 제조하였다.Example using the ligand CH 3 C (O) CH 2 C (CH 3 ) (NCHMeCH 2 OH) 8.0g (50.89mmol) and Ti (O-iPr) 4 7.23g (25.44mmol) prepared in Example 3 8.38 g (yield 92%) of Ti (CH 3 C (O) CHC (NCHMeCH 2 O) CH 3 ) 2 was prepared in the same manner as in 11.

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3) 5.27, 5.24, 5.08, 5.08 (s , 2H, C(O)CHC(N)), 4.79 (dd , 1H, NCH(Me)CH a bHcdO), 4.58(dd , 1H, NCH(Me)CH a b HcdO), 4.35 (m, 2H, NCH(Me)CH2O), 4.00(dd , 1H, NCH(Me)CHab H c dO), 3.83(dd , 1H,NCH(Me)CHab H c d O), 2.14, 2.12, 2.11, 2.07(s , 6H, C(N)CH 3), 1.94, 1.92, 1.88, 1.80(s, 6H, CH 3C(O)), 1.51, 1.37, 1.32, 1.24, 1.17(d , 6H, NCH(CH 3)CH2O) ;13C-NMR (50.289 MHz, CDCl3) 176.72, 175.83, 175.40(s, CH3 C(O)), 167.89, 167.27, 166.76(s,C(N)CH3), 103.30, 103.20, 102.01(s, C(O)CHC(N)), 78.07, 78.00, 77.14(s, NCH(Me)CH2O), 66.14, 65.73, 65.24, 64.96(s, NCH(Me)CH2O), 24.92, 24.58, 24.40, 24.25(CH3C(O)), 21.82, 21.59, 21.43, 20.74(C(N)CH3), 20.35, 20.08, 19.30, 18.35(NCH(CH3)CH2O); EA (cal C: 53.64, H: 7.32, N: 7.82 , found C: 53.32, H: 7.66, N: 7.79) 1 H-NMR (199.976 MHz, CDCl 3 ) 5.27, 5.24, 5.08, 5.08 (s, 2H, C (O) C H C (N)), 4.79 (dd, 1H, NCH (Me) C H a b H cd O), 4.58 (dd, 1H, NCH (Me) C H a b H cd O), 4.35 (m, 2H, NC H (Me) CH 2 O), 4.00 (dd, 1H, NCH (Me) CH ab H c d O), 3.83 (dd, 1H, NCH (Me) CH ab H c d O), 2.14, 2.12, 2.11, 2.07 (s, 6H, C (N) C H 3 ), 1.94, 1.92, 1.88, 1.80 (s, 6H, C H 3 C (O)), 1.51, 1.37, 1.32, 1.24, 1.17 (d, 6H, NCH (C H 3 ) CH 2 O); 13 C-NMR (50.289 MHz, CDCl 3 ) 176.72, 175.83, 175.40 (s, CH 3 C (O)), 167.89, 167.27, 166.76 (s, C (N) CH 3 ), 103.30, 103.20, 102.01 (s , C (O) C HC (N)), 78.07, 78.00, 77.14 (s, N C H (Me) CH 2 O), 66.14, 65.73, 65.24, 64.96 (s, NCH (Me) C H 2 O) , 24.92, 24.58, 24.40, 24.25 ( C H 3 C (O)), 21.82, 21.59, 21.43, 20.74 (C (N) C H3), 20.35, 20.08, 19.30, 18.35 (NCH ( C H 3 ) CH 2 O); EA (cal C: 53.64, H: 7.32, N: 7.82, found C: 53.32, H: 7.66, N: 7.79)

실시예 14. Ti(CH3C(O)CHC(NC(Me)2CH2O)CH3)2: Ti(1deip)2의 제조 Example 14 . Ti (CH 3 C (O) CHC (NC (Me) 2 CH 2 O) CH 3 ) 2 : Preparation of Ti (1deip) 2

실시예 4에서 제조된 리간드 CH3C(O)CHC(CH3)(HNC(Me)2CH2OH) 3.01g (17.58mmol)과 Ti(O-iPr)42.50g (8.79mmol)을 사용하여 실시예 11과 동일한 방법으로 실시하여 Ti(CH3C(O)CHC(NC(Me)2CH2O)CH3)23.19g(수율 94%)을 제조하였다.Ligand CH 3 C (O) CHC (CH 3 ) (HNC (Me) 2 CH 2 OH) 3.01g (17.58mmol) prepared in Example 4 and 2.50g (8.79mmol) of Ti (O-iPr) 4 were used 3.19 g (yield 94%) of Ti (CH 3 C (O) CHC (NC (Me) 2 CH 2 O) CH 3 ) 2 was prepared by the same method as Example 11).

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3) 5.13 (s, 2H, C(O)CHC(N)), 4.32 (d, 2H, NC(Me)2CH aHbO), 4.01 (d, 2H, NC(Me)2CHa H bO), 2.21(s, 6H, C(N)CH 3), 1.92 (s, 6H,CH 3C(O)), 1.56 (s, 6H, NC(CH 3) a (CH3)bCH2O), 1.38 (s, 6H, NC(CH3)a(CH 3) b CH2O) ;13C-NMR (50.289 MHz, CDCl3) 174.70(s, CH3 C(O)), 169.31(s,C(N)CH3), 104.71(s, C(O)CHC(N)), 84.79(s, NC(Me)2CH2O), 71.41(s, NC(Me)2 CH2O), 25.69(s,CH3C(O)), 25.1(s, C(N)CH3), 24.5(s, NCC a H3CbH3CH2O), 24.4(s, NCCaH3 C b H 3CH2O); EA (cal C: 55.96, H: 7.83, N: 7.25 , found C: 55.59, H: 8.22, N: 6.87) 1 H-NMR (199.976 MHz, CDCl 3 ) 5.13 (s, 2H, C (O) C H C (N)), 4.32 (d, 2H, NC (Me) 2 C H a H b O), 4.01 ( d, 2H, NC (Me) 2 CH a H b O), 2.21 (s, 6H, C (N) C H 3 ), 1.92 (s, 6H, C H 3 C (O)), 1.56 (s, 6H, NC (C H 3 ) a (CH 3 ) b CH 2 O), 1.38 (s, 6H, NC (CH 3 ) a (C H 3 ) b CH 2 O); 13 C-NMR (50.289 MHz, CDCl 3 ) 174.70 (s, CH 3 C (O)), 169.31 (s, C (N) CH 3 ), 104.71 (s, C (O) C HC (N)), 84.79 (s, N C (Me) 2 CH 2 O), 71.41 (s, NC (Me) 2 C H 2 O), 25.69 (s, C H 3 C (O)), 25.1 (s, C (N ) C H 3 ), 24.5 (s, NC C a H 3 C b H 3 CH 2 O), 24.4 (s, NCC a H 3 C b H 3 CH 2 O); EA (cal C: 55.96, H: 7.83, N: 7.25, found C: 55.59, H: 8.22, N: 6.87)

실시예 15. Ti(CH3C(O)CHC(NCH(CH2CH3)CH2O)CH3)2: Ti(1eeip)2의 제조 Example 15 . Ti (CH 3 C (O) CHC (NCH (CH 2 CH 3 ) CH 2 O) CH 3 ) 2 : Preparation of Ti (1eeip) 2

실시예 5에서 제조된 리간드 CH3C(O)CHC(HNCH(CH2CH3)CH2O)CH32.30g (13.44mmol)과 Ti(O-iPr)41.91g (6.72mmol)을 사용하여 실시예 11과 동일한 방법으로 실시하여 Ti(CH3C(O)CHC(NCH(CH2CH3)CH2O)CH3)22.41g(수율 93%)을 제조하였다.Ligand CH 3 C (O) CHC (HNCH (CH 2 CH 3 ) CH 2 O) CH 3 prepared in Example 5 and 2.91 g (6.72 mmol) of Ti (O-iPr) 4 were used. 2.41 g (yield 93%) of Ti (CH 3 C (O) CHC (NCH (CH 2 CH 3 ) CH 2 O) CH 3 ) 2 was prepared in the same manner as in Example 11.

