JP2007181811A - Production method for improving uniformity of quality of coating layer - Google Patents

Production method for improving uniformity of quality of coating layer Download PDF

Info

Publication number
JP2007181811A
JP2007181811A JP2006310606A JP2006310606A JP2007181811A JP 2007181811 A JP2007181811 A JP 2007181811A JP 2006310606 A JP2006310606 A JP 2006310606A JP 2006310606 A JP2006310606 A JP 2006310606A JP 2007181811 A JP2007181811 A JP 2007181811A
Authority
JP
Japan
Prior art keywords
coating
manufacturing
substrate
coating layer
uniform quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006310606A
Other languages
Japanese (ja)
Inventor
Wu-Chi Ho
無忌 何
Etsukan Baku
越漢 麥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2007181811A publication Critical patent/JP2007181811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0204Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to the edges of essentially flat articles

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for improving the uniformity of quality of a coating layer. <P>SOLUTION: Relative movement between a coating head and a substrate is utilized to coat a coating composition fluid delivered from a coating head onto a substrate. A pressure environment of coating beads between the substrate and the coating head is regulated by a control system to regulate a coating bead upstream meniscus length or stability, and the production process falls within a defect-free coating region. Thus, a coating head structure is constructed, the angle of incidence between the substrate and the coating head is regulated, a change in degree of inclination of pressure of the coating beads is regulated, and the yield of the production process is improved. Further, the vibration of the coating bead downstream meniscus is reduced by a waveform having defect frequency and phase difference through defect frequency prediction to reduce defective production and thus to improve the yield of the production process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶パネルの製造工程に用いられるフォトレジストなどの薄く均一一様な塗布層を形成する塗布方法に関する。特に、圧力環境(塗料流体の外部圧力或いはその内部圧力分布を含む)変化の制御により、塗布ビード上流のメニスカス長さを制御し、基板上に塗布する材料のムラ(barring)欠陥を消去し、製造工程歩留を向上させる塗布層の均一品質を改善する製造方法に係る。   The present invention relates to a coating method for forming a thin and uniform coating layer such as a photoresist used in a manufacturing process of a liquid crystal panel. In particular, by controlling the change in pressure environment (including the external pressure of the paint fluid or its internal pressure distribution), the meniscus length upstream of the coating bead is controlled, and the barring defect of the material applied on the substrate is eliminated, The present invention relates to a manufacturing method for improving the uniform quality of a coating layer that improves the manufacturing process yield.

市場応用と経済性の必要に対応するため、パネルメーカーが製造する液晶パネルのサイズはますます大きくなっている。近年では、パネルサイズは第1世代工場の300×400mmガラス基板から第II世代の1870×2200mmにまで拡大しており、しかもより大きくなる趨勢を見せている。パネルメーカーは、市場競爭に打ち勝ち利益を獲得するため、絶えず生産能力を向上させる必要があり、しかしその一方でコストも考慮しなければならない。このため、製造工程の作業速度と歩留の改善は必ず直面する課題である。
パネルの製造工程において、アレイ(array)製造工程に属するフォトマスク塗布は製造工程におけるキーテクノロジーである。そのため各大手メーカーは塗布速度の改善と歩留の向上に血道を上げている。
In order to meet the needs of market application and economy, the size of liquid crystal panels manufactured by panel manufacturers is becoming larger and larger. In recent years, the panel size has expanded from the 300 x 400 mm glass substrate of the first generation factory to the 1870 x 2200 mm of the second generation, and is showing a trend of becoming larger. Panel makers need to constantly improve production capacity to overcome market competition and gain profits, but on the other hand, cost must also be considered. For this reason, improvement in the working speed and yield of the manufacturing process is a problem that must be faced.
In the panel manufacturing process, photomask coating belonging to the array manufacturing process is a key technology in the manufacturing process. For this reason, each major manufacturer is trying to improve the application speed and yield.

図1に示すビード式塗布機を利用して行う湿式塗布では、塗布工程における塗布品質への影響は、塗布ビード3の幾何的なサイズ、塗布間隙a(塗布ヘッドと基板の距離)、材料供給間隙b及び塗布ヘッドと基板間の相対速度uが主要因である。
公知の研究成果を総合して、良好な塗布層が得られる塗布領域(coating window)と欠陥の生じる領域を真空度(塗布雰囲気圧力)と塗布層の厚さの逆数との関係で表すと図2のようになる。
いわゆる好適塗布領域40は、塗布雰囲気圧力と塗布層(図1の32)厚さhの逆数との関係を表す図2中で、塗布工程を安定して行なうことができる領域を表す。塗布領域40の範囲内であれば、製造工程において欠陥が発生することはない。そうでない場合には、各種の異なる不安定要因により塗布欠陥が発生しやすくなる。
さらに図1及び図2は、塗布工程においてしばしば生じる欠陥の種類を表す。周囲の真空度が高過ぎる領域(境界オーバーフロー区)41の範囲内であるとノズル上流側メニスカス(meniscus)境界30のオーバーフロー(溢れ、swelling)現象が発生し易く、しかも塗布層の厚さが厚い場合には、領域(空気巻き込み区)42に至って空気巻き込み欠陥が生じ易い。この他、領域(リブとリブレット区)43の領域では示すリブ(ribbing)とリブレット(rivulets)の欠陥現象も生じる。
領域(ムラ区)44に発生する欠陥は、ムラ(barring)現象である。図3に示すように、いわゆるムラ33欠陥とは、一般的には真空度不足において、該塗布層32が薄い時に発生する欠陥である。図4に示すように、ムラ33は周期性のある欠陥で、該塗布層32の厚さに周期性の変化を生じる。通常は塗布ヘッド移動の速度などの塗布パラメーターと関連がある。
2001年富士フィルム株式会社は、ムラ現象は外部振動の変化を受けた塗布ビード下流側に生じ、塗布層厚さが周期性の変化を生じることを検証した。該研究報告ではムラ頻度の推算公式を提示し、ムラ欠陥発生の頻度を推算している。
公開されている文献中では、米国特許US.Pat.No.4445458が開示する塗布ヘッドは、下流側リップが八角形の構造を備え、塗布層膜厚の均一性に有利である。また、米国特許US.Pat.No.5728430が開示する技術は塗布ヘッド上下流側リップの構造により、塗布流圧力傾斜度調節と塗布精度と品質改善の目的を達成する。これは適当な圧力分布により塗布層の境界線を安定させることができるため、該技術は塗布流が塗布方向に従い徐々に縮小することを利用し塗布品質の向上を図ることができるため、特にリブ(ribbing)等欠陥の出現を避けることができる。しかし、この方式は塗布ビードの流体力学的作用に影響を及ぼすため、縮小が急激である場合には塗布の逆方向圧力の過大を招き、塗布流場は上流へと圧迫し、上流オーバーフロー(upstream leakage)の問題を招いてしまう。
特開2006−75660号公報
In wet coating using the bead type coater shown in FIG. 1, the influence on the coating quality in the coating process is the geometric size of the coating bead 3, the coating gap a (distance between the coating head and the substrate), and material supply. The gap b and the relative speed u between the coating head and the substrate are the main factors.
By combining the known research results, the coating area where a good coating layer can be obtained and the area where defects occur can be expressed by the relationship between the degree of vacuum (coating atmosphere pressure) and the reciprocal of the coating layer thickness. It becomes like 2.
The so-called preferred application region 40 represents a region where the application process can be performed stably in FIG. 2 showing the relationship between the application atmosphere pressure and the reciprocal of the application layer (32 in FIG. 1) thickness h. As long as it is within the range of the coating region 40, no defect occurs in the manufacturing process. Otherwise, coating defects are likely to occur due to various different instability factors.
1 and 2 show the types of defects that often occur in the coating process. If the surrounding vacuum is too high (boundary overflow zone) 41, the nozzle upstream meniscus boundary 30 is likely to overflow, and the coating layer is thick. In this case, the air entrainment defect is likely to occur in the region (air entrainment section) 42. In addition, a defect phenomenon of ribbing and riblet shown in the region (rib and riblet section) 43 also occurs.
A defect occurring in the region (uneven area) 44 is a nonuniformity (barring) phenomenon. As shown in FIG. 3, the so-called unevenness 33 defect is a defect that occurs when the coating layer 32 is thin, generally under a low degree of vacuum. As shown in FIG. 4, the unevenness 33 is a periodic defect, and a periodicity change occurs in the thickness of the coating layer 32. It is usually related to application parameters such as the speed of application head movement.
In 2001, Fuji Film Co., Ltd. verified that the uneven phenomenon occurred on the downstream side of the coating bead subjected to a change in external vibration, and that the coating layer thickness changed periodically. In this research report, an estimation formula for unevenness frequency is presented, and the frequency of occurrence of unevenness defects is estimated.
In the published literature, the coating head disclosed by US Pat. No. 4,445,458 has an octagonal structure on the downstream side lip, which is advantageous for the uniformity of the coating layer thickness. Further, the technique disclosed in US Pat. No. 5728430 achieves the purpose of coating flow pressure gradient adjustment, coating accuracy and quality improvement by the structure of the lip on the upstream and downstream sides of the coating head. This is because the boundary line of the coating layer can be stabilized by an appropriate pressure distribution, and the technique can improve the coating quality by utilizing the fact that the coating flow gradually decreases in accordance with the coating direction. The appearance of defects such as (ribbing) can be avoided. However, since this method affects the hydrodynamic action of the coating bead, if the shrinkage is rapid, the reverse pressure of the coating is excessive, the coating flow field is compressed upstream, and the upstream overflow (upstream) leakage).
JP 2006-75660 A

公知構造には以下の欠点があった。
すなわち、公知技術は塗布ビードの方向安定性を向上させて塗布品質を改善することはできるが、塗布時に生じるムラ欠陥の問題を効果的に改善することはできない。ムラ欠陥の問題を解決するために利用される一般の解決方式は、加圧塗布装置に振動を付加し、さらに基板と塗布ヘッド間の相対速度を低下させるものである。しかし速度を低下させれば、パネルの生産能力は低下し生産効率に影響を及ぼし、市場競爭力を低下させてしまう。
本発明は上記構造の問題点を解決した塗布層の均一品質を改善する製造方法を提供するものである。
The known structure has the following drawbacks.
That is, the known technique can improve the coating quality by improving the directional stability of the coating bead, but cannot effectively improve the problem of uneven defects that occur during coating. A general solution method used to solve the problem of uneven defects is to add vibration to the pressure coating apparatus and further reduce the relative speed between the substrate and the coating head. However, if the speed is reduced, the production capacity of the panel will be reduced, affecting the production efficiency and reducing the competitiveness of the market.
This invention provides the manufacturing method which improves the uniform quality of the coating layer which solved the problem of the said structure.

