JP2008283098A - Method of manufacturing mask blank and method of manufacturing photomask - Google Patents

Method of manufacturing mask blank and method of manufacturing photomask Download PDF

Info

Publication number
JP2008283098A
JP2008283098A JP2007127633A JP2007127633A JP2008283098A JP 2008283098 A JP2008283098 A JP 2008283098A JP 2007127633 A JP2007127633 A JP 2007127633A JP 2007127633 A JP2007127633 A JP 2007127633A JP 2008283098 A JP2008283098 A JP 2008283098A
Authority
JP
Japan
Prior art keywords
substrate
coated
coating
resist solution
coating nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007127633A
Other languages
Japanese (ja)
Inventor
Takashi Asakawa
敬司 浅川
Ryoji Miyata
涼司 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Hoya Electronics Malaysia Sdn Bhd
Original Assignee
Hoya Corp
Hoya Electronics Malaysia Sdn Bhd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Hoya Electronics Malaysia Sdn Bhd filed Critical Hoya Corp
Priority to JP2007127633A priority Critical patent/JP2008283098A/en
Publication of JP2008283098A publication Critical patent/JP2008283098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method, or the like, of a mask blank capable of forming a satisfactory coating of a resist liquid regardless of the surface form of a surface to be coated in a substrate when applying the resist liquid by a slit coater device, such as a CAP coater. <P>SOLUTION: The manufacturing method of a mask blank having a resist film has a resist liquid coating process for coating the surface to be coated with the resist liquid, by making a coating nozzle and the surface to be coated in the substrate relatively scan in a direction crossing one direction, while the resist liquid is being discharged from the coating nozzle that extends in one direction and has a resist liquid supply port; a process for preparing surface form information on the surface to be coated in the substrate; and a process for changing the space between the tip of the coating nozzle and the surface to be coated, according to the relative position between the coating nozzle and the surface to be coated, based on the surface form information on the surface to be coated in the substrate to coat the surface to be coated with the resist liquid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マスクブランクの製造方法及びフォトマスクの製造方法に関する。   The present invention relates to a mask blank manufacturing method and a photomask manufacturing method.

FPDデバイスを製造するためのマスクブランク(FPD用のマスクブランク)においては、遮光性膜、半透光性膜などの薄膜上に、レジスト膜が形成される。このレジスト膜は、前記薄膜のエッチング時にエッチングマスクとして使用される。しかし、FPD用のマスクブランクにおいては、レジスト膜を形成すべき前記薄膜表面の面積が大きいため、例えばLSI用のマスクブランク等と比べ、レジスト膜の塗布ムラや、面内膜厚均一性の悪化が生じやすい。
また、FPD用のフォトマスクなどにおいては、近年において、形成されるパターンが高精度化しているため、大型の基板の全面に亘って均一な厚さのレジスト膜を形成できる技術が望まれていた。
In a mask blank (FPD mask blank) for manufacturing an FPD device, a resist film is formed on a thin film such as a light-shielding film or a semi-transparent film. This resist film is used as an etching mask when the thin film is etched. However, in the mask blank for FPD, since the surface area of the thin film on which the resist film is to be formed is large, for example, compared to the mask blank for LSI, etc., uneven coating of the resist film and deterioration of the in-plane film thickness uniformity. Is likely to occur.
In addition, in the photomask for FPD and the like, since the pattern to be formed has been highly accurate in recent years, a technique capable of forming a resist film having a uniform thickness over the entire surface of a large substrate has been desired. .

このような実情に鑑み、FPD用のマスクブランク及びフォトマスクの製造分野において、例えば、「CAPコータ」と通称される塗布装置の使用が検討されている。この「CAPコータ」においては、液体状のレジスト液が溜められた液槽に毛管状隙間を有する塗布ノズルを沈めておき、一方、被塗布面を下方を向けた姿勢で吸着板(吸着盤)によって基板を保持しておき、次に、塗布ノズルをレジスト液中より上昇させてこの塗布ノズルの上端部を基板の被塗布面に、接液が開始される間隔(接液ギャップg)まで近接させる。すると、液槽に溜められた液体状のレジスト液が塗布ノズルにおける毛細管現象により上昇され、このレジスト液が塗布ノズルの上端部を介して基板の被塗布面に接液される。このようにレジスト液が被塗布面に接液した状態において、液槽及び塗布ノズルを所定の「塗布高さ」の位置(塗布ギャップGの位置)まで下降させる。この状態で、塗布ノズル及び被塗布面を被塗布面の全面に亘って相対的に走査させることにより、被塗布面の全面に亘ってレジスト液の塗布膜が形成される。   In view of such circumstances, in the field of manufacturing FPD mask blanks and photomasks, for example, use of a coating apparatus commonly called “CAP coater” is being studied. In this "CAP coater", an application nozzle having a capillary gap is submerged in a liquid tank in which a liquid resist solution is stored, and an adsorption plate (adsorption disk) with the surface to be applied facing downward. Next, the substrate is held by the above, and then the coating nozzle is raised from the resist solution, and the upper end of the coating nozzle is brought close to the surface to be coated of the substrate up to the interval at which liquid contact is started (liquid contact gap g) Let Then, the liquid resist solution stored in the liquid tank is raised by capillary action in the application nozzle, and this resist solution comes into contact with the surface to be applied of the substrate through the upper end portion of the application nozzle. In this manner, in a state where the resist solution is in contact with the surface to be coated, the liquid tank and the coating nozzle are lowered to a predetermined “application height” position (application gap G position). In this state, the coating film of the resist solution is formed over the entire surface of the coating surface by relatively scanning the coating nozzle and the coating surface over the entire surface of the coating surface.

ところで、前述のような「CAPコータ」と通称される塗布装置を用いても、基板に形成されるパターンをより高精度化しようとする場合においては、レジスト膜の厚さの均一性が不充分となることがあった。
これに対し、本願出願人は、「CAPコータ」と通称される塗布装置を用いて基板にレジスト液を塗布する場合、塗布を実施する際の基板と塗布ノズルの上端部との間隔(以下塗布ギャップGという)が大きいほど塗布膜の膜厚分布が小さくなることを解明し、先に出願を行っている(特許文献1)。
特開2005−51220公報
By the way, even when a coating apparatus commonly referred to as “CAP coater” as described above is used, when the pattern formed on the substrate is to be made more accurate, the uniformity of the resist film thickness is insufficient. There was sometimes.
On the other hand, when applying the resist solution to the substrate using a coating device commonly called “CAP coater”, the applicant of the present application is the distance between the substrate and the upper end of the coating nozzle (hereinafter, coating). It has been elucidated that the film thickness distribution of the coating film becomes smaller as the gap G) becomes larger, and an application has been filed first (Patent Document 1).
JP 2005-51220 A

ところが、上記のような塗布装置及び塗布方法を用いてレジスト液の塗布を行う場合について、局所的に膜厚の均一性の良くない箇所が生じたり、局所的に塗布ムラが発生したりすることがあった。
この原因について、追求したところ、基板保持手段である吸着板の吸着面に基板の裏面全面を吸着させた時の、基板の被塗布面の表面形態が、局所的に許容値を超えることが原因であることを解明した。
詳しくは、基板は完全に平坦ではなく、個々の基板毎に固有の表面形態や、平坦度を有している。したがって、吸着板に基板を吸着させた時の、基板の被塗布面の表面形態や、平坦度が異なる。そして、吸着板に基板を吸着させた時の、基板の被塗布面の表面形態(従って塗布ノズルとの間隔)が、局所的に許容値を超えることによって、局所的に膜厚の均一性の良くない箇所が生じたり、局所的に塗布ムラが発生したりすることを解明した。また、これらの現象は、基板サイズが大きくなるに従ってその影響が大きくなることを解明した。
例えば、塗布ギャップGは離液間隔G’の50%以上90%以下(許容値)にすることが好ましいが、塗布ギャップGが離液間隔G’の50%を局所的に下回るとその箇所において局所的に膜厚の均一性の良くない箇所が生じる場合がある。また、塗布ギャップGが離液間隔G’の90%を局所的に上回るとその箇所において局所的に接液状態が安定せず、その結果局所的に塗布ムラが発生する場合がある。
また、例えば、接液ギャップgを小さくしすぎると、接液の走り速度が大きくなりすぎ、気泡等を巻き込みながら接液が進行していき(即ち泡噛みが起き)、この泡が原因で塗布膜の塗り始めエリアに縦ムラが生じる。また、接液ギャップgを大きくしすぎると、接液が起こらない現象が生じ、工程として不安定となる。これらを考慮して定められた接液ギャップgの上限及び下限(許容値)に対し、一方向に伸びる塗布のノズルの一箇所で測定した接液ギャップgが許容値の範囲内にあっても、一方向に伸びる塗布のノズルの全長に亘る接液ギャップgの例えば平均値が許容値の範囲外であると、接液ギャップに起因して生じる塗布ムラの発生を防止できなかったり、確実に接液を開始させることができなかったりしてしまう場合がある。
However, in the case of applying the resist solution using the above-described coating apparatus and coating method, a portion where the film thickness is not uniform locally occurs or uneven coating occurs locally. was there.
As a result of pursuing this cause, the surface form of the coated surface of the substrate when the entire back surface of the substrate is adsorbed to the adsorption surface of the adsorption plate, which is the substrate holding means, is locally exceeded the allowable value. It was clarified that.
Specifically, the substrate is not completely flat, and has a surface form and flatness unique to each substrate. Therefore, the surface form and flatness of the surface to be coated of the substrate differ when the substrate is adsorbed on the adsorption plate. Then, when the surface form of the coated surface of the substrate (and hence the distance from the coating nozzle) when the substrate is attracted to the suction plate locally exceeds the allowable value, the film thickness locally becomes uniform. It was clarified that bad spots occur and uneven coating occurs locally. It was also clarified that these effects increase as the substrate size increases.
For example, the application gap G is preferably 50% or more and 90% or less (allowable value) of the liquid separation interval G ′. However, when the application gap G is locally below 50% of the liquid separation interval G ′, at that location. There may be a portion where the film thickness is not uniform locally. Further, when the application gap G locally exceeds 90% of the liquid separation interval G ′, the liquid contact state is not locally stabilized at that location, and as a result, application unevenness may occur locally.
Also, for example, if the wetted gap g is too small, the running speed of wetted liquid becomes too high, and the wetted liquid advances while entraining bubbles (ie, bubble biting occurs), and this foam causes the coating. Vertical unevenness occurs in the area where the film starts to be applied. On the other hand, if the liquid contact gap g is too large, a phenomenon in which liquid contact does not occur occurs and the process becomes unstable. With respect to the upper and lower limits (allowable values) of the wetted gap g determined in consideration of these, even if the wetted gap g measured at one location of the coating nozzle extending in one direction is within the allowable range. If, for example, the average value of the wetted gap g over the entire length of the coating nozzle extending in one direction is outside the allowable range, the occurrence of uneven coating due to the wetted gap cannot be prevented, or reliably It may be impossible to start the liquid contact.