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3) 5.28, 5.25, 5.09 (s , 2H, C(O)CHC(N)), 4.70 (dd , 1H, NCH(CH2CH3)CH a bHcdO), 4.65(dd , 1H, NCH(CH2CH3)CH a b HcdO), 4.18(dd , 1H, NCH(CH2CH3)CHab H c dO), 4.17(dd , 1H, NCH(CH2CH3)CHab H c d O), 4.03 (m, 2H, NCH(CH2CH3)CH2O), 2.29-2.14(m , 2H, NCH(CH 2CH3)CH2O), 2.11, 2.06 (s , 6H, C(N)CH 3), 1.92, 1.89, 1.80(s, 6H, CH 3C(O)), 1.72-1.55(m, 2H, NCH(CH 2CH3)CH2O),0.97(t , 6H, NCH(CH2CH 3)CH2O) ;13C-NMR (50.289 MHz, CDCl3) 175.89, (s, CH3 C(O)), 167.13(s,C(N)CH3), 102.04(s, C(O)CHC(N)), 74.46(s, NCH(CH2CH3)CH2O), 72.78(s, NCH(CH2CH3)CH2O), 24.48(s, NCH(CH2CH3)CH2O), 24.67(CH3C(O)), 21.99(C(N)CH3), 11.77(NCH(CH2 CH3)CH2O); EA (cal C: 55.96, H: 7.83, N: 7.25 , found C: 55.85, H: 8.30, N: 7.34) 1 H-NMR (199.976 MHz, CDCl 3 ) 5.28, 5.25, 5.09 (s, 2H, C (O) C H C (N)), 4.70 (dd, 1H, NCH (CH 2 CH 3 ) C H a b H cd O), 4.65 (dd, 1H, NCH (CH 2 CH 3 ) C H a b H cd O), 4.18 (dd, 1H, NCH (CH 2 CH 3 ) CH ab H c d O), 4.17 ( dd, 1H, NCH (CH 2 CH 3 ) CH ab H c d O), 4.03 (m, 2H, NC H (CH 2 CH 3 ) CH 2 O), 2.29-2.14 (m, 2H, NCH (C H 2 CH 3 ) CH 2 O), 2.11, 2.06 (s, 6H, C (N) C H 3 ), 1.92, 1.89, 1.80 (s, 6H, C H 3 C (O)), 1.72-1.55 (m , 2H, NCH (C H 2 CH 3 ) CH 2 O), 0.97 (t, 6H, NCH (CH 2 C H 3 ) CH 2 O); 13 C-NMR (50.289 MHz, CDCl 3 ) 175.89, (s, CH 3 C (O)), 167.13 (s, C (N) CH 3 ), 102.04 (s, C (O) C HC (N)) , 74.46 (s, N C H (CH 2 CH 3 ) CH 2 O), 72.78 (s, NCH (CH 2 CH 3 ) C H 2 O), 24.48 (s, NCH ( C H 2 CH 3 ) CH 2 O), 24.67 ( C H 3 C (O)), 21.99 (C (N) C H 3 ), 11.77 (NCH (CH 2 C H 3 ) CH 2 O); EA (cal C: 55.96, H: 7.83, N: 7.25, found C: 55.85, H: 8.30, N: 7.34)

실시예 16. Ti(CH3C(O)CHC(NCH2CH2CH2O)CH3)2: Ti(pip)2의 제조 Example 16 . Ti (CH 3 C (O) CHC (NCH 2 CH 2 CH 2 O) CH 3 ) 2 : Preparation of Ti (pip) 2

실시예 6에서 제조된 리간드 CH3C(O)CHC(HNCH2CH2CH2O)CH31.11g (7.04mmol)과 Ti(O-iPr)41.0g (3.52mmol)을 사용하여 THF 용매하에서 실시예 11과 동일한 방법으로 실시하여 Ti(CH3C(O)CHC(NC(Me)2CH2O)CH3)21.20g(수율 95.24%)을 제조하였다.THF solvent using the ligand CH 3 C (O) CHC (HNCH 2 CH 2 CH 2 O) CH 3 prepared in Example 6 and 1.11 g (7.04 mmol) of Ti 3 and 1.0 g (3.52 mmol) of Ti (O-iPr) 4. 1.20 g (yield 95.24%) of Ti (CH 3 C (O) CHC (NC (Me) 2 CH 2 O) CH 3 ) 2 was prepared in the same manner as in Example 11 below.

제조된 물질의 NMR 측정결과는 다음과 같다.The NMR measurement results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3) 5.14(s, 2H, C(O)CHC(N)), 4.36(t, 4H, NCH2CH2CH 2O), 3.64(t, 4H, NCH 2CH2CH2O), 2.07(m, 4H, NCH2CH 2CH2O), 2.00(s, 6H, C(N)CH 3), 1.90(s, 6H, CH 3C(O) ;13C-NMR (50.289 MHz, CDCl3) 176.05(s, CH3 C(O)), 168.01(s,C(N)CH3), 103.64(s, C(O)CHC(N)), 73.23(s, NCH2CH2 CH2O), 50.19(s,NCH2CH2CH2O), 32.34(s, NCH2 CH2CH2O), 25.33(s,CH3C(O)), 22.41(s, C(N)CH3) 1 H-NMR (199.976 MHz, CDCl 3 ) 5.14 (s, 2H, C (O) C H C (N)), 4.36 (t, 4H, NCH 2 CH 2 C H 2 O), 3.64 (t, 4H , NC H 2 CH 2 CH 2 O), 2.07 (m, 4H, NCH 2 C H 2 CH 2 O), 2.00 (s, 6H, C (N) C H 3 ), 1.90 (s, 6H, C H 3 C (O); 13 C-NMR (50.289 MHz, CDCl 3 ) 176.05 (s, CH 3 C (O)), 168.01 (s, C (N) CH 3 ), 103.64 (s, C (O) C HC (N)), 73.23 (s, NCH 2 CH 2 C H 2 O), 50.19 (s, N C H 2 CH 2 CH 2 O), 32.34 (s, NCH 2 C H 2 CH 2 O), 25.33 (s, C H 3 C (O)), 22.41 (s, C (N) C H 3 )

실시예 17. Ti((CH3)2CHC(O)CHC(CH(CH3)2)(NCH2CH(Me)O)2)2: Ti(26dm2meih)2의 제조 Example 17 . Ti ((CH 3 ) 2 CHC (O) CHC (CH (CH 3 ) 2 ) (NCH 2 CH (Me) O) 2 ) 2 : Preparation of Ti (26dm2meih) 2

실시예 7에서 제조된 (CH3)2CHC(O)CHC(CH(CH3)2)(HNCH2CH(Me)OH) 1.5g (7.03mmol)과 Ti(O-iPr)41.0g (3.52mmol)을 사용하여 실시예 11과 동일한 방법으로 실시하여 Ti((CH3)2CHC(O)CHC(NCH2CH(Me)O)CH(CH3)2)21.57g (수율 95%)을 제조하였다.1.5 g (7.03 mmol) of (CH 3 ) 2 CHC (O) CHC (CH (CH 3 ) 2 ) (HNCH 2 CH (Me) OH) prepared in Example 7 and 1.0 g of Ti (O-iPr) 4 ( 3.52 mmol) using Ti ((CH 3 ) 2 CHC (O) CHC (NCH 2 CH (Me) O) CH (CH 3 ) 2 ) 2 1.57 g (yield 95%). ) Was prepared.

