JP2007173688A - Thermoelectric conversion element using air cooling function - Google Patents

Thermoelectric conversion element using air cooling function Download PDF

Info

Publication number
JP2007173688A
JP2007173688A JP2005371921A JP2005371921A JP2007173688A JP 2007173688 A JP2007173688 A JP 2007173688A JP 2005371921 A JP2005371921 A JP 2005371921A JP 2005371921 A JP2005371921 A JP 2005371921A JP 2007173688 A JP2007173688 A JP 2007173688A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric conversion
conversion element
conductive plate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005371921A
Other languages
Japanese (ja)
Other versions
JP4883606B2 (en
Inventor
Keizo Kobayashi
慶三 小林
Yuji Mikami
祐史 三上
Akihiro Matsumoto
章宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005371921A priority Critical patent/JP4883606B2/en
Publication of JP2007173688A publication Critical patent/JP2007173688A/en
Application granted granted Critical
Publication of JP4883606B2 publication Critical patent/JP4883606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element and its module which improve performance of a pair of thermoelectric elements and realize easy maintenance by providing a low temperature side cooling mechanism to a pair of thermoelectric elements, by holding a conductive plate between p-type and n-type thermoelectric materials and joining them indirectly or directly. <P>SOLUTION: The thermoelectric conversion element has a structure wherein a conductive plate 3 is joined between p-type and n-type thermoelectric materials 2, 3 protruding from a thermoelectric element. Thermoelectric conversion efficiency in a pair of thermoelectric elements is improved by raising cooling effect at a low temperature side, and highly efficient thermoelectric conversion in a limited space is made possible by arranging the thermoelectric element in consideration of wind direction. Consequently, a miniaturized and highly efficient thermoelectric conversion element can be obtained which enables power generation in a fine space. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空冷機能を利用した熱電変換素子に関するものであり、更に詳しくは、p型及びn型熱電材料で構成される素子の間に導電性板を挿入し、高冷却機能と高電気伝導性を付与した熱電変換素子に関するものである。本発明に係る熱電変換素子は、一対の素子の接合端部に対して冷却機能を付与することによって熱電変換素子の高性能化を実現するものである。本発明の熱電変換素子は、自動車や二輪車などの内燃機関を有する移動体へ応用することにより、風による冷却機能を利用した大きな発電効果が得られ、移動体の燃費を改善することができる。また、本発明の熱電変換素子は、内燃機関を有する発電機などへ応用することにより、発電性能を向上させることが可能であり、本発明により、地球温暖化防止に対して有効な技術を提供することができる。   The present invention relates to a thermoelectric conversion element using an air cooling function. More specifically, the present invention relates to a high cooling function and high electrical conductivity by inserting a conductive plate between elements composed of p-type and n-type thermoelectric materials. The present invention relates to a thermoelectric conversion element imparted with properties. The thermoelectric conversion element according to the present invention realizes high performance of the thermoelectric conversion element by imparting a cooling function to the joint ends of the pair of elements. By applying the thermoelectric conversion element of the present invention to a moving body having an internal combustion engine such as an automobile or a two-wheeled vehicle, a large power generation effect using a cooling function by wind can be obtained, and the fuel efficiency of the moving body can be improved. In addition, the thermoelectric conversion element of the present invention can improve power generation performance by being applied to a generator having an internal combustion engine, and the present invention provides an effective technique for preventing global warming. can do.

熱を電気に変換する熱電材料は、一対のp型及びn型の半導体材料から構成されており、金属と半金属からなる金属間化合物や酸化物などで作製されている。この熱電変換素子は、材料が有するゼーベック係数、熱伝導率、及び電気抵抗により熱電変換効率が決定されるため、様々な元素を添加した材料開発が行われている。通常、この熱電変換素子は、一対の素子では出力が小さいため、いくつかの素子対を電気的に結合したモジュールを用いることで大きな出力が得られるように設計されている。   A thermoelectric material that converts heat into electricity is composed of a pair of p-type and n-type semiconductor materials, and is made of an intermetallic compound or oxide composed of a metal and a semimetal. In this thermoelectric conversion element, since the thermoelectric conversion efficiency is determined by the Seebeck coefficient, thermal conductivity, and electric resistance of the material, material development in which various elements are added has been performed. Usually, this thermoelectric conversion element is designed so that a large output can be obtained by using a module in which several pairs of elements are electrically coupled, since the output of a pair of elements is small.

このモジュールは、熱源に接触している側を高温側、その反対側を低温側として、高温側と低温側の温度差により起電力を生成している。モジュールの低温側では、熱を効率的に放散するために、ヒートシンクなどの放熱手段が利用されている。このため、熱電変換モジュールは、大型になり、狭く限られた空間で利用するためには、小型化する必要があった。また、ヒートシンクでは、大面積での放熱を利用するため、空気の流れや方向などを考慮した効率的な冷却を実現することが難しいという問題があった。   In this module, an electromotive force is generated by a temperature difference between the high temperature side and the low temperature side, with the side in contact with the heat source as the high temperature side and the opposite side as the low temperature side. On the low temperature side of the module, heat radiating means such as a heat sink is used to efficiently dissipate heat. For this reason, the thermoelectric conversion module becomes large, and it is necessary to reduce the size in order to use it in a narrow and limited space. Further, since the heat sink uses heat radiation in a large area, there is a problem that it is difficult to realize efficient cooling in consideration of the air flow and direction.

熱電変換素子を小型化するためには、素子を微細加工して小型化する技術や、薄膜化する技術が有効であり、例えば、熱電材料成形体や単分散熱電マイクロ粒子の規則配列焼結に関する技術開発がなされている(特許文献1、非特許文献1)。また、放熱プレートの形状を考慮した熱電変換装置に関する技術開発もなされている(特許文献2)。しかし、これらの方法及び手段は、いずれも一対のp型及びn型素子を複数組み合わせた熱電モジュールを小型化する技術であり、一対の素子自体を小型化することはできていない。   In order to reduce the size of the thermoelectric conversion element, a technique for miniaturizing the element by microfabrication and a technique for thinning the element are effective. Technological development has been made (Patent Document 1, Non-Patent Document 1). In addition, technical development related to a thermoelectric conversion device in consideration of the shape of the heat dissipation plate has been made (Patent Document 2). However, both of these methods and means are techniques for miniaturizing a thermoelectric module in which a plurality of pairs of p-type and n-type elements are combined, and the pair of elements themselves cannot be miniaturized.

また、従来の技術では、モジュールを構成する素子に異常(破損など)が発生した場合には、モジュールすべてを交換する必要があり、メンテナンスや修理が難しいという問題を有していた。これを解決するために、例えば、新しい熱電変換素子に関する技術開発も行われている(特許文献3)が、この素子は、熱電材料が変換効率の低い鉄珪化物に限定されている上、パイ型熱電材料をチタン系活性ロウ材を用いたロウ付けにより一体化したものであるため、汎用性にかけるという問題があった。   Further, in the conventional technique, when an abnormality (breakage or the like) occurs in the elements constituting the module, it is necessary to replace all the modules, and there is a problem that maintenance and repair are difficult. In order to solve this problem, for example, technical development relating to a new thermoelectric conversion element has been carried out (Patent Document 3). However, this element is limited to iron silicide whose thermoelectric material has low conversion efficiency. Since the type thermoelectric material is integrated by brazing using a titanium-based active brazing material, there has been a problem in that it is subject to versatility.

特開2004−071870号公報JP 2004-071870 A 特開平5−175556号公報JP-A-5-175556 特開平6−97512号公報JP-A-6-97512 川崎亮 他「単分散熱電マイクロ粒子の規則配列焼結とその熱電特性」マテリアルインテグレーション Vol.14,No.8(2001)p51Ryo Kawasaki et al. “Regular array sintering of monodisperse thermoelectric microparticles and their thermoelectric properties” Material Integration Vol. 14, no. 8 (2001) p51

このような状況の中で、本発明者らは、上記の問題点を解決するために鋭意研究を重ねた結果、p型熱電材料とn型熱電材料の接合部分に使われる導電性材料を大型化し、フィンとしての機能を付与させることにより、一対の熱電素子の高温側と低温側の温度差を大きくできることを見出し、更に研究を重ねて、本発明を完成した。   Under such circumstances, the present inventors have conducted extensive research to solve the above problems, and as a result, have increased the size of the conductive material used for the junction between the p-type thermoelectric material and the n-type thermoelectric material. It was found that the temperature difference between the high temperature side and the low temperature side of the pair of thermoelectric elements can be increased by imparting a function as a fin, and the present invention was completed by further research.

すなわち、本発明は、一対のp型及びn型熱電材料からなる熱電素子に着目し、p型及びn型熱電材料の接続部分に空冷機能を付与して熱電変換効率を高めるためになされたものである。本発明は、一対の熱電材料からなる素子において、一対の素子の接合端部に冷却機能を持たせることによって、高温側と低温側の温度差を大きくして起電力を高めることを可能とした新規熱電変換素子を提供すること課題とするものである。   That is, the present invention has been made in order to increase the thermoelectric conversion efficiency by giving an air cooling function to the connecting portion of the p-type and n-type thermoelectric materials by focusing on a thermoelectric element composed of a pair of p-type and n-type thermoelectric materials. It is. The present invention makes it possible to increase the electromotive force by increasing the temperature difference between the high temperature side and the low temperature side by providing a cooling function at the junction end of the pair of elements in an element made of a pair of thermoelectric materials. It is an object to provide a novel thermoelectric conversion element.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)空冷機能を付与した熱電変換素子の構造において、1)p型とn型熱電材料の接合端部に導電性板が挟持されている、2)その導電性板が素子の外部にまで続く構造を有する、3)それにより、熱電材料の接合端部の導電性板が冷却板の機能を有する、ことを特徴とする熱電変換素子。
(2)導電性板が、一対のp−n型熱電素子とのみ接合されている、前記(1)記載の熱電変換素子。
(3)導電性板が、金属からなる、前記(1)又は(2)記載の熱電変換素子。
(4)導電性板の材料が、熱電変換素子より電気抵抗が低く、熱伝導性が高い材料である、前記(3)記載の熱電変換素子。
(5)p型あるいはn型素子が、金属あるいは金属間化合物で構成されている、前記(1)又は(2)記載の熱電変換素子。
(6)導電性板と熱電素子が直接接合されている、前記(1)又は(2)記載の熱電変換素子。
(7)熱電素子から外部にはみ出した導電性板の表面が、絶縁処理されている、前記(1)記載の熱電変換素子。
(8)前記(1)から(7)のいずれかに記載の熱電変換素子を組み合わせてなることを特徴とする熱電変換モジュール。
(9)前記(1)から(8)のいずれかに記載の熱電変換素子又は熱電変換モジュールからなることを特徴とする放熱部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) In the structure of a thermoelectric conversion element provided with an air cooling function, 1) a conductive plate is sandwiched between the junction ends of the p-type and n-type thermoelectric materials, and 2) the conductive plate extends to the outside of the element. 3) A thermoelectric conversion element characterized in that the conductive plate at the joining end portion of the thermoelectric material has a function of a cooling plate.
(2) The thermoelectric conversion element according to (1), wherein the conductive plate is bonded only to the pair of pn-type thermoelectric elements.
(3) The thermoelectric conversion element according to (1) or (2), wherein the conductive plate is made of metal.
(4) The thermoelectric conversion element according to (3), wherein the material of the conductive plate is a material having lower electrical resistance and higher thermal conductivity than the thermoelectric conversion element.
(5) The thermoelectric conversion element according to (1) or (2), wherein the p-type or n-type element is composed of a metal or an intermetallic compound.
(6) The thermoelectric conversion element according to (1) or (2), wherein the conductive plate and the thermoelectric element are directly joined.
(7) The thermoelectric conversion element according to (1), wherein the surface of the conductive plate that protrudes from the thermoelectric element is subjected to insulation treatment.
(8) A thermoelectric conversion module comprising a combination of the thermoelectric conversion elements according to any one of (1) to (7).
(9) A heat dissipation member comprising the thermoelectric conversion element or thermoelectric conversion module according to any one of (1) to (8).

次に、本発明について更に詳細に説明する。
本発明は、空冷機能を付与した熱電変換素子の構造において、1)p型とn型熱電材料の接合端部に導電性板が挟持されている、2)その導電性板が素子の外部にまで続く構造を有する、3)それにより、熱電材料の接合端部の導電性板が冷却板の機能を有する熱電変換素子の点に特徴を有するものである。
Next, the present invention will be described in more detail.
The present invention relates to a structure of a thermoelectric conversion element provided with an air cooling function. 1) A conductive plate is sandwiched between the junction ends of a p-type and an n-type thermoelectric material. 2) The conductive plate is outside the element. 3) Thereby, the conductive plate at the joining end portion of the thermoelectric material is characterized by the point of the thermoelectric conversion element having the function of a cooling plate.

本発明では、導電性板が一対のp−n型熱電素子とのみ接合されていること、導電性板が、金属からなること、導電性板の材料が、熱電変換素子より電気抵抗が低く、熱伝導性が高い材料であること、p型あるいはn型素子が、金属あるいは金属間化合物で構成されていること、導電性板と熱電素子が直接接合されていること、及び熱電素子から外部にはみ出した導電性板の表面が、絶縁処理されていること、がそれぞれ好適な実施の態様として例示される。   In the present invention, the conductive plate is bonded only to a pair of pn-type thermoelectric elements, the conductive plate is made of metal, the material of the conductive plate is lower in electrical resistance than the thermoelectric conversion element, It is a material with high thermal conductivity, that the p-type or n-type element is made of a metal or an intermetallic compound, that the conductive plate and the thermoelectric element are directly joined, and that the thermoelectric element is connected to the outside. It is exemplified as a preferred embodiment that the surface of the protruding conductive plate is insulated.

本発明に利用する熱電材料には、これまでに熱電材料として報告されている適宜の材料、例えば、Bi−Te系、Pb−Te系、Fe−Si系、Mg−Si系、Mn−Si系、Si−Ge系、ホイスラー系、スクッテルダイト系、ペロブスカイト系などの熱電材料を利用することができる。これらの熱電材料は、溶解−凝固により目的組成の熱電材料を作製することができるが、高強度の熱電材料を得るためには、組織を微細化することが有効であり、好適には、例えば、粉末冶金的手法により合成された合金粉末を焼結する方法が効果的に使用可能である。本発明では、p型及びn型の材料を作製するための添加元素については、それぞれの熱電材料について、これまでに報告されている適宜の添加元素を任意に用いることが可能である。   The thermoelectric material used in the present invention includes an appropriate material that has been reported as a thermoelectric material so far, for example, Bi—Te, Pb—Te, Fe—Si, Mg—Si, and Mn—Si. Thermoelectric materials such as Si-Ge, Heusler, skutterudite, and perovskite can be used. These thermoelectric materials can produce a thermoelectric material having a target composition by dissolution-solidification, but in order to obtain a high-strength thermoelectric material, it is effective to refine the structure. A method of sintering an alloy powder synthesized by a powder metallurgical method can be effectively used. In the present invention, as additive elements for producing p-type and n-type materials, any appropriate additive element reported so far can be arbitrarily used for each thermoelectric material.

本発明に利用する導電性板は、p型熱電材料とn型熱電材料を電気的に接合する機能とともに、素子の低温側の冷却機能を有するものである。そのため、導電性板の材料は、熱電材料より電気抵抗が低く、熱伝導率が高い材料であることが好ましい。このような特性を有する一般的な導電性板の材料としては、金属が好適であり、例えば、アルミニウム、銅、金、銀、ニッケル、白金が例示され、更に最も好ましい金属材料としては、銅やアルミニウムが例示される。しかし、これらの材料に限定されるものではなく、これらと同等もしくは類似の材料であれば同様に使用することができる。   The conductive plate used in the present invention has a function of electrically bonding a p-type thermoelectric material and an n-type thermoelectric material and a cooling function on the low temperature side of the element. Therefore, the material of the conductive plate is preferably a material having lower electrical resistance and higher thermal conductivity than the thermoelectric material. As a material for a general conductive plate having such characteristics, a metal is suitable, and examples thereof include aluminum, copper, gold, silver, nickel, and platinum. Further, as the most preferable metal material, copper and Aluminum is exemplified. However, the present invention is not limited to these materials, and any material equivalent or similar to these materials can be used in the same manner.

本発明では、導電性板は、一対の素子の接合端部に設置される。導電性板と熱電材料との接合は、電気的な抵抗を抑えるために、直接接合することが好ましい。それらの接合には、例えば、パルス電流を印加しながら加圧を行うことにより、接触部での局所加熱と固相拡散を利用した接合技術などを利用することができる。また、接合材を利用して導電性板と熱電材料を接合することも可能であり、その場合、接合材としては、熱電材料や導電性板より電気抵抗の小さな材料を利用することも可能である。   In the present invention, the conductive plate is installed at the joining end of the pair of elements. The conductive plate and the thermoelectric material are preferably joined directly to suppress electrical resistance. For the joining, for example, by applying pressure while applying a pulse current, a joining technique using local heating and solid phase diffusion at the contact portion can be used. It is also possible to bond the conductive plate and the thermoelectric material using a bonding material. In this case, it is also possible to use a material having a lower electrical resistance than the thermoelectric material or the conductive plate as the bonding material. is there.

銀ペーストやハンダなどは、有効な接合材であるが、本発明は、これらに限定されるものではない。本発明では、接合方法及び手段は特に制限されるものではなく、任意の方法及び手段が用いられる。熱電材料は、一般に脆い材料である場合が多く、p型熱電材料とn型熱電材料を接合しても強度が出ない場合が多い。本発明のように、p型熱電材料とn型熱電材料の間に導電性板を挟むことで、熱電材料間の接合が強固となり、一対の熱電素子の強度が高くなり、素子のハンドリングが容易になるという利点が得られる。   Silver paste, solder, and the like are effective bonding materials, but the present invention is not limited to these. In the present invention, the joining method and means are not particularly limited, and arbitrary methods and means are used. In general, thermoelectric materials are often brittle materials, and even when p-type thermoelectric materials and n-type thermoelectric materials are joined, there is often no strength. As in the present invention, by sandwiching a conductive plate between a p-type thermoelectric material and an n-type thermoelectric material, the junction between the thermoelectric materials is strengthened, the strength of the pair of thermoelectric elements is increased, and the elements are easily handled. The advantage of becoming.

導電性板は、素子の接合端部に設置され、しかも素子からはみ出すように接合することが必要、かつ重要である。これは、導電性板が、p型熱電材料とn型熱電材料との電気的な接合と、フィンとしての冷却の両機能を担うためである。本発明において、導電性板が素子の外部にまで続く構造を有する、とは、導電性板が、素子の接合端部に設置され、素子からはみ出すように接合されていることを意味する。導電性板が素子からはみ出す量については特に規定しないが、冷却効果の出る大きさ、及び形状であれば問題はなく、素子の導電性板による挟持の形状及び構造は任意に設計することができる。素子からはみ出した部分は、風などを受けて、放熱を行い、熱電素子の低温側の温度を低くする。熱電素子からはみ出した導電性板の表面については、安全などの観点から、絶縁処理として、樹脂などのコーティングや酸化処理、塗装などを行うことが可能である。   It is necessary and important that the conductive plate is installed at the joining end portion of the element and joined so as to protrude from the element. This is because the conductive plate has both functions of electrical bonding between the p-type thermoelectric material and the n-type thermoelectric material and cooling as a fin. In the present invention, the phrase “the conductive plate has a structure extending to the outside of the element” means that the conductive plate is installed at the joining end portion of the element and joined so as to protrude from the element. The amount of the conductive plate protruding from the element is not particularly specified, but there is no problem as long as the cooling effect has a size and shape, and the shape and structure of the element sandwiched by the conductive plate can be arbitrarily designed. . The portion that protrudes from the element receives heat and radiates heat to lower the temperature on the low temperature side of the thermoelectric element. From the viewpoint of safety and the like, the surface of the conductive plate protruding from the thermoelectric element can be subjected to coating such as resin, oxidation treatment, or painting as an insulation treatment.

熱電材料の形状は、特に指定しないが、素子の高温側の熱が熱電材料へ効率的に伝わる形状であることが好ましい。そのため、熱電材料における高温側の面積が大きいものが好ましい。素子の低温側は、導電性板による冷却効果により強制的に冷却されるため、面積が小さくても熱電材料内での温度勾配を大きくとることができる。また、熱電材料の高温側には、熱源との接触を向上させるために、例えば、熱伝導シートとして市販されている軟質の樹脂シートや熱伝導グリースなどを利用することが可能である。   The shape of the thermoelectric material is not particularly specified, but it is preferably a shape in which heat on the high temperature side of the element is efficiently transmitted to the thermoelectric material. Therefore, a thermoelectric material having a large area on the high temperature side is preferable. Since the low temperature side of the element is forcibly cooled by the cooling effect by the conductive plate, a large temperature gradient in the thermoelectric material can be obtained even if the area is small. Further, on the high temperature side of the thermoelectric material, in order to improve the contact with the heat source, it is possible to use, for example, a soft resin sheet or a heat conductive grease commercially available as a heat conductive sheet.

更に、熱電材料は、導電性材料であるため、熱電材料内に気孔や熱伝導性の低い粒子、例えば、セラミックス粒子、中空無機粒子、又は樹脂粒子などを複合化しても電気的な接合は変化しない。そのため、本発明においては、熱電材料の中に、これらの気孔や粒子を複合化することができる。導電性板との接合は、これらを含まない熱電材料の場合と同じ方法及び手段で接合することができる。   Furthermore, since the thermoelectric material is a conductive material, the electrical bonding changes even if pores or particles with low thermal conductivity, such as ceramic particles, hollow inorganic particles, or resin particles, are combined in the thermoelectric material. do not do. Therefore, in the present invention, these pores and particles can be compounded in the thermoelectric material. Bonding to the conductive plate can be performed by the same method and means as in the case of a thermoelectric material that does not include these.

一対の熱電材料の間に導電性板を挟むことで、1つの熱電素子内に効率的な温度差をつけることが可能であり、それにより、1つの熱電素子の性能を向上させることができる。そのため、熱源の形状が曲率を有するような複雑形状の場合でも、複数の熱電素子を効率的に配置することによって、効率的な発電を行うことが可能となる。また、本発明では、導電性板の方向を素子ごとに変えることができるため、限られた高熱面において、風向を考慮した熱電素子の配置を行うことができる。また、本発明では、上記熱電変換素子を組み合わせて熱電変換モジュールを構築し、提供することができる。更に、本発明では、上記熱電変換素子を用いて空冷フィン等の放熱部材を構築し、提供することができる。   By sandwiching a conductive plate between a pair of thermoelectric materials, it is possible to make an efficient temperature difference in one thermoelectric element, thereby improving the performance of one thermoelectric element. Therefore, even when the shape of the heat source is a complicated shape having a curvature, efficient power generation can be performed by efficiently arranging a plurality of thermoelectric elements. In the present invention, since the direction of the conductive plate can be changed for each element, it is possible to arrange the thermoelectric elements in consideration of the wind direction on a limited high heat surface. In the present invention, a thermoelectric conversion module can be constructed and provided by combining the thermoelectric conversion elements. Furthermore, in this invention, heat radiating members, such as an air cooling fin, can be constructed | assembled and provided using the said thermoelectric conversion element.

本発明により、次のような効果が奏される。
(1)本発明により、内燃機関や燃焼、化学変化に伴って発生する熱を、限られた空間で電気へ効率的に変換できる熱電変換素子を提供することができる。これは、廃熱として捨てられている熱エネルギーを再利用することにつながる。
(2)これまで材料の特性のみに依存してきた熱電発電に対して、素子の形状及び構造により実効的なエネルギー変換効率を改善することが可能となり、より実用に近い形状及び構造での熱電発電モジュールを設計することができる。
(3)熱電材料は、1つの素子から発生する起電力が小さいため、微小な素子を多数組み合わせたモジュールで利用するものが多いが、そのために、従来のモジュールのサイズは必然的に大きくなっている。また、従来のモジュールは、振動や衝撃によりモジュールを構成する素子の一部が欠損してもモジュール全体を交換する必要があり、経済的ではない。本発明では、一対の素子に冷却機能を付与して安定的に高出力を生成する構造を実現しているため、モジュールにトラブルが生じても素子のみを交換することにより性能を回復することができる。
(4)冷却機構には、風を利用することができ、また、熱源の形状によらず最適な素子配置を実現することが可能であり、それにより効率的な発電を行うことができる。
(5)一対の素子に高温側と低温側をつなげることができるため、熱源に密着させて発電を行うことができる。そのため、熱源の形状が複雑であっても、効率的な発電を行うことができる。
The following effects are exhibited by the present invention.
(1) According to the present invention, it is possible to provide a thermoelectric conversion element that can efficiently convert heat generated in accordance with an internal combustion engine, combustion, and chemical change into electricity in a limited space. This leads to reuse of thermal energy that has been discarded as waste heat.
(2) Compared to thermoelectric power generation that has depended only on the properties of the material so far, it is possible to improve the effective energy conversion efficiency by the shape and structure of the element, and thermoelectric power generation with a shape and structure that is closer to practical use. Modules can be designed.
(3) Thermoelectric materials have a small electromotive force generated from one element, and are therefore often used in modules in which a large number of minute elements are combined. However, the size of conventional modules is inevitably increased. Yes. Further, the conventional module is not economical because it is necessary to replace the entire module even if a part of the elements constituting the module is lost due to vibration or impact. In the present invention, a cooling function is imparted to a pair of elements to realize a structure that stably generates high output. Therefore, even if a trouble occurs in a module, performance can be recovered by replacing only the elements. it can.
(4) Wind can be used for the cooling mechanism, and an optimal element arrangement can be realized regardless of the shape of the heat source, whereby efficient power generation can be performed.
(5) Since a high temperature side and a low temperature side can be connected to a pair of elements, power generation can be performed while being in close contact with a heat source. Therefore, even if the shape of the heat source is complicated, efficient power generation can be performed.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

p型熱電材料としてFe−24.7at%V−26at%Alを、n型熱電材料としてFe−25at%V−23.5at%Al−1.5at%Siを、底辺が5mm、高さが15mm、奥行きが3mmとなる直角三角形を断面とする角柱形状にそれぞれ成形し、これらの接合端部に厚みが0.5mmで15mm×3mmの銅板を銀ペーストで接合し、熱電変換素子を作製した。銅板は、素子の端部より12mmはみ出した形状となっているように設置した。この素子を100℃の熱源の上に設置した。   Fe-24.7at% V-26at% Al as p-type thermoelectric material, Fe-25at% V-23.5at% Al-1.5at% Si as n-type thermoelectric material, base 5mm, height 15mm Each was formed into a prismatic shape having a cross section of a right triangle having a depth of 3 mm, and a copper plate having a thickness of 0.5 mm and a thickness of 15 mm × 3 mm was joined to these joining end portions with a silver paste to produce a thermoelectric conversion element. The copper plate was installed so that it protruded 12 mm from the end of the element. This element was placed on a 100 ° C. heat source.

得られた素子は、高温側と低温側で7℃の温度差を生じており、銅板が素子の端部からはみ出していない形状で同じ組成の熱電素子に比して1.6倍の起電力を生成した。   The obtained element has a temperature difference of 7 ° C. between the high temperature side and the low temperature side, and the electromotive force is 1.6 times that of the thermoelectric element having the same composition with the copper plate not protruding from the end of the element. Was generated.

p型熱電材料としてFe−24.7at%V−26at%Alを、n型熱電材料としてFe−25at%V−23.5at%Al−1.5at%Siを、底辺が5mm、高さが15mm、奥行きが3mmとなる直角三角形を断面とする角柱形状にそれぞれ成形し、これらの接合端部に厚みが0.5mmで15mm×3mmの銅板を銀ペーストで接合し、熱電変換素子を作製した。銅板は、素子の端部より12mmはみ出した形状となっているように設置した。この素子を100℃の熱源の上に設置した。   Fe-24.7at% V-26at% Al as p-type thermoelectric material, Fe-25at% V-23.5at% Al-1.5at% Si as n-type thermoelectric material, base 5mm, height 15mm Each was formed into a prismatic shape having a cross section of a right triangle having a depth of 3 mm, and a copper plate having a thickness of 0.5 mm and a thickness of 15 mm × 3 mm was joined to these joining end portions with a silver paste to produce a thermoelectric conversion element. The copper plate was installed so that it protruded 12 mm from the end of the element. This element was placed on a 100 ° C. heat source.

得られた素子に空気を1m/sにて送り、銅板の面に垂直に当てた。その結果、高温側と低温側で9℃の温度差を発生し、実施例1の熱電素子に比して3.5倍の起電力を生成した。   Air was sent to the obtained element at 1 m / s and applied perpendicularly to the surface of the copper plate. As a result, a temperature difference of 9 ° C. was generated between the high temperature side and the low temperature side, and an electromotive force 3.5 times that of the thermoelectric element of Example 1 was generated.

p型熱電材料としてFe−24.7at%V−26at%Alを、n型熱電材料としてFe−25at%V−23.5at%Al−1.5at%Siを、底辺が5mm、高さが15mm、奥行きが3mmとなる直角三角形を断面とする角柱形状にそれぞれ成形し、これらの接合端部に厚みが0.5mmで15mm×3mmのアルミニウム板を通電により直接接合し、熱電変換素子を作製した。アルミニウム板は、素子の端部より12mmはみ出した形状となっているように設置した。この素子を100℃の熱源の上に設置した。   Fe-24.7at% V-26at% Al as p-type thermoelectric material, Fe-25at% V-23.5at% Al-1.5at% Si as n-type thermoelectric material, base 5mm, height 15mm Each was formed into a prismatic shape with a cross section of a right triangle having a depth of 3 mm, and an aluminum plate having a thickness of 0.5 mm and a thickness of 15 mm × 3 mm was directly joined to these joining end portions by energization to produce a thermoelectric conversion element. . The aluminum plate was installed so that it protruded 12 mm from the end of the element. This element was placed on a 100 ° C. heat source.

得られた素子は、高温側と低温側で9℃の温度差が生じており、実施例1の熱電素子に比して1.2倍の起電力を生成した。   The obtained element had a temperature difference of 9 ° C. between the high temperature side and the low temperature side, and generated an electromotive force 1.2 times that of the thermoelectric element of Example 1.

p型熱電材料としてFe−24.7at%V−26at%Alを、n型熱電材料としてFe−25at%V−23.5at%Al−1.5at%Siを、底辺が5mm、高さが15mm、奥行きが3mmとなる直角三角形を断面とする角柱形状にそれぞれ成形し、これらの接合端部に厚みが0.5mmで15mm×3mmの銅板を銀ペーストで接合し、熱電変換素子を作製した。銅板は、素子の端部より12mmはみ出した形状となっているように設置した。この素子を150℃の熱源の上に設置した。   Fe-24.7at% V-26at% Al as p-type thermoelectric material, Fe-25at% V-23.5at% Al-1.5at% Si as n-type thermoelectric material, base 5mm, height 15mm Each was formed into a prismatic shape having a cross section of a right triangle having a depth of 3 mm, and a copper plate having a thickness of 0.5 mm and a thickness of 15 mm × 3 mm was joined to these joining end portions with a silver paste to produce a thermoelectric conversion element. The copper plate was installed so that it protruded 12 mm from the end of the element. This element was placed on a heat source at 150 ° C.

得られた素子に空気を1m/sにて送り、銅板の面に垂直に当てた。その結果、高温側と低温側で15℃の温度差を発生し、実施例2の熱電素子に比して約1.2倍の起電力を生成した。熱源の温度が高くなると、出力が大きくなることが分かった。   Air was sent to the obtained element at 1 m / s and applied perpendicularly to the surface of the copper plate. As a result, a temperature difference of 15 ° C. was generated between the high temperature side and the low temperature side, and an electromotive force about 1.2 times that of the thermoelectric element of Example 2 was generated. It has been found that the output increases as the temperature of the heat source increases.

以上詳述したように、本発明は、空冷機能を利用した熱電変換素子に係るものであり、本発明により、熱源の形状に依存せず、自由に配置することができる熱電変換素子を提供できる。また、本発明の熱電変換素子は、素子ごとに冷却機能を有しているため、熱源に密着させて素子を配置することができる。本発明は、熱電発電素子の新しい構造を提供するものであり、本発明の素子を利用することにより、素子の大型化あるいは小型化に柔軟に対応することができる。これにより、限られた空間しかない熱源に対しても効率的な熱電変換を実現することができる。また、素子の破損時にも破損部分の素子のみを交換すれば性能を復元することができ、経済的である。本発明の熱電変換素子は、振動や衝撃が付与される移動体において好適に利用されるものであり、自動車や二輪車への利用が高く期待される。本発明の熱電変換素子を、従来の放熱部材(空冷フィン)の代替材料として利用することで、大きな設計変更なしにエネルギーの効率的な利用が実現できる。また、本発明の熱電変換素子は、二輪車や自動車などの内燃機関と同じ構造を有している発電機などへの転用も比較的容易である。   As described above in detail, the present invention relates to a thermoelectric conversion element using an air cooling function, and according to the present invention, it is possible to provide a thermoelectric conversion element that can be freely arranged without depending on the shape of the heat source. . In addition, since the thermoelectric conversion element of the present invention has a cooling function for each element, the element can be disposed in close contact with a heat source. The present invention provides a new structure of a thermoelectric power generation element, and by using the element of the present invention, it is possible to flexibly cope with an increase in size or size of the element. Thereby, efficient thermoelectric conversion can be realized even for a heat source having a limited space. Further, even when the element is damaged, if only the damaged part is replaced, the performance can be restored, which is economical. The thermoelectric conversion element of the present invention is suitably used in a moving body to which vibration or impact is applied, and is expected to be highly used for automobiles and motorcycles. By using the thermoelectric conversion element of the present invention as an alternative material for the conventional heat dissipating member (air-cooling fin), efficient use of energy can be realized without major design changes. In addition, the thermoelectric conversion element of the present invention can be relatively easily converted to a generator having the same structure as an internal combustion engine such as a motorcycle or an automobile.

熱電素子の形状を示す。The shape of a thermoelectric element is shown. 熱電素子の表面温度分布(実施例2と実施例3の比較)を示す。The surface temperature distribution (comparison of Example 2 and Example 3) of a thermoelectric element is shown. 熱電素子の表面温度分布(実施例4)を示す。The surface temperature distribution (Example 4) of a thermoelectric element is shown.

符号の説明Explanation of symbols

(図1の符号)
1 導電性板
2 p型熱電材料
3 n型熱電材料
(Reference in FIG. 1)
1 conductive plate 2 p-type thermoelectric material 3 n-type thermoelectric material

Claims (9)

空冷機能を付与した熱電変換素子の構造において、(1)p型とn型熱電材料の接合端部に導電性板が挟持されている、(2)その導電性板が素子の外部にまで続く構造を有する、(3)それにより、熱電材料の接合端部の導電性板が冷却板の機能を有する、ことを特徴とする熱電変換素子。   In the structure of a thermoelectric conversion element provided with an air cooling function, (1) a conductive plate is sandwiched between the junction ends of the p-type and n-type thermoelectric materials, and (2) the conductive plate continues to the outside of the element. (3) Thereby, the electroconductive plate of the junction end part of a thermoelectric material has the function of a cooling plate, The thermoelectric conversion element characterized by the above-mentioned. 導電性板が、一対のp−n型熱電素子とのみ接合されている、請求項1記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the conductive plate is bonded only to the pair of pn-type thermoelectric elements. 導電性板が、金属からなる、請求項1又は2記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the conductive plate is made of metal. 導電性板の材料が、熱電変換素子より電気抵抗が低く、熱伝導性が高い材料である、請求項3記載の熱電変換素子。   The thermoelectric conversion element according to claim 3, wherein the material of the conductive plate is a material having lower electrical resistance and higher thermal conductivity than the thermoelectric conversion element. p型あるいはn型素子が、金属あるいは金属間化合物で構成されている、請求項1又は2記載の熱電変換素子。   The thermoelectric conversion element according to claim 1 or 2, wherein the p-type or n-type element is composed of a metal or an intermetallic compound. 導電性板と熱電素子が直接接合されている、請求項1又は2記載の熱電変換素子。   The thermoelectric conversion element according to claim 1 or 2, wherein the conductive plate and the thermoelectric element are directly joined. 熱電素子から外部にはみ出した導電性板の表面が、絶縁処理されている、請求項1記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein a surface of the conductive plate protruding outside from the thermoelectric element is subjected to insulation treatment. 請求項1から7のいずれかに記載の熱電変換素子を組み合わせてなることを特徴とする熱電変換モジュール。   A thermoelectric conversion module comprising a combination of the thermoelectric conversion elements according to claim 1. 請求項1から8のいずれかに記載の熱電変換素子又は熱電変換モジュールからなることを特徴とする放熱部材。   A heat dissipating member comprising the thermoelectric conversion element or thermoelectric conversion module according to claim 1.
JP2005371921A 2005-12-26 2005-12-26 Thermoelectric conversion element using air cooling function Expired - Fee Related JP4883606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371921A JP4883606B2 (en) 2005-12-26 2005-12-26 Thermoelectric conversion element using air cooling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371921A JP4883606B2 (en) 2005-12-26 2005-12-26 Thermoelectric conversion element using air cooling function

Publications (2)

Publication Number Publication Date
JP2007173688A true JP2007173688A (en) 2007-07-05
JP4883606B2 JP4883606B2 (en) 2012-02-22

Family

ID=38299811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371921A Expired - Fee Related JP4883606B2 (en) 2005-12-26 2005-12-26 Thermoelectric conversion element using air cooling function

Country Status (1)

Country Link
JP (1) JP4883606B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263382A (en) * 1989-04-17 1991-11-22 Nippondenso Co Ltd Thermoelectric conversion device
JPH0697512A (en) * 1992-09-16 1994-04-08 Sumitomo Special Metals Co Ltd Thermoelectric conversion element
JPH0945967A (en) * 1995-07-27 1997-02-14 Paloma Ind Ltd Series thermocouple
JPH1168177A (en) * 1997-08-26 1999-03-09 Matsushita Electric Works Ltd Manufacturing thermoelectric converter module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263382A (en) * 1989-04-17 1991-11-22 Nippondenso Co Ltd Thermoelectric conversion device
JPH0697512A (en) * 1992-09-16 1994-04-08 Sumitomo Special Metals Co Ltd Thermoelectric conversion element
JPH0945967A (en) * 1995-07-27 1997-02-14 Paloma Ind Ltd Series thermocouple
JPH1168177A (en) * 1997-08-26 1999-03-09 Matsushita Electric Works Ltd Manufacturing thermoelectric converter module

Also Published As

Publication number Publication date
JP4883606B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US20080023057A1 (en) Thermoelectric Conversion Module, and Thermoelectric Power Generating Device and Method, Exhaust Heat Recovery System, Solar Heat Utilization System, and Peltier Cooling and Heating System, Provided Therewith
US20170250334A1 (en) Thermo-compression bonding of thermoelectric materials
US20140261607A1 (en) Thermoelectric Module with Flexible Connector
JP6094136B2 (en) Thermoelectric conversion element assembly, thermoelectric conversion module and manufacturing method thereof
US8841540B2 (en) High temperature thermoelectrics
JP4663469B2 (en) Heat exchanger
US20140305481A1 (en) Thermoelectric generator to engine exhaust manifold assembly
JP2009087955A (en) Waste heat recovery system having thermoelectric conversion system
JP2002325470A (en) Automotive thermoelectric power generating device
JP2015095545A (en) Semiconductor module and manufacturing method of the same
JP5695612B2 (en) Thermoelectric module and method for manufacturing thermoelectric module
JPWO2017183300A1 (en) Semiconductor laser device and manufacturing method thereof
WO2006043402A1 (en) Thermoelectric conversion module
JP4524382B2 (en) Thermoelectric power generation elements that are subject to temperature differences
JP2007035907A (en) Thermoelectric module
JP2008177356A (en) Thermoelectric power generation element
JP4883606B2 (en) Thermoelectric conversion element using air cooling function
JP2016157843A (en) Thermoelectric conversion device
CN107078203B (en) Thermo-electric conversion module
JP2003234516A (en) Thermoelectric module
US10897001B2 (en) Thermoelectric conversion module
JP2003179273A (en) Thermoelectric converting device
JP2018093152A (en) Thermoelectric power generation device
JP4961398B2 (en) Semiconductor device
JP2007135372A (en) Ac power generator for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees