JP2003179273A - Thermoelectric converting device - Google Patents

Thermoelectric converting device

Info

Publication number
JP2003179273A
JP2003179273A JP2001376961A JP2001376961A JP2003179273A JP 2003179273 A JP2003179273 A JP 2003179273A JP 2001376961 A JP2001376961 A JP 2001376961A JP 2001376961 A JP2001376961 A JP 2001376961A JP 2003179273 A JP2003179273 A JP 2003179273A
Authority
JP
Japan
Prior art keywords
heat
module
metal particles
thermoelectric conversion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001376961A
Other languages
Japanese (ja)
Inventor
Chiaki Matsubara
千彰 松原
Muhammad Enamul Kabiru
ムハマド エナムル カビル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001376961A priority Critical patent/JP2003179273A/en
Publication of JP2003179273A publication Critical patent/JP2003179273A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermoelectric converting device which is reducible in the contact thermal resistance of even a module with a different module thickness and can have its thermoelectric conversion efficiency improved on the whole. <P>SOLUTION: The thermoelectric converting device comprises a module which is equipped with electrodes 5 on high-temperature and low-temperature sides respectively and has a plurality of pairs of P-type semiconductors and N-type semiconductor arranged alternately on one-flank sides of the electrode and a heat-resisting insulator 4 arranged on the other flank sides of the electrodes and a heat-conductive plate for heat exchange joined with the heat-resisting insulator of the module across heat-conductive grease 1, and a plurality of metal particles 2 of particle sizes each larger than the maximum interval between the heat-conductive insulator 4 and heat-conductive plate 3 are mixed with the heat-conductive grease 1. Further, a fibriform metal net of a wire size larger than the maximum interval between the heat-resisting insulator and heat-conductive plate may be mixed instead of the metal particles. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱電変換装置に関
し、特に熱交換器の伝熱板と熱電変換素子との接触部の
熱抵抗の低下による、熱伝達性能の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion device, and more particularly to improvement of heat transfer performance by reducing the thermal resistance of a contact portion between a heat transfer plate of a heat exchanger and a thermoelectric conversion element.

【0002】[0002]

【従来の技術】熱電変換は、2種の異なる金属やP型、N
型の2種の半導体からなる熱電変換素子により、熱エネ
ルギーを電気エネルギーへ直接変換するゼーベック効果
や電気エネルギーを熱エネルギーへ変換するペルチェ効
果が知られている。これらは、可動部分が無いためメン
テナンスや騒音対策を必要とせず、長期運転が可能であ
る等の特徴がある。この特徴を生かして冷蔵、冷凍や自
動車、各種エンジン等の排ガスからの電力回収に利用さ
れている。この熱電変換装置の一例を図2に示す。これ
は、P型半導体およびN型半導体からなるそれぞれの熱電
変換素子7は電極5にはんだ(図示せず)を介して接続
され、電極5はセラミックスなどの耐熱性絶縁板4に接
着、固定されている。耐熱性絶縁板4の背面側には金属
材料などにより形成された熱交換器の伝熱板3が熱伝導
グリース1を用いて接合されている。このような熱電変
換装置においては、熱電変換素子と熱交換器の伝熱板と
の間の熱抵抗が少ないことが望まれる。上述の構成で
は、熱抵抗を少なくするために、耐熱性絶縁板の厚みを
薄くしても、機械的強度のために薄くするには限度があ
る。熱抵抗を低減するための改良として、熱伝導性グリ
ースに粉末状セラミックスを配合して、耐熱性絶縁物を
排し、その代わりに粉末状セラミックスにより絶縁を保
つ構成のものがある(特開平11-168245)。
2. Description of the Related Art Thermoelectric conversion uses two different metals, P type and N type.
The Seebeck effect of directly converting thermal energy into electric energy and the Peltier effect of converting electric energy into thermal energy are known by thermoelectric conversion elements composed of two types of semiconductors. Since these have no moving parts, they do not require maintenance or noise countermeasures and can be operated for a long period of time. Utilizing this feature, it is used for refrigeration, freezing, and electric power recovery from exhaust gas from automobiles, various engines, and the like. An example of this thermoelectric conversion device is shown in FIG. This is because each thermoelectric conversion element 7 made of a P-type semiconductor and an N-type semiconductor is connected to an electrode 5 via a solder (not shown), and the electrode 5 is bonded and fixed to a heat resistant insulating plate 4 such as ceramics. ing. A heat transfer plate 3 of a heat exchanger formed of a metal material or the like is bonded to the back side of the heat resistant insulating plate 4 by using a heat conductive grease 1. In such a thermoelectric conversion device, it is desired that the thermal resistance between the thermoelectric conversion element and the heat transfer plate of the heat exchanger is small. In the above-mentioned configuration, even if the thickness of the heat resistant insulating plate is reduced in order to reduce the thermal resistance, there is a limit to the reduction in thickness due to the mechanical strength. As an improvement for reducing the thermal resistance, there is a composition in which a powdery ceramics is blended with a heat conductive grease to remove a heat resistant insulating material, and instead the powdery ceramics maintains insulation. -168245).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、通常の
製造においてもモジュール厚にはバラツキがある。上記
従来の熱電変換装置においては、図2に示すモジュール
Aの厚みL1とモジュールBの厚みL2が異なる。高温側の
伝熱板3と低温側の伝熱板3′はモジュールを介して機
械的に固定されているが、モジュール厚みの大きいもの
は伝熱板と直接接触するが、モジュール厚の薄いものは
熱伝導グリース層を介して浮いた状態で固定されること
になる。熱電発電装置ではモジュール厚みにバラツキが
ある複数のモジュールを配置するが、そのときに発生す
る問題点を図3で説明する。図3は、一例として8個の
モジュールを設定した場合を示したものである。モジュ
ール11を伝熱板10で取付ねじ12で設定した場合を
上面から見た図である。図3で伝熱板10の平面度やモ
ジュール厚みにより、モジュールと伝熱板が機械的に接
触するのは数個のモジュール(ハッチングで示す1−
3、2−1、2−4)に限られることを模式的に示して
いる。接触しないモジュールは機械的な締め付け圧力が
かからない状態で、熱伝導グリースを介して設定されて
いる。図4に伝熱板とモジュールの接触圧力とその接触
部の熱抵抗の関係を示す。接触圧力が上昇するとともに
接触部熱抵抗は指数関数的に低減する。最適な接触圧力
は接触部熱抵抗がほぼ一定となるC点領域が最適であ
る。上記の機械的な締め付け圧力がかからない状態で設
定されたモジュールの熱抵抗は大きくなり、ひいては装
置全体の熱変換効率低下へ大きく影響するという問題点
があった。熱抵抗低下を目的にした開示例(特開平11-1
68245)では、熱伝導性グリースに粉末状セラミックス
を配合して、耐熱性絶縁物を排し、その代わりに粉末状
セラミックスにより絶縁する構成であるが、耐熱性絶縁
物を排した分の熱抵抗を低減できるが、バラツキのある
複数のモジュールへ接触圧力をかけると、厚みの大きい
モジュールの熱伝導性グリースに配合された粉末状セラ
ミックスは機械的に破壊する問題が残った。そこで、本
発明の目的は、モジュール厚みの異なるモジュールにも
適切な接触圧力を付与することにより、接触熱抵抗が低
減でき、装置全体の熱変換効率を向上することができる
熱電変換装置を提供することである。
However, there are variations in module thickness even in normal manufacturing. In the above conventional thermoelectric conversion device, the thickness L1 of the module A and the thickness L2 of the module B shown in FIG. 2 are different. The heat transfer plate 3 on the high temperature side and the heat transfer plate 3'on the low temperature side are mechanically fixed through the module. A large module thickness directly contacts the heat transfer plate, but a thin module thickness Will be fixed in a floating state via the heat conductive grease layer. In a thermoelectric power generator, a plurality of modules having variations in module thickness are arranged. The problem that occurs at that time will be described with reference to FIG. FIG. 3 shows a case where eight modules are set as an example. It is the figure which looked at the case where module 11 was set up with heat transfer plate 10 with attachment screw 12, from the upper surface. In FIG. 3, due to the flatness of the heat transfer plate 10 and the module thickness, the modules and the heat transfer plate are in mechanical contact with each other in several modules (hatched 1-