제조된 물질의 NMR 측정결과는 다음과 같다.The NMR measurement results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3) 5.23, 5.22, 5.20, 5.15 (s, 2H, C(O)CHC(N)), 4.87(m, 2H, NCH2CHMeO), 4.22(dd , 1H, NCH a bHcdCH(Me)O), 4.13(dd, 1H, NCH a b HcdCH(Me)O), 3.88(dd , 1H, NCHab H c dCH(Me)O), 3.76(dd, 1H, NCHab H c d CH(Me)O), 2.92(m, 2H, C(N)CH(Me)2), 2.30(m, 2H, CH(Me)2C(O)), 1.11-1.23(d*4, 12H, C(N)CH(CH 3)2), 1.21(d*3, 6H, NCH2CH(CH 3)O), 0.88-0.98 (d*4, 12H, (CH 3)2CHC(O)) ;13C-NMR (50.289 MHz, CD2Cl2) 183.51, 183.35, 183.02(s, (CH3)2CHC(O)), 177.05, 176.49, 175.91, 175.70(s,C(N)(CH(CH3)2)), 93.46, 93.30, 93.19(s, C(O)CHC(N)), 76.99, 76.52, 76.40, 76.12(s, NCH2 CH(Me)O), 65.96, 65.60, 64.79(s,NCH2CH(Me)O), 36.35, 36.27, 36.13(s, (CH3)2 CHC(O)), 31.46, 31.40, 31.24(s, C(N)(CH(CH3)2)), 21.66-20.18 (d, (CH3)2CHC(O)CHC(NCH2CH(CH3)O)(CH(CH3)2)) 1 H-NMR (199.976 MHz, CDCl3) 5.23, 5.22, 5.20, 5.15 (s, 2H, C (O) C H C (N)), 4.87 (m, 2H, NCH 2 C H MeO), 4.22 (dd , 1H, NC H a b H cd CH (Me) O), 4.13 (dd, 1H, NC H a b H cd CH (Me) O), 3.88 (dd, 1H, NCH ab H c d CH (Me) O), 3.76 (dd, 1H, NCH ab H c d CH (Me) O), 2.92 (m, 2H, C (N) C H (Me) 2 ), 2.30 (m, 2H, C H (Me) 2 C (O)), 1.11-1.23 (d * 4, 12H, C (N) CH (C H 3 ) 2 ), 1.21 (d * 3, 6H, NCH 2 CH (C H 3 ) O), 0.88 -0.98 (d * 4, 12H, (C H 3 ) 2 CHC (O)); 13 C-NMR (50.289 MHz, CD 2 Cl 2 ) 183.51, 183.35, 183.02 (s, (CH 3 ) 2 CH C (O)), 177.05, 176.49, 175.91, 175.70 (s, C (N) (CH ( CH 3 ) 2 )), 93.46, 93.30, 93.19 (s, C (O) C HC (N)), 76.99, 76.52, 76.40, 76.12 (s, NCH 2 C H (Me) O), 65.96, 65.60, 64.79 (s, N C H 2 CH (Me) O), 36.35, 36.27, 36.13 (s, (CH 3 ) 2 C HC (O)), 31.46, 31.40, 31.24 (s, C (N) ( C H (CH 3 ) 2 )), 21.66-20.18 (d, ( C H 3 ) 2 CHC (O) CHC (NCH 2 CH ( C H 3 ) O) (CH ( C H 3 ) 2 ))

실시예 18. Ti((CH3)2CHC(O)CHC(NCH(Me)CH2O)CH(CH3)2)2: Ti(26dm1meih)2의 제조 Example 18 . Ti ((CH 3 ) 2 CHC (O) CHC (NCH (Me) CH 2 O) CH (CH 3 ) 2 ) 2 : Preparation of Ti (26dm1meih) 2

실시예 8에서 제조된 리간드 (CH3)2CHC(O)CH2C(CH(CH3)2)(NCH(Me)CH2OH) 6.0g (28.14mmol)과 Ti(O-iPr)44.0g (14.07mmol)을 사용하여 실시예 11과 동일한 방법으로 실시하여 Ti((CH3)2CHC(O)CHC(NCH(Me)CH2O)CH(CH3)2)26.22g (수율 93.96%)을 제조하였다.Ligand (CH 3 ) 2 CHC (O) CH 2 C (CH (CH 3 ) 2 ) (NCH (Me) CH 2 OH) 6.0g (28.14mmol) and Ti (O-iPr) 4 prepared in Example 8 6.22 g (Ti ((CH 3 ) 2 CHC (O) CHC (NCH (Me) CH 2 O) CH (CH 3 ) 2 ) 2 ) 2 was carried out in the same manner as in Example 11 using 4.0 g (14.07 mmol). Yield 93.96%) was prepared.

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3) 5.34, 5.17, 5.13(s , 2H, C(O)CHC(N)), 4.83(dd , 1H, NCH(Me)CHabHcdO), 4.79(dd , 1H, NCH(Me)CHabHcdO), 4.56(m, 1H, NCH a (Me)CH2O), 4.38(m, 1H, NCH b (Me)CH2O), 4.03(dd , 1H, NCH(Me)CHabHcdO), 3.95(dd , 1H, NCH(Me)CHabHcdO), 3.03(m, 2H, C(N)(CH(CH3)2), 2.39(m, 1H, (CH3)2CH aC(O)), 2.30(m, 1H, (CH3)2CH bC(O)), 1.51, 1.41, 1.37(d, 6H, NCH(CH 3)CH2O), 1.24-1.13(d*4, 12H, C(N)(CH(CH 3)2) 1.04-0.85(d*5, 12H, (CH 3)2CHC(O)) ;13C-NMR (50.289 MHz, CDCl3) 183.45, 182.98, 182.81(s, CH3 C(O)),175.95, 175.70, 175.32(s,C(N)CH3), 94.31, 93.84, 93.59(s, C(O)CHC(N)), 76.80, 76.69, 76.36(s, NCH(Me)CH2O), 64.77, 64.36, 63.59(s, NCH(Me)CH2O), 36.46, 36.36, 36.22(s, (CH3)2 CHC(O)), 31.20, 31.00, 30.90(s, C(N)CH(CH3)2), 22.32, 22.17, 22.10, 22.05(s, NCH(CH3)CH2O), 21.87, 21.66, 21.60, 21.50(s, C(N)CH(CH3)2), 20.89, 20.78, 20.63, 20.52(s, (CH3)2CHC(O)) ; EA (cal C: 61.27, H: 9.00, N: 5.95 , found C: 61.33, H: 9.48, N: 5.72) 1 H-NMR (199.976 MHz, CDCl 3 ) 5.34, 5.17, 5.13 (s, 2H, C (O) C H C (N)), 4.83 (dd, 1H, NCH (Me) CH ab H cd O), 4.79 (dd, 1H, NCH (Me) CH ab H cd O), 4.56 (m, 1H, NC H a (Me) CH 2 O), 4.38 (m, 1H, NC H b (Me) CH 2 O) , 4.03 (dd, 1H, NCH (Me) CH ab H cd O), 3.95 (dd, 1H, NCH (Me) CH ab H cd O), 3.03 (m, 2H, C (N) (C H (CH 3 ) 2 ), 2.39 (m, 1H, (CH 3 ) 2 C H a C (O)), 2.30 (m, 1H, (CH 3 ) 2 C H b C (O)), 1.51, 1.41, 1.37 (d, 6H, NCH (C H 3 ) CH 2 O), 1.24-1.13 (d * 4, 12H, C (N) (CH (C H 3 ) 2 ) 1.04-0.85 (d * 5, 12H, ( C H 3 ) 2 CHC (O)); 13 C-NMR (50.289 MHz, CDCl 3 ) 183.45, 182.98, 182.81 (s, CH 3 C (O)), 175.95, 175.70, 175.32 (s, C (N) CH 3 ), 94.31, 93.84, 93.59 (s, C (O) C HC (N)), 76.80, 76.69, 76.36 (s, NCH (Me) C H 2 O), 64.77, 64.36, 63.59 (s, N C H (Me) CH 2 O), 36.46, 36.36, 36.22 (s, (CH 3 ) 2 C HC (O)), 31.20, 31.00, 30.90 (s, C (N) C H (CH 3 ) 2 ) , 22.32, 22.17, 22.10, 22.05 (s, NCH ( C H 3 ) CH 2 O), 21.87, 21.66, 21.60, 21.50 (s, C (N) CH ( C H 3 ) 2 ), 20.89, 20.78, 20.63 , 20.52 (s, ( C H 3 ) 2 CHC (O)); EA (cal C: 61.27, H: 9. 00, N: 5.95, found C: 61.33, H: 9.48, N: 5.72)

실시예 19. Ti((CH3)3CC(O)CHC(NCH2CH2O)CH3)2: Ti(22dmeih)2의 제조 Example 19 . Ti ((CH 3 ) 3 CC (O) CHC (NCH 2 CH 2 O) CH 3 ) 2 : Preparation of Ti (22dmeih) 2

실시예 9에서 제조된 리간드 (CH3)3CC(O)CHCCH3(HNCH2CH2OH) 4.98g (26.88mmol)과 Ti(O-iPr)43.82g (13.44mmol)을 사용하여 실시예 11과 동일한 방법으로 실시하여 Ti((CH3)3CC(O)CHC(NCH2CH2O)CH3)25.05g (수율 90.66%)을 제조하였다.Example 9 using 4.98 g (26.88 mmol) of ligand (CH 3 ) 3 CC (O) CHCCH 3 (HNCH 2 CH 2 OH) prepared in Example 9 and 3.82 g (13.44 mmol) of Ti (O-iPr) 4 5.05 g (yield 90.66%) of Ti ((CH 3 ) 3 CC (O) CHC (NCH 2 CH 2 O) CH 3 ) 2 was prepared in the same manner as in Example 11.

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3) 5.18(s, 2H, C(O)CHC(N)), 4.44-4.26(ddt, 4H, NCH2CH 2 O), 4.03-3.82 (ddt, 4H, NCH 2CH2O), 2.00 (s, 6H, C(N)CH 3), 0.92(s, 18H, (CH 3)3CC(O)) ;13C-NMR (50.289 MHz, CDCl3) 184.48(s, (CH3)3CC(O)), 168.87(s,C(N)CH3), 97.01(s, C(O)CHC(N)), 70.89(s, NCH2 CH2O), 60.18(s, NCH2CH2O),37.84(s, (CH3)3 CC(O)), 28.04(s, (CH3)3CC(O)), 22.87(s, C(N)CH3) ; EA (cal C: 57.97, H: 8.27, N: 6.76 , found C: 57.87, H: 8.63, N: 6.70) 1 H-NMR (199.976 MHz, CDCl 3 ) 5.18 (s, 2H, C (O) C H C (N)), 4.44-4.26 (ddt, 4H, NCH 2 C H 2 O), 4.03-3.82 (ddt , 4H, NC H 2 CH 2 O), 2.00 (s, 6H, C (N) C H 3 ), 0.92 (s, 18H, (C H 3 ) 3 CC (O)); 13 C-NMR (50.289 MHz, CDCl 3 ) 184.48 (s, (CH 3 ) 3 C C (O)), 168.87 (s, C (N) CH 3 ), 97.01 (s, C (O) C HC ( N)), 70.89 (s, NCH 2 C H 2 O), 60.18 (s, N C H 2 CH 2 O), 37.84 (s, (CH 3 ) 3 C C (O)), 28.04 (s, ( C H 3 ) 3 CC (O)), 22.87 (s, C (N) C H 3 ); EA (cal C: 57.97, H: 8.27, N: 6.76, found C: 57.87, H: 8.63, N: 6.70)

실시예 20. Ti((CH3)3CC(O)CHC(NCH2CH(Me)O)CH3)2: Ti(22dm2meih)2의 제조 Example 20 . Ti ((CH 3 ) 3 CC (O) CHC (NCH 2 CH (Me) O) CH 3 ) 2 : Preparation of Ti (22dm2meih) 2

실시예 10에서 제조된 리간드 (CH3)3CC(O)CHCCH3(HNCH2CH(Me)OH) 4.0g (20.06mmol)과 Ti(O-iPr)42.85g (10.03mmol)을 사용하여 실시예 11과 동일한 방법으로 실시하여 Ti((CH3)3CC(O)CHC(NCH2CH(Me)O)CH3)2 3.91g (수율 88.06%)을 제조하였다.Ligand (CH 3 ) 3 CC (O) CHCCH 3 (HNCH 2 CH (Me) OH) 4.0g (20.06mmol) prepared in Example 10 and 2.85g (10.03mmol) of Ti (O-iPr) 4 were used. 3.91 g (yield 88.06%) of Ti ((CH 3 ) 3 CC (O) CHC (NCH 2 CH (Me) O) CH 3 ) 2 was prepared in the same manner as in Example 11.

제조된 물질의 NMR 측정결과 및 원소분석결과는 다음과 같다.NMR measurement results and elemental analysis results of the prepared material are as follows.

1H-NMR (199.976 MHz, CDCl3) 5.30, 5.28, 5.23, 5.19(s, 2H, C(O)CHC(N)), 4.91, 4.82 (m, 2H, NCH2CH(Me)O), 4.16(dd, 1H, NCH a bHcdCH(Me)O), 3.98(dd, 1H, NCH a b HcdCH(Me)O), 3.77(dd, 1H, NCHab H c dCH(Me)O), 3.63(dd, 1H, NCHab H c d CH(Me)O), 2.07, 2.06, 2.04(s, 6H, C(N)CH 3), 1.22-1.14(d, 6H, NCH2CH(CH 3)O), 1.02, 1.01, 1.00, 1.00(s, 18H, (CH 3)3CC(O)) ;13C-NMR (50.289 MHz, CDCl3) 185.12(s, (CH3)3CC(O)), 168.79, 168.46, 168.17(s,C(N)CH3), 97.47, 97.00, 96.89(s, C(O)CHC(N)), 77.31, 76.80, 76.36(s, NCH2 CH(Me)O), 67.53, 66.95, 66.57,66.36(s, NCH2CH(Me)O), 38.29, 38.22(s, (CH3)3 CC(O)), 28.50(s, (CH3)3CC(O)), 23.13, 23.04(s, C(N)CH3), 22.02, 21.18, 20.73(s, NCH2CH(CH3)O) ; EA (cal C: 59.73, H: 8.66, N: 6.33 , found C: 59.44, H: 8.78, N: 6.84) 1 H-NMR (199.976 MHz, CDCl 3 ) 5.30, 5.28, 5.23, 5.19 (s, 2H, C (O) C H C (N)), 4.91, 4.82 (m, 2H, NCH 2 C H (Me) O), 4.16 (dd, 1H, NC H a b H cd CH (Me) O), 3.98 (dd, 1H, NC H a b H cd CH (Me) O), 3.77 (dd, 1H, NCH ab H c d CH (Me) O), 3.63 (dd, 1H, NCH ab H c d CH (Me) O), 2.07, 2.06, 2.04 (s, 6H, C (N) C H 3 ), 1.22-1.14 ( d, 6H, NCH 2 CH (C H 3 ) O), 1.02, 1.01, 1.00, 1.00 (s, 18H, (C H 3 ) 3 CC (O)); 13 C-NMR (50.289 MHz, CDCl 3 ) 185.12 (s, (CH 3 ) 3 C C (O)), 168.79, 168.46, 168.17 (s, C (N) CH 3 ), 97.47, 97.00, 96.89 (s , C (O) C HC (N)), 77.31, 76.80, 76.36 (s, NCH 2 C H (Me) O), 67.53, 66.95, 66.57,66.36 (s, N C H 2 CH (Me) O) , 38.29, 38.22 (s, (CH 3 ) 3 C C (O)), 28.50 (s, ( C H 3 ) 3 CC (O)), 23.13, 23.04 (s, C (N) C H 3 ), 22.02, 21.18, 20.73 (s, NCH 2 CH ( C H 3 ) O); EA (cal C: 59.73, H: 8.66, N: 6.33, found C: 59.44, H: 8.78, N: 6.84)

하기 표 1과 표 2에서 상기 실시예에서 제조된 본 발명에 의한 티타늄 전구체와 종래의 상용화된 티타늄 전구체(Asahi Denka Kogyo K.K 社)의 대표적인 예와 그 물성을 나타내었다.In Table 1 and Table 2 below, representative examples of the titanium precursor prepared according to the present invention and a conventional commercialized titanium precursor (Asahi Denka Kogyo K.K Co., Ltd.) and their physical properties are shown.

구 조rescue 명칭(실시예)Name (Example) 녹는점(℃)Melting Point (℃) 기화온도(℃)Vaporization temperature (℃) 잔유량(%)Residual flow rate (%) Ti(eip)2 1)(실시예 11)Ti (eip) 2 1) (Example 11) 199199 323323 8.08.0 Ti(2meip)2 2)(실시예 12)Ti (2meip) 2 2) (Example 12) 199199 290290 < 0.5<0.5 Ti(1meip)2 3)(실시예 13)Ti (1 meip) 2 3) (Example 13) 61* 61 * 295295 3.33.3 Ti(1deip)2 4)(실시예 14)Ti (1deip) 2 4) (Example 14) 235235 290290 13.713.7 Ti(1eeip)2 5)(실시예 15)Ti (1eeip) 2 5) (Example 15) 149149 303303 7.67.6 Ti(pip)2 6)(실시예 16)Ti (pip) 2 6) (Example 16) -- -- 26.626.6 Ti(26dm2meih)2 7)(실시예 17)Ti (26 dm 2 meih) 2 7) (Example 17) 185* 185 * 283283 8.38.3

Ti(26dm1meih)2 8)(실시예 18)Ti (26 dm 1 meih) 2 8) (Example 18) 164164 285285 3.63.6 Ti(22dmeih)2 9)(실시예 19)Ti (22 dmeih) 2 9) (Example 19) 180180 307307 10.610.6 Ti(22dm2meih)2 10)(실시예 20)Ti (22dm2meih) 2 10) (Example 20) 218218 287287 0.50.5

1) Ti(eip)2: 티타늄 비스[4-(에톡시)이미노-2-펜타노네이트]1) Ti (eip) 2 : titanium bis [4- (ethoxy) imino-2-pentanonate]

2) Ti(2meip)2: 티타늄 비스[4-(2-메틸에톡시)이미노-2-펜타노네이트]2) Ti (2meip) 2 : titanium bis [4- (2-methylethoxy) imino-2-pentanoate]

3) Ti(1meip)2: 티타늄 비스[4-(1-메틸에톡시)이미노-2-펜타노네이트]3) Ti (1 meip) 2 : titanium bis [4- (1-methylethoxy) imino-2-pentanoate]

4) Ti(1deip)2: 티타늄 비스[4-(1,1-디메틸에톡시)이미노-2-펜타노네이트]4) Ti (1deip) 2 : titanium bis [4- (1,1-dimethylethoxy) imino-2-pentanoate]

5) Ti(1eeip)2: 티타늄 비스[4-(1-에틸에톡시)이미노-2-펜타노네이트]5) Ti (1eeip) 2 : titanium bis [4- (1-ethylethoxy) imino-2-pentanoate]

6) Ti(pip)2: 티타늄 비스[4-(n-프로폭시)이미노-2-펜타노네이트]6) Ti (pip) 2 : titanium bis [4- (n-propoxy) imino-2-pentanonate]

7) Ti(26dm2meih)2: 티타늄 비스[2,6-디메틸-5-(2-메틸에톡시)이미노-3-헵타노네이트]7) Ti (26dm2meih) 2 : titanium bis [2,6-dimethyl-5- (2-methylethoxy) imino-3-heptanonate]

8) Ti(26dm1meih)2: 티타늄 비스[2,6-디메틸-5-(1-메틸에톡시)이미노-3-헵타노네이트]8) Ti (26dm1meih) 2 : titanium bis [2,6-dimethyl-5- (1-methylethoxy) imino-3-heptanonate]

9) Ti(22dmeih)2: 티타늄 비스[2,2-디메틸-5-(에톡시)이미노-3-헵타노네이트]9) Ti (22dmeih) 2 : titanium bis [2,2-dimethyl-5- (ethoxy) imino-3-heptanonate]

10) Ti(22dm2meih)2: 티타늄 비스[2,2-디메틸-5-(2-메틸에톡시)이미노-3-헵타노네이트]10) Ti (22dm2meih) 2 : titanium bis [2,2-dimethyl-5- (2-methylethoxy) imino-3-heptanonate]

구 조rescue 명 칭Name 녹는점(℃)Melting Point (℃) 기화온도(℃)Vaporization temperature (℃) 잔류량(%)Residual amount (%) Ba(methd)2 1) Ba (methd) 2 1) 점도가 큰 액체High viscosity liquid 391391 8.38.3 Sr(methd)2 2) Sr (methd) 2 2) 점도가 큰 액체High viscosity liquid 389389 3.13.1 Ti(mpd)(thd)2 3) Ti (mpd) (thd) 2 3) 점도가 큰 액체High viscosity liquid 248248 <0.5<0.5 Ti(O-iPr)2(thd)2 4) Ti (O-iPr) 2 (thd) 2 4) 160160 240240 77

1) Ba(methd)2: 바륨 비스[1-메톡시에톡시-2,2,6,6-테트라메틸-3,5-헵탄디오네이트]1) Ba (methd) 2 : barium bis [1-methoxyethoxy-2,2,6,6-tetramethyl-3,5-heptanedionate]

2) Sr(methd)2: 스트론튬 비스[1-메톡시에톡시-2,2,6,6-테트라메틸-3,5-헵탄디오네이트]2) Sr (methd) 2 : strontium bis [1-methoxyethoxy-2,2,6,6-tetramethyl-3,5-heptanedionate]

3) Ti(mpd)(thd)2: 티타늄 (2-메틸-2,4-디옥시-펜탄)-비스[(2,2,6,6-테트라메틸-3,5-헵탄디오네이트)]3) Ti (mpd) (thd) 2 : titanium (2-methyl-2,4-dioxy-pentane) -bis [(2,2,6,6-tetramethyl-3,5-heptanedionate)]

4) Ti(O-iPr)2(thd)2: 티타늄 비스(이소-프로폭사이드) 비스[(2,2,6,6-테트라메틸-3,5-헵탄디오네이트)]4) Ti (O-iPr) 2 (thd) 2 : titanium bis (iso-propoxide) bis [(2,2,6,6-tetramethyl-3,5-heptanedionate)]

[물성측정방법][Measurement of physical properties]

·녹는점과 기화온도: TG-DSC 곡선의 흡열피크로부터 측정하였으나 *로 표시된 값은 용융과 휘발에 의한 흡열이 겹쳐서 나타났기 때문에 융점측정기로 측정하였다.Melting point and vaporization temperature: Measured from the endothermic peak of the TG-DSC curve, but the value marked with * was measured by melting point measuring instrument because the endothermic due to melting and volatilization appeared.

·잔유물 : 대기압에서 측정된 TG 곡선으로부터 550℃에서의 잔유물을 나타내었다.Residue: Residue at 550 ° C. was shown from the TG curve measured at atmospheric pressure.

실시예 21: 전구체의 내습성 Example 21 Moisture Resistance of Precursors

실시예 11과 실시예 12에서 제조한 전구체 Ti(eip)2와 Ti(2meip)21.0g을 각각 시약병에 위치시키고 공기중에서 3개월 이상 방치후 NMR을 통해 분석한 결과, 배위되지 않은 리간드의 피크가 관찰되지 않았으며 처음 제조시의 피크 형태를 그대로 유지하고 있었다. 이로 인해 본 발명의 전구체는 수분에 민감하지 않으며 취급과 저장성이 우수한 특징을 가지고 있음을 알 수 있다.1.0 g of the precursor Ti (eip) 2 and Ti (2meip) 2 prepared in Examples 11 and 12, respectively, were placed in a reagent bottle and left for 3 months or more in the air and analyzed by NMR. Was not observed and the peak shape at the time of manufacture was kept as it is. For this reason, it can be seen that the precursor of the present invention is not sensitive to moisture and has excellent characteristics of handling and storage.