本発明は、上述の実情に鑑みてなされたものであって、本発明の目的は、「CAPコータ」などのスリットコータ装置を用いてレジスト液の塗布を行う場合について、基板の被塗布面の表面形態にかかわらず、良好なレジスト液の塗布膜を形成することのできるマスクブランクの製造方法等を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to apply a resist solution using a slit coater device such as a “CAP coater” on the surface to be coated of a substrate. An object of the present invention is to provide a mask blank manufacturing method and the like capable of forming an excellent resist solution coating film regardless of the surface form.

本発明は以下の構成を有する。
(構成1)一方向に伸びるレジスト液供給口を有する塗布ノズルからレジスト液を吐出させつつ、前記一方向に交差する方向へ前記塗布ノズル及び基板の被塗布面を相対的に走査させて、前記被塗布面に前記レジスト液を塗布するレジスト液塗布工程を有するレジスト膜付マスクブランクの製造方法であって、
基板の被塗布面の表面形態情報を準備する工程と、
基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと前記被塗布面との相対的位置に応じて変化させて、前記被塗布面に前記レジスト液を塗布する工程と、
を有することを特徴とするマスクブランクの製造方法。
(構成2)基板の被塗布面及び裏面の表面形態情報を準備し、これに基づいて、基板面内の板厚情報を準備する工程と、
基板保持手段である吸着板の吸着面の表面形態情報を準備する工程と、
前記基板面内の板厚情報と、前記吸着板の吸着面の表面形態情報と、に基づいて、前記吸着板の吸着面に基板の裏面を吸着させた時の、基板の被塗布面の表面形態情報を準備する工程と、
前記吸着板の吸着面に基板の裏面を吸着させた時の、基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと基板の被塗布面との相対的位置に応じて変化させて、前記被塗布面に前記レジスト液を塗布する工程と、
を有することを特徴とする構成1記載のマスクブランクの製造方法。
(構成3)液槽に溜められた液体状のレジスト液を塗布ノズルにおける毛細管現象により上昇させ、基板の被塗布面を下方に向けて前記塗布ノズルの上端部に近接させ、前記塗布ノズルにより上昇されたレジスト液を該塗布ノズルの上端部を介して前記被塗布面に接液させ、レジスト液が基板の被塗布面に接液された状態で、液槽及び塗布ノズルを所定の「塗布高さ」の位置まで下降させ、この状態で前記塗布ノズル及び前記被塗布面を相対的に走査させて、前記被塗布面に前記レジスト液を塗布するレジスト液塗布工程を有することを特徴とする構成1又は2に記載のマスクブランクの製造方法。
(構成4)前記基板は、マスクパターンを形成するための薄膜が形成された薄膜付き基板であることを特徴とする構成1から5のいずれか一に記載のマスクブランクの製造方法。
(構成5)構成1から4のいずれか一に記載のマスクブランクの製造方法によって得られたマスクブランクを用いてフォトマスクを製造することを特徴とするフォトマスクの製造方法。
The present invention has the following configuration.
(Configuration 1) While discharging a resist solution from a coating nozzle having a resist solution supply port extending in one direction, relatively scanning the coating nozzle and the coated surface of the substrate in a direction crossing the one direction, A method for manufacturing a mask blank with a resist film, which includes a resist solution application step of applying the resist solution to a surface to be applied,
A step of preparing surface form information of the coated surface of the substrate;
Based on the surface form information of the coated surface of the substrate, the interval between the tip of the coating nozzle and the coated surface is changed according to the relative position of the coating nozzle and the coated surface, Applying the resist solution to the surface to be coated;
A method for manufacturing a mask blank, comprising:
(Configuration 2) Steps of preparing surface form information of the coated surface and the back surface of the substrate, and based on this, preparing plate thickness information in the substrate surface;
A step of preparing surface form information of a suction surface of a suction plate which is a substrate holding means;
The surface of the coated surface of the substrate when the back surface of the substrate is adsorbed to the adsorption surface of the adsorption plate based on the plate thickness information in the substrate surface and the surface form information of the adsorption surface of the adsorption plate Preparing morphological information;
Based on the surface form information of the surface to be coated of the substrate when the back surface of the substrate is attracted to the suction surface of the suction plate, the distance between the tip of the coating nozzle and the surface to be coated is Changing the relative position of the substrate relative to the surface to be coated, and applying the resist solution to the surface to be coated;
The manufacturing method of the mask blank of the structure 1 characterized by having.
(Structure 3) The liquid resist solution stored in the liquid tank is raised by capillary action at the coating nozzle, the coated surface of the substrate is directed downward and brought close to the upper end portion of the coating nozzle, and then lifted by the coating nozzle. The applied resist solution is brought into contact with the surface to be coated via the upper end portion of the coating nozzle, and the liquid tank and the coating nozzle are set to a predetermined “coating height” while the resist solution is in contact with the surface to be coated of the substrate. And a resist solution coating step of applying the resist solution to the coated surface by relatively scanning the coating nozzle and the coated surface in this state. A method for producing the mask blank according to 1 or 2.
(Structure 4) The method for manufacturing a mask blank according to any one of Structures 1 to 5, wherein the substrate is a substrate with a thin film on which a thin film for forming a mask pattern is formed.
(Configuration 5) A photomask manufacturing method, wherein a photomask is manufactured using the mask blank obtained by the mask blank manufacturing method according to any one of configurations 1 to 4.

本発明によれば、「CAPコータ」などのスリットコータ装置を用いてレジスト液の塗布を行う場合について、基板の被塗布面の表面形態にかかわらず、良好なレジスト液の塗布膜を形成することのできるマスクブランクの製造方法等を提供できる。   According to the present invention, when a resist solution is applied using a slit coater such as a “CAP coater”, a good resist solution coating film can be formed regardless of the surface form of the coated surface of the substrate. A method for manufacturing a mask blank that can be used can be provided.

以下、本発明について詳細に説明する。
本発明のマスクブランクの製造方法は、
一方向に伸びるレジスト液供給口を有する塗布ノズルからレジスト液を吐出させつつ、前記一方向に交差する方向へ前記塗布ノズル及び基板の被塗布面を相対的に走査させて、前記被塗布面に前記レジスト液を塗布するレジスト液塗布工程を有するレジスト膜付マスクブランクの製造方法であって、
基板の被塗布面の表面形態情報を準備する工程と、
基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと前記被塗布面との相対的位置に応じて変化させて、前記被塗布面に前記レジスト液を塗布する工程と、
を有することを特徴とする(構成1)。
構成1に係る発明によれば、基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと基板の被塗布面との相対的位置に応じて設定し、変化させる工程、を有することによって、基板の被塗布面の表面形態にかかわらず、良好なレジスト液の塗布膜を形成することができる。
例えば、基板の被塗布面の表面形態が、局所的に許容値を超えることによって、局所的に膜厚の均一性の良くない箇所が生じたり、局所的に塗布ムラが発生したりする現象を低減できる。
また、例えば、塗布ギャップGは離液間隔G’の50%以上90%以下にすることが好ましいが(許容値)、本発明では、基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと基板の被塗布面との相対的位置に応じて設定し、変化させることによって、塗布ギャップGが前記許容値を超える箇所において、塗布ギャップGが前記許容値の範囲内となるように前記塗布ノズルの先端部と前記被塗布面との間隔を変化させることができ、この結果、基板の全面に亘って前記許容値の範囲内で塗布を行うことが可能となる。特に、大型の基板の全面に亘って前記許容値の範囲内で塗布を行うことが可能となる。
更に、本発明においては、例えば、前記許容値の範囲内で、塗布の均一性がより高くなる範囲がある場合は、その範囲内で塗布を行うことも可能となる。例えば、本発明においては、塗布ギャップGを離液間隔G’の85%±5%の所定の許容値を設定し、この所定の許容値を超える箇所において、前記所定の許容値の範囲内となるように前記塗布ノズルの先端部と前記被塗布面との間隔を変化させることができ、この結果、基板の全面に亘って前記所定の許容値の範囲内で塗布を行うことが可能となる。特に、大型の基板の全面に亘って前記所定の許容値の範囲内で塗布を行うことが可能となる。
即ち、本発明によれば、基板の被塗布面の形態にかかわらず、基板の被塗布面の形態に応じて、常に最適な塗布ギャップGを保持した状態で塗布を行うことが可能となる。これによって、基板の被塗布面の表面形態にかかわらず、良好なレジスト液の塗布膜を形成することができる。
Hereinafter, the present invention will be described in detail.
The manufacturing method of the mask blank of the present invention is as follows:
While the resist solution is ejected from a coating nozzle having a resist solution supply port extending in one direction, the coating nozzle and the coated surface of the substrate are relatively scanned in a direction crossing the one direction, and the coated surface is then applied. A method for producing a mask blank with a resist film, which includes a resist solution coating step of applying the resist solution,
A step of preparing surface form information of the coated surface of the substrate;
Based on the surface form information of the coated surface of the substrate, the interval between the tip of the coating nozzle and the coated surface is changed according to the relative position of the coating nozzle and the coated surface, Applying the resist solution to the surface to be coated;
(Structure 1).
According to the first aspect of the invention, based on the surface form information of the surface to be coated of the substrate, the distance between the tip of the coating nozzle and the surface to be coated is set relative to the surface to be coated of the substrate and the substrate. By having the process of setting and changing according to the target position, it is possible to form a good resist solution coating film regardless of the surface form of the coated surface of the substrate.
For example, when the surface form of the surface to be coated of the substrate exceeds the allowable value locally, there is a phenomenon that the film thickness is not locally uniform or uneven coating occurs locally. Can be reduced.
Further, for example, the coating gap G is preferably 50% or more and 90% or less of the liquid separation interval G ′ (allowable value). In the present invention, the coating gap G ′ is applied based on the surface form information of the coated surface of the substrate. By setting and changing the distance between the tip of the nozzle and the coated surface according to the relative position between the coating nozzle and the coated surface of the substrate, the coating gap G exceeds the allowable value. The gap between the tip of the coating nozzle and the surface to be coated can be changed so that the coating gap G is within the range of the allowable value, and as a result, the range of the allowable value over the entire surface of the substrate. It becomes possible to apply in the inside. In particular, the coating can be performed over the entire surface of the large substrate within the range of the allowable value.
Furthermore, in the present invention, for example, when there is a range in which the uniformity of coating is higher within the range of the allowable value, it is possible to perform coating within the range. For example, in the present invention, the application gap G is set to a predetermined allowable value of 85% ± 5% of the liquid separation interval G ′, and at a location exceeding the predetermined allowable value, the application gap G falls within the predetermined allowable value range. Thus, the distance between the tip of the coating nozzle and the surface to be coated can be changed, and as a result, coating can be performed within the predetermined allowable range over the entire surface of the substrate. . In particular, the coating can be performed over the entire surface of the large substrate within the range of the predetermined allowable value.
That is, according to the present invention, it is possible to perform coating while always maintaining the optimum coating gap G according to the form of the coated surface of the substrate, regardless of the form of the coated surface of the substrate. As a result, a good resist solution coating film can be formed regardless of the surface form of the coated surface of the substrate.

これに対し、個々の基板の表面形態や、平坦度に合わせて、塗布条件(塗布ギャップGや接液ギャップg)を決めないと、以下の不都合がある。
例えば、塗布ギャップGは離液間隔G’の50%以上90%以下(許容値)にすることが好ましいが、塗布ギャップGが離液間隔G’の50%を局所的に下回るとその箇所において局所的に膜厚の均一性の良くない箇所が生じる場合がある。また、塗布ギャップGが離液間隔G’の90%を局所的に上回るとその箇所において局所的に接液状態が不安定となり、その結果局所的に塗布ムラが発生する場合がある。
また、例えば、接液ギャップgを小さくしすぎると、接液の走り速度が大きくなりすぎ、気泡等を巻き込みながら接液が進行していき(即ち泡噛みが起き)、この泡が原因で塗布膜の塗り始めエリアに縦ムラが生じる場合がある。また、接液ギャップgを大きくしすぎると、接液が起こらない現象が生じ、工程として不安定となる場合がある。これらを考慮して定められた接液ギャップgの上限及び下限(許容値)に対し、一方向に伸びる塗布のノズルの一箇所で測定した接液ギャップgが許容値の範囲内にあっても、一方向に伸びる塗布のノズルの全長に亘る接液ギャップgの例えば平均値が許容値の範囲外であると、接液ギャップに起因して生じる塗布ムラの発生を防止できなかったり、確実に接液を開始させることができなかったりしてしまう場合がある。
On the other hand, if the application conditions (application gap G and liquid contact gap g) are not determined in accordance with the surface form and flatness of each substrate, there are the following disadvantages.
For example, the application gap G is preferably 50% or more and 90% or less (allowable value) of the liquid separation interval G ′. However, when the application gap G is locally below 50% of the liquid separation interval G ′, at that location. There may be a portion where the film thickness is not uniform locally. Further, when the coating gap G locally exceeds 90% of the liquid separation interval G ′, the liquid contact state locally becomes unstable at that location, and as a result, coating unevenness may occur locally.
Also, for example, if the wetted gap g is too small, the running speed of wetted liquid becomes too high, and the wetted liquid advances while entraining bubbles (ie, bubble biting occurs), and this foam causes the coating. Vertical unevenness may occur in the area where the film is applied. Further, if the liquid contact gap g is too large, a phenomenon in which liquid contact does not occur occurs and the process may become unstable. With respect to the upper and lower limits (allowable values) of the wetted gap g determined in consideration of these, even if the wetted gap g measured at one location of the coating nozzle extending in one direction is within the allowable range. If, for example, the average value of the wetted gap g over the entire length of the coating nozzle extending in one direction is outside the allowable range, the occurrence of uneven coating due to the wetted gap cannot be prevented, or reliably It may be impossible to start the liquid contact.

本発明のマスクブランクの製造方法は、
基板の被塗布面及び裏面の表面形態情報を準備し、これに基づいて、基板面内の板厚情報を準備する工程と、
基板保持手段である吸着板の吸着面の表面形態情報を準備する工程と、
前記基板面内の板厚情報と、前記吸着板の吸着面の表面形態情報と、に基づいて、前記吸着板の吸着面に基板の裏面を吸着させた時の、基板の被塗布面の表面形態情報を準備する工程と、
前記吸着板の吸着面に基板の裏面を吸着させた時の、基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと基板の被塗布面との相対的位置に応じて変化させて、前記被塗布面に前記レジスト液を塗布する工程と、
を有することが好ましい(構成2)。
構成2に係る発明によれば、前記吸着板の吸着面に基板の裏面を吸着させた時の、基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと基板の被塗布面との相対的位置に応じて設定し、変化させる工程を有することによって、基板の被塗布面の表面形態にかかわらず、更に良好なレジスト液の塗布膜を形成することができる。
例えば、基板の被塗布面の表面形態が、局所的に許容値を超えることによって、局所的に膜厚の均一性の良くない箇所が生じたり、局所的に塗布ムラが発生したりする現象をより確実に低減できる。
The manufacturing method of the mask blank of the present invention is as follows:
Preparing the surface form information of the coated surface and back surface of the substrate, and based on this, preparing plate thickness information in the substrate surface;
A step of preparing surface form information of a suction surface of a suction plate which is a substrate holding means;
The surface of the coated surface of the substrate when the back surface of the substrate is adsorbed to the adsorption surface of the adsorption plate based on the plate thickness information in the substrate surface and the surface form information of the adsorption surface of the adsorption plate Preparing morphological information;
Based on the surface form information of the surface to be coated of the substrate when the back surface of the substrate is attracted to the suction surface of the suction plate, the distance between the tip of the coating nozzle and the surface to be coated is Changing the relative position of the substrate relative to the surface to be coated, and applying the resist solution to the surface to be coated;
(Configuration 2).
According to the second aspect of the invention, based on the surface form information of the coated surface of the substrate when the back surface of the substrate is attracted to the suction surface of the suction plate, the tip of the coating nozzle and the coated surface Is set in accordance with the relative position between the coating nozzle and the surface to be coated of the substrate, and has a step of changing, so that a better resist solution can be obtained regardless of the surface form of the surface to be coated of the substrate. The coating film can be formed.
For example, when the surface form of the surface to be coated of the substrate exceeds the allowable value locally, there is a phenomenon that the film thickness is not locally uniform or uneven coating occurs locally. It can be reduced more reliably.

本発明は、一方向に伸びるレジスト液供給口を有する塗布ノズルからレジスト液を吐出させつつ、前記一方向に交差する方向へ前記塗布ノズル及び基板の被塗布面を相対的に走査させて、前記被塗布面に前記レジスト液を塗布するスリットコータ通称される塗布装置を用いる場合に適用できる。スリットコータにおける、塗布ノズルと基板の位置関係は、特に制限されず、床面に対し水平に保持された基板の上方に塗布ノズルが設けられた態様や、塗布ノズルと基板の双方が床面に対し垂直に保持された態様などが含まれる。
本発明において、塗布ノズル及び基板の被塗布面を相対的に走査させる態様としては、位置の固定された塗布ノズルに対して基板を移動させる態様や、位置の固定された基板に対して塗布ノズル移動させる態様などが含まれる。
In the present invention, while discharging a resist solution from a coating nozzle having a resist solution supply port extending in one direction, relatively scanning the coating nozzle and the coated surface of the substrate in a direction intersecting the one direction, The present invention can be applied to a case where a coating device called a slit coater for applying the resist solution to the surface to be coated is used. The positional relationship between the coating nozzle and the substrate in the slit coater is not particularly limited, and an aspect in which the coating nozzle is provided above the substrate held horizontally with respect to the floor surface, or both the coating nozzle and the substrate are on the floor surface. The aspect etc. hold | maintained with respect to perpendicular | vertical are included.
In the present invention, as a mode in which the coating nozzle and the coated surface of the substrate are relatively scanned, a mode in which the substrate is moved with respect to the coating nozzle whose position is fixed, or a coating nozzle with respect to the substrate whose position is fixed The mode etc. to move are included.

本発明は、「CAPコータ」と通称される塗布装置を用いる場合に好適に適用できる(構成3)。これは、塗布ノズルと基板との間隔が、レジスト塗布膜の均一性を大きく左右するレジスト膜形成方法だからである。   The present invention can be suitably applied to a case where a coating apparatus commonly called “CAP coater” is used (Configuration 3). This is because the distance between the coating nozzle and the substrate greatly affects the uniformity of the resist coating film.

本発明においては、接液の完了後、前記塗布ノズルの上端部と前記被塗布面との間隔を、接液したレジスト液が前記被塗布面より離液する離液間隔よりも小さい範囲内において、この離液間隔の50%以上の間隔とし、前記被塗布面に前記レジスト液を塗布する工程を有することが好ましい。
特許文献1に記載のように、膜厚分布が小さく膜厚の均一性の高い塗布膜を得るには、塗布ギャップGを大きくすればよい。
しかしながら、塗布ギャップGを大きくしてゆくと、この塗布ギャップGがある一定の間隔になったところで、被塗布面10aに一旦接液したレジスト液21が被塗布面10aから離間(離液)してしまう(図4参照)。このように、一旦接液したレジスト液21が被塗布面10aから離液する間隔を離液間隔G´ということにすると、塗布ギャップGは、離液間隔G´よりも小さくなければならない。
したがって、塗布ギャップGを、離液間隔G´よりも小さい範囲内において、なるべく大きくすることが望ましい。具体的には、塗布ギャップGは、離液間隔G´の少なくとも50%以上とし、かつ、離液間隔G´未満である間隔に制御されることが好ましい。
更に、塗布ギャップGは、離液間隔G´の70%乃至95%とすることがより望ましい。塗布ギャップGを離液間隔G´の70%以上とすることにより、膜厚分布が極めて良好に抑制される。塗布ギャップGを離液間隔G´の80%以上とすれば、膜厚分布は、よりよく抑制されるので好ましい。
ただし、塗布ギャップGを離液間隔G´の95%より大きくすると、基板の大きさなどの諸条件によっては、レジスト液を塗布している最中に、断片的な液切れ、すなわち、レジスト液の被塗布面からの離液が生ずる可能性がある。このような液切れを確実に防止する観点からは、塗布ギャップGを離液間隔G´の90%以下とすることが好ましい。
In the present invention, after the completion of the liquid contact, the distance between the upper end portion of the coating nozzle and the surface to be coated is within a range smaller than the liquid separation interval at which the resist solution in contact with the liquid separates from the surface to be coated. It is preferable to have a step of applying the resist solution to the surface to be coated with an interval of 50% or more of the liquid separation interval.
As described in Patent Document 1, in order to obtain a coating film having a small film thickness distribution and high film thickness uniformity, the coating gap G may be increased.
However, when the coating gap G is increased, the resist solution 21 once in contact with the coated surface 10a is separated (separated) from the coated surface 10a when the coating gap G reaches a certain interval. (See FIG. 4). As described above, when the interval at which the resist solution 21 once in contact with the liquid is separated from the coated surface 10a is referred to as a liquid separation interval G ', the coating gap G must be smaller than the liquid separation interval G'.
Therefore, it is desirable to make the coating gap G as large as possible within a range smaller than the liquid separation interval G ′. Specifically, the application gap G is preferably controlled to an interval that is at least 50% or more of the liquid separation interval G ′ and less than the liquid separation interval G ′.
Furthermore, the coating gap G is more preferably 70% to 95% of the liquid separation interval G ′. By setting the coating gap G to 70% or more of the liquid separation interval G ′, the film thickness distribution is suppressed extremely well. If the coating gap G is 80% or more of the liquid separation interval G ′, the film thickness distribution is better suppressed, which is preferable.
However, if the coating gap G is larger than 95% of the liquid separation interval G ′, depending on various conditions such as the size of the substrate, a piece of liquid breaks out during the application of the resist solution, that is, the resist solution. There is a possibility of liquid separation from the coated surface. From the viewpoint of reliably preventing such liquid breakage, the coating gap G is preferably 90% or less of the liquid separation interval G ′.

本発明において、基板は、マスクパターンを形成するための薄膜が形成された薄膜付き基板とすることができる(構成4)。
この場合、基板の被塗布面の表面形態情報は、薄膜付き基板の状態で表面形態情報を取得しても良いし、基板の表面形態情報を取得した後、薄膜の膜応力を見込んで薄膜付き基板の表面形態情報としても良い。
In the present invention, the substrate can be a substrate with a thin film on which a thin film for forming a mask pattern is formed (Configuration 4).
In this case, the surface form information of the coated surface of the substrate may be obtained in the state of the substrate with the thin film, or after obtaining the surface form information of the substrate, the thin film is attached in anticipation of the film stress of the thin film. Information on the surface form of the substrate may be used.

本発明のフォトマスクの製造方法は、上記本発明に係るマスクブランクの製造方法によって得られたマスクブランクを用いてフォトマスクを製造することを特徴とする(構成5)。   The photomask manufacturing method of the present invention is characterized by manufacturing a photomask using the mask blank obtained by the mask blank manufacturing method according to the present invention (Configuration 5).

本発明のマスクブランクは、基板上に成膜されたマスクパターンを形成するための薄膜と、この薄膜の上方に成膜されたレジスト膜を備えるマスクブランクが含まれる。
本発明において、マスクブランクには、フォトマスクブランク、位相シフトマスクブランク、反射型マスクブランク、インプリント用転写プレート基板も含まれる。また、マスクブランクには、レジスト膜付きマスクブランクが含まれる。位相シフトマスクブランクには、ハーフトーン膜と、遮光性膜とを有する場合を含む。尚、この場合、マスクパターンを形成するための薄膜は、ハーフトーン膜や遮光性膜を指す。また、反射型マスクブランクの場合は、多層反射膜上、又は多層反射膜上に設けられたバッファ層上に、転写パターンとなるタンタル系材料やクロム系材料の吸収体膜が形成される構成、インプリント用転写プレートの場合には、転写プレートとなる基材上にクロム系材料等の転写パターン形成用薄膜が形成される構成を含む。マスクには、フォトマスク、位相シフトマスク、反射型マスク、インプリント用転写プレートが含まれる。マスクにはレチクルが含まれる。
本発明において、マスクパターンを形成するための薄膜としては、露光光等を遮断する遮光膜、露光光等の透過量を調整・制御する半透光性膜、露光光等の反射率を調整・制御する反射率制御膜(反射防止膜を含む)、露光光等に対する位相を変化させる位相シフト膜、遮光機能と位相シフト機能を有するハーフトーン膜等が含まれる。
本発明のマスクブランクにおいて、前記マスクパターンを形成するための薄膜としては、金属膜が挙げられる。金属膜としては、クロム、タンタル、モリブデン、チタン、ハフニウム、タングステンや、これらの元素を含む合金、又は上記元素や上記合金を含む材料からなる膜が挙げられる。
また、本発明のマスクブランクにおいて、前記マスクパターンを形成するための薄膜としては、珪素を含む珪素含有膜が挙げられる。珪素含有膜としては、珪素膜や、珪素とクロム、タンタル、モリブデン、チタン、ハフニウム、タングステンの金属を含む金属シリサイド膜、さらに、珪素膜や金属シリサイド膜に、酸素、窒素、炭素の少なくとも一つを含む膜とすることができる。
The mask blank of the present invention includes a mask blank including a thin film for forming a mask pattern formed on a substrate and a resist film formed on the thin film.
In the present invention, the mask blank includes a photomask blank, a phase shift mask blank, a reflective mask blank, and an imprint transfer plate substrate. The mask blank includes a mask blank with a resist film. The phase shift mask blank includes a case where a halftone film and a light-shielding film are included. In this case, the thin film for forming the mask pattern indicates a halftone film or a light shielding film. In the case of a reflective mask blank, a structure in which an absorber film of a tantalum material or a chromium material to be a transfer pattern is formed on a multilayer reflective film or a buffer layer provided on the multilayer reflective film, The imprint transfer plate includes a structure in which a transfer pattern forming thin film such as a chromium-based material is formed on a base material to be a transfer plate. The mask includes a photomask, a phase shift mask, a reflective mask, and an imprint transfer plate. The mask includes a reticle.
In the present invention, as a thin film for forming a mask pattern, a light-shielding film that blocks exposure light, a semi-transparent film that adjusts and controls the amount of transmission of exposure light, and the reflectance of exposure light are adjusted. Examples include a reflectance control film (including an antireflection film) to be controlled, a phase shift film that changes a phase with respect to exposure light and the like, a halftone film having a light shielding function and a phase shift function, and the like.
In the mask blank of the present invention, the thin film for forming the mask pattern includes a metal film. Examples of the metal film include chromium, tantalum, molybdenum, titanium, hafnium, tungsten, an alloy containing these elements, or a film made of a material containing the above elements or the above alloys.
In the mask blank of the present invention, examples of the thin film for forming the mask pattern include a silicon-containing film containing silicon. Examples of the silicon-containing film include a silicon film, a metal silicide film containing silicon and chromium, tantalum, molybdenum, titanium, hafnium, and tungsten metal. It can be set as the film | membrane containing.

本発明において、FPD用のマスクブランク及びマスクとしては、LCD(液晶ディスプレイ)、プラズマディスプレイ、有機EL(エレクトロルミネッセンス)ディスプレイ等のFPDデバイスを製造するためのマスクブランク及びマスクが挙げられる。
LCD用マスクには、LCDの製造に必要なすべてのマスクが含まれ、例えば、TFT(薄膜トランジスタ)、特にTFTチャンネル部やコンタクトホール部、低温ポリシリコンTFT、カラーフィルタ、反射板(ブラックマトリクス)等を形成するためのマスクが含まれる。他の表示デバイス製造用マスクには、有機EL(エレクトロルミネッセンス)ディスプレイ、プラズマディスプレイ等の製造に必要なすべてのマスクが含まれる。
In the present invention, the mask blank and mask for FPD include mask blanks and masks for manufacturing FPD devices such as LCD (liquid crystal display), plasma display, and organic EL (electroluminescence) display.
LCD masks include all masks necessary for LCD production, such as TFT (thin film transistor), especially TFT channel and contact hole, low-temperature polysilicon TFT, color filter, reflector (black matrix), etc. A mask for forming the is included. Other masks for manufacturing display devices include all masks necessary for manufacturing organic EL (electroluminescence) displays, plasma displays, and the like.

(発明の実施の形態)
以下、本発明の実施の形態を図面を参照しながら説明する。
(Embodiment of the Invention)
Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1に示すように、一方向(X方向)に伸びる塗布ノズル22によって、Y方向に塗布を行う(基板10に対するノズル22の相対的な走査方向がY方向になるようにして塗布を行う)。
基板の被塗布面の表面形態情報を準備する工程では、塗布開始側におけるX方向の「行」の表面形態情報「a1、a2、a3、…、a8」として、例えば、図2に示す、基準面に対する高さ情報を、測定によって求める。測定方法は、光学式、又は接触式など公知の手法を利用できる。
同様に、塗布方向Y(ノズルの相対的な走査方向)に亘って均等に配した各位置におけるX方向の各「行」の表面形態情報、即ち「b1、b2、b3、…、b8」、「c1、c2、c3、…、c8」、…、「e1、e2、e3、…、e8」として、基準面に対する高さ情報を、測定によって求める。
上記で求めた表面形態情報に基づいて、塗布方向Yに亘って均等に配した各位置におけるX方向の各「行」における塗布条件(塗布ギャップGや、塗布開始位置における接液ギャップg)を、それぞれ決める。
この塗布条件に従って、塗布ノズルと被塗布面との相対的位置に応じて、塗布方向Yに亘って均等に配した各位置におけるX方向の各「行」において、前記塗布ノズルの先端部と前記被塗布面との間隔を、変化させて塗布を行う。
尚、表面形態情報a1、a2、a3、…、a8に基づいて、最高点を有する面(仮想最高面)を求めたり、平均値を有する面(仮想平均面)を求めたりして、これらを利用することが可能である。
(Embodiment 1)
As shown in FIG. 1, application is performed in the Y direction by the application nozzle 22 extending in one direction (X direction) (application is performed such that the relative scanning direction of the nozzle 22 with respect to the substrate 10 is the Y direction). .
In the step of preparing the surface form information of the coated surface of the substrate, as the surface form information “a1, a2, a3,..., A8” of the “row” in the X direction on the coating start side, for example, the reference shown in FIG. The height information for the surface is obtained by measurement. As a measurement method, a known method such as an optical method or a contact method can be used.
Similarly, the surface form information of each “row” in the X direction at each position evenly arranged in the coating direction Y (the relative scanning direction of the nozzles), that is, “b1, b2, b3,..., B8”, Height information with respect to the reference plane is obtained by measurement as “c1, c2, c3,..., C8”,..., “E1, e2, e3,.
Based on the surface form information obtained above, the application conditions (application gap G and liquid contact gap g at the application start position) in each “row” in the X direction at each position evenly arranged in the application direction Y are set. Decide each.
In accordance with this application condition, in each “row” in the X direction at each position evenly arranged in the application direction Y according to the relative position between the application nozzle and the surface to be applied, the tip of the application nozzle and the Coating is performed by changing the distance from the surface to be coated.
In addition, based on the surface form information a1, a2, a3,..., A8, a surface having the highest point (virtual highest surface) or a surface having an average value (virtual average surface) is obtained. It is possible to use.

(実施の形態2)
まず、図3(1)に示す、基板保持手段である吸着板3の吸着面の表面形態情報を、実施の形態1と同様にして、準備する。例えば、吸着板の吸着面の表面形態情報Sとして、実施の形態1と同様にして、「Sa1、Sa2、Sa3、…、Sa8」、「Sb1、Sb2、Sb3、…、Sb8」、「Sc1、Sc2、Sc3、…、Sc8」、…、「Se1、Se2、Se3、…、Se8」、を準備する。
また、図3(2)に示すように、基板の被塗布面及び基板を挟んで裏面(被吸着面)の表面形態情報を、実施の形態1と同様にして準備し、これらの情報に基づいて、基板面内の板厚情報を算出し準備する。例えば、基板面内の板厚情報Tとして、実施の形態1と同様にして、「Ta1、Ta2、Ta3、…、Ta8」、「Tb1、Tb2、Tb3、…、Tb8」、「Tc1、Tc2、Tc3、…、Tc8」、 …「T○1、T○2、T○3、…、T○8」… 、「Te1、Te2、Te3、…、Te8」を算出し準備する。
次に、上記基板面内の板厚情報Tと、上記吸着板の吸着面の表面形態情報Sと、に基づいて、図3(3)及び(4)に示すように、前記吸着板3の吸着面に基板10の裏面を吸着させた時の、基板10の被塗布面の表面形態情報W(「W○1、W○2、W○3、…、W○8」等:ここで○はa,b,c,d,eなど)、をシミュレーション等によって算出し準備する。このとき、例えば、基板の裏面(被吸着面)は吸着されて平坦になり、この結果基板面内の板厚情報Tが、ほぼ、前記吸着板の吸着面に基板の裏面を吸着させた時の、基板の被塗布面の表面形態情報となると仮定(近似)することができる。
上記で求めた表面形態情報Wに基づいて、塗布方向Yに亘って均等に配した各位置におけるX方向の各「行」における塗布条件(塗布ギャップGや、塗布開始位置における接液ギャップg)を、それぞれ決める。
この塗布条件に従って、塗布ノズルと被塗布面との相対的位置に応じて、塗布方向Yに亘って均等に配した各位置におけるX方向の各「行」において、前記塗布ノズルの先端部と前記被塗布面との間隔を、変化させて塗布を行う。
(Embodiment 2)
First, the surface form information of the suction surface of the suction plate 3 serving as the substrate holding means shown in FIG. For example, as the surface form information S of the suction surface of the suction plate, “Sa1, Sa2, Sa3,..., Sa8”, “Sb1, Sb2, Sb3,..., Sb8”, “Sc1, Sc2, Sc3,..., Sc8 ”,...,“ Se1, Se2, Se3,.
Further, as shown in FIG. 3 (2), the surface form information of the back surface (surface to be adsorbed) across the surface to be coated and the substrate is prepared in the same manner as in Embodiment 1, and based on these information. Then, the thickness information in the substrate surface is calculated and prepared. For example, as the thickness information T in the substrate surface, as in the first embodiment, “Ta1, Ta2, Ta3,..., Ta8”, “Tb1, Tb2, Tb3,..., Tb8”, “Tc1, Tc2, Tc3,..., Tc8 ”,...“ T1, T2, T3,..., T8 ”, and“ Te1, Te2, Te3,.
Next, based on the plate thickness information T in the substrate surface and the surface form information S of the suction surface of the suction plate, as shown in FIGS. Surface shape information W (“W 1, W 2, W 3,..., W 8” etc. of the coated surface of the substrate 10 when the back surface of the substrate 10 is adsorbed to the adsorption surface: A, b, c, d, e, etc.) are calculated and prepared by simulation or the like. At this time, for example, the back surface (surface to be attracted) of the substrate is attracted and flattened, and as a result, the plate thickness information T in the substrate surface is substantially attracted to the suction surface of the suction plate. It can be assumed (approximated) that the surface shape information of the coated surface of the substrate is obtained.
Based on the surface morphology information W obtained above, the coating conditions in each “row” in the X direction at each position evenly arranged in the coating direction Y (the coating gap G and the liquid contact gap g at the coating start position) Determine each.
In accordance with this application condition, in each “row” in the X direction at each position evenly arranged in the application direction Y according to the relative position between the application nozzle and the surface to be applied, the tip of the application nozzle and the Coating is performed by changing the distance from the surface to be coated.

図4は塗布ノズル22によって基板10の被塗布面にレジスト液の塗布を行っている状態を説明するための断面図、図5は塗布ノズル22等の動作の詳細を説明するための断面図である。
「CAPコータ」装置では、まず、基板10におけるレジスト液の塗布開始箇所と、塗布手段2の塗布ノズル22の上端部と、の位置合わせを行う(図示せず)。基板10におけるレジスト液の塗布開始箇所は、この基板10の一側縁部である。
上記の状態において、制御部は、所定の液面位置までレジスト液21が溜められている液槽20と、このレジスト液21中に完全に沈んだ状態の塗布ノズル22とを(図5参照)、ともに上昇させ、基板10の被塗布面10aに下方側より接近させる(図4参照)。
尚、この「CAPコータ」装置は、液槽及び塗布ノズルの高さ位置を調整する制御部を有している。
また、塗布ノズル22は、支持杆28に支持されて、液槽20内に収納されている。この塗布ノズル22及び液槽20は、基板10の横方向(図4中において紙面に直交する方向)の一辺の長さに相当する長さを有して構成され、この長手方向に沿って、スリット状の毛管状隙間23を有している。この塗布ノズル22は、この毛管状隙間23を挟んで、上端側の幅が狭くなされて嘴のように尖った断面形状を有して構成されている。毛管状隙間23の上端部は、塗布ノズル22の上端部において、この塗布ノズル22の略全長に亘るスリット状に開口している。また、この毛管状隙間23は、塗布ノズル22の下方側に向けても開口されている(図4,5参照)。
4 is a cross-sectional view for explaining a state in which the resist solution is applied to the surface to be coated of the substrate 10 by the application nozzle 22, and FIG. 5 is a cross-sectional view for explaining the details of the operation of the application nozzle 22 and the like. is there.
In the “CAP coater” apparatus, first, alignment of the resist solution application start position on the substrate 10 and the upper end portion of the application nozzle 22 of the application means 2 is performed (not shown). The application start position of the resist solution on the substrate 10 is one side edge of the substrate 10.
In the above state, the control unit includes the liquid tank 20 in which the resist solution 21 is stored up to a predetermined liquid surface position, and the coating nozzle 22 that is completely submerged in the resist solution 21 (see FIG. 5). Then, they are raised together to approach the coated surface 10a of the substrate 10 from below (see FIG. 4).
The “CAP coater” apparatus has a control unit that adjusts the height positions of the liquid tank and the application nozzle.
Further, the application nozzle 22 is supported by a support rod 28 and is stored in the liquid tank 20. The coating nozzle 22 and the liquid tank 20 are configured to have a length corresponding to the length of one side in the lateral direction of the substrate 10 (a direction orthogonal to the paper surface in FIG. 4), and along this longitudinal direction, A slit-like capillary gap 23 is provided. The application nozzle 22 is configured to have a cross-sectional shape that is sharp like a ridge with the width on the upper end side narrowed across the capillary gap 23. The upper end portion of the capillary gap 23 is opened at the upper end portion of the application nozzle 22 in a slit shape over substantially the entire length of the application nozzle 22. The capillary gap 23 is also opened toward the lower side of the application nozzle 22 (see FIGS. 4 and 5).

次に、制御部は、液槽20の上昇を停止させ、図4に示すように、塗布ノズル22の上端側をこの液槽20内のレジスト液21の液面から上方側に突出させる。このとき、塗布ノズル22は、レジスト液21中に完全に沈んでいた状態(図5参照)から、このレジスト液21の液面の上方側に突出されるので、毛管状隙間23内にレジスト液21が満たされた状態となっている(図4参照)。
さらに、制御部は、塗布ノズル22を上昇させ、この塗布ノズル22の上端部のレジスト液21を基板10の被塗布面10aに接液させる(図4参照)。
この接液の際、前記塗布ノズルの先端部と前記被塗布面との間隔を、相対的に小さい状態で接液を開始させ、次に、前記塗布ノズルの先端部と前記被塗布面との間隔を、相対的に大きい状態に広げて接液を完了させることが好ましい。具体的には、例えば、接液ギャップgを小さい状態で一瞬保持して接液を開始させ、直ちに泡噛みの起こらない接液速度になるように接液ギャップgを広げて接液を完了させることが好ましい。
Next, the controller stops the rising of the liquid tank 20 and causes the upper end side of the coating nozzle 22 to protrude upward from the liquid surface of the resist solution 21 in the liquid tank 20 as shown in FIG. At this time, the coating nozzle 22 protrudes from the state completely sinked in the resist solution 21 (see FIG. 5) to the upper side of the liquid surface of the resist solution 21, so that the resist solution is placed in the capillary gap 23. 21 is satisfied (see FIG. 4).
Further, the control unit raises the application nozzle 22 and brings the resist solution 21 at the upper end of the application nozzle 22 into contact with the surface to be coated 10a of the substrate 10 (see FIG. 4).
At the time of the liquid contact, the liquid contact is started with a relatively small distance between the tip of the coating nozzle and the surface to be coated, and then the tip of the coating nozzle and the surface to be coated It is preferable to complete the liquid contact by widening the interval to a relatively large state. Specifically, for example, the liquid contact gap g is held for a short time in a small state to start the liquid contact, and the liquid contact gap g is widened so that the liquid contact speed immediately does not cause bubble biting to complete the liquid contact. It is preferable.

次に、制御部は、塗布ノズル22の上端部においてレジスト液21が基板10の被塗布面10aに接液された状態で、液槽20及び塗布ノズル22を所定の「塗布高さ」の位置まで下降させ、塗布を実施する際の塗布ノズルの先端部と被塗布面との間隔(塗布ギャップG)に設定する(図4参照)。
ここで、塗布ギャップGは、一旦接液したレジスト液21が被塗布面10aから離液する離液間隔G´よりも小さい範囲で、なるべく大きくなされる。すなわち、塗布ギャップGは、離液間隔G´の少なくとも50%以上となされ、望ましくは、離液間隔G´の70%乃至90%となされる。
Next, the control unit moves the liquid tank 20 and the coating nozzle 22 at a predetermined “coating height” position in a state where the resist liquid 21 is in contact with the coated surface 10 a of the substrate 10 at the upper end of the coating nozzle 22. And the distance (application gap G) between the tip of the application nozzle and the application surface when application is performed (see FIG. 4).
Here, the coating gap G is made as large as possible within a range smaller than the liquid separation interval G ′ at which the resist liquid 21 once in contact with the liquid is separated from the coated surface 10a. That is, the application gap G is at least 50% or more of the liquid separation interval G ′, and preferably 70% to 90% of the liquid separation interval G ′.

上記の状態において、制御部は、基板10を塗布ノズル22の上端部において毛管状隙間23が形成するスリットに直交する方向(図4中矢印Vで示す方向)に移動させ、塗布ノズル22の上端部を被塗布面10aの全面に亘って走査させ、この被塗布面10aの全面に亘ってレジスト液21の塗布膜21aを形成する。   In the above state, the control unit moves the substrate 10 in the direction perpendicular to the slit formed by the capillary gap 23 at the upper end portion of the application nozzle 22 (the direction indicated by the arrow V in FIG. 4), and the upper end of the application nozzle 22. The portion is scanned over the entire surface to be coated 10a, and a coating film 21a of the resist solution 21 is formed over the entire surface to be coated 10a.

尚、基板10と塗布ノズル22との相対走査速度は、予め設定されているノズル間隔、レジスト液21の粘度、液面高さ及び塗布ギャップGを前提として、塗布膜21aが所望の膜厚となるように、制御部によって制御される。   The relative scanning speed between the substrate 10 and the coating nozzle 22 is set so that the coating film 21a has a desired film thickness on the premise of a preset nozzle interval, the viscosity of the resist solution 21, the liquid level height, and the coating gap G. It is controlled by the control unit.

以下、実施例に基づき本発明を更に詳細に説明する。
(実施例1)
上述した発明の実施の形態2及び図3〜図5で説明した方法によって、マスクブランクの薄膜上にレジストを塗布して、レジスト膜付マスクブランクを形成した。
このとき、マスクブランクとしては、大型ガラス基板(合成石英(QZ)13mm厚、サイズ1220mm×1400mm)上に、Cr系の遮光性膜を有する基板を使用した。 また、ノボラック系レジストを使用し、塗布の条件は、1000nmのレジスト膜を形成するための、液面高さ、塗布ギャップ、搬送速度等を設定した。
詳しくは、塗布ノズルの先端部と被塗布面との間隔を、接液開始時の接液ギャップ:120μmで0.1秒保持して接液を開始させ、直ちに泡噛みの起こらない接液速度になるように接液ギャップを180μmに広げて接液を完了させた。その後、前記間隔を、離液間隔の50%以上90%以下の塗布ギャップに広げ、その後、塗布を実施した。
また、図3(3)及び(4)に示すように、吸着板3の吸着面に基板10の裏面を吸着させた時の、基板10の被塗布面の表面形態情報W(「W○1、W○2、W○3、…、W○8」等:ここで○はa,b,c,d,eなど)は、図3(2)に示す基板面内の板厚情報T(「T○1、T○2、T○3、…、T○8」等:ここで○はa,b,c,d,eなど)と、ほぼ同等であることを確認し、表面形態情報Wを準備した。
尚、基板面内の板厚情報Tから、板厚の平均値:13mm、板厚のばらつき(最大値−最小値):0.3mmを算出した。また、塗布ギャップGは離液間隔G’の50%以上90%以下(許容値)にすることが好ましいが、図3(4)に示す「Wc1、Wc2、Wc3、…、Wc8」において塗布ギャップGが離液間隔G’の50%を局所的に下回る箇所が生じること、並びに、図3(4)に示す「We1、We2、We3、…、We8」において塗布ギャップGが離液間隔G’の90%を局所的に上回る箇所が生じること、が判った。
そこで、本実施例では、前記塗布ギャップGの許容値を超える箇所、即ち、図3(4)に示す「Wc1、Wc2、Wc3、…、Wc8」、及び、「We1、We2、We3、…、We8」において、前記塗布ギャップGの許容値の範囲内で塗布が実施されるように、前記塗布ノズルの先端部と前記被塗布面との間隔を変化させ、塗布を行った。
上記で得られたレジスト膜付マスクブランクについて、検査したところ、塗布ギャップGが離液間隔G’の50%を局所的に下回るとその箇所において局所的に膜厚の均一性の良くない箇所が生じる現象を回避できることが判った。また、塗布ギャップGが離液間隔G’の90%を局所的に上回るとその箇所において局所的に接液状態が不安定となり、その結果局所的に塗布ムラが発生する場合がある現象を回避できることが判った。
尚、レジスト膜厚の面内均一性(膜厚の最大値−膜厚の最小値)を分光反射型膜厚計により測定したところ、面内均一性は250Åであった。
更に、上記で得られたレジスト膜付マスクブランクを用いてフォトマスクを作製し、さらにこのフォトマスクを用いてFPDをを作製したが、フォトマスク及びFPDの双方についてレジスト膜の上記現象に起因すると思われる異常は見られなかった。
Hereinafter, the present invention will be described in more detail based on examples.
Example 1
A resist was applied onto the thin film of the mask blank by the method described in the second embodiment of the present invention and FIGS. 3 to 5 to form a mask blank with a resist film.
At this time, as a mask blank, a substrate having a Cr light-shielding film on a large glass substrate (synthetic quartz (QZ) 13 mm thick, size 1220 mm × 1400 mm) was used. In addition, a novolac resist was used, and the coating conditions were set such as the liquid level height, coating gap, and conveyance speed for forming a 1000 nm resist film.
Specifically, the liquid contact speed at which the gap between the tip of the coating nozzle and the surface to be coated is kept at the liquid contact gap at the start of liquid contact: 120 μm for 0.1 second to start the liquid contact, and no bubble biting occurs immediately. The liquid contact gap was widened to 180 μm so that the liquid contact was completed. Then, the said space | interval was extended to the application | coating gap of 50% or more and 90% or less of the liquid separation interval, and application | coating was implemented after that.
Further, as shown in FIGS. 3 (3) and (4), the surface form information W (“W ○ 1” of the coated surface of the substrate 10 when the back surface of the substrate 10 is sucked to the suction surface of the suction plate 3. , W ○ 2, W ○ 3,..., W ○ 8 ”etc .: where ○ is a, b, c, d, e, etc.) is the thickness information T (in the substrate surface shown in FIG. “T ○ 1, T ○ 2, T ○ 3,..., T8” etc .: Here, ○ is confirmed to be almost equivalent to a, b, c, d, e, etc. W was prepared.
From the plate thickness information T in the substrate surface, an average plate thickness value of 13 mm and a plate thickness variation (maximum value-minimum value): 0.3 mm were calculated. Further, the application gap G is preferably 50% or more and 90% or less (allowable value) of the liquid separation interval G ′. However, the application gap in “Wc1, Wc2, Wc3,..., Wc8” shown in FIG. A location where G locally falls below 50% of the liquid separation interval G ′ occurs, and the coating gap G is the liquid separation interval G ′ in “We1, We2, We3,..., We8” shown in FIG. It has been found that a location locally exceeding 90% of the above occurs.
Therefore, in this embodiment, the portion exceeding the allowable value of the coating gap G, that is, “Wc1, Wc2, Wc3,..., Wc8” and “We1, We2, We3,. In “We8”, the coating was performed by changing the distance between the tip of the coating nozzle and the surface to be coated so that the coating was performed within the allowable range of the coating gap G.
When the above-obtained mask blank with a resist film was inspected, when the coating gap G was locally below 50% of the liquid separation interval G ′, there was a location where the film thickness was not locally uniform at that location. It was found that the phenomenon that occurs can be avoided. Further, when the coating gap G locally exceeds 90% of the liquid separation interval G ′, the liquid contact state is locally unstable at that location, and as a result, a phenomenon in which coating unevenness may occur locally is avoided. I found that I can do it.
The in-plane uniformity of the resist film thickness (maximum value of film thickness-minimum value of film thickness) was measured with a spectral reflection type film thickness meter, and the in-plane uniformity was 250 mm.
Further, a photomask was produced using the mask blank with a resist film obtained above, and an FPD was produced using this photomask. Both the photomask and FPD were caused by the above phenomenon of the resist film. There seemed to be no abnormalities.

(比較例1)
実施例1と同等の基板を準備し、塗布ギャップGを350μmに固定して塗布を実施したこと以外は実施例1と同様とした。
その結果、図3(4)に示す「Wc1、Wc2、Wc3、…、Wc8」において塗布ギャップGが離液間隔G’の50%を局所的に下回る箇所が生じること、及びその箇所において局所的に膜厚の均一性の良くない箇所が生じることが判った。また、図3(4)に示す「We1、We2、We3、…、We8」において塗布ギャップGが離液間隔G’の90%を局所的に上回る箇所が生じること、及びその箇所において局所的に接液状態が不安定となり、その結果局所的に塗布ムラが発生する場合があることが判った。
尚、レジスト膜厚の面内均一性を測定したところ、650Åであった。
(Comparative Example 1)
A substrate equivalent to that in Example 1 was prepared, and the same procedure as in Example 1 was performed except that coating was performed with the coating gap G fixed at 350 μm.
As a result, in “Wc1, Wc2, Wc3,..., Wc8” shown in FIG. 3 (4), a location where the application gap G is locally less than 50% of the liquid separation interval G ′ occurs, and the location is locally It was found that there was a portion with poor film thickness uniformity. Further, in “We1, We2, We3,..., We8” shown in FIG. 3 (4), there is a location where the coating gap G locally exceeds 90% of the liquid separation interval G ′, and locally in that location. It has been found that the wetted state becomes unstable, and as a result, uneven coating may occur locally.
The in-plane uniformity of the resist film thickness was measured and found to be 650 mm.

尚、本発明は、前述した実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更実施が可能であることは言うまでもない。   In addition, this invention is not limited only to the Example mentioned above, It cannot be overemphasized that a various change implementation is possible in the range which does not deviate from the summary of this invention.

本発明の実施の形態1に係る塗布方法を説明するための模式的平面図である。It is a schematic plan view for demonstrating the coating method which concerns on Embodiment 1 of this invention. 図1の要部の断面図である。It is sectional drawing of the principal part of FIG. 本発明の実施の形態3に係る塗布方法を説明するための模式的平面図である。It is a schematic plan view for demonstrating the coating method which concerns on Embodiment 3 of this invention. 本発明の一態様に係る塗布装置における塗布手段が塗布を行っている状態を示す断面図である。It is sectional drawing which shows the state which the application | coating means in the coating device which concerns on 1 aspect of this invention is performing application | coating. 前記塗布装置における塗布手段の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the application means in the said coating device.

符号の説明Explanation of symbols

2 塗布手段
3 吸着手段
10 基板
10a 被塗布面
20 液槽
21 レジスト液
21a 塗布膜
22 塗布ノズル
23 毛管状隙間
2 Application means 3 Adsorption means 10 Substrate 10a Surface to be applied 20 Liquid tank 21 Resist liquid 21a Application film 22 Application nozzle 23 Capillary gap

Claims (5)

一方向に伸びるレジスト液供給口を有する塗布ノズルからレジスト液を吐出させつつ、前記一方向に交差する方向へ前記塗布ノズル及び基板の被塗布面を相対的に走査させて、前記被塗布面に前記レジスト液を塗布するレジスト液塗布工程を有するレジスト膜付マスクブランクの製造方法であって、
基板の被塗布面の表面形態情報を準備する工程と、
基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと前記被塗布面との相対的位置に応じて変化させて、前記被塗布面に前記レジスト液を塗布する工程と、
を有することを特徴とするマスクブランクの製造方法。
While the resist solution is ejected from a coating nozzle having a resist solution supply port extending in one direction, the coating nozzle and the coated surface of the substrate are relatively scanned in a direction crossing the one direction, and the coated surface is then applied. A method for producing a mask blank with a resist film, which includes a resist solution coating step of applying the resist solution,
A step of preparing surface form information of the coated surface of the substrate;
Based on the surface form information of the coated surface of the substrate, the interval between the tip of the coating nozzle and the coated surface is changed according to the relative position of the coating nozzle and the coated surface, Applying the resist solution to the surface to be coated;
A method for manufacturing a mask blank, comprising:
基板の被塗布面及び裏面の表面形態情報を準備し、これらの情報に基づいて、基板面内の板厚情報を準備する工程と、
基板保持手段である吸着板の吸着面の表面形態情報を準備する工程と、
前記基板面内の板厚情報と、前記吸着板の吸着面の表面形態情報と、に基づいて、前記吸着板の吸着面に基板の裏面を吸着させた時の、基板の被塗布面の表面形態情報を準備する工程と、
前記吸着板の吸着面に基板の裏面を吸着させた時の、基板の被塗布面の表面形態情報に基づいて、前記塗布ノズルの先端部と前記被塗布面との間隔を、前記塗布ノズルと基板の被塗布面との相対的位置に応じて変化させて、前記被塗布面に前記レジスト液を塗布する工程と、
を有することを特徴とする請求項1記載のマスクブランクの製造方法。
Preparing surface form information on the coated surface and back surface of the substrate, and preparing plate thickness information in the substrate surface based on these information; and
A step of preparing surface form information of a suction surface of a suction plate which is a substrate holding means;
The surface of the coated surface of the substrate when the back surface of the substrate is adsorbed to the adsorption surface of the adsorption plate based on the plate thickness information in the substrate surface and the surface form information of the adsorption surface of the adsorption plate Preparing morphological information;
Based on the surface form information of the surface to be coated of the substrate when the back surface of the substrate is attracted to the suction surface of the suction plate, the distance between the tip of the coating nozzle and the surface to be coated is Changing the relative position of the substrate relative to the surface to be coated, and applying the resist solution to the surface to be coated;
The method for producing a mask blank according to claim 1, comprising:
液槽に溜められた液体状のレジスト液を塗布ノズルにおける毛細管現象により上昇させ、基板の被塗布面を下方に向けて前記塗布ノズルの上端部に近接させ、前記塗布ノズルにより上昇されたレジスト液を該塗布ノズルの上端部を介して前記被塗布面に接液させ、レジスト液が基板の被塗布面に接液された状態で、液槽及び塗布ノズルを所定の「塗布高さ」の位置まで下降させ、この状態で前記塗布ノズル及び前記被塗布面を相対的に走査させて、前記被塗布面に前記レジスト液を塗布するレジスト液塗布工程を有することを特徴とする請求項1又は2に記載のマスクブランクの製造方法。 The liquid resist solution stored in the liquid tank is raised by capillary action at the coating nozzle, the coated surface of the substrate is directed downward and brought close to the upper end of the coating nozzle, and the resist solution raised by the coating nozzle In contact with the surface to be coated via the upper end of the coating nozzle, and the liquid tank and the coating nozzle at a predetermined “coating height” position while the resist solution is in contact with the surface to be coated of the substrate. 3. A resist solution application step of applying the resist solution onto the application surface by moving the application nozzle and the application surface relatively relative to each other in this state. The manufacturing method of the mask blank as described in 2. 前記基板は、マスクパターンを形成するための薄膜が形成された薄膜付き基板であることを特徴とする請求項1から3のいずれか一項に記載のマスクブランクの製造方法。   The method for manufacturing a mask blank according to any one of claims 1 to 3, wherein the substrate is a substrate with a thin film on which a thin film for forming a mask pattern is formed. 請求項1から4のいずれか一項に記載のマスクブランクの製造方法によって得られたマスクブランクを用いてフォトマスクを製造することを特徴とするフォトマスクの製造方法。   A photomask manufacturing method, wherein a photomask is manufactured using the mask blank obtained by the mask blank manufacturing method according to claim 1.
JP2007127633A 2007-05-14 2007-05-14 Method of manufacturing mask blank and method of manufacturing photomask Pending JP2008283098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007127633A JP2008283098A (en) 2007-05-14 2007-05-14 Method of manufacturing mask blank and method of manufacturing photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007127633A JP2008283098A (en) 2007-05-14 2007-05-14 Method of manufacturing mask blank and method of manufacturing photomask

Publications (1)

Publication Number Publication Date
JP2008283098A true JP2008283098A (en) 2008-11-20

Family

ID=40143643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007127633A Pending JP2008283098A (en) 2007-05-14 2007-05-14 Method of manufacturing mask blank and method of manufacturing photomask

Country Status (1)

Country Link
JP (1) JP2008283098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251497A (en) * 2008-04-10 2009-10-29 Hoya Corp Manufacturing method of photomask blank and manufacturing method of photomask
CN115315318A (en) * 2021-03-04 2022-11-08 株式会社东芝 Coating device and coating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251497A (en) * 2008-04-10 2009-10-29 Hoya Corp Manufacturing method of photomask blank and manufacturing method of photomask
CN115315318A (en) * 2021-03-04 2022-11-08 株式会社东芝 Coating device and coating method

Similar Documents

Publication Publication Date Title
US6838215B2 (en) Graytone mask producing method, graytone mask and pattern transfer method
JP5073375B2 (en) Mask blank manufacturing method and photomask manufacturing method
JP4169719B2 (en) Method for manufacturing substrate with resist film
JP2008283098A (en) Method of manufacturing mask blank and method of manufacturing photomask
JP5004283B2 (en) FPD device manufacturing mask blank, FPD device manufacturing mask blank design method, and FPD device manufacturing mask manufacturing method
JP2008283099A (en) Method of manufacturing mask blank, and method of manufacturing photomask
US7416758B2 (en) Slit coater
JP4974363B2 (en) Mask blank manufacturing method and photomask manufacturing method
JP4376930B2 (en) Manufacturing method of mask blanks
JP2007199434A (en) Exposure method of proximity system, mask substrate used therefor, and fabricating method for same mask substrate
JP2009258152A (en) Method of manufacturing mask blank, and method of manufacturing photomask
JP6659422B2 (en) Coating device, mask blank manufacturing method
JP2007181811A (en) Production method for improving uniformity of quality of coating layer
KR101309037B1 (en) Slit coater
CN109725487B (en) Pattern drawing method, photomask, and method for manufacturing device for display device
US7367725B2 (en) Method for removing developing solution
JP4807739B2 (en) Mask blank and photomask
JP2005051220A (en) Method for manufacturing substrate with resist film
JP2020202228A (en) Manufacturing method of mask blank and coating applicator
JP5086714B2 (en) Mask blank manufacturing method and photomask manufacturing method
JP4376929B2 (en) Unnecessary film removing apparatus, unnecessary film removing method, and mask blank manufacturing method
JP2009123857A (en) Coating method and coating device for colored photoresist
JP4934892B2 (en) Coating apparatus and coating method
KR20240081833A (en) Coating unit and substrate treating apparatus
JP3383093B2 (en) Applicator for coating liquid on substrate