上記課題を解決するため、本発明は下記の塗布層の均一品質を改善する製造方法を提供する。
それは塗布層の均一品質を改善する製造方法を提供し、塗布ビードに対する圧力条件を調節して塗料流体上流メニスカス長さを制御し、塗布工程の条件を良好な塗布領域内に収め、ムラ欠陥問題解決の目的を達成し、
さらにそれは塗布層の均一品質を改善する製造方法を提供し、塗布ビードの圧力条件の調節してその上流メニスカス長さ或いは安定度を制御し、塗布工程の条件を良好な塗布領域内に収め、ムラ欠陥問題を解決し、塗布製造工程時間短縮を達成し、生産効率向上の目的を達成し、
すなわちそれは以下のステップからなる、
該塗布ヘッドと該基板間の相対運動により、該塗布ヘッドから送出される塗料流体を該基板上に塗布し、
その際、該基板と該塗布ヘッド間の塗料流体の圧力条件を制御し、該塗料流体の上流メニスカス長さを調整することによって、塗布工程の条件を良好な塗布領域内にあるように制御する。
最適の方式として、さらに、該塗布ヘッドの上流区域の真空度を適当な範囲に調整し、該塗料流体の上流メニスカス長さを調整することにより、塗布工程の条件を良好な塗布領域内あるように制御する。
該真空度は、一定値に維持して行なうか、塗布工程において変化させるかいずれを選択することもできる。或いは、これらの雰囲気制御法として、さらに該塗布ヘッドの上流区域に設置する低圧装置により上流区域の気圧を低下させて、塗布ヘッドの上下流区域の真空度を同時に制御することもできる。
さらに、最適の方式として、該塗布ヘッドは上流リップ体及び下流側リップ体を備え、該上流リップ体と該下流側リップ体間にはさらに少なくとも1個の槽孔を有し、該塗布ヘッドの該上流リップ体及び該下流側リップ体と該基板が相対する面を連続曲面として、塗布流体の圧力傾斜度を制御調節し、該塗料流体の上流メニスカス長さを調整することにより、塗布条件を好適な塗布領域内に収まるようにする。該連続曲面は、少なくとも1つの凹面を備えて圧力傾斜度を低下させ、或いは少なくとも1つの凸面を備えて圧力傾斜度を増加させ、或いは該連続曲面を凹面と凸面の組合せとすることにより塗料流体の圧力傾斜度を制御調節し、
さらに最適の方式として、塗布過程中において、該塗布ヘッドと該基板間の迎角角度を変化するステップを実行する。迎角調整の方式には2種あり、一種は該基板を水平方向に保持し、続いて塗布過程中において、該塗布ヘッドを移動させて、該迎角角度を動態変化し、もう一種は該塗布ヘッドは下方重力方向に保持し、続いて塗布過程中において、該基板を移動させて該迎角角度を動態変化する。該基板は、傾斜調整装置上に設置し、該傾斜調整装置は平行機構を備え該基板を受け支え、該平行機構はさらに重力方向に沿って上下往復運動を行う位置調整体上に接続し、これにより該迎角を4度から0度の間で調整する。この他、該傾斜調整装置の別種の実施方式ではキャリア板を備え、該基板を受け支え、該キャリア板の片側はさらに重力方向に沿って上下往復運動を行う位置調整体上に連接し、これにより該迎角を調整する。
さらに最適の方式として、塗布ムラ形成の頻度を検出し、続いて波形発生器により該ムラ形成頻度とそれに対する位相差を備える波形を発生して、該波形を付与することにより該基板と該塗布ヘッド間の塗布ビードの下流メニカス境界振動を相殺して消去する。
該位相差は180度が最適であり、
該位相差範囲は165度から195度が好適であり、
該波形発生器は音波発生器であることを特徴とする塗布層の均一品質を改善する製造方法である。
In order to solve the above-mentioned problems, the present invention provides a production method for improving the uniform quality of the following coating layer.
It provides a manufacturing method that improves the uniform quality of the coating layer, adjusts the pressure condition on the coating bead to control the paint fluid upstream meniscus length, keeps the coating process condition in a good coating area, and the uneven defect problem Achieve the purpose of the solution,
Furthermore, it provides a manufacturing method that improves the uniform quality of the coating layer, adjusts the pressure condition of the coating bead to control its upstream meniscus length or stability, and keeps the coating process conditions in a good coating area, Solve the uneven defect problem, shorten the coating manufacturing process time, achieve the purpose of improving production efficiency,
That is, it consists of the following steps:
A coating fluid delivered from the coating head is applied onto the substrate by relative movement between the coating head and the substrate,
At that time, the pressure condition of the coating fluid between the substrate and the coating head is controlled, and the upstream meniscus length of the coating fluid is adjusted to control the coating process condition so that it is in a good coating region. .
As an optimum method, the degree of vacuum in the upstream area of the coating head is adjusted to an appropriate range, and the length of the upstream meniscus of the coating fluid is adjusted so that the conditions of the coating process are within a good coating region. To control.
The degree of vacuum can be selected to be maintained at a constant value or changed in the coating process. Alternatively, as these atmospheric control methods, the pressure in the upstream area can be controlled simultaneously by lowering the pressure in the upstream area by using a low-pressure device installed in the upstream area of the coating head.
Further, as an optimum method, the coating head includes an upstream lip body and a downstream lip body, and further has at least one tank hole between the upstream lip body and the downstream lip body, The surface where the upstream lip body and the downstream lip body and the substrate face each other is a continuous curved surface, the pressure gradient of the coating fluid is controlled and adjusted, and the upstream meniscus length of the coating fluid is adjusted. It fits within a suitable application area. The continuous curved surface is provided with at least one concave surface to reduce the pressure gradient, or at least one convex surface to increase the pressure gradient, or the continuous curved surface is a combination of concave and convex surfaces. Control and adjust the pressure gradient of
Further, as an optimum method, a step of changing the angle of attack between the coating head and the substrate is executed during the coating process. There are two types of angle-of-attack adjustment methods, one of which holds the substrate in the horizontal direction, and subsequently moves the coating head during the coating process to dynamically change the angle of attack, and the other is the The coating head is held in the downward gravity direction, and subsequently the substrate is moved during the coating process to dynamically change the angle of attack. The substrate is installed on a tilt adjusting device, and the tilt adjusting device is provided with a parallel mechanism to receive and support the substrate, and the parallel mechanism is further connected to a position adjusting body that reciprocates vertically along the direction of gravity. This adjusts the angle of attack between 4 degrees and 0 degrees. In addition, in another implementation method of the tilt adjusting device, a carrier plate is provided to support and support the substrate, and one side of the carrier plate is further connected to a position adjusting body that reciprocates up and down along the direction of gravity. To adjust the angle of attack.
Further, as an optimum method, the frequency of coating unevenness formation is detected, and then a waveform generator is used to generate a waveform having the unevenness forming frequency and a phase difference thereto, and by applying the waveform, the substrate and the coating are applied. The downstream meniscus boundary vibration of the coating bead between the heads is canceled and eliminated.
The phase difference is optimally 180 degrees,
The phase difference range is preferably from 165 degrees to 195 degrees,
The waveform generator is a sound wave generator, and is a manufacturing method for improving uniform quality of a coating layer.

上記のように、本発明は圧力環境(塗料流体の外部圧力或いはその内部圧力分布を含む)変化の制御により、塗布ビード上流のメニスカス長さを制御し、基板上に塗布する材料のムラ(barring)欠陥を消去し、製造工程歩留を向上させることができる。   As described above, the present invention controls the meniscus length upstream of the coating bead by controlling changes in the pressure environment (including the external pressure of the coating fluid or its internal pressure distribution), and the unevenness of the material to be coated on the substrate (barring ) Eliminate defects and improve manufacturing process yield.

図5に示すように、本発明の塗布層の均一品質を改善する製造方法60は以下のステップを含む。
先ずステップ601では、塗布ヘッド及び基板を用意し、該塗布ヘッドと該基板間の相対運動をにより該塗布ヘッドは少なくとも1個の層塗料流体を該基板の上に塗布する。
続いてステップ602では、該基板と該塗布ヘッド間の塗布ビードの圧力条件を制御・調製し、該塗布ビードの上流メニスカス長さ或いは安定度を制御することにより、塗布工程を無欠陥塗布領域内に収まるようにする。続いて調整方式について逐一説明する。
As shown in FIG. 5, the manufacturing method 60 for improving the uniform quality of the coating layer of the present invention includes the following steps.
First, in step 601, a coating head and a substrate are prepared, and the coating head applies at least one layer coating fluid on the substrate by relative movement between the coating head and the substrate.
Subsequently, in step 602, the pressure condition of the coating bead between the substrate and the coating head is controlled and adjusted, and the upstream meniscus length or stability of the coating bead is controlled, so that the coating process is performed within the defect-free coating region. To fit in. Next, the adjustment method will be described step by step.

図6に示すように、本実施例では塗布機台と共に該塗布ビード3上流区域50に設置した低圧装置12により、塗布ビード上流区域50の真空度を向上させ、上流区域50と下流区域51に圧力差を生じさせて、上流メニスカス30の長さ或いは安定度を制御する。
さらに図7に示すように、この方式を利用すれば塗布条件を適正な塗布領域40内に収めることができ、塗布品質を改善し、ムラ欠陥の問題を解決することができる。該塗布ビード3をさらに安定させるため、最初の真空度は比較的高くすることができる。塗布工程の進行に従い設定値にまで徐々に低下させる。真空度変化の曲線と塗布速度は実際の状況に応じて決める必要がある。或いは、塗布過程において最初の真空度を維持することもできる。
図2中から分かるように、ムラ欠陥は塗布領域40の下部安定限界境界に位置しており、ムラ現象発生は低真空圧力の状況で発生する。現行のフォトマスク塗布の多くは常圧環境下で行われるため、塗布ビードの上流メニスカス長さはムラ形成の素因であることは確かに推論できる。よって塗布上流区に低圧区を設け、ムラ現象を改善し、塗布条件を塗布領域40の範囲に収める。こうして本最適実施例の方式を通して、該低圧装置12により上流区域50の真空度を調整することで、ムラ欠陥の問題を効果的に制御することができる。
As shown in FIG. 6, in this embodiment, the degree of vacuum in the upstream area 50 of the coating bead is improved by the low pressure device 12 installed in the upstream area 50 of the coating bead 3 together with the coating machine base. A pressure difference is generated to control the length or stability of the upstream meniscus 30.
Furthermore, as shown in FIG. 7, if this method is used, the coating conditions can be stored in the appropriate coating region 40, the coating quality can be improved, and the problem of uneven defects can be solved. In order to further stabilize the coating bead 3, the initial degree of vacuum can be made relatively high. Gradually lower to the set value as the coating process progresses. It is necessary to determine the curve of the degree of vacuum change and the coating speed according to the actual situation. Alternatively, the initial degree of vacuum can be maintained during the coating process.
As can be seen from FIG. 2, the mura defect is located at the lower stability limit boundary of the coating region 40, and the mura phenomenon occurs in a low vacuum pressure situation. Since many current photomask coatings are performed under atmospheric pressure, it can certainly be inferred that the upstream meniscus length of the coating bead predisposes to uneven formation. Therefore, a low-pressure zone is provided in the coating upstream zone, the uneven phenomenon is improved, and the coating conditions are kept within the coating region 40 range. Thus, by adjusting the degree of vacuum in the upstream section 50 by the low-pressure device 12 through the method of this optimum embodiment, the problem of unevenness defects can be effectively controlled.

続いて図8に示すように、本実施例中では動態移動塗布ヘッド1と該基板2の間の迎角θを利用して、塗布流の圧力分布を変化する。いわゆる動態移動塗布ヘッド1は塗布製造工程中において徐々に塗布ヘッドの迎角θを変更することができる。該塗布ヘッド1の動態移動に従い、該塗布ビード3の上流メニスカス30長さ或いは安定度を変化することができる。本最適実施例中では該迎角θは4度から0度まで徐々に変化させることができるが、これに限定するものではない。図9に示すように、迎角θ角度を調整する時には、角度が大きくなり過ぎて負圧を生じ、塗布流内部に回流91を生じないように注意する必要がある。いわゆる回流91とは塗布流が先ず上流へとオーバーフローし、続いて下流方向へと流動することである。この他、もし圧力傾斜度が低過ぎる場合、塗布流が不安定となる現象を誘発することにも注意する必要がある。よって適当な角度変化により適当な圧力分布として、上流メニスカス長さを制御する。   Subsequently, as shown in FIG. 8, in this embodiment, the pressure distribution of the coating flow is changed by using the angle of attack θ between the dynamic moving coating head 1 and the substrate 2. The so-called dynamic transfer coating head 1 can gradually change the angle of attack θ of the coating head during the coating manufacturing process. According to the movement of the coating head 1, the length or stability of the upstream meniscus 30 of the coating bead 3 can be changed. In the present preferred embodiment, the angle of attack θ can be gradually changed from 4 degrees to 0 degrees, but is not limited thereto. As shown in FIG. 9, when adjusting the angle of attack θ, care must be taken so that the angle becomes too large and a negative pressure is generated, so that the circulating flow 91 is not generated inside the coating flow. The so-called circulating flow 91 is that the coating flow first overflows upstream and then flows downstream. In addition, it should be noted that if the pressure gradient is too low, a phenomenon that the coating flow becomes unstable is induced. Therefore, the upstream meniscus length is controlled as an appropriate pressure distribution by an appropriate angle change.

次に図10に示すように、本実施例中でも基板2と該塗布ヘッド1の間の挟角を変更するが、前記実施例と異なる点は、本実施例では基板の移動を利用して塗布ヘッドの迎角を変化する点である。基板2を移動させる時、該塗布ヘッド1は下方重力方向に向く。図示では、該基板2を移動させる方式は傾斜角調整装置8を通して該基板2と該塗布ヘッド1の角度を変化する。該傾斜角調整装置8は該基板2を受け支える平行機構80を含み、該平行機構80はさらに頂板801及びキャリア板802を備える。該頂板801と該キャリア板802の間にはさらに間隙調整機構82を備え、該頂板801と該キャリア板802の間の間隔を調整する。該平行機構80の片側にはさらに位置調整体81を連接し、該位置調整体81は重力方向の上下往復運動が可能で、該基板2と該塗布ヘッド1の間の挟角を変化する。   Next, as shown in FIG. 10, the angle between the substrate 2 and the coating head 1 is changed in the present embodiment, but the difference from the previous embodiment is that the coating is performed using the movement of the substrate in the present embodiment. It is a point that changes the angle of attack of the head. When the substrate 2 is moved, the coating head 1 is directed downward in the direction of gravity. In the figure, the method of moving the substrate 2 changes the angle between the substrate 2 and the coating head 1 through the tilt angle adjusting device 8. The tilt angle adjusting device 8 includes a parallel mechanism 80 that supports the substrate 2, and the parallel mechanism 80 further includes a top plate 801 and a carrier plate 802. A gap adjusting mechanism 82 is further provided between the top plate 801 and the carrier plate 802 to adjust the distance between the top plate 801 and the carrier plate 802. A position adjusting body 81 is further connected to one side of the parallel mechanism 80, and the position adjusting body 81 can reciprocate in the vertical direction in the direction of gravity, and changes the included angle between the substrate 2 and the coating head 1.

さらに図11に示すように、本実施例中では塗布ヘッド7の幾何外型構造を変更して、塗布ビード内の圧力分布を変える。これにより流動状態は安定し、回流は発生しなくなる。該塗布ヘッド7の外形構造を通して適当な圧力分布を形成し、上下流メニスカス塗布液面を制御して、適正な塗布条件の領域を拡大することができる。
該塗布ヘッド7は、上流リップ体70及び下流側リップ体71からなり、該上流リップ体70と該下流側リップ体71間には少なくとも1個の槽孔72を備え、該少なくとも1個の塗布流体は該槽孔72により該基板2上に塗布される。本実施例中では、該塗布ヘッド7の上、下流側リップ体70、71と該基板2の相対面は連続曲面構造701、711である。該曲面構造701、711は少なくとも1個の凸面及び少なくとも1個の凹面により構成する。本実施例中では凸面はその箇所の圧力を増加させ、その圧力傾斜度はdp/dx>0で、凹面はその箇所の圧力を低下させ、その圧力傾斜度はdp/dx<0である。
Further, as shown in FIG. 11, in this embodiment, the geometric distribution of the coating head 7 is changed to change the pressure distribution in the coating bead. As a result, the flow state is stabilized and no circulation occurs. Appropriate pressure distribution can be formed through the external structure of the coating head 7, and the upper and lower meniscus coating liquid levels can be controlled to enlarge the region of the proper coating conditions.
The coating head 7 includes an upstream lip body 70 and a downstream lip body 71, and includes at least one tank hole 72 between the upstream lip body 70 and the downstream lip body 71, and the at least one coating lip body 71. The fluid is applied onto the substrate 2 by the tank hole 72. In the present embodiment, the relative surfaces of the upper and downstream lip bodies 70 and 71 and the substrate 2 on the coating head 7 are continuous curved surface structures 701 and 711, respectively. The curved surface structures 701 and 711 are constituted by at least one convex surface and at least one concave surface. In this embodiment, the convex surface increases the pressure at that location, the pressure gradient is dp / dx> 0, the concave surface decreases the pressure at that location, and the pressure gradient is dp / dx <0.

さらに該上、下流側リップ体70、71の表面構造に関して、以下にこれらの構造を形成する具体的方法を開示する。dp/dx>0の圧力傾斜度条件を達成する時には、次のようにして該上、下流側リップ体70、71の連続曲面構造701、711を定める。式(1)は以下の通りである。
y=ax5+bx4+cx3+dx2+ex+f……………………………(1)
同時に、反曲点を×方向の2/3L長さの点上に設定する。この他、その他必要な境界条件は以下の通りである。
y(0)=H ………………(2)
y(L)=3H………………(3)
dy(0)/dx=0 …………(4)
dy(L)/dx=0 …………(5)
d2y/dx2=0 ……………(6)
これらの内、Hは塗布高さで、Lは槽孔72中心から上、下流側リップ体70、71の連続曲面構造701、711端面までの距離である(図11参照)。続いて上記(2)から(6)を境界条件とし、H=100μm、L=1000μmを例として、式(1)の解を求めると以下のようになる。
a=-4.6×10-19
b=-9.24×10-15
c=3.39×10-10
d=0
e=0
f=100
もしdp/dx<0の条件を得ようとするなら、y(L)=H/3の境界条件を変化させるだけで良い。前記提供の実施例は、本発明の精神を達成するための最適実施方式で、前記原則に則っていれば、圧力環境を達成可能な上、下流側リップ体70、71の連続曲面構造701、711を得ることができる。
Furthermore, regarding the surface structures of the downstream lip bodies 70 and 71, specific methods for forming these structures will be disclosed below. When the pressure gradient condition of dp / dx> 0 is achieved, the continuous curved surface structures 701 and 711 of the upper and lower lip bodies 70 and 71 are determined as follows. Formula (1) is as follows.
y = ax 5 + bx 4 + cx 3 + dx 2 + ex + f …………………………… (1)
At the same time, set the inflection point on the point of 2 / 3L length in the x direction. Other necessary boundary conditions are as follows.
y (0) = H ……………… (2)
y (L) = 3H ……………… (3)
dy (0) / dx = 0 ………… (4)
dy (L) / dx = 0 ………… (5)
d 2 y / dx 2 = 0 …………… (6)
Among these, H is the coating height, and L is the distance from the center of the tank hole 72 to the end surfaces of the continuous curved surface structures 701 and 711 of the upstream lip bodies 70 and 71 (see FIG. 11). Subsequently, when the above conditions (2) to (6) are used as boundary conditions and H = 100 μm and L = 1000 μm are taken as examples, the solution of equation (1) is obtained as follows.
a = -4.6 × 10 -19
b = -9.24 × 10 -15
c = 3.39 × 10 -10
d = 0
e = 0
f = 100
If we want to obtain the condition of dp / dx <0, it is only necessary to change the boundary condition of y (L) = H / 3. The provided embodiment is an optimal implementation method for achieving the spirit of the present invention, and can achieve a pressure environment according to the above-mentioned principle. Moreover, the continuous curved surface structure 701 of the downstream lip bodies 70 and 71, 711 can be obtained.

次に、図12に示すように、ムラ現象は週期性塗布層厚さ変化により引き起こされるため、ムラ出現の頻度と塗布滞留時間には非常に強い関連がある。このため、本発明は塗布層の均一品質を改善する製造方法61を提供する。それは、以下のステップからなる。
先ずステップ611では、塗布ヘッド及び基板を用意し、該塗布ヘッドと該基板間の相対運動により、該塗布ヘッドは層塗料流体を該基板の上に塗布する。
続いてステップ612では、ムラの形成頻度を予測する。該予測の方法は予めムラ発生頻度の数値データベースを確立し、続いて実際の状況によりムラ発生の頻度を決定する。
さらにステップ613では、波形発生器によりムラ発生の形成頻度とそれに対する位相差を備える波形を発生する。
最後にステップ614では、該波形の振動を付与することにより該基板と該塗布ヘッド間塗布ビードの下流メニカス境界振動33を消去する。
Next, as shown in FIG. 12, since the unevenness phenomenon is caused by a change in the thickness of the weekly coating layer, the frequency of unevenness and the coating residence time have a very strong relationship. Therefore, the present invention provides a manufacturing method 61 that improves the uniform quality of the coating layer. It consists of the following steps.
First, in step 611, a coating head and a substrate are prepared, and the coating head applies a layer coating fluid onto the substrate by relative movement between the coating head and the substrate.
In step 612, the unevenness formation frequency is predicted. The prediction method establishes a numerical database of unevenness occurrence frequency in advance, and then determines the unevenness occurrence frequency according to the actual situation.
In step 613, the waveform generator generates a waveform having a frequency of occurrence of unevenness and a phase difference therebetween.
Finally, in step 614, the downstream meniscus boundary vibration 33 of the coating bead between the substrate and the coating head is eliminated by applying the vibration of the waveform.

次に図13に示すように、本実施例中では、該波形発生器13は音波発生器で、該波形130は音波である。
図14に示すように、該波形130と該塗布層32表面のムラ発生頻度34(すなわち、塗布ビード下流メニカス境界の振動数)は180度の位相差を有し、この位相差によってムラとなる振動を相殺して、打消すことにより塗布層厚さ均一化の目標を達成する。この他、該位相差は165度から195度の間とすることができる。
Next, as shown in FIG. 13, in this embodiment, the waveform generator 13 is a sound wave generator and the waveform 130 is a sound wave.
As shown in FIG. 14, the unevenness occurrence frequency 34 of the waveform 130 and the surface of the coating layer 32 (that is, the frequency of the coating bead downstream meniscus boundary) has a phase difference of 180 degrees, and this phase difference causes unevenness. The goal of uniform coating layer thickness is achieved by canceling and canceling vibrations. In addition, the phase difference can be between 165 degrees and 195 degrees.

塗布製造工程の指示図である。It is an instruction diagram of a coating manufacturing process. 公知の研究成果を総合し開示する塗布領域(coating window)及び欠陥区域指示図である。FIG. 5 is a coating window and defect area indication diagram for comprehensively disclosing known research results. ムラ欠陥の指示図である。It is an indication figure of a nonuniformity defect. ムラ欠陥の指示図である。It is an indication figure of a nonuniformity defect. 本発明塗布層の均一品質を改善する方法のプロセス指示図である。It is a process instruction | indication figure of the method of improving the uniform quality of this invention coating layer. 本発明塗布層の均一品質を改善する方法の第一最適実施例の指示図である。It is an instruction diagram of the first optimum embodiment of the method for improving the uniform quality of the coating layer of the present invention. 本発明塗布層の均一品質を改善する方法の第一最適実施例塗布領域指示図である。It is a coating area instruction | indication figure of the 1st optimal Example of the method of improving the uniform quality of this invention coating layer. 本発明塗布層の均一品質を改善する方法の第二最適実施例の指示図である。It is an indication figure of the 2nd optimal example of the method of improving the uniform quality of this invention coating layer. 回流現象の指示図である。It is an indication figure of a circulation phenomenon. 本発明塗布層の均一品質を改善する方法の第三最適実施例及び改善塗布層均一品質装置第一最適実施例の指示図である。It is an instruction diagram of the third optimum embodiment of the method for improving the uniform quality of the coating layer of the present invention and the first optimum embodiment of the improved coating layer uniform quality device. 本発明塗布層の均一品質を改善する方法の第四最適実施例及び改善塗布層均一品質装置第二最適実施例の指示図である。It is an instruction diagram of the fourth optimum embodiment of the method for improving the uniform quality of the coated layer of the present invention and the second optimum embodiment of the improved coated layer uniform quality device. 本発明塗布層の均一品質を改善する方法の第五最適実施例プロセス指示図である。FIG. 7 is a process instruction diagram of a fifth optimum embodiment of the method for improving the uniform quality of the coating layer of the present invention. 本発明第五最適実施例の波形発生器配置の指示図である。It is an instruction diagram of the waveform generator arrangement of the fifth optimal embodiment of the present invention. 本発明第五最適実施例の位相差指示図である。It is a phase difference indicating diagram of the fifth optimum embodiment of the present invention.

符号の説明Explanation of symbols

1塗布ヘッド
10下流側リップ体
11上流リップ体
12低圧装置
13波形発生器
130波形
2基板
3塗布ビード
30上流メニスカス
31下流メニスカス
32塗布層
33ムラ
34ムラ発生頻度
40塗布領域
41境界オーバーフロー区
42空気巻き込み区
43リブとリブレット区
44ムラ区
60塗布層の均一品質を改善する方法
601~602 プロセス
61塗布層の均一品質を改善する方法
611~614 プロセス
50上流区域
51下流区域
7塗布ヘッド
70上流リップ体
71下流側リップ体
701、711連続曲面
72槽孔
8傾斜角調整装置
80平行機構
801頂板
802キャリア板
81位置棒全体
82間隙調整機構
91回流
θ 迎角
u 相対速度
a 塗布間隙
b 材料供給間隙
1 dispensing head
10 Downstream lip body
11 Upstream lip body
12 Low pressure device
13 waveform generator
130 waveforms
2 substrates
3 coated beads
30 upper meniscus
31 Downstream meniscus
32 coating layers
33 unevenness
34 Frequency of unevenness
40 application area
41 Boundary Overflow Zone
42 air entrainment
43 ribs and riblets
44 Mura
How to improve the uniform quality of 60 coating layers
601 ~ 602 process
61 How to improve the uniform quality of coating layer
611 ~ 614 process
50 upstream area
51 downstream area
7 Application head
70 upstream lip body
71 Downstream lip body
701, 711 continuous curved surface
72 tank holes
8 tilt angle adjustment device
80 parallel mechanism
801 top plate
802 carrier plate
81 position whole bar
82 Gap adjustment mechanism
91 flow θ angle of attack
u Relative speed
a Application gap
b Material supply gap

Claims (20)

塗布ヘッドと被塗布基板間の相対運動により、該塗布ヘッドから供給される塗料流体を該基板上に層状に塗布する、薄く且つ均一一様な塗布層形成方法において、
該基板と該塗布ヘッド間の塗料流体に形成される塗布ビードの圧力傾斜度を制御することにより、該塗布ビードの上流メニスカス長さを調整し、適正な塗布条件範囲に制御すること、を特徴とする塗布層の均一性を向上する製造方法。
In a thin and uniform coating layer forming method in which the coating fluid supplied from the coating head is applied in a layered manner on the substrate by relative movement between the coating head and the substrate to be coated.
By adjusting the pressure gradient of the coating bead formed in the coating fluid between the substrate and the coating head, the upstream meniscus length of the coating bead is adjusted and controlled to an appropriate coating condition range. A manufacturing method for improving the uniformity of the coating layer.
前記塗布工程において、さらに該塗布ヘッドの上流区域の真空度を調整することにより、該塗料流体の上流メニスカス長さを調整し、適正な塗布条件範囲に制御すること、を特徴とする請求項1記載の塗布層の均一品質を改善する製造方法。   2. The coating process further comprising: adjusting an upstream meniscus length of the coating fluid by controlling a degree of vacuum in an upstream area of the coating head to control an appropriate coating condition range. A manufacturing method for improving the uniform quality of the coating layer described. 前記真空度は、塗布工程中一定値に維持するか、又は変化させること、を特徴とする請求項2記載の塗布層の均一品質を改善する製造方法。   3. The method according to claim 2, wherein the degree of vacuum is maintained at a constant value or is changed during the coating process. 前記真空度の調整において、さらに塗布ヘッドの下流区域の真空度を制御すること、を特徴とする請求項2記載の塗布層の均一品質を改善する製造方法。   3. The manufacturing method for improving uniform quality of a coating layer according to claim 2, wherein in the adjustment of the degree of vacuum, the degree of vacuum in the downstream area of the coating head is further controlled. 前記真空度の調整において、該塗布ヘッドの上流区域に設置する低圧装置により上流区域の気圧を低下させて該真空度を調整すること、を特徴とする請求項2記載の塗布層の均一品質を改善する製造方法。   3. The uniform quality of the coating layer according to claim 2, wherein in adjusting the degree of vacuum, the degree of vacuum is adjusted by lowering the pressure in the upstream area by a low-pressure device installed in the upstream area of the coating head. Manufacturing method to improve. 前記塗布ヘッドは、上流リップ体及び下流側リップ体を備え、該上流リップ体と該下流側リップ体間にはさらに少なくとも1個の槽孔を備え、かつ該上流リップ体及び該下流側リップ体と該基板が相対する塗布ヘッド面は連続曲面を備えることにより、塗料流体の上記圧力傾斜度を制御調整し、該塗料流体の上流メニスカス長さを調整し、製造工程は塗布領域内に収まることを特徴とする請求項1記載の塗布層の均一品質を改善する製造方法。   The coating head includes an upstream lip body and a downstream lip body, and further includes at least one tank hole between the upstream lip body and the downstream lip body, and the upstream lip body and the downstream lip body. The coating head surface opposite to the substrate has a continuous curved surface, so that the pressure gradient of the coating fluid is controlled and adjusted, the upstream meniscus length of the coating fluid is adjusted, and the manufacturing process is within the coating region. The manufacturing method which improves the uniform quality of the coating layer of Claim 1 characterized by these. 前記連続曲面は、少なくとも1つの凹面を備えて圧力傾斜度を低下させ、及び少なくとも1つの凸面を備えて圧力傾斜度を増加させること、を特徴とする請求項6記載の塗布層の均一品質を改善する製造方法。   The uniform quality of the coating layer according to claim 6, wherein the continuous curved surface has at least one concave surface to reduce the pressure gradient, and at least one convex surface to increase the pressure gradient. Manufacturing method to improve. 前記連続曲面は、凹面と凸面の組合せからなり、これにより塗料流体の圧力傾斜度を制御調節すること、を特徴とする請求項6記載の塗布層の均一品質を改善する製造方法。   The manufacturing method for improving the uniform quality of the coating layer according to claim 6, wherein the continuous curved surface is composed of a combination of a concave surface and a convex surface, thereby controlling and adjusting the pressure gradient of the coating fluid. 前記塗布工程において、さらに塗布工程中に該塗布ヘッドと該基板間の迎角角度を変化する過程を含むこと、を特徴とする請求項1記載の塗布層の均一品質を改善する製造方法。   2. The manufacturing method for improving uniform quality of a coating layer according to claim 1, wherein the coating step further includes a step of changing an angle of attack between the coating head and the substrate during the coating step. 前記塗布工程において、
さらに、該基板を水平方向に保持し、
塗布工程中において、該塗布ヘッドを移動させて、その迎角角度を動態変化すること、を特徴とする請求項9記載の塗布層の均一品質を改善する製造方法。
In the coating step,
Furthermore, the substrate is held in a horizontal direction,
The manufacturing method for improving uniform quality of a coating layer according to claim 9, wherein the coating head is moved during the coating step to dynamically change the angle of attack.
前記迎角の角度は、4度から0度の間であること、を特徴とする請求項10記載の塗布層の均一品質を改善する製造方法。   The method according to claim 10, wherein the angle of attack is between 4 degrees and 0 degrees. 前記塗布工程において、
さらに、該塗布ヘッドは下方重力方向を保持し、
塗布工程中において、該基板を移動させて、該迎角角度を動態変化すること、を特徴とする請求項9記載の塗布層の均一品質を改善する製造方法。
In the coating step,
Furthermore, the application head maintains the downward gravity direction,
The manufacturing method for improving uniform quality of a coating layer according to claim 9, wherein the substrate is moved during the coating step to dynamically change the angle of attack.
前記迎角の角度は、4度から0度の間であること、を特徴とする請求項12記載の塗布層の均一品質を改善する製造方法。   The method according to claim 12, wherein the angle of attack is between 4 degrees and 0 degrees. 前記基板は、傾斜調整装置上に設置すること、を特徴とする請求項12記載の塗布層の均一品質を改善する製造方法。   13. The manufacturing method for improving uniform quality of a coating layer according to claim 12, wherein the substrate is installed on a tilt adjusting device. 前記傾斜調整装置は、キャリア板を備え、該基板を受け支え、該キャリア板の片側はさらに下方重力方向に沿って上下往復運動を行う位置調整体上に連接し、これにより該迎角を調整すること、を特徴とする請求項14記載の塗布層の均一品質を改善する製造方法。   The inclination adjusting device includes a carrier plate and supports the substrate, and one side of the carrier plate is further connected to a position adjusting body that reciprocates vertically along the direction of downward gravity, thereby adjusting the angle of attack. The manufacturing method for improving the uniform quality of the coating layer according to claim 14. 前記傾斜調整装置は、平行機構を備えて該基板を受け支え、該平行機構の片側はさらに下方重力方向に沿って上下往復運動を行う位置調整体上に連接し、これにより該迎角を調整すること、を特徴とする請求項14記載の塗布層の均一品質を改善する製造方法。   The tilt adjusting device includes a parallel mechanism to support the substrate, and one side of the parallel mechanism is further connected to a position adjusting body that reciprocates vertically along the direction of downward gravity, thereby adjusting the angle of attack. The manufacturing method for improving the uniform quality of the coating layer according to claim 14. 前記塗布工程において、
ムラ形成の頻度を検出し、
波形発生器により該ムラの頻度とそれに対する位相差を備える波形を発生して、該波形を付与することにより該基板と該塗布ヘッド間塗布ビードの下流メニカス境界振動を相殺して消去すること、を特徴とする請求項1記載の塗布層の均一品質を改善する製造方法。
In the coating step,
Detect the frequency of uneven formation,
Generating a waveform having a frequency of the unevenness and a phase difference with respect to the unevenness by a waveform generator, and canceling and eliminating the downstream meniscus boundary vibration of the coating bead between the substrate and the coating head by applying the waveform; The manufacturing method which improves the uniform quality of the coating layer of Claim 1 characterized by these.
前記位相差は、180度であること、を特徴とする請求項17記載の塗布層の均一品質を改善する製造方法。   The manufacturing method for improving uniform quality of a coating layer according to claim 17, wherein the phase difference is 180 degrees. 前記位相差は、165度から195度の間であること、を特徴とする請求項17記載の塗布層の均一品質を改善する製造方法。   The manufacturing method for improving uniform quality of a coating layer according to claim 17, wherein the phase difference is between 165 and 195 degrees. 前記波形発生器は、音波発生器であること、を特徴とする請求項17記載の塗布層の均一品質を改善する製造方法。   The manufacturing method for improving the uniform quality of the coating layer according to claim 17, wherein the waveform generator is a sound wave generator.
JP2006310606A 2005-12-30 2006-11-16 Production method for improving uniformity of quality of coating layer Pending JP2007181811A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094147681A TWI288030B (en) 2005-12-30 2005-12-30 Method for improving the homogeneity of coating layers

Publications (1)

Publication Number Publication Date
JP2007181811A true JP2007181811A (en) 2007-07-19

Family

ID=38338314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310606A Pending JP2007181811A (en) 2005-12-30 2006-11-16 Production method for improving uniformity of quality of coating layer

Country Status (3)

Country Link
JP (1) JP2007181811A (en)
KR (1) KR20070072326A (en)
TW (1) TWI288030B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146592A (en) * 2010-01-15 2011-07-28 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and method
CN111596527A (en) * 2020-06-19 2020-08-28 成都路维光电有限公司 Method for optimizing rotation parameters in mask plate rotation gluing
CN113578642A (en) * 2021-07-16 2021-11-02 Tcl华星光电技术有限公司 Coating apparatus and coating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093891B2 (en) 2019-09-10 2022-06-30 株式会社東芝 Coating method, coating barrhead and coating equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146592A (en) * 2010-01-15 2011-07-28 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and method
CN111596527A (en) * 2020-06-19 2020-08-28 成都路维光电有限公司 Method for optimizing rotation parameters in mask plate rotation gluing
CN111596527B (en) * 2020-06-19 2023-09-05 成都路维光电有限公司 Rotation parameter optimization method in mask rotary gluing
CN113578642A (en) * 2021-07-16 2021-11-02 Tcl华星光电技术有限公司 Coating apparatus and coating method

Also Published As

Publication number Publication date
TW200724245A (en) 2007-07-01
TWI288030B (en) 2007-10-11
KR20070072326A (en) 2007-07-04

Similar Documents

Publication Publication Date Title
WO2017067302A1 (en) Evaporation apparatus and evaporation method
JP2007181811A (en) Production method for improving uniformity of quality of coating layer
JP3938388B2 (en) Coating device
JP2020151690A (en) Double-sided coating method and device
CN105983511A (en) A coating device and a coating method
CN102207682A (en) Resist coating method, resist coating device, and method for manufacturing photomask plate and photomask using the resist coating method
TW201030182A (en) Electromagnetic vibration control device
US20040202784A1 (en) Resist film forming method and a photomask manufacturing method
US7416758B2 (en) Slit coater
JP5127127B2 (en) Coating method
CN100473468C (en) Technique for improving coating layer homogeneous quality
JP2009160535A (en) Coating material pan for roll coater
JP5073375B2 (en) Mask blank manufacturing method and photomask manufacturing method
JP2006255660A (en) Coating method and coater
KR20160040671A (en) Applicator and application method
KR101089747B1 (en) Method for drawing apparatus
TWI430019B (en) Method of manufacturing a mask blank and method of manufacturing a photomask
JP2005296797A (en) Coating header, thin film forming apparatus provided with the same, and reverse printing device
JP2012183469A (en) Coating device and coating method
KR101420228B1 (en) Improved Surface Acoustic Wave Atomizer for Electrostatic Deposition, and Spray-Type Pattern Forming Apparatus and Substrate Coating Apparatus Having the Same
JP2008283098A (en) Method of manufacturing mask blank and method of manufacturing photomask
KR20080100776A (en) Method of manufacturing a mask blank and method of manufacturing a photomask
JP5239429B2 (en) Coating method and coating apparatus
JP6049560B2 (en) Coating device and slit nozzle
JP2017188502A (en) Coating device and coating method