실시예 22: 전구체의 용해특성 Example 22 : Dissolution Characteristics of Precursors

박막증착시 제공되는 전구체를 용액상태로 주입시 요구되는 용해도 특성을 확인하기 위해 실시예 11과 실시예 12에서 제조한 전구체 Ti(eip)2와 Ti(2meip)2를 메탄올과 부틸 아세테이트에 용해 시켰다. 그 결과 비대칭 탄소를 포함하지 않고 있는 리간드를 활용한 전구체 Ti(eip)20.5g은 메탄올 5ml에 용해되었지만 같은 양의 부틸 아세테이트에는 불용성이었다. 그러나 리간드상에 비대칭 탄소를 가지고 있는 전구체 Ti(2meip)20.5g은 메탄올과 부틸 아세테이트 5ml에 모두 용해되었다. 또한 실시예 20에서 제조한 전구체 Ti(22dm2meih)2은 t-butyl기가 도입되어 있으므로 Ti(2meip)2에 비하여 20%이상 증가된 용해도 특성을 나타내었다. 따라서 전구체의 용해도 특성은 상기 화학식 1의 R1, R2, R3의 선정에 의해 영향을 받으며 특히 R1, R2에 비대칭 요소가 존재하는 경우(즉, 치환기가 서로 다른 경우) 용해도 특성이 증가됨을 알 수 있다.In order to confirm the solubility characteristics required for injecting the precursor provided during thin film deposition into a solution state, the precursors Ti (eip) 2 and Ti (2meip) 2 prepared in Examples 11 and 12 were dissolved in methanol and butyl acetate. . As a result, 0.5 g of the precursor Ti (eip) 2 using a ligand containing no asymmetric carbon was dissolved in 5 ml of methanol, but insoluble in the same amount of butyl acetate. However, 0.5 g of the precursor Ti (2meip) 2 with asymmetric carbon on the ligand was dissolved in 5 ml of methanol and butyl acetate. In addition, the precursor Ti (22dm2meih) 2 prepared in Example 20 exhibited a solubility characteristic increased by 20% or more compared to Ti (2meip) 2 because t-butyl group was introduced. Therefore, the solubility characteristics of the precursor are affected by the selection of R 1 , R 2 , and R 3 of Formula 1, and especially when asymmetric elements exist in R 1 and R 2 (that is, when the substituents are different). It can be seen that the increase.

실시예 23: 전구체의 열특성의 분석 Example 23 Analysis of Thermal Properties of Precursors

실시예 11과 실시예 12에서 제조한 전구체 Ti(eip)2와 Ti(2meip)2의 TG-DSC 분석을 Netzsch STA 449C 장비를 사용하여 대기압 질소 또는 공기 분위기와 감압 (1.3mbar)에서 수행하였다. 온도 상승 속도는 10℃/min이며, 질소 유량 20 ml/min 또는 산소 유량 30 ml/min인 상태에서 550℃까지 측정하였으며 그 결과를 도 1a, 1b, 2a, 2b, 3에 나타내었다. 실시예 2에서 제조된 Ti(2meip)2는 질소분위기에서 측정된 TG-DSC 결과(도 1b)에서 나타난 것처럼, 190℃에서 녹으며 약 290℃에서 모두 기화되는 양상을 보였으며, 도 3의 공기 중에서의 열분해 특성에서 나타난 바와 같이 약 315℃에서 매우 강한 발열피크를 보이면서 열분해되었다. 이와 같은 현상은 기존에 알려진 Ti(thd)2(O-iPr)2또는 Ti(thd)2(mpd)등이 매우 넓은 영역에서 약한 발열피크를 보이면서 분해되는 현상과는 구별되는 것으로, Ti(2meip)2이 Ti-O 결합에 비하여 약한 Ti-N 결합을 갖고 있고, 동종의 리간드만으로 이루어진 구조(homoleptic structure)를 갖고 있기 때문이다. 따라서 이러한 특성은 저온에서의 흡착 후 반응기체 등에 의한 표면 반응에 의하여 박막을 형성하는 원자층증착법(ALD)의 전구체로도 유용한 특성이다. 또한 상기 Ti(2meip)2와 상업적인 전구체 Ti(mpd)(thd)2, Ti(thd)2(O-iPr)2, Ba(methd)2, Sr(methd)2의 기화 속도를 도 4에서 비교하였다. 도 4에 나타난 바와 같이 Ti(2meip)2은 각 온도에서의 증기압이 상업적인 티타늄 전구체에 비해 작기 때문에 바륨, 스트론튬과 같은 휘발성이 작은 금속과의 다성분계 박막 형성시 기화특성의 유사성을 확보할 수 있다.TG-DSC analysis of the precursors Ti (eip) 2 and Ti (2meip) 2 prepared in Examples 11 and 12 was carried out using a Netzsch STA 449C instrument at atmospheric pressure or air atmosphere and reduced pressure (1.3mbar). The rate of temperature rise was 10 ° C./min and was measured up to 550 ° C. at a nitrogen flow rate of 20 ml / min or an oxygen flow rate of 30 ml / min. The results are shown in FIGS. Ti (2meip) 2 prepared in Example 2 was melted at 190 ° C. and evaporated at about 290 ° C. as shown in the TG-DSC result (FIG. 1 b) measured in a nitrogen atmosphere. As shown in the thermal decomposition characteristics in the thermal decomposition was showing a very strong exothermic peak at about 315 ℃. This phenomenon is distinguished from the phenomenon in which Ti (thd) 2 (O-iPr) 2 or Ti (thd) 2 (mpd), which is known in the art, is decomposed while showing a weak heating peak in a very large area. 2 ) has weaker Ti-N bonds than Ti-O bonds, and has a homologous structure of only the same kind of ligand. Therefore, this property is also useful as a precursor of the atomic layer deposition method (ALD), which forms a thin film by surface reaction by a reactor body or the like after adsorption at low temperature. In addition, the vaporization rates of the Ti (2meip) 2 and commercial precursors Ti (mpd) (thd) 2 , Ti (thd) 2 (O-iPr) 2 , Ba (methd) 2 , and Sr (methd) 2 are compared in FIG. 4. It was. As shown in FIG. 4, since the vapor pressure at each temperature is smaller than that of commercial titanium precursors, Ti (2meip) 2 can secure similarity of vaporization characteristics when forming a multi-component thin film with low volatility metals such as barium and strontium. .

실시예 24: MOCVD 법에 의한 BST 박막의 제조 Example 24 Preparation of BST Thin Films by MOCVD

실시예 12에서 제조된 전구체 Ti(2meip)2와 상업적인 전구체 Ti(mpd)(thd)2를 티타늄의 전구체로 사용하고, Ba(methd)2와 Sr(methd)2를 각각 바륨과 스트론튬의 전구체로 사용하여, LS-MOCVD (Liqiud Source Metal Organic Chemical Vapor Deposition)법에 의해 (Bax, Sr1-x)TiyO3-z박막을 제조하였다. BST박막 증착에 사용된 기판은 Pt(1000Å)/SiO2(1000Å)/Si의 평판형과 종횡비(aspect ratio)가 3 ( depth/width = 0.45 ㎛/0.15 ㎛)인 패턴 상에 Ru이 증착된 미세 패턴 구조기판이며 이들 기판의 Pt와 Ru은 각각 스퍼터링(sputtering)법과 MOCVD법으로 증착하였다. 전구체 용액은 Ba, Sr과 Ti 전구체를 n-부틸 아세테이트에 함께 용해시킨 단일용액을 사용하였으며, 각각의 전구체의 몰농도는 Ba : Sr : Ti = 0.0093 M : 0.0093 M : 0.07999 M (Ba : Sr : Ti = 1 : 1 : 8.6)의 set I과 Ba : Sr : Ti = 0.0093 M : 0.0093 M : 0.04 M (Ba : Sr : Ti = 1 : 1 : 4.3)의 set II로 하였다. 전구체 용액의 유입속도(source input flow rate)는 Lintec(일본)사의 Liquid MFC(오차 ±0.002 g/min)를 이용하여 0.05 g/min으로 BST박막 증착 중 일정하게 유지하였고, 특히 기판온도에 따라 박막내에 티타늄이 유입되는 경향을 관찰하고자 set II의 전구체 용액을 사용하여 400∼500℃ 온도구간에서 증착을 하였다. 사용된 MOCVD 장비는 기화기(Vaporizer), 증착 채임버(deposition chamber) 및 기체이송관이 모두 오븐안에 장착되어 있는 것을 사용하였다. 그 밖의 공정변수는 표 3과 같다.The precursor Ti (2meip) 2 prepared in Example 12 and the commercial precursor Ti (mpd) (thd) 2 were used as precursors of titanium, and Ba (methd) 2 and Sr (methd) 2 were used as precursors of barium and strontium, respectively. (Ba x , Sr 1-x ) Ti y O 3-z thin film was prepared by LS-MOCVD (Liqiud Source Metal Organic Chemical Vapor Deposition) method. Substrate used for BST thin film deposition was formed by depositing Ru on a pattern of Pt (1000Å) / SiO 2 (1000Å) / Si and pattern having an aspect ratio of 3 (depth / width = 0.45 μm / 0.15 μm). Pt and Ru were deposited by sputtering method and MOCVD method. As a precursor solution, a single solution in which Ba, Sr and Ti precursors were dissolved together in n-butyl acetate was used. The molar concentration of each precursor was Ba: Sr: Ti = 0.0093 M: 0.0093 M: 0.07999 M (Ba: Sr: Set I of Ti = 1: 1: 1 8.6 and set II of Ba: Sr: Ti = 0.0093 M: 0.0093 M: 0.04 M (Ba: Sr: Ti = 1: 1: 14.3). The source input flow rate of the precursor solution was kept constant during BST thin film deposition at 0.05 g / min using Liquidtec MFC (error ± 0.002 g / min) from Lintec (Japan), especially depending on the substrate temperature. In order to observe the tendency of titanium to flow in, deposition was performed at a temperature range of 400 to 500 ° C. using a precursor solution of set II. The MOCVD equipment used was a vaporizer, deposition chamber, and gas transfer tube all mounted in an oven. Other process variables are shown in Table 3.

증착압력Deposition pressure 1 torr1 torr 기판온도Substrate temperature 400∼500℃400 ~ 500 ℃ 이송기체 N2 Transport gas N 2 100 scm100 scm 기화온도Vaporization temperature 280℃280 ℃ 산화제 O2 Oxidizer O 2 100 scm100 scm 전구체용액 이송관온도Precursor Solution Transfer Tube Temperature 280℃280 ℃ 증착챔버로 유입되는 N2 N 2 flowing into the deposition chamber 100 scm100 scm 휘발기체 이송관온도Volatile gas temperature 150℃150 ℃ 전구체용액 유입속도Precursor solution inflow rate 0.05 g/min0.05 g / min 증착시간Deposition time 15분15 minutes

박막의 조성을 확인하기 위해 하부 전극 Pt위에 증착된 물질을 HF(hydrofluoric acid)계열의 부식액을 이용하여 녹여낸 후, ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectroscopy)로 정량 분석하여 박막내의 바륨과 티타늄의 조성을 분석하여 이를 도 5a 및 5b에 나타내었다. 보는 바와 같이 상업적 전구체의 사용시 티타늄의 조성은 온도에 크게 의존하나 본 발명에 의한 전구체는 온도의존성이 적음을 알 수 있다. 따라서 기존의 전구체는 대면적의 소자 제작시 소자간 또는 소자 내의 상하 단차에서의 티타늄의 조성 조절이 용이 하지 못하지만 본 발명에 의한 전구체는 박막내 티타늄 조성의 온도 의존성이 적으므로 대면적에서 소자간 또는 소자내 단차 상하부에서 조성 조절이 용이함을 알 수 있다.In order to confirm the composition of the thin film, the material deposited on the lower electrode Pt was dissolved using a corrosion solution of HF (hydrofluoric acid) series, and quantitatively analyzed by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy) to determine the amount of barium and titanium in the thin film. The composition is analyzed and shown in FIGS. 5A and 5B. As can be seen, the composition of titanium in the use of commercial precursors is highly dependent on the temperature, but it can be seen that the precursors according to the present invention are less temperature dependent. Therefore, the conventional precursor is not easy to control the composition of titanium in the device or the upper and lower steps in the device manufacturing a large area, but the precursor according to the present invention has a small temperature dependence of the titanium composition in the thin film, so It can be seen that the composition control is easy in the upper and lower portions of the step in the device.

상기와 같은 방법으로 형성된 박막 중, 430℃에서 증착된 박막에 대해서 여라가지 분석을 행하였다. 도 6에 나타난 XRD(X-Ray Diffraction) 측정도에서는 증착 후 별도의 열처리 공정을 수행하지 않은 BST 박막내에 페로브스카이트 결정상이 형성 되었음을 확인할 수 있다. 도 7a는 430℃에서 평판형 기판에 형성된 박막을 주사전자 현미경을 이용하여 촬영한 기울인 평면 사진으로 박막의 표면은 어떠한돌기 또는 뿌연 외관(hazy appearance)이 없으며, 7b는 같은 박막을 AFM으로 본 이미지로 rms 거칠기(root mean square roughness)가 17Å일 정도로 표면이 매우 매끄럽다. 도 8은 430℃에서 종횡비가 3인 미세패턴 기판 위에 형성된 BST 박막의 측면사진으로 단차 피복특성이 우수함을 알 수 있다. 또한 도 9에 나타난 SIMS(Secondary Ion Mass Spectroscopy) 분석을 살펴보면 리간드들에 의해서 박막내에 탄소 또는 질소 원자의 오염이 거의 없음을 알 수 있다.Of the thin films formed by the above method, various analyzes were performed on the thin films deposited at 430 ° C. In the X-ray diffraction (XRD) measurement diagram shown in FIG. 6, it can be seen that the perovskite crystal phase was formed in the BST thin film which was not subjected to a separate heat treatment process after deposition. FIG. 7A is a tilted planar photograph of a thin film formed on a flat substrate at 430 ° C. using a scanning electron microscope. The surface of the thin film does not have any protrusions or hazy appearance, and 7b is an AFM image of the same thin film. The surface is very smooth with a root mean square roughness of 17Å. 8 is a side view of the BST thin film formed on the fine pattern substrate having an aspect ratio of 3 at 430 ° C., it can be seen that the step coverage property is excellent. In addition, the secondary ion mass spectroscopy (SIMS) analysis shown in FIG. 9 shows that there is almost no contamination of carbon or nitrogen atoms in the thin film by the ligands.

본 발명에 따른 전구체 Ti(2meip)2를 사용하여 430℃에서 증착한 BST 박막을 이용하여 Pt/BST/Pt구조의 평판형 MIM 커패시터를 제작하여 전기적 특성과 유전 특성을 측정하여 도 10과 11에 나타내었다. 도 6의 XRD 패턴에서 확인된 바와 같이 제로 바이어스(zero bias)에서 정전용량이 가장 크고 바이어스가 증가할수록 감소하는 전형적인 페로브스카이트 유전체의 유전특성을 보이고 있으며, 유전손실계수가 1%미만인 우수한 특성을 확인하였고, 고집적 DRAM 소자 작동 전압인 ±1V하에서 우수한 절연 특성을 보임을 알 수 있다.Using the precursor Ti (2meip) 2 according to the present invention using a BST thin film deposited at 430 ℃ to fabricate a Pt / BST / Pt flat plate type MIM capacitor to measure the electrical and dielectric properties to 10 and 11 Indicated. As shown in the XRD pattern of FIG. 6, the dielectric characteristics of a typical perovskite dielectric having the largest capacitance at zero bias and decreasing with increasing bias are excellent, and the dielectric loss coefficient is less than 1%. In addition, it can be seen that excellent insulation characteristics are exhibited under the high-integrated DRAM device operating voltage of ± 1V.

상기에서 살펴본 바와 같이 본 발명에서 제안된 티타늄 전구체는 박막형성에 적합한 휘발성과 휘발 후 잔유물이 남지 않으며 산소 분위기에서 깨끗하게 분해되는 우수한 열적 특성을 가진다. 또한 화학적 안정성이 크므로, 기화된 기체의 이송 중에 또는 다른 전구체와 함께 사용할 때 부반응이 없고 수분에 민감하지 않으므로저장과 취급에 특별한 노력이 요구되지 않는다. 특히 BST 등과 같은 다성분계 박막 제조시 박막 내에 탄소 또는 질소의 잔유물이 거의 남지 않으며, 대면적의 박막에서 또는 단차가 큰 박막의 상하부에서의 조성 조절이 용이하며, 단차 피복특성이 좋고 표면 형상이 우수한 양질의 금속 산화물 박막을 제조할 수 있도록 한다.As described above, the titanium precursor proposed in the present invention has excellent volatility suitable for forming a thin film and no residue after volatilization, and has excellent thermal properties decomposed cleanly in an oxygen atmosphere. In addition, due to its high chemical stability, no special reactions are required for storage and handling as there are no side reactions and no moisture sensitivity during transport of the vaporized gas or when used with other precursors. In particular, in the manufacture of multi-component thin films such as BST, almost no residues of carbon or nitrogen remain in the thin film, and the composition of the large-area thin film or the upper and lower portions of the large stepped film is easily controlled, and the step coverage property is excellent and the surface shape is excellent. It allows the production of high quality metal oxide thin films.

Claims (9)

하기 화학식 1로 표시되는 -2가의 세자리 리간드(L).A -divalent tridentate ligand (L) represented by the following formula (1). [화학식 1][Formula 1] 상기 식에서 R1와 R2는 각각 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬기이고, R3는 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬렌기이다.Wherein R 1 and R 2 are each a linear or branched alkyl group having 1 to 8 carbon atoms, and R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms. 제 1항의 화학식 1로 표시되는 -2가의 세자리 리간드(L)와 +4가의 IV족 금속(M)으로 이루어지며, 화학식 M(L)2로 표시되는 것을 특징으로 하는 금속산화물 박막 제조용 유기금속 전구체.An organometallic precursor for preparing a metal oxide thin film, which is composed of a -divalent tridentate ligand (L) and a + 4-valent IV group metal (M) represented by Formula 1, and is represented by Formula M (L) 2 . . 제 2항에 있어서, +4가의 IV족 금속(M)이 Ti인 것을 특징으로 하는 금속산화물 박막 제조용 유기금속 전구체.The organometallic precursor for manufacturing a metal oxide thin film according to claim 2, wherein the tetravalent Group IV metal (M) is Ti. +4가의 IV족 금속(M)과 화학식 1로 표시되는 -2가의 세자리 리간드(L)로 이루어지는, 화학식 M(L)2의 착물을 +4가의 IV족 금속 전구체로 사용하여 금속산화물 박막을 형성함을 특징으로 하는 화학기상 증착법.A metal oxide thin film was formed using a complex of formula M (L) 2 composed of a + tetravalent Group IV metal (M) and a -divalent tridentate ligand (L) represented by Formula 1 as a + 4-valent Group IV metal precursor. Chemical vapor deposition method characterized in that. [화학식 1][Formula 1] 상기 식에서 R1와 R2는 각각 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬기이고, R3는 탄소 원자수가 1∼8인 선형 또는 가지달린 알킬렌기이다.Wherein R 1 and R 2 are each a linear or branched alkyl group having 1 to 8 carbon atoms, and R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms. 제 4항에 있어서, +4가의 IV족 금속(M)이 Ti인, 화학식 Ti(L)2의 착물을 티타늄 전구체로 사용하여 금속산화물 박막을 형성함을 특징으로 하는 화학기상 증착법.5. The chemical vapor deposition method according to claim 4, wherein a metal oxide thin film is formed using a complex of the formula Ti (L) 2 , wherein the tetravalent Group IV metal (M) is Ti, as a titanium precursor. 제 4항에 있어서, 상기 화학 기상 증착법에서 전구체의 기화방법으로 버블러(bubbler) 방식 또는 기화기(vaporizer) 방식을 사용함을 특징으로 하는 화학기상 증착법.The chemical vapor deposition method according to claim 4, wherein a bubbler method or a vaporizer method is used as the vaporization method of the precursor in the chemical vapor deposition method. 제 4항에 있어서, 상기 화학 기상 증착법은 원자층 증착법(Atomic LayerDeposition)을 포함하는 것을 특징으로 하는 화학기상 증착법.5. The chemical vapor deposition method as claimed in claim 4, wherein the chemical vapor deposition method includes atomic layer deposition. 제 4항에 있어서, 상기 화학기상 증착법에 의해 형성되는 금속 산화물 박막이 +4가의 IV족 금속을 포함하는 다성분계임을 특징으로 하는 화학기상 증착법.5. The chemical vapor deposition method according to claim 4, wherein the metal oxide thin film formed by the chemical vapor deposition method is a multicomponent system containing a tetravalent Group IV metal. 제 5항에 있어서, 상기 화학기상 증착법에 의해 형성되는 금속 산화물 박막이 티타늄을 포함하는 다성분계임을 특징으로 하는 화학기상 증착법.The chemical vapor deposition method according to claim 5, wherein the metal oxide thin film formed by the chemical vapor deposition method is a multi-component system containing titanium.
KR10-2001-0002574A 2000-08-26 2001-01-17 Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof KR100367346B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01307025A EP1184365A3 (en) 2000-08-26 2001-08-17 Novel group IV metal precursors and chemical vapor deposition method using thereof
US09/933,736 US6689427B2 (en) 2000-08-26 2001-08-22 Group IV metal precursors and a method of chemical vapor deposition using the same
JP2001252429A JP2002145836A (en) 2000-08-26 2001-08-23 Mew group iv metal precursor and chemical vapor deposition method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20000049832 2000-08-26
KR1020000049832 2000-08-26

Publications (2)

Publication Number Publication Date
KR20020016748A KR20020016748A (en) 2002-03-06
KR100367346B1 true KR100367346B1 (en) 2003-01-09

Family

ID=19685385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0002574A KR100367346B1 (en) 2000-08-26 2001-01-17 Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof

Country Status (1)

Country Link
KR (1) KR100367346B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700632B1 (en) * 2002-06-11 2007-03-28 주식회사 메카로닉스 The organometallic compounds for a thin film deposition with metals by using CVD or ALD and the method thereof
KR100634532B1 (en) 2005-01-19 2006-10-13 삼성전자주식회사 A Ti precursor, a method for preparing the same, a method for preparing by using the Ti precursor and the Ti-containing thin layer

Also Published As

Publication number Publication date
KR20020016748A (en) 2002-03-06

Similar Documents

Publication Publication Date Title
EP1849789B1 (en) Metal complexes of polydentate beta-ketoiminates
KR101284664B1 (en) Organometallic compounds with silylamine ligand, and method for deposition of a thin-film of metal oxide or silicon-containing metal oxide therefrom
US6274195B1 (en) Organometallic complex process for the preparation thereof and metal organic chemical vapor deposition using same
US6689427B2 (en) Group IV metal precursors and a method of chemical vapor deposition using the same
US20080286464A1 (en) Group 2 Metal Precursors For Depositing Multi-Component Metal Oxide Films
US6736993B1 (en) Silicon reagents and low temperature CVD method of forming silicon-containing gate dielectric materials using same
KR100807947B1 (en) Method for preparing Asymmetric betaketoiminate ligand compound
US20110206863A1 (en) Organometallic compounds having sterically hindered amides
KR100367346B1 (en) Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof
KR100338196B1 (en) Organometallic complex, process for the preparation thereof and metal organic chemical vapor deposition using same
KR20030000423A (en) Atomic Layer Deposition Using Group IV Metal Precursor
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
KR100508113B1 (en) Organic metal complex and the preparation thereof
CN101328188A (en) Group II metal precursors for depositing multi-component metal oxide films
KR101151462B1 (en) Methods for deposition of group 4 metal containing films
JP4225607B2 (en) Method for producing bismuth-containing composite metal oxide film
US6987197B2 (en) Organozirconium composite and method of synthesizing the same, raw material solution containing the same, and method of forming lead zirconate titanate thin film
KR100508110B1 (en) Organometallic complex and the preparation thereof
KR102557277B1 (en) Rare earth precursors, preparation method thereof and process for the formation of thin films using the same
JP3117011B2 (en) Raw materials for metalorganic chemical vapor deposition containing organic tantalum compounds and tantalum-containing thin films made therefrom
Crosbie et al. Comparison of tantalum precursors for use in liquid injection CVD of thin film oxides, dielectrics and ferroelectrics
JP4360059B2 (en) Organozirconium compound for metalorganic chemical vapor deposition and PZT thin film forming raw material liquid containing the compound
US8247617B2 (en) Group 2 metal precursors for depositing multi-component metal oxide films
JP2004059562A (en) Titanium complex for chemical gas phase growth and method for producing pzt thin film by using the same
Kwon et al. LS-MOCVD of BSTO Thin Films Using Novel Ba and Sr Precursors

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121115

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131122

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee