JP2007168920A - Parts feeder - Google Patents

Parts feeder Download PDF

Info

Publication number
JP2007168920A
JP2007168920A JP2005364814A JP2005364814A JP2007168920A JP 2007168920 A JP2007168920 A JP 2007168920A JP 2005364814 A JP2005364814 A JP 2005364814A JP 2005364814 A JP2005364814 A JP 2005364814A JP 2007168920 A JP2007168920 A JP 2007168920A
Authority
JP
Japan
Prior art keywords
vibration
spring
component supply
supply device
support spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005364814A
Other languages
Japanese (ja)
Other versions
JP5011720B2 (en
Inventor
Shuichi Narukawa
修一 成川
Tetsuyuki Kimura
哲行 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP2005364814A priority Critical patent/JP5011720B2/en
Priority to TW101135285A priority patent/TWI490153B/en
Priority to TW095142811A priority patent/TWI389831B/en
Priority to KR1020060128986A priority patent/KR101244236B1/en
Priority to CN2006101693845A priority patent/CN1986358B/en
Publication of JP2007168920A publication Critical patent/JP2007168920A/en
Priority to HK07111606.6A priority patent/HK1106205A1/en
Application granted granted Critical
Publication of JP5011720B2 publication Critical patent/JP5011720B2/en
Priority to KR1020120150439A priority patent/KR101267924B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jigging Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parts feeder capable of enhancing the vibration-isolating efficiency, consistently conveying parts by reducing the height of the position of the center of gravity of a sprung mass, and reducing the height of the parts feeder itself. <P>SOLUTION: A base part 301 is arranged under a linear type parts feeder 300, a counterweight 302 is arranged thereon via a vibration-isolating leaf spring 390, and a piezoelectric type vibration unit 303 is further arranged thereon. A supporting spring 380 connected to the counterweight 302 and the piezoelectric type vibration unit, and the vibration-isolating leaf spring 390 connected to the base part 301 and the piezoelectric type vibration unit 303 are arranged in an overlapping manner in the vertical direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、部品を振動により移送することが可能な部品供給装置に関する。   The present invention relates to a component supply apparatus capable of transferring components by vibration.

従来、部品に対して振動を与えることにより、部品を整列させるとともに、部品の供給を行う部品供給装置の一つとしてパーツフィーダがよく知られている。このパーツフィーダは、部品に振動を与えることにより部品の姿勢を整え、次工程に供給することができる。   2. Description of the Related Art Conventionally, a parts feeder is well known as one of parts supply apparatuses that align parts by supplying vibration to the parts and supply the parts. This parts feeder can adjust the posture of the part by applying vibration to the part and supply it to the next process.

特許文献1には、高周波数駆動時であっても十分な振幅を確保するとともに振動発生手段に作用する応力を抑制し、振動発生手段の取り替えや共振周波数の変更及び調整を容易に行うことができる圧電駆動式パーツフィーダが開示されている。
国際公開第2004/067413号パンフレット
In Patent Document 1, it is possible to ensure sufficient amplitude even during high frequency driving and to suppress stress acting on the vibration generating means, and to easily change the vibration generating means and change and adjust the resonance frequency. A piezoelectric driven parts feeder is disclosed.
International Publication No. 2004/067413 Pamphlet

しかしながら、従来のパーツフィーダにおいては、ベース部、カウンターウェイト、可動部および搬送路を順に下から積み上げる構成となっていたため、支持ばねにおける揺動方向と防振用板ばねにおける揺動方向とが相反する方向となり均一な振動を搬送路に与えることができないという課題があった。以下、詳細について説明する。   However, in the conventional parts feeder, since the base portion, the counterweight, the movable portion, and the conveyance path are sequentially stacked from the bottom, the swinging direction of the support spring and the swinging direction of the vibration-proof leaf spring are contradictory. There is a problem that uniform vibration cannot be applied to the conveyance path. Details will be described below.

図10は従来のパーツフィーダ900の支持ばねにおける揺動方向と防振用板ばねにおける揺動方向とを説明するための模式図である。   FIG. 10 is a schematic diagram for explaining the swing direction of the support spring of the conventional parts feeder 900 and the swing direction of the vibration-proof leaf spring.

図10に示すように、可動部902とカウンターウェイト903とを接続する支持ばね980は、図中の矢印R1の方向に揺動する状態であるが、カウンターウェイト903とベース部901とを接続する防振用板ばね990は、図中の矢印R11の方向に揺動する状態であり、互いに曲げモードが逆位相となり、対向する方向に揺動していた。その結果、搬送路905における振動が安定せず、部品の搬送が停止したり、逆送されるという課題があった。   As shown in FIG. 10, the support spring 980 that connects the movable portion 902 and the counterweight 903 is in a state of swinging in the direction of the arrow R1 in the figure, but connects the counterweight 903 and the base portion 901. The anti-vibration leaf spring 990 is in a state of swinging in the direction of the arrow R11 in the figure, and the bending modes are opposite to each other, and swings in opposite directions. As a result, the vibration in the conveyance path 905 is not stable, and there is a problem that the conveyance of components stops or is reversely fed.

さらに、支持ばね980および防振用板ばね990を用いた部品供給装置では、直線状に支持ばね980および防振用板ばね990を配置させるため、部品供給装置のサイズ(図中H10)が大きくなっていた。 Further, in the component supply device using the support spring 980 and the vibration isolating plate spring 990, since the support spring 980 and the vibration isolating plate spring 990 are arranged linearly, the size of the component supply device (H 10 in the figure) is It was getting bigger.

また、特許文献1記載の部品供給装置に限らず、一般の支持ばねおよび防振用板ばねを用いた部品供給装置では、2種類のばねを使用するため、ばね上質量の重心位置と、防振用板ばねの支点との距離が大きくなり、搬送部品の不安定、斜め搬送、滞留、または部品供給装置の駆動不安定性、横揺れが生じる。   Further, not only the component supply device described in Patent Document 1, but also a general component supply device using a support spring and an anti-vibration leaf spring uses two types of springs. The distance from the fulcrum of the vibration plate spring becomes large, and unstable parts of the conveying parts, oblique conveying, staying, driving instability of the parts supplying device, and rolling occur.