3, 2-1, 2-4) is schematically shown. Non-contacting modules are set via thermal grease with no mechanical clamping pressure. FIG. 4 shows the relationship between the contact pressure between the heat transfer plate and the module and the thermal resistance of the contact portion. As the contact pressure increases, the contact thermal resistance decreases exponentially. The optimum contact pressure is optimum in the C point region where the thermal resistance of the contact part is almost constant. There has been a problem that the thermal resistance of the module set in a state where the above mechanical tightening pressure is not applied becomes large, which in turn has a great influence on the reduction of the heat conversion efficiency of the entire apparatus. A disclosed example for reducing the thermal resistance (Japanese Patent Laid-Open No. 11-1
68245) has a structure in which powdery ceramics is blended with the heat conductive grease to remove the heat-resistant insulating material, and instead the powdery ceramics is used for insulation. However, the heat resistance of the heat-resistant insulating material is eliminated. However, when a contact pressure is applied to a plurality of modules with variations, the powdery ceramics compounded in the thermally conductive grease of the module having a large thickness remains mechanically broken. Therefore, an object of the present invention is to provide a thermoelectric conversion device that can reduce the contact thermal resistance and improve the heat conversion efficiency of the entire device by applying an appropriate contact pressure to modules having different module thicknesses. That is.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明はつぎの構成にしている。 (1)高温側と低温側にそれぞれ電極を備え、前記電極の
一方側面に複数のP型半導体とN型半導体の対を交互に配
置し、前記電極の他方側面に耐熱性絶縁物を配したモジ
ュールと、前記モジュールの耐熱性絶縁物に熱伝導グリ
ースを介して接合した熱交換用の伝熱板とからなる熱電
変換装置において、前記熱伝導グリースに前記耐熱性絶
縁物と前記伝熱板との最大間隔より大きい粒径の金属粒
子を配合した構成にしたものである。本構成によれば、
厚みにバラツキがあっても、伝熱板とモジュールに最適
な接触圧力に設定することができるので熱抵抗を低下す
ることができる。すなわち、所要の熱抵抗に設定し、各
モジュールの接触部熱抵抗は均一化し、装置の全体の最
適な熱変換効率を得ることができる。 (2)前記金属粒子に代えて前記耐熱性絶縁物と前記伝熱
板との最大間隔より大きい線径よりなる繊維状の金属網
を配合したものである。本構成によれば、金属粒を最適
に配合する手間を省くとともに、熱電装置の組み立てを
容易にすることができる。 (3)前記金属粒子および前記金属網は、異なる複数の粒
径および金属網からなるものである。本構成によれば、
接触部の圧力により、伝熱板と耐熱性絶縁板との接触面
積を調整することができる。 (4)前記金属粒子および前記金属網の材質は、複数の種
類ものである。本構成によれば、材質により熱伝導率や
接触圧力を調整して最適な伝熱板と耐熱性熱絶縁板との
接触面積を調整できる。
In order to solve the above problems, the present invention has the following constitution. (1) An electrode is provided on each of the high temperature side and the low temperature side, a plurality of pairs of P-type semiconductors and N-type semiconductors are alternately arranged on one side surface of the electrode, and a heat resistant insulator is arranged on the other side surface of the electrode. In a thermoelectric conversion device comprising a module and a heat transfer plate for heat exchange joined to a heat resistant insulating material of the module via a heat conductive grease, the heat conductive grease and the heat resistant insulating material and the heat transfer plate. The composition is such that metal particles having a particle size larger than the maximum interval are mixed. According to this configuration,
Even if there are variations in thickness, the contact pressure can be set to an optimum value for the heat transfer plate and the module, so the thermal resistance can be reduced. That is, it is possible to set the required heat resistance, make the contact portion heat resistance of each module uniform, and obtain the optimum heat conversion efficiency of the entire apparatus. (2) Instead of the metal particles, a fibrous metal net having a wire diameter larger than the maximum distance between the heat resistant insulator and the heat transfer plate is blended. According to this configuration, it is possible to save the trouble of optimally blending the metal particles and facilitate the assembly of the thermoelectric device. (3) The metal particles and the metal net are composed of a plurality of different particle sizes and metal nets. According to this configuration,
The contact area between the heat transfer plate and the heat resistant insulating plate can be adjusted by the pressure of the contact portion. (4) The material of the metal particles and the metal mesh is of a plurality of types. According to this configuration, the thermal conductivity and the contact pressure can be adjusted depending on the material, and the optimum contact area between the heat transfer plate and the heat resistant heat insulating plate can be adjusted.

【0005】[0005]

【発明の実施の形態】本発明の実施形態の熱電変換装置
について図1に基づいて説明する。図1に示す符号は従
来例の図2と同じであり、異なる点は熱伝導グリース1
にモジュール厚みバラツキの最大値以上の粒径よりなる
金属粒2を配合している点である。本実施形態の熱電発
電装置においては、熱電素子7ははんだ6により電極5
に接続されており、電極5は耐熱性絶縁物4に設定され
てモジュールを形成している。モジュールの耐熱性絶縁
物4は熱交換器(図示せず)の伝熱板3と熱伝導グリー
ス1および前記グリースに含有された金属粒2を介して
機械的に固定されている。図1では、厚みの異なるモジ
ュールAとモジュールBを比較して示している。モジュ
ールAと伝熱板とのギャップg1、モジュールBと伝熱
板とのギャップg2はg1<g2の関係にある。伝熱板
とモジュールの機械的な設定により、金属粒2には圧力
がかかり、ギャップが小さい方の金属粒2は扁平に大き
く変形し、ギャップの大きい方の金属粒2はそれほど変
形することはないが、両者とも金属粒を介してモジュー
ルへ機械的圧力を伝達する。粒径はモジュール厚のバラ
ツキの最大値以上に選択しておけば、全てのモジュール
へ金属粒を介して圧力を印加することができる。このこ
とにより、図4のC点領域の接触圧力に設定することが
でき、所要の熱抵抗に設定し、各モジュールの接触部熱
抵抗は均一化し、装置の全体の最適な熱変換効率を得る
ことができる。また、従来の熱伝導グリースのみやグリ
ースにセラミックス粒を配合した方法に比べて、本案は
金属粒であるため、熱伝導が優れているため、接触部熱
抵抗を大幅に低減できる。なお、金属粒の材質は金、
銀、銅、アルミ、鉛、はんだ等であり、またその特性が
延性金属のみならず弾性金属でも良い。本発明の第2の
実施形態の熱電発電装置においては、前記熱伝導グリー
スに繊維状金属網を配合したもの(図示せず)で、第1
の実施例での金属粒を最適に配合する手間を省くととも
に、熱電装置の組み立てを容易にすることができる。本
発明の第3の実施の形態の熱電発電装置においては、前
記熱伝導グリースに複数の粒径の異なる金属粒子または
縦糸および横糸の線径の異なる金属網を配合したとこと
を特徴とする熱電変換装置であり、金属粒径や金属網の
線形の異なる組み合わせにすることにより、接触部の圧
力により、伝熱板と耐熱性絶縁板との接触面積を調整で
きるようにしたものである。本発明の第4の実施の形態
の熱電発電装置においては、熱伝導グリースに複数の材
質の異なる金属粒子または縦糸および横糸の材質の異な
る金属網を配合したとことにより、材質により熱伝導率
や接触圧力を調整して最適な伝熱板と耐熱性熱絶縁板と
の接触面積を調整できるようにしたものである。
BEST MODE FOR CARRYING OUT THE INVENTION A thermoelectric conversion device according to an embodiment of the present invention will be described with reference to FIG. The reference numerals shown in FIG. 1 are the same as those of the conventional example shown in FIG.
The point is that the metal particles 2 having a particle size equal to or larger than the maximum value of the module thickness variation are mixed. In the thermoelectric generator of the present embodiment, the thermoelectric element 7 is made of the solder 6 to form the electrode 5
And the electrode 5 is set to the heat resistant insulator 4 to form a module. The heat-resistant insulator 4 of the module is mechanically fixed via the heat transfer plate 3 of the heat exchanger (not shown), the heat conductive grease 1 and the metal particles 2 contained in the grease. In FIG. 1, module A and module B having different thicknesses are shown for comparison. The gap g1 between the module A and the heat transfer plate and the gap g2 between the module B and the heat transfer plate have a relationship of g1 <g2. Due to the mechanical setting of the heat transfer plate and the module, pressure is applied to the metal particles 2, the metal particles 2 with a smaller gap are deformed to a large flat shape, and the metal particles 2 with a larger gap are not significantly deformed. Although not, both transmit mechanical pressure to the module via the metal particles. If the particle size is selected to be equal to or larger than the maximum variation in module thickness, pressure can be applied to all modules via the metal particles. As a result, the contact pressure in the area C in FIG. 4 can be set, the required thermal resistance can be set, and the thermal resistance of the contact portion of each module can be made uniform to obtain the optimum heat conversion efficiency of the entire device. be able to. Further, compared with the conventional method of only using heat conductive grease or the method of mixing grease with ceramic particles, the present invention is excellent in heat conduction because it is a metal particle, so that the thermal resistance at the contact portion can be greatly reduced. The material of the metal particles is gold,
It may be silver, copper, aluminum, lead, solder, etc., and its characteristics may be not only ductile metal but also elastic metal. In the thermoelectric generator according to the second embodiment of the present invention, the heat conductive grease is blended with a fibrous metal mesh (not shown).
It is possible to save the trouble of optimally blending the metal particles in the above embodiment and facilitate the assembly of the thermoelectric device. In the thermoelectric power generator according to the third embodiment of the present invention, a plurality of metal particles having different particle diameters or metal nets having different warp and weft wire diameters are mixed with the heat conductive grease. This is a converter, which is a combination of metal particles having different particle diameters and linear shapes of metal meshes, so that the contact area between the heat transfer plate and the heat-resistant insulating plate can be adjusted by the pressure at the contact portion. In the thermoelectric generator of the fourth embodiment of the present invention, the heat conductive grease is mixed with metal particles of different materials or metal nets of different materials of warp and weft, so that the thermal conductivity and By adjusting the contact pressure, the optimum contact area between the heat transfer plate and the heat resistant heat insulating plate can be adjusted.

【0006】[0006]

【発明の効果】以上述べたように、本発明によればつぎ
の効果がある。 (1)熱伝導グリースに耐熱性絶縁物と伝熱板との最大間
隔より大きい粒径の金属粒子を配合したので、伝熱板と
モジュールに最適な接触圧力に設定することができ、所
要の熱抵抗に設定し、各モジュールの接触部熱抵抗は均
一化し、装置の全体の最適な熱変換効率を得ることがで
きる。 (2)前記金属粒子に代えて前記耐熱性絶縁物と前記伝熱
板との最大間隔より大きい線径よりなる繊維状の金属網
を配合したので、金属粒を最適に配合する手間を省くと
ともに、熱電装置の組み立てを容易にすることができ
る。 (3)前記金属粒子および前記金属網を、異なる複数の粒
径および異なる複数の金属網としたので、接触部の圧力
により、伝熱板と耐熱性絶縁板との接触面積を調整する
ことができる。 (4)前記金属粒子および前記金属網の材質を、複数の種
類からなるようにしたので、材質により熱伝導率や接触
圧力を調整して最適な伝熱板と耐熱性熱絶縁板との接触
面積を調整できる。
As described above, the present invention has the following effects. (1) Since the heat conductive grease is mixed with metal particles having a particle size larger than the maximum distance between the heat resistant insulator and the heat transfer plate, it is possible to set the optimum contact pressure for the heat transfer plate and the module. By setting the thermal resistance, the thermal resistance of the contact portion of each module is made uniform, and the optimum heat conversion efficiency of the entire device can be obtained. (2) In place of the metal particles, since a fibrous metal net having a wire diameter larger than the maximum distance between the heat-resistant insulator and the heat transfer plate is blended, it is possible to save the trouble of optimally blending the metal particles. , The thermoelectric device can be easily assembled. (3) Since the metal particles and the metal net are different particle sizes and different metal nets, the contact area between the heat transfer plate and the heat resistant insulating plate can be adjusted by the pressure of the contact portion. it can. (4) Since the material of the metal particles and the metal net is made of a plurality of types, the thermal conductivity and the contact pressure are adjusted depending on the material, so that the optimum contact between the heat transfer plate and the heat resistant heat insulating plate is achieved. The area can be adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の熱電変換装置を示す縦断面
FIG. 1 is a vertical cross-sectional view showing a thermoelectric conversion device according to an embodiment of the present invention.

【図2】従来の熱電変換装置の構成を示す縦断面図FIG. 2 is a vertical cross-sectional view showing the configuration of a conventional thermoelectric conversion device.

【図3】従来の熱電変換装置の組み立て状況を示す上面
FIG. 3 is a top view showing an assembled state of a conventional thermoelectric conversion device.

【図4】接触部熱抵抗と接触圧力を示す特性図FIG. 4 is a characteristic diagram showing contact portion thermal resistance and contact pressure.

【符号の説明】[Explanation of symbols]

1 熱伝導グリース 2 金属粒子 3 伝熱板 4 耐熱性絶縁物 5 電極 6 はんだ 7 熱電変換素子 8 端子 10 伝熱板 11 モジュール 12 取付ねじ g1、g2 ギャップ L1,L2 モジュール厚み 1 Thermal grease 2 metal particles 3 heat transfer plate 4 Heat resistant insulation 5 electrodes 6 Solder 7 Thermoelectric conversion element 8 terminals 10 heat transfer plate 11 modules 12 mounting screws g1, g2 gap L1, L2 module thickness

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高温側と低温側にそれぞれ電極を備え、前
記電極の一方側面に複数のP型半導体とN型半導体の対を
交互に配置し、前記電極の他方側面に耐熱性絶縁物を配
したモジュールと、前記モジュールの耐熱性絶縁物に熱
伝導グリースを介して接合した熱交換用の伝熱板とから
なる熱電変換装置において、 前記熱伝導グリースに前記耐熱性絶縁物と前記伝熱板と
の最大間隔より大きい粒径の金属粒子を複数配合したこ
とを特徴とする熱電変換装置。
1. A high temperature side and a low temperature side are respectively provided with electrodes, a plurality of pairs of P-type semiconductors and N-type semiconductors are alternately arranged on one side surface of the electrode, and a heat resistant insulator is provided on the other side surface of the electrode. In a thermoelectric conversion device comprising a module arranged and a heat transfer plate for heat exchange joined to a heat resistant insulator of the module via a heat conductive grease, the heat conductive grease and the heat transfer insulator are provided in the heat conductive grease. A thermoelectric conversion device comprising a plurality of metal particles having a particle size larger than the maximum distance from the plate.
【請求項2】 前記金属粒子に代えて前記耐熱性絶縁物
と前記伝熱板との最大間隔より大きい線径よりなる繊維
状の金属網を配合したとことを特徴とする熱電変換装
置。
2. A thermoelectric conversion device, characterized in that, instead of the metal particles, a fibrous metal net having a wire diameter larger than the maximum distance between the heat resistant insulator and the heat transfer plate is blended.
【請求項3】前記金属粒子および前記金属網は、異なる
複数の粒径および金属網からなることを特徴とする請求
項1または2記載の熱電変換装置。
3. The thermoelectric conversion device according to claim 1, wherein the metal particles and the metal net are composed of a plurality of different particle sizes and metal nets.
【請求項4】前記金属粒子および前記金属網の材質は、
複数の種類からなることを特徴とする請求項1または2
記載の熱電変換装置。
4. The material of the metal particles and the metal mesh is
It is composed of a plurality of types, and
The thermoelectric conversion device described.
JP2001376961A 2001-12-11 2001-12-11 Thermoelectric converting device Pending JP2003179273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376961A JP2003179273A (en) 2001-12-11 2001-12-11 Thermoelectric converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376961A JP2003179273A (en) 2001-12-11 2001-12-11 Thermoelectric converting device

Publications (1)

Publication Number Publication Date
JP2003179273A true JP2003179273A (en) 2003-06-27

Family

ID=19185043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376961A Pending JP2003179273A (en) 2001-12-11 2001-12-11 Thermoelectric converting device

Country Status (1)

Country Link
JP (1) JP2003179273A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216692A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Thermoelectric generation unit and thermoelectric generating method using the same
JP2012195441A (en) * 2011-03-16 2012-10-11 Hitachi Powdered Metals Co Ltd Thermoelectric conversion system and method for manufacturing the same
JP2012234969A (en) * 2011-04-28 2012-11-29 Jfe Steel Corp Thermoelectric power generation device and thermoelectric power generation method using the same
JP2012235673A (en) * 2011-10-14 2012-11-29 Jfe Steel Corp Thermoelectric generator and thermoelectric power generation method using the same
JP2014087241A (en) * 2012-10-26 2014-05-12 Jfe Steel Corp Thermoelectric power generation device and thermoelectric power generation method
JP2014514904A (en) * 2011-03-29 2014-06-19 ユーリ・フェリコヴィッチ・ヴェルニコフスキー Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
JP2016001990A (en) * 2015-07-07 2016-01-07 Jfeスチール株式会社 Thermoelectric generator and thermoelectric power generation method using the same
CN105634334A (en) * 2014-11-26 2016-06-01 现代自动车株式会社 Thermoelectric power generation apparatus
US10231899B2 (en) 2013-05-15 2019-03-19 Improvedance Foot stretcher

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216692A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Thermoelectric generation unit and thermoelectric generating method using the same
JP2012195441A (en) * 2011-03-16 2012-10-11 Hitachi Powdered Metals Co Ltd Thermoelectric conversion system and method for manufacturing the same
JP2014514904A (en) * 2011-03-29 2014-06-19 ユーリ・フェリコヴィッチ・ヴェルニコフスキー Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
JP2012234969A (en) * 2011-04-28 2012-11-29 Jfe Steel Corp Thermoelectric power generation device and thermoelectric power generation method using the same
JP2012235673A (en) * 2011-10-14 2012-11-29 Jfe Steel Corp Thermoelectric generator and thermoelectric power generation method using the same
JP2014087241A (en) * 2012-10-26 2014-05-12 Jfe Steel Corp Thermoelectric power generation device and thermoelectric power generation method
US10231899B2 (en) 2013-05-15 2019-03-19 Improvedance Foot stretcher
CN105634334A (en) * 2014-11-26 2016-06-01 现代自动车株式会社 Thermoelectric power generation apparatus
JP2016001990A (en) * 2015-07-07 2016-01-07 Jfeスチール株式会社 Thermoelectric generator and thermoelectric power generation method using the same

Similar Documents

Publication Publication Date Title
CN108140713B (en) Thermoelectric conversion module and thermoelectric conversion device
JP5160784B2 (en) Thermoelectric conversion element module
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
EP1807881A2 (en) Thermoelectric conversion module, thermoelectric power generating apparatus and method using same, exhaust heat recovery system, solar heat recovery system, and peltier cooling system
JP2003179273A (en) Thermoelectric converting device
JP5159264B2 (en) Thermoelectric device and thermoelectric module
JP2007035907A (en) Thermoelectric module
JP2016174114A (en) Thermoelectric conversion module
WO2017020833A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
JP3501394B2 (en) Thermoelectric conversion module
JPH11330568A (en) Thermoelectric power generation device and its manufacture
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
JP2003179274A (en) Thermoelectric converting device
EP1981095A2 (en) A peltier module
JP3472593B2 (en) Thermoelectric device
JPH04101472A (en) Cooler
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2000188429A (en) Thermo-electric conversion module
JP2010192776A (en) Structure of thick film type thermoelectric power generation module
JPH04249385A (en) Thermoelectric device
JP2002203993A (en) Substrate for thermoelectric modules and thermoelectric module using the substrate
JP3056047B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JPH08293628A (en) Thermoelectricity conversion device
JP2000091650A (en) High temperature thermoelectric transducer