本発明の目的は、防振効率を向上させるとともに、ばね上質量の重心位置の高さを低くして安定した部品の搬送および部品供給装置自体の低背化を実現することができる部品供給装置を提供することである。   An object of the present invention is to improve the vibration isolation efficiency and reduce the height of the center of gravity of the sprung mass to achieve stable component transportation and a low profile of the component supply device itself. Is to provide.

課題を解決するための手段及び効果Means and effects for solving the problems

(1)
本発明に係る部品供給装置は、搬送路に振動を発生させることにより搬送路内に供給される部品を直線状に移送する部品供給装置であって、下部に配設されるベース部と、搬送路が設けられているとともにベース部の上方に配設されて振動を発生する加振部と、加振部よりも下方でベース部よりも上方に設けられる固定部と、加振部とベース部とに取り付けられ、加振部からベース部へ伝達される振動を減衰させる防振部材と、加振部と固定部とに取り付けられ、弾性変形することにより、固定部と加振部とに互いに逆位相の振動を発生させる駆動部材とを備えたものである。
(1)
A component supply apparatus according to the present invention is a component supply apparatus that linearly transfers a component supplied into a conveyance path by generating vibration in the conveyance path, and includes a base portion disposed at a lower portion, and a conveyance A vibration portion that is provided above the base portion and generates vibration, a fixed portion that is provided below the vibration portion and above the base portion, and the vibration portion and the base portion. Are attached to the vibration isolating member for attenuating the vibration transmitted from the vibration exciter to the base, and are attached to the vibration exciter and the fixed member. And a drive member that generates anti-phase vibrations.

本発明に係る部品供給装置においては、下部よりベース部、固定部、加振部の順に設けられ、防振部材が加振部とベース部とに取り付けられ、駆動部材が加振部と固定部とに取り付けられる。   In the component supply apparatus according to the present invention, the base portion, the fixed portion, and the vibration portion are provided in this order from the bottom, the vibration isolation member is attached to the vibration portion and the base portion, and the drive member is the vibration portion and the fixed portion. And attached.

この場合、駆動部材と防振部材とが加振部および固定部の間において、重複して配設されるため、駆動部材および防振部材の互いの曲げモードが同位相となり、防振効率を向上させることができる。また、従来、駆動部材および防振部材が互いに直線状に配置された状態に対して、駆動部材の長手方向の長さが、防振部材の長手方向の一部と重複して設けられるため、部品供給装置自体の低背化が可能となり、部材上質量の重心位置と防振部材の支点との距離を縮めることができる。その結果、搬送部品の不安定、斜め搬送、滞留、または部品供給装置の駆動不安定性および横揺れを防止することができる。   In this case, since the driving member and the vibration isolating member are disposed in an overlapping manner between the vibrating portion and the fixed portion, the bending modes of the driving member and the vibration isolating member are in phase, and the vibration isolating efficiency is improved. Can be improved. In addition, conventionally, the length in the longitudinal direction of the driving member is overlapped with a part in the longitudinal direction of the vibration isolating member with respect to the state in which the driving member and the vibration isolating member are linearly arranged with each other. The height of the component supply device itself can be reduced, and the distance between the center of gravity of the mass on the member and the fulcrum of the vibration isolation member can be reduced. As a result, it is possible to prevent the instability of the conveying parts, the oblique conveyance, the stay, or the driving instability and the rolling of the parts supply device.

(2)
駆動部材および防振部材は、上下方向の高さ方向において高さが互いに重なっている部分を有するように配設されてもよい。
(2)
The driving member and the vibration isolating member may be disposed so as to have a portion where the heights overlap each other in the vertical height direction.

この場合、駆動部材と防振部材とが上下方向の高さ方向において高さが互いに重なっている部分を有するので、部品供給装置の低背化が可能となり、部材上質量の重心位置と防振部材の支点との距離を縮めることができる。その結果、搬送部品の不安定、斜め搬送、滞留、または部品供給装置の駆動不安定性および横揺れを防止することができる。   In this case, since the driving member and the vibration isolating member have a portion where the heights overlap each other in the vertical direction, it is possible to reduce the height of the component supply device, and the position of the center of gravity of the mass on the member and the vibration isolating The distance from the fulcrum of the member can be reduced. As a result, it is possible to prevent the instability of the conveying parts, the oblique conveyance, the stay, or the driving instability and the rolling of the parts supply device.

(3)
駆動部材および防振部材は、互いに積層状態で配設されてもよい。
(3)
The driving member and the vibration isolating member may be disposed in a stacked state.

この場合、板状の弾性板からなる防振部材および駆動部材が、互いに積層された状態で配設されるので、駆動部材および防振部材の互いの曲げモードが同位相となり、防振効率を向上させることができる。   In this case, since the vibration isolating member and the drive member made of a plate-like elastic plate are disposed in a stacked state, the bending modes of the drive member and the vibration isolating member are in phase, and the vibration isolating efficiency is improved. Can be improved.

(4)
駆動部材および防振部材は、それぞれ孔を有する平板状の弾性板から形成され、防振部材および駆動部材は、加振部に対して同一の軸部材により防振部材の孔および駆動部材の孔を貫通して固定されていてもよい。
(4)
The driving member and the vibration isolating member are each formed of a flat elastic plate having a hole, and the vibration isolating member and the driving member are formed in the vibration isolating member hole and the driving member hole by the same shaft member with respect to the excitation unit. It may be fixed through.

この場合、駆動部材および防振部材が、同軸部材、例えばボルト等により孔を貫通して加振器に固定される。したがって、従来、駆動部材および防振部材が互いに直線状に配置された状態に対して、駆動部材の長手方向の長さが、防振部材の長手方向の一部と重複して設けられるため、部品供給装置自体の低背化が可能となり、部材上質量の重心位置と防振部材の支点との距離を縮めることができる。さらに、ボルト等の固定部材の部品点数を削減することができるので、部品自体のコストおよび製造時におけるコストの低減を図ることができる。   In this case, the driving member and the vibration isolating member are fixed to the vibration exciter through the hole with a coaxial member such as a bolt. Therefore, conventionally, the length in the longitudinal direction of the drive member is overlapped with a part in the longitudinal direction of the vibration isolation member with respect to the state in which the drive member and the vibration isolation member are linearly arranged with respect to each other. The height of the component supply device itself can be reduced, and the distance between the center of gravity of the mass on the member and the fulcrum of the vibration isolation member can be reduced. Furthermore, since the number of parts of fixing members such as bolts can be reduced, it is possible to reduce the cost of the parts themselves and the cost during manufacturing.

以下、本発明に係る部品供給装置の実施の形態について説明する。なお、以下の実施の形態においては、リニア型パーツフィーダ300を例にとって説明する。   Embodiments of a component supply apparatus according to the present invention will be described below. In the following embodiment, a linear parts feeder 300 will be described as an example.

(実施の形態)
図1は、本発明の実施の形態に係るリニア型パーツフィーダ300の一例を示す模式的側面図である。
(Embodiment)
FIG. 1 is a schematic side view showing an example of a linear part feeder 300 according to an embodiment of the present invention.

図1に示すように、リニア型パーツフィーダ300は、ベース部301、カウンターウェイト302、圧電式振動部303、振動伝達部304、搬送路305、連結板370、支持ばね380および防振用板ばね390を含む。   As shown in FIG. 1, a linear part feeder 300 includes a base part 301, a counterweight 302, a piezoelectric vibration part 303, a vibration transmission part 304, a conveyance path 305, a connection plate 370, a support spring 380, and a vibration-proof plate spring. 390.

図1に示すように、ベース部301の上方にカウンターウェイト302が設けられる。カウンターウェイト302の上方には、支持ばね380を介して圧電式振動部303が設けられる。   As shown in FIG. 1, a counterweight 302 is provided above the base portion 301. Above the counterweight 302, a piezoelectric vibrator 303 is provided via a support spring 380.

また、本実施の形態におけるリニア型パーツフィーダ300においては、支持ばね380および防振用板ばね390が重複して配設される。この重複配設の詳細については後述する。   Further, in the linear part feeder 300 according to the present embodiment, the support spring 380 and the vibration-proof plate spring 390 are disposed in an overlapping manner. Details of the overlapping arrangement will be described later.

また、図1のカウンターウェイト302および圧電式振動部303の内部には、平板を屈曲させたL字状の弾性部材410が設けられる。弾性部材410の一端側が圧電式振動部303に固定され、他端側がカウンターウェイト302に固定される。   Further, an L-shaped elastic member 410 having a bent flat plate is provided inside the counterweight 302 and the piezoelectric vibrating portion 303 in FIG. One end side of the elastic member 410 is fixed to the piezoelectric vibrating portion 303, and the other end side is fixed to the counterweight 302.

さらに、弾性部材410の両面には、圧電素子411が配設される。この弾性部材410および圧電素子411からなるばね定数は、搬送する部品の重量、大きさおよび搬送路305の重量等によって定められる任意の共振周波数の条件に応じて適宜選択される。   Further, piezoelectric elements 411 are disposed on both surfaces of the elastic member 410. The spring constant composed of the elastic member 410 and the piezoelectric element 411 is appropriately selected according to the condition of an arbitrary resonance frequency determined by the weight and size of the parts to be transported, the weight of the transport path 305, and the like.

圧電素子411は、具体的に、圧電セラミックスを分極処理して弾性部材410の一方の面にプラス極性の分極電位を持たせたものを貼り付け、弾性部材410の他方の面にマイナス極性の分極電位を持たせたものを貼り付ける。それにより、弾性部材410の表裏面に圧電素子411によるバイモルフ構造が形成される。圧電素子411に電荷を付与することにより振動が生じ、圧電式振動部303とカウンターウェイト302とが互いに逆方向に振動する。   Specifically, the piezoelectric element 411 is obtained by attaching a piezoelectric ceramic having a positive polarity polarization potential on one surface of the elastic member 410 and applying a negative polarity polarization on the other surface of the elastic member 410. Affix an electric potential. Thereby, the bimorph structure by the piezoelectric element 411 is formed on the front and back surfaces of the elastic member 410. By applying electric charges to the piezoelectric element 411, vibration is generated, and the piezoelectric vibrating portion 303 and the counterweight 302 vibrate in opposite directions.

続いて、圧電式振動部303の上部には、振動伝達部304が設けられる。この振動伝達部304は、カウンターウェイト302に固設された連結板370により固定される。すなわち、振動伝達部304は、カウンターウェイト302の振動と同期した動きをする。また、振動伝達部304の上面には、搬送路305が設けられる。搬送路305に振動が付与されることにより、部品が搬送路305に設けられた搬送溝内を移動する。   Subsequently, a vibration transmission unit 304 is provided above the piezoelectric vibration unit 303. The vibration transmitting unit 304 is fixed by a connecting plate 370 fixed to the counterweight 302. That is, the vibration transmission unit 304 moves in synchronization with the vibration of the counterweight 302. A conveyance path 305 is provided on the upper surface of the vibration transmission unit 304. When vibration is applied to the conveyance path 305, the component moves in a conveyance groove provided in the conveyance path 305.

図2は、支持ばね380および防振用板ばね390の構造の一例を示す模式図である。   FIG. 2 is a schematic diagram showing an example of the structure of the support spring 380 and the vibration-damping leaf spring 390.

図2に示すように、支持ばね380および防振用板ばね390はそれぞれ平板状の弾性部材からなる。支持ばね380および防振用板ばね390の間には、平板状スペーサ391および2個のリング状スペーサ392が設けられる。   As shown in FIG. 2, the support spring 380 and the vibration-damping leaf spring 390 are each made of a flat elastic member. A flat spacer 391 and two ring spacers 392 are provided between the support spring 380 and the vibration isolation leaf spring 390.

図2に示すように、支持ばね380の一端側に貫通穴380aが2個設けられ他端側に貫通穴380bが2個設けられる。また、防振用板ばね390の一端側に貫通穴390aが2個設けられ、中央部近傍に貫通穴390bが2個設けられ、他端側に貫通穴390cが2個設けられている。   As shown in FIG. 2, two through holes 380 a are provided on one end side of the support spring 380, and two through holes 380 b are provided on the other end side. Further, two through holes 390a are provided on one end side of the vibration-proof leaf spring 390, two through holes 390b are provided near the center, and two through holes 390c are provided on the other end side.

ボルト385は、スプリングワッシャおよび平座金を備え、さらに支持ばね380の貫通穴380a、板状スペーサ391の貫通穴391aおよび防振用板ばね390の貫通穴390aを貫通して、圧電式振動部303に固定される。   The bolt 385 includes a spring washer and a plain washer, and further penetrates the through hole 380 a of the support spring 380, the through hole 391 a of the plate-like spacer 391, and the through hole 390 a of the vibration isolating plate spring 390, so Fixed to.

また、ボルト386は、スプリングワッシャおよび平座金を備え、さらに支持ばね380の貫通穴380b、リング状スペーサ392および防振用板ばね390の貫通穴390bを貫通して、カウンターウェイト302に固定される。   The bolt 386 includes a spring washer and a plain washer, and further passes through the through hole 380 b of the support spring 380, the ring spacer 392, and the through hole 390 b of the vibration isolating plate spring 390, and is fixed to the counterweight 302. .

さらに、ボルト395は、スプリングワッシャおよび平座金を備え、さらに貫通穴390cを貫通してベース部301に固定される。   Further, the bolt 395 includes a spring washer and a plain washer, and further passes through the through hole 390 c and is fixed to the base portion 301.

図3は、図2の示した支持ばね380および防振用板ばね390の構造を説明するための模式的断面図である。   FIG. 3 is a schematic cross-sectional view for explaining the structure of the support spring 380 and the vibration isolating leaf spring 390 shown in FIG.

図3に示すように、防振用板ばね390の貫通穴390bの直径は、他の貫通穴380a、380b、390a、390cよりも大きい。すなわち、防振用板ばね390の貫通穴390bの直径は、ボルト386のヘッド部よりも大きな穴径から形成される。よって、支持ばね380が防振用板ばね390の動きに干渉されることなく、圧電式振動部303の振動をカウンターウェイト302側に伝達することができる。   As shown in FIG. 3, the diameter of the through-hole 390b of the vibration-proof plate spring 390 is larger than the other through-holes 380a, 380b, 390a, and 390c. That is, the diameter of the through hole 390 b of the vibration-proof plate spring 390 is formed to be larger than the diameter of the head portion of the bolt 386. Therefore, the vibration of the piezoelectric vibrating portion 303 can be transmitted to the counterweight 302 side without the support spring 380 interfering with the movement of the vibration-proof plate spring 390.

次に、本発明の実施の形態におけるリニア型パーツフィーダ300の効果について説明する。   Next, the effect of the linear part feeder 300 in the embodiment of the present invention will be described.

図4および図5は、リニア型パーツフィーダ300の効果について説明するための図である。図4(a)はリニア型パーツフィーダ300の支持ばね380および防振用板ばね390の構造を示し、図4(b)は従来のリニア型パーツフィーダ(図10参照)の支持ばね980および防振用板ばね990の構造を示す図である。また、図5(a)は本発明に係る支持ばね380および防振用板ばね390の初期状態(添付符号Z)および最大振幅状態を示し、図5(b)は従来の支持ばね980および防振用板ばね990の初期状態(添付符号Z)および最大振幅状態を示す。   4 and 5 are diagrams for explaining the effect of the linear part feeder 300. FIG. FIG. 4A shows the structure of the support spring 380 and vibration isolating plate spring 390 of the linear type part feeder 300, and FIG. 4B shows the support spring 980 and anti-vibration of the conventional linear type part feeder (see FIG. 10). It is a figure which shows the structure of the vibration plate spring 990. FIG. FIG. 5A shows an initial state (attached symbol Z) and a maximum amplitude state of the support spring 380 and the vibration isolating plate spring 390 according to the present invention, and FIG. The initial state (attached code Z) and the maximum amplitude state of the vibration leaf spring 990 are shown.

図4(a)に示す支持ばね380および防振用板ばね390は、リニア型パーツフィーダ300の駆動時に、同じモードで変形する。一方、図4(b)に示す支持ばね980および防振用板ばね990は、リニア型パーツフィーダの駆動時に、互いに異なるモード(図中X1およびX2)で変形する。以下、モードについて説明する。   The support spring 380 and the vibration isolating leaf spring 390 shown in FIG. 4A are deformed in the same mode when the linear part feeder 300 is driven. On the other hand, the support spring 980 and the vibration isolating leaf spring 990 shown in FIG. 4B are deformed in different modes (X1 and X2 in the figure) when the linear part feeder is driven. The mode will be described below.

ここで、図5(a)に示すように、初期状態の支持ばね380Zおよび防振用板ばね390Zは、互いに重複した状態で設けられ、支持ばね380Zの端部と防振用板ばね390Zの端部との距離は、距離L1である。また、最大振幅の状態において支持ばね380および防振用板ばね390は、互いに動き(モード)が一致しており、支持ばね380の端部および防振用板ばね390の端部の距離L2は、距離L1とほぼ等しく、距離の変化率L2/L1が限りなく1に近い値を示す。   Here, as shown in FIG. 5A, the support spring 380Z and the vibration isolating plate spring 390Z in the initial state are provided so as to overlap each other, and the end portion of the support spring 380Z and the vibration isolating plate spring 390Z are provided. The distance from the end is the distance L1. In the maximum amplitude state, the support spring 380 and the vibration isolating plate spring 390 have the same movement (mode), and the distance L2 between the end of the support spring 380 and the end of the anti-vibration leaf spring 390 is The distance change rate L2 / L1 is almost as close to 1 as the distance L1.

一方、図4(b)および図5(b)に示すように、初期状態の支持ばね980Zおよび防振用板ばね990Zは、一直線上に配置され、互いの間隔が距離L3である。また、最大振幅の状態において支持ばね980および防振用板ばね990は、互いに動き(モード)が逆となり、間隔が距離L4となる。この距離L3と距離L4とは、距離L3<距離L4の関係であり、距離の変化率L4/L3が1よりも大きい、例えば図5(b)においては、6に近い値を示す。   On the other hand, as shown in FIGS. 4B and 5B, the support spring 980Z and the vibration-proof plate spring 990Z in the initial state are arranged on a straight line, and the distance between them is the distance L3. Further, in the state of the maximum amplitude, the support spring 980 and the vibration isolating leaf spring 990 have opposite movements (modes), and the distance is the distance L4. The distance L3 and the distance L4 have a relationship of distance L3 <distance L4, and the distance change rate L4 / L3 is larger than 1, for example, a value close to 6 in FIG.

以上のように、図4(b)および図5(b)に示す従来の支持ばね980および防振用板ばね990は、振動する際に互いの間隔が、距離L3の状態から距離L4に広がるため、互いに引っ張り合う状態となり、振動の乱れが生じることとなる。その結果、支持ばね980と防振用板ばね990とは、動き(モード)が一致せず、個々多様な動きをすることとなり、防振用板ばね990による防振効果が発揮されにくくなる。   As described above, when the conventional support spring 980 and the vibration isolating leaf spring 990 shown in FIGS. 4B and 5B are vibrated, the distance between them increases from the distance L3 to the distance L4. For this reason, they are in a state of pulling each other, and vibration disturbance occurs. As a result, the support spring 980 and the vibration isolating plate spring 990 do not have the same movement (mode) and move in various ways, and the anti-vibration effect by the anti-vibration leaf spring 990 is hardly exhibited.

一方、図4(a)または図5(a)に示す支持ばね380および防振用板ばね390は、同じ動き(モード)で振動し、振動する際に互いの間隔が、距離L1の状態から距離L1とほぼ同じ距離L2に移行するため、支持ばね380および防振用板ばね390における振動の乱れが生じない。その結果、支持ばね380および防振用板ばね390は、動き(モード)が一致し、防振用板ばね390による防振効果が発揮されやすい。   On the other hand, the support spring 380 and the vibration isolating leaf spring 390 shown in FIG. 4A or FIG. 5A vibrate in the same movement (mode), and when they vibrate, the distance between them is from the state of the distance L1. Since the distance L2 is substantially the same as the distance L1, vibration disturbance does not occur in the support spring 380 and the vibration isolating leaf spring 390. As a result, the movement (mode) of the support spring 380 and the vibration isolating plate spring 390 is the same, and the anti-vibration effect by the anti-vibration leaf spring 390 is easily exhibited.

以上のことから、本願発明に係るリニア型パーツフィーダ300においては、図4(b)の構造を備えたリニア型パーツフィーダと比較して、防振効率が向上することがわかる。   From the above, it can be seen that the anti-vibration efficiency is improved in the linear part feeder 300 according to the present invention as compared with the linear part feeder having the structure of FIG.

また、図4(a)に示すように、支持ばね380が、防振用板ばね390の長手方向の一部と重複して配設されるため、鉛直方向の長さを縮めることができる。よって、図10に示すリニア型パーツフィーダの全高さH10と比較して、図1のリニア型パーツフィーダ300の全高さHは低くなる。また、図10の防振用板ばね990の支点高さH20と比較して、図1の防振用板ばね390の支点高さHは低くなる。さらに、防振用板ばね990の支点高さから防振用板ばね990の上質量の重心Wまでの距離L30+H20も、図1に示す防振用板ばね390の支点高さから防振用板ばね380の上質量の重心Wまでの距離L+Hまで短くなる。 Further, as shown in FIG. 4A, the support spring 380 is disposed so as to overlap with a part in the longitudinal direction of the vibration-proof plate spring 390, so that the length in the vertical direction can be reduced. Therefore, as compared with the overall height H 10 of the linear type parts feeder shown in FIG. 10, the total height H 1 of the linear parts feeder 300 in FIG. 1 becomes lower. Further, as compared with the fulcrum height H 20 of the vibration isolating plate spring 990 in FIG. 10, the fulcrum height H 2 of the vibration isolating plate spring 390 of Figure 1 is low. Further, the distance L 30 + H 20 from the height of the fulcrum of the vibration isolating leaf spring 990 to the center of gravity W of the upper mass of the vibration isolating leaf spring 990 is also prevented from the height of the fulcrum of the vibration isolating leaf spring 390 shown in FIG. The distance to the center of gravity W of the upper mass of the vibration leaf spring 380 is shortened to L 3 + H 2 .

以上のことより、本願発明に係るリニア型パーツフィーダ300では、搬送部品の不安定、斜め搬送、滞留、またはリニア型パーツフィーダ300の駆動不安定性、横揺れを防止することができ、安定した部品の搬送を行うことができる。   As described above, in the linear type part feeder 300 according to the present invention, it is possible to prevent the instability of the conveying parts, the oblique conveyance, the stay, or the driving instability and the rolling of the linear type parts feeder 300, and the stable parts. Can be carried.

次に、図6は、図1のリニア型パーツフィーダ300の他の例を示す模式的側面図である。   Next, FIG. 6 is a schematic side view showing another example of the linear part feeder 300 of FIG.

図6に示すリニア型パーツフィーダ300aが図1に示すリニア型パーツフィーダ300と異なるのは以下の点である。   The linear part feeder 300a shown in FIG. 6 differs from the linear part feeder 300 shown in FIG. 1 in the following points.

図6に示すように、リニア型パーツフィーダ300aにおいては、図1の支持ばね380の配置場所に防振用板ばね390が設けられ、図1の防振用板ばね390の配置場所に支持ばね380が設けられる。すなわち、防振用板ばね390が支持ばね380と圧電駆動部302との間に設けられ、支持ばね380が防振用板ばね390およびリニア型パーツフィーダ300の外側に設けられる。以下、その配置について詳細に説明する。   As shown in FIG. 6, in the linear part feeder 300a, a vibration isolating plate spring 390 is provided at the location of the support spring 380 in FIG. 1, and the support spring is provided at the location of the vibration isolating plate spring 390 in FIG. 380 is provided. That is, the vibration-proof plate spring 390 is provided between the support spring 380 and the piezoelectric drive unit 302, and the support spring 380 is provided outside the vibration-proof plate spring 390 and the linear part feeder 300. Hereinafter, the arrangement will be described in detail.

図7は、図6の支持ばね380および防振用板ばね390の構造の一例を示す模式図である。   FIG. 7 is a schematic diagram showing an example of the structure of the support spring 380 and the vibration isolating leaf spring 390 of FIG.

図7に示すように、支持ばね380および防振用板ばね390はそれぞれ平板状の弾性部材からなる。支持ばね380および防振用板ばね390の間には、平板状スペーサ391が設けられる。   As shown in FIG. 7, the support spring 380 and the vibration isolating leaf spring 390 are each made of a flat elastic member. A flat spacer 391 is provided between the support spring 380 and the vibration-proof plate spring 390.

図7に示すように、支持ばね380の一端側に貫通穴380aが2個設けられ他端側に貫通穴380bが2個設けられる。また、防振用板ばね390の一端側に貫通穴390aが2個設けられ、中央部近傍に貫通穴390dが2個設けられ、他端側に貫通穴390cが2個設けられている。ここで、貫通穴390dは、ボルト386aのヘッド部よりも大きな穴径を有する。   As shown in FIG. 7, two through holes 380 a are provided on one end side of the support spring 380, and two through holes 380 b are provided on the other end side. Further, two through holes 390a are provided on one end side of the vibration isolating leaf spring 390, two through holes 390d are provided in the vicinity of the center portion, and two through holes 390c are provided on the other end side. Here, the through hole 390d has a larger hole diameter than the head portion of the bolt 386a.

ボルト385は、スプリングワッシャおよび平座金を備え、さらに防振用板ばね390の貫通穴390a、平板状スペーサ391の貫通穴391aおよび支持ばね380の貫通穴380aを貫通して、圧電式振動部303に固定される。   The bolt 385 includes a spring washer and a flat washer, and further penetrates the through hole 390a of the vibration-proof plate spring 390, the through hole 391a of the flat spacer 391, and the through hole 380a of the support spring 380, and passes through the piezoelectric vibration portion 303. Fixed to.

また、ボルト386aは、スプリングワッシャおよび平座金を備え、さらに支持ばね380の貫通穴380bを介してカウンターウェイト302に固定される。   The bolt 386 a includes a spring washer and a plain washer, and is further fixed to the counterweight 302 via the through hole 380 b of the support spring 380.

さらに、ボルト395aは、スプリングワッシャおよび平座金を備え、さらに貫通穴390cを貫通してベース部301に固定される。   Further, the bolt 395a includes a spring washer and a plain washer, and further passes through the through hole 390c and is fixed to the base portion 301.

図8は、図6の支持ばね380および防振用板ばね390の構造の一例を示す模式図である。   FIG. 8 is a schematic diagram showing an example of the structure of the support spring 380 and the vibration isolating leaf spring 390 of FIG.

図8に示すように、防振用板ばね390の貫通穴390dの直径は、他の貫通穴380a、380b、390a、390cよりも大きい。よって、支持ばね380が防振用板ばね390の動きに干渉されることなく、カウンターウェイト302の振動を圧電式振動部303側に伝達することができる。   As shown in FIG. 8, the diameter of the through hole 390d of the vibration-proof plate spring 390 is larger than the other through holes 380a, 380b, 390a, and 390c. Therefore, the vibration of the counterweight 302 can be transmitted to the piezoelectric vibrating portion 303 side without the support spring 380 interfering with the movement of the vibration-proof plate spring 390.

以上のことより、本願発明に係るリニア型パーツフィーダ300aでは、搬送部品の不安定、斜め搬送、滞留、またはリニア型パーツフィーダ300aの駆動不安定性、横揺れを防止することができ、安定した部品の搬送を行うことができる。   As described above, in the linear type part feeder 300a according to the present invention, it is possible to prevent the instability of the conveying parts, the oblique conveyance, the stay, or the driving instability and the rolling of the linear type parts feeder 300a. Can be carried.

次に、図9は、リニア型パーツフィーダ300、300aの他の例を示す模式的側面図である。   Next, FIG. 9 is a schematic side view showing another example of the linear part feeders 300 and 300a.

図9に示すリニア型パーツフィーダ300bは、防振用板ばね390を支持ばね380が設けられる面とは別の面に設けている。ちなわち、ベース部301および圧電式振動部303に凸部を形成し、防振用板ばね390をボルトにより圧電式振動部303とベース部301とに取り付けて固定させている。   In the linear parts feeder 300b shown in FIG. 9, the vibration-proof plate spring 390 is provided on a surface different from the surface on which the support spring 380 is provided. In other words, convex portions are formed on the base portion 301 and the piezoelectric vibration portion 303, and a vibration-proof plate spring 390 is attached and fixed to the piezoelectric vibration portion 303 and the base portion 301 with bolts.

この場合、支持ばね380および防振用板ばね390の振動モードを一致させることができるので、搬送部品の不安定、斜め搬送、滞留、またはリニア型パーツフィーダ300bの駆動不安定性、横揺れを防止することができ、安定した部品の搬送を行うことができる。   In this case, since the vibration modes of the support spring 380 and the vibration isolating plate spring 390 can be matched, it is possible to prevent instability of conveying parts, oblique conveyance, stay, or drive instability and roll of the linear part feeder 300b. Can be carried out stably.

本発明に係る部品供給装置においては、リニア型パーツフィーダ300,300a,300bが部品供給装置に相当し、ベース部301がベース部に相当し、カウンターウェイト302が固定部に相当し、圧電式振動部303、搬送路305が加振部に相当し、防振用板ばね390が防振部材に相当し、支持ばね380が駆動部材に相当し、ボルト385が同一の軸部材に相当し、搬送路305が搬送路に相当する。   In the component supply device according to the present invention, the linear part feeders 300, 300a, and 300b correspond to the component supply device, the base portion 301 corresponds to the base portion, the counterweight 302 corresponds to the fixed portion, and the piezoelectric vibration. The part 303 and the conveyance path 305 correspond to the vibration exciting part, the vibration-proof plate spring 390 corresponds to the vibration-proof member, the support spring 380 corresponds to the driving member, and the bolt 385 corresponds to the same shaft member. A path 305 corresponds to a conveyance path.

本発明は、上記の好ましい第1および第2の実施の形態に記載されているが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされることは理解されよう。さらに、本実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。   Although the present invention has been described in the above preferred first and second embodiments, the present invention is not limited thereto. It will be understood that various other embodiments may be made without departing from the spirit and scope of the invention. Furthermore, in this embodiment, although the effect | action and effect by the structure of this invention are described, these effect | actions and effects are examples and do not limit this invention.

本発明に係る実施の形態に係るリニア型パーツフィーダ300の一例を示す模式的側面図Schematic side view showing an example of a linear part feeder 300 according to an embodiment of the present invention 支持ばねおよび防振用板ばねの構造の一例を示す模式図Schematic diagram showing an example of the structure of a support spring and a vibration-proof leaf spring 図2の示した支持ばねおよび防振用板ばねの構造を説明するための模式的断面図Typical sectional drawing for demonstrating the structure of the support spring shown in FIG. リニア型パーツフィーダの効果について説明するための図The figure for explaining the effect of the linear type parts feeder リニア型パーツフィーダの効果について説明するための図The figure for explaining the effect of the linear type parts feeder 図1のリニア型パーツフィーダの他の例を示す模式的側面図Schematic side view showing another example of the linear part feeder of FIG. 図6の支持ばねおよび防振用板ばねの構造の一例を示す模式図The schematic diagram which shows an example of the structure of the support spring of FIG. 図6の支持ばねおよび防振用板ばねの構造の一例を示す模式図The schematic diagram which shows an example of the structure of the support spring of FIG. リニア型パーツフィーダの他の例を示す模式的側面図Schematic side view showing another example of linear type parts feeder 従来のパーツフィーダの支持ばねにおける揺動方向と防振用板ばねにおける揺動方向とを説明するための模式図Schematic diagram for explaining the swing direction in the support spring of the conventional parts feeder and the swing direction in the vibration-proof leaf spring

符号の説明Explanation of symbols

300,300a,300b リニア型パーツフィーダ
301 ベース部
302 カウンターウェイト
303 圧電式振動部
304 振動伝達部
305 搬送路
370 連結板
380 支持ばね
390 防振用板ばね
410 弾性体
411 圧電素子
300, 300a, 300b Linear type part feeder 301 Base part 302 Counterweight 303 Piezoelectric vibration part 304 Vibration transmission part 305 Conveying path 370 Connecting plate 380 Supporting spring 390 Anti-vibration leaf spring 410 Elastic body 411 Piezoelectric element

Claims (4)

搬送路に振動を発生させることにより前記搬送路内に供給される部品を直線状に移送する部品供給装置であって、
下部に配設されるベース部と、
前記搬送路が設けられているとともに前記ベース部の上方に配設されて振動を発生する加振部と、
前記加振部よりも下方で前記ベース部よりも上方に設けられる固定部と、
前記加振部と前記ベース部とに取り付けられ、前記加振部から前記ベース部へ伝達される振動を減衰させる防振部材と、
前記加振部と前記固定部とに取り付けられ、弾性変形することにより、前記固定部と前記加振部とに互いに逆位相の振動を発生させる駆動部材と、を備えたことを特徴とする部品供給装置。
A component supply device that linearly transfers a component supplied into the conveyance path by generating vibration in the conveyance path,
A base portion disposed at the bottom;
A vibration unit that is provided above the base unit and generates vibration by being provided with the conveyance path;
A fixed portion provided below the excitation portion and above the base portion;
An anti-vibration member attached to the excitation unit and the base unit and dampening vibration transmitted from the excitation unit to the base unit;
A component, comprising: a drive member that is attached to the vibration part and the fixed part and elastically deforms to generate vibrations in opposite phases to the fixed part and the vibration part. Feeding device.
前記駆動部材および前記防振部材は、
上下の高さ方向において高さが互いに重なっている部分を有するように配設されていることを特徴とする請求項1に記載の部品供給装置。
The drive member and the vibration isolation member are
The component supply device according to claim 1, wherein the component supply device is disposed so as to have portions whose heights overlap each other in the vertical height direction.
前記駆動部材および前記防振部材は、
互いに積層状態で配設されたことを特徴とする請求項2に記載の部品供給装置。
The drive member and the vibration isolation member are
The component supply device according to claim 2, wherein the component supply devices are arranged in a stacked state.
前記駆動部材および前記防振部材は、
それぞれ孔を有する平板状の弾性板から形成され、
前記防振部材および前記駆動部材は、前記加振部に対して同一の軸部材により前記防振部材の孔および前記駆動部材の孔を貫通して固定されていることを特徴とする請求項1から請求項3のいずれか1項に記載の部品供給装置。
The drive member and the vibration isolation member are
Each is formed from a flat elastic plate having holes,
2. The vibration isolating member and the driving member are fixed to the vibration exciting portion through the hole of the vibration isolating member and the hole of the driving member by the same shaft member. The component supply device according to claim 3.
JP2005364814A 2005-12-19 2005-12-19 Parts supply device Active JP5011720B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005364814A JP5011720B2 (en) 2005-12-19 2005-12-19 Parts supply device
TW101135285A TWI490153B (en) 2005-12-19 2006-11-20 Part supply device
TW095142811A TWI389831B (en) 2005-12-19 2006-11-20 Part supply device
KR1020060128986A KR101244236B1 (en) 2005-12-19 2006-12-15 Parts Supply Apparatus
CN2006101693845A CN1986358B (en) 2005-12-19 2006-12-19 Parts supplying device
HK07111606.6A HK1106205A1 (en) 2005-12-19 2007-10-26 A components feeder
KR1020120150439A KR101267924B1 (en) 2005-12-19 2012-12-21 Parts Supply Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364814A JP5011720B2 (en) 2005-12-19 2005-12-19 Parts supply device

Publications (2)

Publication Number Publication Date
JP2007168920A true JP2007168920A (en) 2007-07-05
JP5011720B2 JP5011720B2 (en) 2012-08-29

Family

ID=38183327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364814A Active JP5011720B2 (en) 2005-12-19 2005-12-19 Parts supply device

Country Status (2)

Country Link
JP (1) JP5011720B2 (en)
CN (1) CN1986358B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274800A (en) * 2008-05-14 2009-11-26 Yamato Scale Co Ltd Straight advancing feeder, and its fixing method and combination measure equipped therewith
CN102700906A (en) * 2011-05-28 2012-10-03 上海天怡塑胶工业有限公司 Compatible lead end post vibration arraying device with positive and negative electrode error correcting functions
WO2012147838A1 (en) * 2011-04-27 2012-11-01 シンフォニアテクノロジー株式会社 Article separation and conveyance device
JP2012229120A (en) * 2011-04-27 2012-11-22 Sinfonia Technology Co Ltd Article separation and conveyance device
JP2013095564A (en) * 2011-11-02 2013-05-20 Daishin:Kk Vibration type conveyance device
JP2013133219A (en) * 2011-12-27 2013-07-08 Sinfonia Technology Co Ltd Article separation and conveyance device
JP7401753B2 (en) 2020-01-30 2023-12-20 シンフォニアテクノロジー株式会社 Vibratory conveyance device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741993B2 (en) * 2010-09-27 2015-07-01 シンフォニアテクノロジー株式会社 Parts supply device
JP5729719B2 (en) * 2011-04-12 2015-06-03 Juki株式会社 Component supply device and mounting device
CN103580531A (en) * 2013-09-28 2014-02-12 深圳市艾克斯自动化技术开发有限公司 Piezoelectric vibration unit and piezoelectric vibrator thereof
JPWO2016016966A1 (en) * 2014-07-30 2017-06-15 川崎重工業株式会社 Parts supply apparatus and method
JP6643696B2 (en) * 2015-09-10 2020-02-12 シンフォニアテクノロジー株式会社 Linear feeder
JP7095085B2 (en) * 2018-06-01 2022-07-04 株式会社Fuji Parts mounting machine
JP6817648B1 (en) * 2019-09-20 2021-01-20 上野精機株式会社 Electronic component processing equipment
CN114560240B (en) * 2022-03-16 2023-04-14 深圳市高士达科技有限公司 Vibration dish

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145690U (en) * 1977-04-22 1978-11-16
JPH0475910A (en) * 1990-07-16 1992-03-10 Nitto Denki Seisakusho:Kk Vibrating type parts feeder
JPH1191928A (en) * 1997-09-19 1999-04-06 Seratec:Kk Piezoelectric drive type conveying device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182718B1 (en) * 1999-06-15 2001-02-06 Summit Machine Builders, Corp. Pass-through dispenser system with aligned feeder troughs
CN1380234A (en) * 2001-04-06 2002-11-20 神钢电机株式会社 Piezoelectric driving vibratory feeder and piezoelectric element driving feeder
CN2512749Y (en) * 2001-10-08 2002-09-25 仂德精机有限公司 Vibration disc material feeder base
TW200508117A (en) * 2003-01-14 2005-03-01 Shinko Electric Co Ltd Piezoelectric part feeder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145690U (en) * 1977-04-22 1978-11-16
JPH0475910A (en) * 1990-07-16 1992-03-10 Nitto Denki Seisakusho:Kk Vibrating type parts feeder
JPH1191928A (en) * 1997-09-19 1999-04-06 Seratec:Kk Piezoelectric drive type conveying device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274800A (en) * 2008-05-14 2009-11-26 Yamato Scale Co Ltd Straight advancing feeder, and its fixing method and combination measure equipped therewith
WO2012147838A1 (en) * 2011-04-27 2012-11-01 シンフォニアテクノロジー株式会社 Article separation and conveyance device
JP2012229120A (en) * 2011-04-27 2012-11-22 Sinfonia Technology Co Ltd Article separation and conveyance device
CN103492292A (en) * 2011-04-27 2014-01-01 昕芙旎雅有限公司 Article separation and conveyance device
US9038815B2 (en) 2011-04-27 2015-05-26 Sinfonia Technology Co., Ltd. Article sorting and conveying device
CN102700906A (en) * 2011-05-28 2012-10-03 上海天怡塑胶工业有限公司 Compatible lead end post vibration arraying device with positive and negative electrode error correcting functions
JP2013095564A (en) * 2011-11-02 2013-05-20 Daishin:Kk Vibration type conveyance device
JP2013133219A (en) * 2011-12-27 2013-07-08 Sinfonia Technology Co Ltd Article separation and conveyance device
JP7401753B2 (en) 2020-01-30 2023-12-20 シンフォニアテクノロジー株式会社 Vibratory conveyance device

Also Published As

Publication number Publication date
CN1986358B (en) 2012-07-18
CN1986358A (en) 2007-06-27
JP5011720B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5011720B2 (en) Parts supply device
JP4303258B2 (en) Vibrating transfer device
JP5227449B2 (en) Vibrating transfer device
JP4872221B2 (en) Parts conveyor
KR101337063B1 (en) Vibratory conveying apparatus
KR101316490B1 (en) Parts feeder
JP5996895B2 (en) Vibrating parts conveyor
TW201711940A (en) Linear feeding machine capable of conveying an object to be conveyed on a trough at a stable conveying speed
TWI535644B (en) Vibrating parts feeder
JP5168816B2 (en) Parts supply device
KR101977429B1 (en) Vibrating article-conveying apparatus
KR102018933B1 (en) Vibration-type component transport device
JP5332080B2 (en) Parts supply device
KR101267924B1 (en) Parts Supply Apparatus
JP5168999B2 (en) Parts conveyor
JP4857581B2 (en) Parts conveyor
JP6163343B2 (en) Vibrating parts conveyor
JP5082270B2 (en) Parts supply device
JP2012121658A (en) Vibration bowl feeder
JP2008068994A (en) Parts feeder
JP2007173510A (en) Parts feeder
JP4464445B2 (en) Vibrating transfer device
JP2012121662A (en) Vibration bowl feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5011720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250