JP2009221140A - Colored nanoparticles for cosmetic and its manufacturing method - Google Patents

Colored nanoparticles for cosmetic and its manufacturing method Download PDF

Info

Publication number
JP2009221140A
JP2009221140A JP2008066859A JP2008066859A JP2009221140A JP 2009221140 A JP2009221140 A JP 2009221140A JP 2008066859 A JP2008066859 A JP 2008066859A JP 2008066859 A JP2008066859 A JP 2008066859A JP 2009221140 A JP2009221140 A JP 2009221140A
Authority
JP
Japan
Prior art keywords
nanoparticles
coloring
cosmetic
noble metal
absorption spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008066859A
Other languages
Japanese (ja)
Inventor
Atsuya Towata
篤哉 砥綿
Kyuichi Yasui
久一 安井
Toru Tsujiuchi
亨 辻内
Teruyuki Kozuka
小塚  晃透
Yasuo Iida
康夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008066859A priority Critical patent/JP2009221140A/en
Publication of JP2009221140A publication Critical patent/JP2009221140A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a colored nanoparticle for cosmetics, its manufacturing method and its application. <P>SOLUTION: The nanoparticle for coloring cosmetics is constituted by arbitrarily combining noble metal nanoparticles having a specific color tone and a specific saturation controlled to have a predetermined absorption spectrum within the wavelength range of 390-1,100 nm to permit selection of color tones and saturation based on morphological characteristics such as a particle size or a shape of the noble metal nanoparticles causing plasmon resonance characteristics. The manufacturing method of such nanoparticles for coloring cosmetics and cosmetics comprising such nanoparticles are also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、化粧品用着色貴金属ナノ粒子、その製造方法及び当該着色貴金属ナノ粒子含有化粧品に関するものであり、更に詳しくは、プラズモン共鳴特性が生じる貴金属ナノ粒子の粒子径及び形状の形態特性に基づいて、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成した化粧品用着色ナノ粒子、その製造方法及び用途を提供するものである。   The present invention relates to a colored noble metal nanoparticle for cosmetics, a method for producing the same, and a cosmetic containing the colored noble metal nanoparticle, and more specifically, based on the particle size and shape characteristics of the noble metal nanoparticle that causes plasmon resonance characteristics. Coloring for cosmetics comprising a combination of noble metal nanoparticles having a specific color tone and saturation controlled to a predetermined absorption spectrum in the wavelength range of 390 nm to 1100 nm, and a combination of color tone and saturation selectable The present invention provides nanoparticles, a method for producing the same, and uses.

金及び銀ナノ粒子は、微細な領域中で電子と光が共鳴して,これまでの常識を覆すような非常に高い光出力をもたらすプラズモン吸収が生じる。この貴金属コロイドによる発色は、彩度や光線透過率が高く、耐久性等に優れている。このような貴金属コロイドによる発色は、粒径が数nm〜数百nm程度の、いわゆるナノ粒子において見られるものであり、この特性は、粒子のサイズや集合状態等により変化する(非特許文献1)。   In gold and silver nanoparticles, electrons and light resonate in a microscopic region, and plasmon absorption occurs that brings about a very high light output that defies the conventional wisdom. Coloring by this noble metal colloid has high saturation and light transmittance, and is excellent in durability. Such color development due to the noble metal colloid is observed in so-called nanoparticles having a particle size of about several nanometers to several hundred nanometers, and this characteristic varies depending on the size and aggregation state of the particles (Non-patent Document 1). ).

これまでに、金属ナノ粒子を合成する種々の技術が報告されている。先行技術では、例えば、液相で、ポリオール法(非特許文献2)、電気化学法(非特許文献3)、界面活性剤を利用する方法(非特許文献4)、レーザーを用いる方法(非特許文献5)等を利用して、金属ナノ粒子を合成する方法が提案されている。   So far, various techniques for synthesizing metal nanoparticles have been reported. In the prior art, for example, in the liquid phase, the polyol method (Non-patent document 2), the electrochemical method (Non-patent document 3), the method using a surfactant (Non-patent document 4), and the method using a laser (Non-patent document) A method of synthesizing metal nanoparticles using literature 5) has been proposed.

また、先行技術として、例えば、簡便な手法で、Agナノ粒子を合成すること(特許文献1)、貴金属化合物と界面活性剤とから貴金属コロイド粒子を製造すること(特許文献2)、アスペクト比の再現性の良い金ナノロッドを作製すること(特許文献3)、マイクロ流路を用いて、粒度分布がシャープで、結晶性の高い高結晶性ナノ銀粒子スラリーを作製すること(特許文献4)、界面活性剤を含む溶液中で電気化学的反応によってロッド状の金属ナノロッドを作製すること(特許文献5)、超音波撹拌により有機無機ハイブリッドナノ複合材を作製すること(特許文献6)、等が提案されている。   Further, as prior art, for example, Ag nanoparticles are synthesized by a simple method (Patent Document 1), noble metal colloid particles are produced from a noble metal compound and a surfactant (Patent Document 2), aspect ratio Producing reproducible gold nanorods (Patent Document 3), using a micro-channel, producing a highly crystalline nanosilver particle slurry having a sharp particle size distribution and high crystallinity (Patent Document 4), Producing a rod-shaped metal nanorod by electrochemical reaction in a solution containing a surfactant (Patent Document 5), producing an organic-inorganic hybrid nanocomposite by ultrasonic agitation (Patent Document 6), etc. Proposed.

また、従来から、貴金属粒子を化粧品に用いたものが知られている。紫色の化粧料として、金ナノ粒子を基材に付着させて利用する方法(特許文献7)、金塩水溶液を還元剤で還元した後に、非イオン性界面活性剤を添加して安定な金コロイド溶液を製造する方法(特許文献8)、等が知られている。肌等への付着性がよく、化学的に安定で、かつ色彩が均一で、高い光輝感を呈する化粧料を安価に提供するため、金属で被覆された薄片状ガラスを含有する化粧料(特許文献9)、構造色を発色する球状ナノ微粒子のコロイド微結晶を利用した光学発色体を利用したもの(特許文献10)、等が知られている。   Conventionally, those using noble metal particles in cosmetics are known. As a purple cosmetic, a method in which gold nanoparticles are attached to a substrate (Patent Document 7), a gold colloid that is stable by reducing a gold salt aqueous solution with a reducing agent and then adding a nonionic surfactant A method for producing a solution (Patent Document 8) and the like are known. Cosmetics containing flaky glass coated with metal (patented) to provide low-cost cosmetics that have good adhesion to the skin, etc., are chemically stable, have a uniform color, and exhibit high brightness. Document 9) and those using optical color bodies using colloidal microcrystals of spherical nano-particles that develop structural colors (Patent Document 10) are known.

また、例えば、貴金属を利用した抗菌化粧品として、アシル化アミノ酸によって均一に抗菌性粉体を被覆処理したもの(特許文献11)、金コロイドを添加する方法(特許文献12)、顔料及び抗菌化合物を含む懸濁液を撹拌することによって得られる抗菌顔料(特許文献6)、金属コーティングを有する剥脱ナノ粒子を含む複合材の形成法(特許文献13)、等が知られている。   In addition, for example, antibacterial cosmetics using precious metals, in which antibacterial powder is uniformly coated with acylated amino acid (Patent Document 11), a method of adding gold colloid (Patent Document 12), a pigment and an antibacterial compound An antibacterial pigment (Patent Document 6) obtained by stirring a suspension containing the same, a method for forming a composite material including exfoliated nanoparticles having a metal coating (Patent Document 13), and the like are known.

化粧品用着色材として、選択的な吸収機能を有する光吸収材とその形成用組成物を提供するために金属ナノロッドを利用する方法が知られている(特許文献14)。しかし、従来の上記化粧品用着色材として用いられている貴金属微粒子は球状であるため、化粧品の色彩が限られていた。   As a cosmetic coloring material, a method using a metal nanorod to provide a light absorbing material having a selective absorption function and a composition for forming the same is known (Patent Document 14). However, since the noble metal fine particles used as the conventional colorant for cosmetics are spherical, the color of cosmetics is limited.

例えば、球状金コロイドの場合には、得られるプラズモン発色は、青、青紫、赤紫等であり、また、球状銀コロイドの場合には、黄色であり、使用可能な色は限られていた。また、金属的な輝きは、色調には影響を与えず、抗菌性は、人体への安全を考えたものであり、色調や彩度等の制御を目的としたものではない。   For example, in the case of a spherical gold colloid, the obtained plasmon color is blue, blue purple, red purple, etc., and in the case of a spherical silver colloid, it is yellow, and the usable colors are limited. Further, the metallic shine does not affect the color tone, and the antibacterial property is intended for safety to the human body, and is not intended to control the color tone, saturation, and the like.

更に、金属ナノロッドを利用する方法が提案されているが、金属ナノロッドを利用する場合には、金属ナノロッドの長軸方向の長さにより吸収スペクトルは制御できるが、短軸方向の表面プラズモン振動に由来する吸収が、銀の場合には400nm、金の場合には520nm付近に必然的に生じてしまうという問題があった。   Furthermore, methods using metal nanorods have been proposed. When metal nanorods are used, the absorption spectrum can be controlled by the length of the metal nanorods in the long axis direction, but this is derived from surface plasmon vibration in the short axis direction. In the case of silver, the absorption that occurs is inevitably generated in the vicinity of 400 nm, and in the case of gold, there is a problem that the absorption inevitably occurs.

金及び銀ナノ粒子は、プラズモン共鳴の特性を生かして、光学材料、バイオセンサー等に利用することが考えられている。この光学特性のうち、広い波長範囲での吸収スペクトルを活用することにより、分子のラベリング等に有効であると考えられる。そのためには、希望の吸収スペクトルを有する粒子の合成プロセスが必要であり、このプロセスには、界面活性剤を利用する方法や、種粒子を利用した成長粒子を作製する方法等の適用が種々試みられている。しかし、これまで、金又は銀ナノ粒子の形態特性に基づいて、特定波長の吸収スペクトルを有する金又は銀ナノ粒子を高精度で合成すること、それにより広い波長範囲で吸収スペクトルを有する色調及び彩度等が高選択的に制御された多様な当該ナノ粒子を合成すること、更に、当該ナノ粒子を化粧品用着色ナノ粒子及び着色剤の用途に用いること、については報告例がない。   Gold and silver nanoparticles are considered to be used for optical materials, biosensors, etc., taking advantage of the characteristics of plasmon resonance. Of these optical characteristics, it is considered effective for labeling of molecules by utilizing an absorption spectrum in a wide wavelength range. For this purpose, a process for synthesizing particles having a desired absorption spectrum is necessary, and various methods such as a method using a surfactant and a method for producing grown particles using seed particles are applied to this process. It has been. However, until now, based on the morphological characteristics of gold or silver nanoparticles, gold or silver nanoparticles having an absorption spectrum of a specific wavelength have been synthesized with high accuracy, and thereby color tone and color having an absorption spectrum in a wide wavelength range. There has been no report on synthesizing various nanoparticles with highly selective control of the degree and the use of the nanoparticles in cosmetic nanoparticles and coloring agents.

特開2006−37145号公報JP 2006-37145 A 特開2003−159525号公報JP 2003-159525 A 特開2005−68448号公報JP 2005-68448 A 特開2006−124787号公報JP 2006-124787 A 特開2005−68447号公報JP 2005-68447 A 特表2005−512809号公報JP 2005-512809 A 特開平1−215865号公報JP-A-1-215865 特開平08−089788号公報Japanese Patent Laid-Open No. 08-089788 特開2002−138010号公報JP 2002-138010 A 特開2007−18239号公報JP 2007-18239 A 特開平9−208401号公報JP-A-9-208401 特開2001−89314号公報JP 2001-89314 A 特表2007−519615号公報Special table 2007-519615 特開2005−68019号公報JP 2005-68019 A J.J.Mock,M.Barbic,D.R.Smith,D.A.Schultz,and S.Schultz,J.Chem.Phys.,116(2002)6755J. et al. J. et al. Mock, M.M. Barbic, D.M. R. Smith, D.M. A. Schultz, and S.M. Schultz, J. et al. Chem. Phys. , 116 (2002) 6755 Y.Sun,B.Gates and B.Mayers,Nano Lett.,2(2002)165Y. Sun, B.D. Gates and B.B. Mayers, Nano Lett. , 2 (2002) 165 M.T.Reetz and W.Helbig,J.Am.Chem.,116(1994)7401M.M. T.A. Reetz and W.H. Helbig, J .; Am. Chem. , 116 (1994) 7401 M.Maillard,S.Giorgio and M.P.Pileni,J.Phys.Chem.B,107(2003)2466M.M. Maillard, S .; Giorgio and M.M. P. Pieni, J .; Phys. Chem. B, 107 (2003) 2466 R.Jin,Y.Cao,C.A.Mirkin,K.L.Kelly G.C.Schatzt and J.G.Zheng,Science,294(2001)1901R. Jin, Y. et al. Cao, C.I. A. Mirkin, K.M. L. Kelly G. C. Schattz and J.M. G. Zheng, Science, 294 (2001) 1901

このような状況の中で、本発明者らは、上記従来技術に鑑みて、貴金属微粉末を含有する従来の化粧品における上記問題を解決することを可能とする新しい化粧品用着色ナノ粒子を開発することを目標として鋭意研究を積み重ねた結果、プラズモン共鳴特性が生じる貴金属ナノ粒子の粒子径及び形状の形態特性に基づいて、吸収スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を組み合わせることにより、色調及び彩度を選択可能に組み合わせて構成した化粧品用着色ナノ粒子を調製できることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have developed new colored nanoparticles for cosmetics that can solve the above-mentioned problems in conventional cosmetics containing precious metal fine powders, in view of the above-described prior art. As a result of intensive research with the goal of achieving this, the absorption spectrum was controlled to a predetermined absorption spectrum in the wavelength range from 390 nm to 1100 nm based on the particle size and shape characteristics of the noble metal nanoparticles that produced plasmon resonance characteristics. It was found that by combining the noble metal nanoparticles having the color tone and saturation of the above, it is possible to prepare colored nanoparticles for cosmetics constituted by combining the color tone and saturation so that they can be selected, and the present invention has been completed.

本発明は、吸光スペクトルを波長390nmから1100nmまでの範囲で選択的に取ることができる貴金属ナノ粒子からなる化粧品着色用ナノ粒子及びその製造法を提供すること、また、少量で彩度が高い色相を有し、化粧用基材とのなじみが良い化粧品用着色材を、金属粒子の粒径や形状及び連結等の形体特性を精密に制御することにより、それらの形体特性に基づいて粒子の吸光スペクトルを制御することにより製造する方法を提供すること、また、化粧品用の着色材料としての使用が可能な貴金属ナノ粒子を製造できる新しい貴金属ナノ粒子の製造方法、その貴金属ナノ粒子及び当該貴金属ナノ粒子を含有する化粧品を提供することを目的とするものである。   The present invention provides a cosmetic coloring nanoparticle composed of noble metal nanoparticles capable of selectively taking an absorption spectrum in the wavelength range of 390 nm to 1100 nm, and a method for producing the same, and a small amount of highly saturated hue. The colorant for cosmetics, which has good compatibility with the cosmetic base material, is used to precisely control the shape characteristics such as the particle size, shape and connection of the metal particles. A method for producing a noble metal nanoparticle capable of producing a noble metal nanoparticle that can be used as a coloring material for cosmetics, a method for producing the noble metal nanoparticle, and the noble metal nanoparticle and the noble metal nanoparticle It aims at providing the cosmetics containing this.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)プラズモン共鳴特性が生じる貴金属ナノ粒子の粒子径及び形状の形態特性に基づいて、吸収スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成したことを特徴とする化粧品着色用ナノ粒子。
(2)吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに任意に制御して色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子であって、1)粒子の粒径が5〜300nmであり、2)平板状の粒子を含有する、請求項1に記載の化粧品着色用ナノ粒子。
(3)前記(1)又は(2)に記載の化粧品着色用ナノ粒子を、基材と複合化したこと又は基材上に析出させたことを特徴とする化粧品用複合体。
(4)上記化粧品着色用ナノ粒子を、無機白色顔料、無機有色顔料、無機黒色顔料、効果顔料、発光顔料、炭酸マグネシウム、雲母、シリカ、チタニア、アルミナ、ガラス、雲母状酸化鉄、又は酸化黒鉛の基材と複合化した又は当該基材上に析出させた、前記(3)に記載の化粧品用複合体。
(5)前記(1)又は(2)に記載の化粧品着色用ナノ粒子を製造する方法であって、1)還元水溶液中に金又は銀の貴金属塩を溶解した反応液を作製し、当該反応液に、酸又は塩基を添加又は無添加でナノ粒子を生成させる、2)それにより、粒子の粒径が5〜300nmであり、平板状の粒子を含有する、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を合成する、3)当該ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子を作製する、ことを特徴とする化粧品着色用ナノ粒子の製造方法。
(6)貴金属塩として、塩化金酸又は硝酸銀を用いる、前記(5)に記載の化粧品着色用ナノ粒子の製造方法。
(7)還元水溶液が、還元剤として、過酸化水素、テトラヒドロほう酸ナトリウム、蟻酸、又はアスコルビン酸を含む、前記(5)に記載の化粧品着色用ナノ粒子の製造方法。
(8)反応液が、分散剤として、コポリマー、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ドデシル硫酸ナトリウム及びヘキサメタリン酸ナトリウムからなる群より選択される少なくとも1種を含む、前記(5)に記載の化粧品着色用ナノ粒子の製造方法。
(9)前記(1)又は(2)に記載の化粧品着色用ナノ粒子が着色剤として配合されていることを特徴とする着色用貴金属ナノ粒子含有化粧品。
(10)前記(3)又は(4)に記載の化粧品用複合体が配合されていることを特徴とする着色用貴金属ナノ粒子含有化粧品。
The present invention for solving the above-described problems comprises the following technical means.
(1) A noble metal having a specific color tone and saturation in which the absorption spectrum is controlled to a predetermined absorption spectrum in a wavelength range of 390 nm to 1100 nm based on the shape characteristics of the particle diameter and shape of the noble metal nanoparticles that cause plasmon resonance characteristics. A nanoparticle for coloring cosmetics, wherein the nanoparticles are arbitrarily combined to form a color tone and saturation so that they can be selected.
(2) Nanoparticles for coloring cosmetics that are configured by arbitrarily controlling the absorption spectrum to a predetermined absorption spectrum in the wavelength range of 390 nm to 1100 nm and selecting a color tone and saturation, 1) Particles of the particles The nanoparticle for coloring cosmetics according to claim 1, which has a diameter of 5 to 300 nm and 2) contains tabular particles.
(3) A cosmetic composite, wherein the cosmetic coloring nanoparticles according to (1) or (2) are combined with a base material or deposited on the base material.
(4) The above cosmetic coloring nanoparticles are converted into inorganic white pigments, inorganic colored pigments, inorganic black pigments, effect pigments, luminescent pigments, magnesium carbonate, mica, silica, titania, alumina, glass, mica-like iron oxide, or graphite oxide. The composite for cosmetics according to the above (3), which is combined with or deposited on the base material.
(5) A method for producing the cosmetic coloring nanoparticles according to (1) or (2), wherein 1) a reaction solution is prepared by dissolving a noble metal salt of gold or silver in a reducing aqueous solution, and the reaction A nanoparticle is generated by adding or not adding an acid or a base to the liquid. 2) Thereby, the particle diameter of the particle is 5 to 300 nm, and the absorption spectrum containing the tabular particle is from 390 nm to 1100 nm. 3) synthesizing noble metal nanoparticles having a specific color tone and saturation controlled to a predetermined absorption spectrum in the range of 3) for coloring cosmetics composed by arbitrarily combining the nanoparticles and selecting a color tone and saturation. A method for producing nanoparticles for coloring cosmetics, characterized by producing nanoparticles.
(6) The method for producing cosmetic coloring nanoparticles according to (5), wherein chloroauric acid or silver nitrate is used as the noble metal salt.
(7) The method for producing nanoparticles for coloring cosmetics according to (5), wherein the reducing aqueous solution contains hydrogen peroxide, sodium tetrahydroborate, formic acid, or ascorbic acid as a reducing agent.
(8) The above (5), wherein the reaction solution contains at least one selected from the group consisting of a copolymer, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, sodium dodecyl sulfate, and sodium hexametaphosphate as a dispersant. The manufacturing method of the nanoparticles for cosmetic coloring as described in any one of.
(9) A cosmetic containing noble metal nanoparticles for coloring, wherein the cosmetic coloring nanoparticles according to (1) or (2) are blended as a colorant.
(10) A cosmetic containing noble metal nanoparticles for coloring, wherein the cosmetic composite according to (3) or (4) is blended.

次に、本発明について更に詳細に説明する。
本発明は、化粧品着色用ナノ粒子であって、プラズモン共鳴特性が生じる貴金属ナノ粒子の粒子径及び形状の形態特性に基づいて、吸収スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成したことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention controls cosmetic absorption nanoparticles to a predetermined absorption spectrum in the wavelength range from 390 nm to 1100 nm based on the particle size and shape characteristics of the noble metal nanoparticles that generate plasmon resonance characteristics. The noble metal nanoparticles having a specific color tone and saturation are arbitrarily combined, and the color tone and saturation are selectably combined.

本発明では、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに任意に制御して色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子であって、1)粒子の粒径が5〜300nmであり、2)平板状の粒子を含有すること、を好ましい実施の態様としている。   The present invention is a cosmetic coloring nanoparticle that is configured by arbitrarily controlling the light absorption spectrum to a predetermined absorption spectrum in the wavelength range of 390 nm to 1100 nm and selecting and selecting color tone and saturation. The preferred embodiment is that the particle diameter is 5 to 300 nm, and 2) it contains tabular grains.

また、本発明は、化粧品用複合体であって、上記化粧品着色用ナノ粒子を基材と複合化したこと又は基材上に析出させたことを特徴とするものであり、本発明では、上記化粧品着色用ナノ粒子を、無機白色顔料、無機有色顔料、無機黒色顔料、効果顔料、発光顔料、炭酸マグネシウム、雲母、シリカ、チタニア、アルミナ、ガラス、雲母状酸化鉄、又は酸化黒鉛の基材と複合化した又は当該基材上に析出させたこと、を好ましい実施の態様としている。   Further, the present invention is a cosmetic composite, characterized in that the cosmetic coloring nanoparticles are combined with a base material or deposited on the base material. Nanoparticles for coloring cosmetics with inorganic white pigments, inorganic colored pigments, inorganic black pigments, effect pigments, luminescent pigments, magnesium carbonate, mica, silica, titania, alumina, glass, mica-like iron oxide, or graphite oxide It is a preferred embodiment that it is compounded or deposited on the substrate.

また、本発明は、上記化粧品着色用ナノ粒子を製造する方法であって、1)還元水溶液中に金又は銀の貴金属塩を溶解した反応液を作製し、当該反応液に、酸又は塩基を添加又は無添加でナノ粒子を生成させる、2)それにより、粒子の粒径が5〜300nmであり、平板状の粒子を含有する、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を合成する、3)当該ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子を作製する、ことを特徴とするものである。   The present invention also relates to a method for producing the cosmetic coloring nanoparticles, wherein 1) a reaction solution in which a gold or silver noble metal salt is dissolved in a reducing aqueous solution is prepared, and an acid or a base is added to the reaction solution. Nanoparticles are generated with or without addition 2) Thereby, the predetermined absorption spectrum having a wavelength of 390 nm to 1100 nm in the range of wavelength from 390 nm to 1100 nm containing particles having a particle size of 5 to 300 nm 3) synthesizing noble metal nanoparticles having a specific color tone and saturation controlled to 3), and producing nanoparticles for cosmetic coloring constituted by arbitrarily combining the nanoparticles and selecting a color tone and saturation. It is characterized by.

更に、本発明は、着色用貴金属ナノ粒子含有化粧品であって、上記の化粧品着色用ナノ粒子が着色剤として配合されている点、上記の化粧品用複合体が配合されている点、に特徴を有するものである。   Further, the present invention is a cosmetic containing noble metal nanoparticles for coloring, characterized in that the cosmetic coloring nanoparticles are blended as a colorant and the cosmetic composite is blended. It is what you have.

本発明は、プラズモン共鳴特性が生じる貴金属ナノ粒子の粒子径及び形状を変化させることにより、吸光スペクトルを波長390nmから1100nmまでの範囲で選択的に制御した特定の色調及び彩度を有する化粧品着色用ナノ粒子であって、粒子の粒径が5〜300nmであり、厚さが略15nm程度の平板状の粒子を含有すること、を特徴とするものである。   The present invention is for coloring cosmetics having a specific color tone and saturation in which the absorption spectrum is selectively controlled in the wavelength range of 390 nm to 1100 nm by changing the particle size and shape of the noble metal nanoparticles that generate plasmon resonance characteristics. Nanoparticles having a particle size of 5 to 300 nm and a thickness of about 15 nm are contained.

また、本発明は、吸光スペクトルを波長390nmから1100nmまでの範囲で選択的に制御した特定の色調及び彩度を有する化粧品着色用ナノ粒子を製造する方法であって、還元水溶液中に金属塩を溶解した反応液を作製した後、当該反応液に、塩酸等の酸又は塩基を添加又は無添加でナノ粒子を生成させ、それにより、粒子の粒径が5〜300nmであり、厚さが略15nm程度の平板状の粒子を含む化粧品着色用ナノ粒子を作製し、当該ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子を作製すること、を特徴とするものである。   The present invention also relates to a method for producing nanoparticles for coloring cosmetics having a specific color tone and saturation in which an absorption spectrum is selectively controlled in a wavelength range of 390 nm to 1100 nm, wherein a metal salt is added to a reducing aqueous solution. After preparing the dissolved reaction solution, nanoparticles are generated in the reaction solution with or without the addition of acid or base such as hydrochloric acid, whereby the particle size is 5 to 300 nm and the thickness is approximately The present invention is characterized in that cosmetic coloring nanoparticles including plate-like particles of about 15 nm are prepared, and the cosmetic coloring nanoparticles are formed by arbitrarily combining the nanoparticles to select color tone and saturation. It is what.

本発明は、貴金属ナノ粒子の合成過程において、粒子の溶解、析出反応を制御することにより、平板状の粒子を合成するものであり、その粒子が、金又は銀を含むナノ粒子であり、可視光域において任意の光吸収波長を取る化粧品着色用ナノ粒子の製造方法及びそのナノ粒子を提供するものである。   The present invention synthesizes tabular particles by controlling the dissolution and precipitation reactions of the particles in the synthesis process of the noble metal nanoparticles, and the particles are nanoparticles containing gold or silver and are visible. The present invention provides a method for producing cosmetic coloring nanoparticles having an arbitrary light absorption wavelength in the light region and the nanoparticles.

本発明について、具体例に則して詳細に説明すると、本発明の金又は銀を含むナノ粒子の合成方法では、例えば、0.05から5mmol/lの濃度範囲のナノ粒子の原料となる金属塩と、ナノ粒子の保護剤となる、例えば、0.05から5%の濃度範囲のトリブロックコポリマー P85(BASF製)を蒸留水に加え、1時間撹拌することにより溶解させる。更に、これに、例えば、1.2μmol/lの塩酸と0.02から2wt%濃度範囲の過酸化水素を加えて、30分撹拌する。これらの合成過程において、上記合成条件は、例示的に示したものであり、これらの合成条件は、必要に応じて、適宜変更することができる。   The present invention will be described in detail with reference to specific examples. In the method for synthesizing nanoparticles containing gold or silver according to the present invention, for example, a metal used as a raw material for nanoparticles in a concentration range of 0.05 to 5 mmol / l. For example, a salt and a triblock copolymer P85 (manufactured by BASF) having a concentration range of 0.05 to 5%, which is a protective agent for nanoparticles, are added to distilled water and dissolved by stirring for 1 hour. Further, for example, 1.2 μmol / l hydrochloric acid and hydrogen peroxide having a concentration range of 0.02 to 2 wt% are added and stirred for 30 minutes. In these synthesis processes, the above synthesis conditions are exemplarily shown, and these synthesis conditions can be appropriately changed as necessary.

次に、この溶液を、10から60℃に設定した水槽内にある反応容器に添加し、還元剤である0.02から2wt%濃度範囲の過酸化水素、0.1から5mmol/lのテトラヒドロほう酸ナトリウムを添加し、金属ナノ粒子を生成させる。本発明では、窒素ガスやアルゴンガス、更に、水素ガスを反応容器中に流すことにより還元が促進される。   Next, this solution was added to a reaction vessel in a water tank set at 10 to 60 ° C., and a reducing agent, hydrogen peroxide in a concentration range of 0.02 to 2 wt%, 0.1 to 5 mmol / l of tetrahydro Sodium borate is added to produce metal nanoparticles. In the present invention, the reduction is promoted by flowing nitrogen gas, argon gas, or hydrogen gas into the reaction vessel.

本発明で用いられる金属ナノ粒子の金属としては、可視光領域で局在プラズモン共鳴を起こす金属であり、具体的には、金、銀等の貴金属が挙げられる。金粒子の場合には、520nm以上で使用することが必要とされることと、520nmに金の平板特有の吸収が見られる。銀の場合には、銀の平板特有の吸収は340nmに吸収が見られるが、これは、可視光の範囲外である。その金及び銀の化合物としては、金の場合には、塩化金酸、銀の場合には、硝酸銀を用いることが望ましい。生成される金属微粒子の粒径は、5〜100nmが好ましい。   The metal of the metal nanoparticle used in the present invention is a metal that causes localized plasmon resonance in the visible light region, and specifically includes noble metals such as gold and silver. In the case of gold particles, it is necessary to use at 520 nm or more, and absorption specific to a gold plate is seen at 520 nm. In the case of silver, the absorption characteristic of the silver flat plate is observed at 340 nm, which is outside the range of visible light. As the gold and silver compounds, it is desirable to use chloroauric acid in the case of gold and silver nitrate in the case of silver. The particle size of the generated metal fine particles is preferably 5 to 100 nm.

本発明の製造方法では、還元水溶液中に金又は銀の貴金属塩を溶解した反応液を作製し、当該反応液に、酸又は塩基を添加又は無添加でナノ粒子を生成させ、それにより、粒子の粒径が5〜300nmであり、平板状の粒子を含有する、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を合成し、当該ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子を作製する。   In the production method of the present invention, a reaction solution in which a gold or silver noble metal salt is dissolved in a reducing aqueous solution is prepared, and nanoparticles are generated in the reaction solution with or without the addition of an acid or a base. A noble metal nanoparticle having a specific color tone and saturation with a particle size of 5 to 300 nm and containing tabular particles and having an absorption spectrum controlled to a predetermined absorption spectrum in the wavelength range of 390 nm to 1100 nm is synthesized. The nanoparticles for cosmetic coloring are produced by arbitrarily combining the nanoparticles and combining them so that the color tone and saturation can be selected.

この場合、貴金属塩として、塩化金酸又は硝酸銀が用いられる。また、還元水溶液の還元剤として、過酸化水素、テトラヒドロほう酸ナトリウム、蟻酸、又はアスコルビン酸が用いられる。また、上記反応液は、分散剤として、コポリマー、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ドデシル硫酸ナトリウム及びヘキサメタリン酸ナトリウムからなる群より選択される少なくとも1種を含有する。   In this case, chloroauric acid or silver nitrate is used as the noble metal salt. Further, hydrogen peroxide, sodium tetrahydroborate, formic acid, or ascorbic acid is used as a reducing agent in the reducing aqueous solution. Moreover, the said reaction liquid contains at least 1 sort (s) selected from the group which consists of a copolymer, polyvinylpyrrolidone, polyvinyl alcohol, polyethyleneglycol, polyacrylic acid, sodium dodecyl sulfate, and sodium hexametaphosphate as a dispersing agent.

分散剤としては、エチレン−プロピレンブロック共重合体からなるブロックコポリマー、更には共役ジエンモノマーを1種以上含む共重合体、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ドデシル硫酸ナトリウム及びヘキサメタリン酸ナトリウムからなる群より選択される少なくとも1種を含むことが好ましい。   Dispersants include block copolymers composed of ethylene-propylene block copolymers, copolymers containing one or more conjugated diene monomers, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, sodium dodecyl sulfate and hexametaphosphoric acid. It is preferable to include at least one selected from the group consisting of sodium.

形状制御剤として、過酸化水素、還元剤としては、テトラヒドロほう酸ナトリウム、蟻酸、アスコルビン酸を用いることが望ましい。また、金属イオンの錯化剤を用いても良く、好適には、例えば、クエン酸ナトリウム、クエン酸カリウム、クエン酸ナトリウムカリウム、酒石酸ナトリウム、酒石酸カリウム、酒石酸ナトリウムカリウム、二糖、三糖、多糖類等を用いることができる。   As the shape control agent, it is preferable to use sodium tetrahydroborate, formic acid, or ascorbic acid as the hydrogen peroxide and the reducing agent. Metal ion complexing agents may also be used, and preferably, for example, sodium citrate, potassium citrate, sodium potassium citrate, sodium tartrate, potassium tartrate, sodium potassium tartrate, disaccharide, trisaccharide, Sugars and the like can be used.

作製した銀ナノ粒子の溶液を石英板上に塗布し、乾燥させた試料のX線回析から、ピークは小さいが、38度に銀の立方晶系を示す(111)面のピークが見られる。また、紫外可視分光スペクトルでは、例えば、524から575nm付近に頂点があり、333から336nm付近に粒子が平板状である特徴のピークが見られる。また、透過電子顕微鏡写真による観察では、一辺が略40nm程度の三角形の粒子で平板の側面を持つ粒子が見られる。   From the X-ray diffraction of the prepared sample of silver nanoparticles coated on a quartz plate and dried, the peak is small, but a peak of (111) plane showing a silver cubic system at 38 degrees is observed. . Further, in the ultraviolet-visible spectrum, for example, a peak having a peak in the vicinity of 524 to 575 nm and a tabular particle in the vicinity of 333 to 336 nm is seen. Further, in observation with a transmission electron micrograph, a triangular particle having a side of about 40 nm and a plate having a flat side surface can be seen.

化粧品は、それを構成する組成として、種々の機能を有する粉体を混合して使用される。例えば、通常、粉体化粧料に使用される粉体類、着色剤、油剤、保湿剤、界面活性剤、紫外線防御剤、人間の皮脂成分のうち、肌に悪影響を及ぼす皮脂老廃物である遊離脂肪酸の吸着剤、香料、溶剤、塩類、粘剤、高分子物質等を同時に配合することができる。   Cosmetics are used by mixing powders having various functions as the constituents thereof. For example, among the powders, colorants, oils, moisturizers, surfactants, UV protection agents and human sebum components that are usually used in powder cosmetics, sebum wastes that are harmful to the skin are free Fatty acid adsorbents, fragrances, solvents, salts, stickers, polymer substances and the like can be blended simultaneously.

特に、粉体類については、従来公知の無機粉体、有機粉体、色素、及びこれらの複合粉体、及びシリコーン処理、フッ素化合物処理、金属石鹸処理、油剤処理等の表面処理を施した粉体類が挙げられる。また、その形状も球状だけでなく、板状や棒状及び光学的、徐放作用等が期待される中空状、チューブ状等が挙げられる。本発明では、これら化粧品を構成する粉体と複合化することも可能である。   In particular, for powders, conventionally known inorganic powders, organic powders, pigments, and composite powders thereof, and powders subjected to surface treatment such as silicone treatment, fluorine compound treatment, metal soap treatment, and oil agent treatment Examples include body species. Moreover, the shape is not only spherical, but also includes a plate shape, a rod shape, a hollow shape, a tube shape, and the like that are expected to have optical, sustained release action and the like. In the present invention, it can be combined with the powder constituting these cosmetics.

通常、銀ナノ粒子は、粒子間の接触により吸収スペクトルのシフトが生じるため(X.Hu,.W.Cheng,T.Wang,E.Wang and S.Dong,Nanotechnology,16(2005)2164)、分散剤の添加により単分散化して発色させることが行われている。また、化粧品の作製において、多くの粉体が含まれており、これらの粉体上にあらかじめ銀ナノ粒子を析出させておけば、銀ナノ粒子の接触も少なく、効率的に配置でき、分散剤の低減にもつながる。また、着色の面からも色むらがなくなる。   In general, silver nanoparticles have a shift in absorption spectrum due to contact between particles (X. Hu,. W. Cheng, T. Wang, E. Wang and S. Dong, Nanotechnology, 16 (2005) 2164). Coloring is performed by monodispersing by adding a dispersant. In addition, many powders are included in the production of cosmetics, and if silver nanoparticles are precipitated in advance on these powders, there is little contact with the silver nanoparticles, and they can be arranged efficiently, and the dispersing agent It leads to reduction. In addition, color unevenness is also eliminated from the coloring aspect.

本発明の貴金属ナノ粒子を含む化粧料の例としては、パウダーファンデーション、白粉、フェースパウダー、アイシャドウ、プレストパウダー、チークカラー、リクイドファンデーション、油性ファンデーション、クリーム、ローション、マニキュア、口紅等、化粧品一般が挙げられる。   Examples of cosmetics containing the noble metal nanoparticles of the present invention include powder foundation, white powder, face powder, eye shadow, pressed powder, teak color, liquid foundation, oily foundation, cream, lotion, nail polish, lipstick, etc. Can be mentioned.

通常、粉体化粧料中に配合される粉体として、例えば、酸化チタン、酸化セリウム、窒化ホウ素等の白色顔料、黄酸化鉄、赤酸化鉄、黒酸化鉄、酸化クロム、酸化アルミニウムコバルト、カーボンブラック、群青、紺青等の有色顔料、タルク、セリサイト、マイカ、カオリン等の体質顔料、雲母チタン、オキシ塩化ビスマス等のパール顔料、硫酸バリウム、炭酸カルシウム、ハイドロキシアパタイト、炭酸マグネシウム、珪酸マグネシウム、硫酸マグネシウム等の金属塩、ナイロンパウダー、シルクパウダー、ウレタンパウダー、テフロン(登録商標)パウダー、シリコーンパウダー、セルロースパウダー等の高分子物質、赤色104号、赤色201号、黄色4号、青色1号、黒色401号等の色素、黄色203号Baレーキ等のレーキ色素等の1種、又は2種以上をあわせて使用することも可能である。   Usually, powders to be blended in powder cosmetics include, for example, white pigments such as titanium oxide, cerium oxide, boron nitride, yellow iron oxide, red iron oxide, black iron oxide, chromium oxide, aluminum cobalt oxide, carbon Colored pigments such as black, ultramarine and bitumen, extender pigments such as talc, sericite, mica and kaolin, pearl pigments such as titanium mica and bismuth oxychloride, barium sulfate, calcium carbonate, hydroxyapatite, magnesium carbonate, magnesium silicate, sulfuric acid Metallic salts such as magnesium, nylon powder, silk powder, urethane powder, Teflon (registered trademark) powder, silicone powder, cellulose powder and other high-molecular substances, red 104, red 201, yellow 4, blue 1, black Dye such as No. 401, Lake Dye such as Yellow No. 203 Ba Lake One, or can be used together of two or more.

油性基剤としては、ワックス、半固体ワックス、オイルが用いられる。これらのうち、ワックスとしては、固体パラフィン、低分子ポリエチレン、マイクロクリスタリンワックス、セレシン等の炭化水素が挙げられる。また、半固体ワックスとしては、ラノリンやワセリン等が挙げられる。また、オイルとしては、スクワラン、ポリイソブテン等の炭化水素、ひまし油、オリーブ油、トリイソステアリン酸グリセリル等の油脂、リンゴ酸ジイソステアリル、イソノナン酸トリデシル等のエステル油、メチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーン等が挙げられる。   As the oily base, wax, semi-solid wax, and oil are used. Among these, examples of the wax include hydrocarbons such as solid paraffin, low molecular weight polyethylene, microcrystalline wax, and ceresin. Examples of the semi-solid wax include lanolin and petrolatum. Oils include hydrocarbons such as squalane and polyisobutene, oils and fats such as castor oil, olive oil and glyceryl triisostearate, ester oils such as diisostearyl malate and tridecyl isononanoate, methylpolysiloxane and methylphenylpolysiloxane. Examples include silicone.

本発明により、粒径が30から50nmの明るいコントラストの三角形、円盤状の粒子、及び暗いコントラストの長方形(平板状)の粒子を合成することができる。また、ナノ粒子生成反応の温度を、例えば、25〜50℃の範囲で変化させることにより、480〜800nmの吸収スペクトルを有するナノ粒子を合成することができ、温度を高くすることで、粒成長により大きい粒子を形成することができる。   According to the present invention, it is possible to synthesize bright contrast triangular, disk-shaped particles and dark contrast rectangular (tabular) particles having a particle size of 30 to 50 nm. In addition, by changing the temperature of the nanoparticle generation reaction in a range of 25 to 50 ° C., for example, nanoparticles having an absorption spectrum of 480 to 800 nm can be synthesized, and by increasing the temperature, grain growth Larger particles can be formed.

また、本発明では、反応系に酸又は塩基を添加又は無添加とすることにより、例えば、吸収スペクトルのピークが400〜1100nmで、粒径が10nm〜1μmのナノ粒子を合成することができる。また、本発明では、反応系にコポリマーを加えることにより、粒径を変化させ、吸収スペクトルのピークを制御したナノ粒子を合成することができる。本発明では、これらの手法を組み合わせて、可視光領域において、粒径及び吸収スペクトルを所定の範囲に制御した特定の色調及び彩度を有するナノ粒子を任意に組み合わせることで色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子を作製し、提供することができる。   In the present invention, by adding or not adding an acid or base to the reaction system, for example, nanoparticles having an absorption spectrum peak of 400 to 1100 nm and a particle size of 10 nm to 1 μm can be synthesized. Further, in the present invention, by adding a copolymer to the reaction system, it is possible to synthesize nanoparticles in which the particle diameter is changed and the peak of the absorption spectrum is controlled. In the present invention, by combining these methods, in the visible light region, the color tone and saturation are selected by arbitrarily combining nanoparticles having a specific color tone and saturation whose particle size and absorption spectrum are controlled within a predetermined range. It is possible to produce and provide cosmetic coloring nanoparticles that are configured in combination.

本発明により、次のような効果が奏される。
(1)本発明により、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する化粧品着色用ナノ粒子を製造し、提供することができる。
(2)本発明のナノ粒子を用いることにより、化粧構成粉体との複合化が図られた着色複合体を提供することができる。
(3)本発明のナノ粒子を用いることにより、添加量が少量でも、着色力が強く、高い彩度の化粧品を提供することが可能となる。
(4)上記化粧品着色用ナノ粒子が着色剤として配合された着色貴金属ナノ粒子含有化粧品を提供することができる。
(5)上記着色複合体が配合された着色貴金属ナノ粒子含有化粧品を提供することができる。
The present invention has the following effects.
(1) According to the present invention, it is possible to produce and provide cosmetic coloring nanoparticles having a specific color tone and saturation in which an absorption spectrum is controlled to a predetermined absorption spectrum in a wavelength range of 390 nm to 1100 nm.
(2) By using the nanoparticles of the present invention, it is possible to provide a colored composite that is combined with a cosmetic constituent powder.
(3) By using the nanoparticles of the present invention, it is possible to provide a cosmetic product having high coloring power and high saturation even if the addition amount is small.
(4) A colored noble metal nanoparticle-containing cosmetic in which the cosmetic coloring nanoparticles are blended as a colorant can be provided.
(5) A colored noble metal nanoparticle-containing cosmetic containing the colored complex can be provided.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.

0.3mmol/lの硝酸銀、0.1mmol/lのポリビニルピロリドンK90(東京化成工業株式会社製)、30wt%の0.12ml過酸化水素を50mlの蒸留水に加え、1時間撹拌することにより、これらを溶解させた。この溶液に、100mmol/lのテトラヒドロほう酸ナトリウムを0.4ml添加し、銀ナノ粒子を生成させた。   By adding 0.3 mmol / l silver nitrate, 0.1 mmol / l polyvinylpyrrolidone K90 (manufactured by Tokyo Chemical Industry Co., Ltd.), 30 wt% 0.12 ml hydrogen peroxide to 50 ml distilled water, and stirring for 1 hour, These were dissolved. To this solution, 0.4 ml of 100 mmol / l sodium tetrahydroborate was added to form silver nanoparticles.

このときの透過電子顕微鏡写真を図1に示す。粒径が30から50nmの明るいコントラストの三角形、円盤状の粒子の他に、暗いコントラストの長方形の粒子が見られる。これは、平板状の粒子を横から見たために暗く見えると考えられる。そのため、平板状の粒子であると断定される。   A transmission electron micrograph at this time is shown in FIG. In addition to bright-contrast triangular and disk-shaped particles having a particle size of 30 to 50 nm, dark-contrast rectangular particles can be seen. This is thought to be dark because the tabular grains were viewed from the side. Therefore, it is determined that it is a tabular grain.

0.2mmol/lの硝酸銀、0.1%のコポリマーP85(BASF製)、30wt%の0.12ml過酸化水素を、50mlの蒸留水に加え、1時間撹拌することにより、これらを溶解させた。この溶液に、100mmol/lのテトラヒドロほう酸ナトリウムを0.4ml添加し、銀ナノ粒子を生成させた。このとき、種々の温度で反応を行った。   0.2 mmol / l silver nitrate, 0.1% copolymer P85 (manufactured by BASF), 30 wt% 0.12 ml hydrogen peroxide was added to 50 ml distilled water, and these were dissolved by stirring for 1 hour. . To this solution, 0.4 ml of 100 mmol / l sodium tetrahydroborate was added to form silver nanoparticles. At this time, the reaction was carried out at various temperatures.

温度を変化させた場合の吸収スペクトルを図2に示す。図中、試料1は25℃、試料2は31℃、試料3は40℃、試料4は50℃で反応を行ったものである。最高温度が25℃の場合には、スペクトルのピークが波長800nmの吸収スペクトルとなり、31℃では620nmがピークとなり、40℃では480nmであった。   FIG. 2 shows the absorption spectrum when the temperature is changed. In the figure, sample 1 was reacted at 25 ° C, sample 2 was 31 ° C, sample 3 was 40 ° C, and sample 4 was reacted at 50 ° C. When the maximum temperature was 25 ° C., the peak of the spectrum was an absorption spectrum having a wavelength of 800 nm, the peak was 620 nm at 31 ° C., and the peak was 480 nm at 40 ° C.

更に、温度を上げて、50℃では580nmとなった。透過電子顕微鏡の観察結果を図3に示す。25℃の場合には、粒径20から100nmの平板粒子が存在した。更に、31℃では、30から70nmの平板粒子が見られ、40℃では10から40nmの細かい粒子が見られた。50℃では30から70nmの平板粒子が見られた。   Furthermore, the temperature was raised to 580 nm at 50 ° C. The observation result of the transmission electron microscope is shown in FIG. In the case of 25 ° C., tabular grains having a particle diameter of 20 to 100 nm were present. Further, tabular grains of 30 to 70 nm were observed at 31 ° C., and fine grains of 10 to 40 nm were observed at 40 ° C. At 50 ° C., tabular grains of 30 to 70 nm were observed.

温度が低いほど大きな平板になった理由は、核の生成量と粒子の成長速度が、温度により異なるためであると考えられる。核の生成量は、40℃まで温度が高くなるにつれて多くなり、それ以降はあまり変わらないと考えられる。温度に対する粒子の成長速度変化は、温度により増加すると考えられる。そのため、25℃から40℃までは、核生成による影響に支配され、多くの粒子で銀イオンの供給が進行し、結果として粒子の成長が分散されて、粒子が小さくなったと考えられる。   The reason why the plate becomes larger as the temperature is lower is considered to be because the amount of nuclei produced and the growth rate of grains differ depending on the temperature. The amount of nuclei generated increases as the temperature increases to 40 ° C., and it is considered that the amount of nuclei does not change much thereafter. It is considered that the growth rate change of particles with respect to temperature increases with temperature. Therefore, it is considered that from 25 ° C. to 40 ° C., it is governed by the influence of nucleation, and supply of silver ions proceeds with many particles. As a result, the particle growth is dispersed and the particles become smaller.

しかし、それ以降では、最も温度への核生成の影響が大きくなるために、最も粒子が小さくなり、更に、温度を高くすると、粒成長による影響に支配されて粒子が大きくなったと考えられる。試料4の380から780nmまでの範囲における5nm間隔の分光反射率から、色表示X、Y、Zを計算し、マンセル系HVCを算出した。その値は、HV/C=6.7PB 4.9/11.2となり、高い彩度であった。   However, after that, the effect of nucleation on the temperature becomes the largest, so that the particles become the smallest. Further, when the temperature is raised, it is considered that the particles are dominated by the influence of the grain growth. From the spectral reflectance at 5 nm intervals in the range from 380 to 780 nm of sample 4, color indications X, Y, and Z were calculated, and Munsell HVC was calculated. The value was HV / C = 6.7 PB 4.9 / 11.2, which was high saturation.

0.2mmol/lの硝酸銀、0.1%のコポリマーP(BASF製)、85、30wt%の0.24ml過酸化水素を50mlの蒸留水に加え、塩酸又は水酸化カリウムを更に加えて、28℃で1時間撹拌することにより、これらを溶解させた。この溶液に、100mmol/lのテトラヒドロほう酸ナトリウムを0.4ml添加し、銀ナノ粒子を生成させた。   0.2 mmol / l silver nitrate, 0.1% copolymer P (manufactured by BASF), 85, 30 wt% 0.24 ml hydrogen peroxide was added to 50 ml distilled water, hydrochloric acid or potassium hydroxide was further added, and 28 These were dissolved by stirring at 0 ° C. for 1 hour. To this solution, 0.4 ml of 100 mmol / l sodium tetrahydroborate was added to form silver nanoparticles.

図4に、作製した粒子の吸収スペクトルを示す。図中、試料5は水酸化カリウムを16μmol/l添加したもの、試料6は水酸化カリウムを8μmol/l添加したもの、試料7は何も添加しないもの、試料8は塩酸を1.2μmol/l添加したもの、試料9は塩酸を2.4μmol/l添加したものである。   FIG. 4 shows an absorption spectrum of the produced particles. In the figure, sample 5 was added with 16 μmol / l potassium hydroxide, sample 6 was added with 8 μmol / l potassium hydroxide, sample 7 was not added, and sample 8 was 1.2 μmol / l hydrochloric acid. Sample 9 was added with 2.4 μmol / l hydrochloric acid.

まず、何も添加しない試料7は、スペクトルのピークが波長900nmにある。また、平板粒子の特徴である350nmのピークが見られる。試料6は510nm、試料5は400nmのピークが見られた。また、試料8はピークが1100nmとなった。試料9はピークが測定範囲では見られず、吸収の絶対値が小さくなった。   First, the sample 7 to which nothing is added has a spectrum peak at a wavelength of 900 nm. In addition, a 350 nm peak, which is a characteristic of tabular grains, is observed. Sample 6 showed a peak of 510 nm and sample 5 showed a peak of 400 nm. Sample 8 had a peak of 1100 nm. In Sample 9, no peak was observed in the measurement range, and the absolute value of absorption was small.

図5に、光子相関法によって測定したサンプルの粒度分布を示す。試料5は一つの分布であり、そのピークは粒径200nmであった。試料6は二つの分布からなり、一つは5nm、もう一つは40nmをピークとする分布からなっていた。試料7は一つの分布のピークが10nm、もう一つの分布のピークが70nmであった。試料8では18nmと90nmをピークとする分布となった。これらの粒度分布は、単一の粒子と凝集体の可能性があるため、透過電子顕微鏡観察により実際の粒子を確認した。   FIG. 5 shows the particle size distribution of the sample measured by the photon correlation method. Sample 5 had one distribution, and its peak was a particle size of 200 nm. Sample 6 consisted of two distributions, one with a peak at 5 nm and the other with a peak at 40 nm. Sample 7 had a peak of one distribution of 10 nm and another distribution peak of 70 nm. Sample 8 had a distribution with peaks at 18 nm and 90 nm. Since these particle size distributions may be single particles and aggregates, the actual particles were confirmed by observation with a transmission electron microscope.

透過電子顕微鏡写真を図6に示す。試料5の場合には、図6(a)から、実際の粒子は10から30nmの大きさを持つ粒子であることが分かった。これらの粒子が強く凝集しているため、粒度分布では、ピークが200nmを示していたと考えられる。試料6の場合には、(b)より20から50nmの扁平な粒子が見られる。試料7は(c)より50から150nm、試料8は(d)より100から300nm、更に、試料9は(e)より1μmまで粒子が成長していることが分かった。   A transmission electron micrograph is shown in FIG. In the case of sample 5, it was found from FIG. 6A that the actual particles are particles having a size of 10 to 30 nm. Since these particles are strongly agglomerated, it is considered that the peak was 200 nm in the particle size distribution. In the case of sample 6, flat particles of 20 to 50 nm are seen from (b). Sample 7 was found to have grown from 50 to 150 nm from (c), sample 8 from 100 to 300 nm from (d), and sample 9 from 1 (e) to 1 μm.

0.2mmol/lの硝酸銀、種々の量のコポリマー(BASF製)、P85、30wt%の0.12mlの過酸化水素を50mlの蒸留水に加え、1時間撹拌することにより、これらを溶解させた。この溶液に100mmol/lのテトラヒドロほう酸ナトリウムを0.4ml添加し、銀ナノ粒子を生成させた。   0.2 mmol / l silver nitrate, various amounts of copolymer (from BASF), P85, 30 wt% 0.12 ml hydrogen peroxide was added to 50 ml distilled water and dissolved by stirring for 1 hour. . 0.4 ml of 100 mmol / l sodium tetrahydroborate was added to this solution to produce silver nanoparticles.

得られた試料の吸収スペクトルの結果を図7に示す。図中、試料10は0.1%のP85を添加した場合、試料11は0.5%のP85を添加した場合、試料12は0.8%のP85を添加した場合、試料13は1.0%のP85を添加した場合、試料14は1.6%のP85を添加した場合である。試料10の場合には、スペクトルのピークは600nmにあり、添加量を更に多くした試料11、試料12では、620nm、760nmとなった。これより多く入れた試料13では、400nmとなった。   The result of the absorption spectrum of the obtained sample is shown in FIG. In the figure, when sample 10 is added with 0.1% P85, sample 11 is added with 0.5% P85, sample 12 is added with 0.8% P85, sample 13 is 1. When 0% P85 is added, Sample 14 is when 1.6% P85 is added. In the case of Sample 10, the peak of the spectrum was at 600 nm, and in Sample 11 and Sample 12 in which the addition amount was further increased, they were 620 nm and 760 nm. In Sample 13 containing more than this, the thickness was 400 nm.

この試料13の透過電子顕微鏡写真を図8に示す。粒子は、粒径50から150nmの粒子であり、平板の形状をしていた。濃度0.8%のときに粒径は最大となり、1.6%まで多くした場合には、10から30nmの丸い粒子となった。これは、P85を多く入れた場合には、すべての結晶面に吸着してしまい、粒成長を抑制してしまうからではないかと考えられる。   A transmission electron micrograph of this sample 13 is shown in FIG. The particles were particles having a particle size of 50 to 150 nm and had a flat plate shape. When the concentration was 0.8%, the particle size became maximum, and when the concentration was increased to 1.6%, round particles of 10 to 30 nm were obtained. This is probably because when a large amount of P85 is added, it is adsorbed on all crystal planes and suppresses grain growth.

過酸化水素の酸化作用によって、金属粒子が溶解する。このとき、溶解するものの多くがtwinned seedであり、残っている粒子は、single crystallineであるため(文献:B.Wiley,Y.Sun,J.Chen,H.Cang,Z.Y.Li,X.Li and Y.Xia,MRS Bull.,30(2005)356)、この粒子が持っている面にコポリマーが吸着して平面に成長していくと考えられる。このとき、溶液の状態により溶解析出が起こり、核の生成と粒成長が競い合い、休止の大きさと形状が決まると考えられる。   The metal particles are dissolved by the oxidizing action of hydrogen peroxide. At this time, most of the dissolved matter is twinned seed, and the remaining particles are single crystalline (reference: B. Wiley, Y. Sun, J. Chen, H. Cang, Z. Y. Li, X Li and Y. Xia, MRS Bull., 30 (2005) 356), it is considered that the copolymer is adsorbed on the surface of the particles and grows to a plane. At this time, dissolution and precipitation occur depending on the state of the solution, and it is considered that the generation of nuclei competes with the grain growth, and the size and shape of the rest are determined.

1.6mmol/lの硝酸銀、0.01gのガラクトース、コロイダルシリカPS−M(日産化学製)0.01g、アミノプロピルトリエトキシシラン50μlを50mlの蒸留水に加え、1時間撹拌した。この溶液に、200mmol/lのテトラヒドロほう酸ナトリウムを1.6ml添加し、銀ナノ粒子を生成させた。   1.6 mmol / l silver nitrate, 0.01 g galactose, colloidal silica PS-M (manufactured by Nissan Chemical Industries) 0.01 g, and aminopropyltriethoxysilane 50 μl were added to 50 ml distilled water and stirred for 1 hour. To this solution, 1.6 ml of 200 mmol / l sodium tetrahydroborate was added to form silver nanoparticles.

この試料の透過電子顕微鏡写真を図9に示す。シリカ粒子は、粒径30nmの粒子であり、銀粒子は、数nmで、シリカ粒子上に析出していることが確認できる。   A transmission electron micrograph of this sample is shown in FIG. It can be confirmed that the silica particles are particles having a particle size of 30 nm, and the silver particles are several nm and are deposited on the silica particles.

ヘキサメチレンテトラミン0.073gと0.1gのアルミナTMDA(大明化学製)を、20mlの蒸留水に加え、25℃で12時間撹拌した後、蒸留水で洗浄し、乾燥した。この処理したアルミナ0.005gと1.6mmol/lの硝酸銀、0.01gのガラクトース、アミノプロピルトリエトキシシラン50μlを49mlの蒸留水に加え、1時間撹拌した。この溶液に、200mmol/lのテトラヒドロほう酸ナトリウムを1.6ml添加し、銀ナノ粒子を生成させた。   Hexamethylenetetramine 0.073 g and 0.1 g of alumina TMDA (manufactured by Daimei Chemical) were added to 20 ml of distilled water, stirred at 25 ° C. for 12 hours, washed with distilled water, and dried. 0.005 g of this treated alumina, 1.6 mmol / l silver nitrate, 0.01 g galactose and 50 μl of aminopropyltriethoxysilane were added to 49 ml of distilled water and stirred for 1 hour. To this solution, 1.6 ml of 200 mmol / l sodium tetrahydroborate was added to form silver nanoparticles.

この試料の透過電子顕微鏡写真を図10に示す。アルミナ粒子は、粒径0.2μmの粒子であり、銀粒子は、20nmでアルミナ粒子上に析出していることが確認できる。   A transmission electron micrograph of this sample is shown in FIG. It can be confirmed that the alumina particles are particles having a particle diameter of 0.2 μm, and the silver particles are deposited on the alumina particles at 20 nm.

0.1mmol/lの硝酸銀、0.1mmol/lのポリビニルピロリドンK90(東京化成工業株式会社製)、30mmol/lのクエン酸ナトリウム、30wt%の0.12ml過酸化水素を50mlの蒸留水に加え、1時間撹拌することにより、これらを溶解させた。また、この溶液に、100mmol/lのテトラヒドロほう酸ナトリウムを0.4ml添加し、銀ナノ粒子を生成させた。   Add 0.1 mmol / l silver nitrate, 0.1 mmol / l polyvinylpyrrolidone K90 (manufactured by Tokyo Chemical Industry Co., Ltd.), 30 mmol / l sodium citrate, 30 wt% 0.12 ml hydrogen peroxide to 50 ml distilled water. These were dissolved by stirring for 1 hour. In addition, 0.4 ml of 100 mmol / l sodium tetrahydroborate was added to this solution to produce silver nanoparticles.

次に、硝酸カルシウム四水和物50mmolを水110mlに溶解し、その後、エタノール90gを加えた。一方、リン酸水素アンモニウム33mmolを水280ml、エタノール260g溶液に溶解した。これらの溶液と銀コロイド溶液を恒温槽内温度25℃にセットした反応容器内で、ホーン型のホモジナイザーにより超音波を照射しながら混合して、青色の銀複合ハイドロキシアパタイト粒子を得た。   Next, 50 mmol of calcium nitrate tetrahydrate was dissolved in 110 ml of water, and then 90 g of ethanol was added. Meanwhile, 33 mmol of ammonium hydrogen phosphate was dissolved in 280 ml of water and 260 g of ethanol. These solutions and the silver colloid solution were mixed while being irradiated with ultrasonic waves by a horn-type homogenizer in a reaction vessel set at a constant temperature in a constant temperature bath of 25 ° C. to obtain blue silver composite hydroxyapatite particles.

この試料の透過電子顕微鏡写真を図11に示す。銀粒子は、粒径20から50nmの平板状の粒子であり、ハイドロキシアパタイト層が銀粒子の周りに数nmの厚さで被覆していることが確認できる。   A transmission electron micrograph of this sample is shown in FIG. The silver particles are flat particles having a particle diameter of 20 to 50 nm, and it can be confirmed that the hydroxyapatite layer covers the silver particles with a thickness of several nm.

高純度化学製のルチル型チタニア1g、10mol/lの水酸化ナトリウムを15mlの蒸留水溶液に加えて、30分撹拌した。これを圧力容器に入れ、140℃で12時間加熱して、チタニアナノチューブを生成した。これを0.1Nの塩酸と蒸留水とエタノールで洗浄して乾燥させた。0.15gのジシアノジアミドと0.1gのチタニアナノチューブを20mlの蒸留水に加え、25℃で12時間撹拌した後、洗浄して、乾燥した。   1 g of rutile type titania made by high purity chemical, 10 mol / l sodium hydroxide was added to 15 ml of distilled aqueous solution and stirred for 30 minutes. This was put in a pressure vessel and heated at 140 ° C. for 12 hours to produce titania nanotubes. This was washed with 0.1N hydrochloric acid, distilled water and ethanol and dried. 0.15 g of dicyanodiamide and 0.1 g of titania nanotubes were added to 20 ml of distilled water, stirred at 25 ° C. for 12 hours, washed and dried.

この処理したチタニアナノチューブ0.005gと、0.2mmol/lの硝酸銀、クエン酸ナトリウム0.45gを50mlの蒸留水に加え、1時間撹拌した。この溶液に、200mmol/lのテトラヒドロほう酸ナトリウムを0.4ml添加し、銀ナノ粒子を生成させた。   The treated titania nanotubes 0.005 g, 0.2 mmol / l silver nitrate and 0.45 g sodium citrate were added to 50 ml distilled water and stirred for 1 hour. To this solution, 0.4 ml of 200 mmol / l sodium tetrahydroborate was added to form silver nanoparticles.

この試料の透過電子顕微鏡写真を図12に示す。チタニアナノチューブ直径10nm、厚さ3nmで長さが数μmであり、銀粒子は、5nm前後でチタニアナノチューブ上に析出していることが確認できる。   A transmission electron micrograph of this sample is shown in FIG. It can be confirmed that the titania nanotube has a diameter of 10 nm, a thickness of 3 nm and a length of several μm, and the silver particles are deposited on the titania nanotube at around 5 nm.

0.2mmol/lの硝酸銀、0.2%のコポリマーP85(BASF製)、コロイダルシリカPS−M(日産化学製)を、0.1g、30wt%の0.12ml過酸化水素を50mlの蒸留水に加え、1時間撹拌した。この溶液に、100mmol/lのテトラヒドロほう酸ナトリウムを0.4ml添加し、銀ナノ粒子を生成させた。   0.2 mmol / l silver nitrate, 0.2% copolymer P85 (manufactured by BASF), colloidal silica PS-M (manufactured by Nissan Chemical Industries), 0.1 g, 30 wt% 0.12 ml hydrogen peroxide, 50 ml distilled water And stirred for 1 hour. To this solution, 0.4 ml of 100 mmol / l sodium tetrahydroborate was added to form silver nanoparticles.

図13に、作製した粒子の吸収スペクトルを示す。スペクトルのピークは1000nmにあり、青色を呈していた。   FIG. 13 shows an absorption spectrum of the produced particles. The peak of the spectrum was at 1000 nm and was blue.

この試料の透過電子顕微鏡写真を図14に示す。チタニアナノチューブ直径10nm、厚さ3nmで長さが数μmであり、銀粒子は5nm前後でチタニアナノチューブ上に析出していることが確認できる。   A transmission electron micrograph of this sample is shown in FIG. It can be confirmed that the titania nanotube has a diameter of 10 nm, a thickness of 3 nm and a length of several μm, and the silver particles are deposited on the titania nanotube at around 5 nm.

以上詳述したように、本発明は、化粧品用着色ナノ粒子及びその製造方法に係るものであり、本発明により、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子からなる化粧品着色用ナノ粒子及びその製造方法を提供することができる。本発明により、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する化粧品着色用ナノ粒子を製造し、提供することができる。また、本発明のナノ粒子を用いることにより、貴金属ナノ粒子の潜在的な高い彩度とともに、可視広域での余分な吸収が少なく、化粧品組成の粉体に均一に混合することができ、ばらつき感のない着色貴金属ナノ粒子含有化粧品を提供することができる。   As described above in detail, the present invention relates to a colored nanoparticle for cosmetics and a method for producing the same, and according to the present invention, the absorption spectrum is controlled to a predetermined absorption spectrum in the wavelength range of 390 nm to 1100 nm. It is possible to provide cosmetic coloring nanoparticles comprising noble metal nanoparticles having color tone and saturation and a method for producing the same. According to the present invention, it is possible to produce and provide cosmetic coloring nanoparticles having a specific color tone and saturation in which an absorption spectrum is controlled to a predetermined absorption spectrum in a wavelength range of 390 nm to 1100 nm. In addition, by using the nanoparticles of the present invention, there is little excess absorption in the visible wide area, together with the potential high saturation of the noble metal nanoparticles, and it can be uniformly mixed into the powder of cosmetic composition, giving a sense of variation. It is possible to provide a colored noble metal nanoparticle-containing cosmetic that is free from odor.

実施例1で作製した銀ナノ粒子の透過電子顕微鏡写真を示す。The transmission electron micrograph of the silver nanoparticle produced in Example 1 is shown. 実施例2で作製した銀ナノ粒子のコロイド溶液の紫外可視分光スペクトルを示す。The ultraviolet visible spectrum of the colloidal solution of the silver nanoparticle produced in Example 2 is shown. 実施例2で作製した銀ナノ粒子の透過電子顕微鏡写真を示す。(a)は試料1、(b)は試料2、(c)は試料3、(d)は試料4の場合を示す。The transmission electron micrograph of the silver nanoparticle produced in Example 2 is shown. (A) shows the case of sample 1, (b) shows the case of sample 2, (c) shows the case of sample 3, and (d) shows the case of sample 4. 実施例3で作製した銀ナノ粒子のコロイド溶液の紫外可視分光スペクトルを示す。The ultraviolet visible spectrum of the colloidal solution of the silver nanoparticle produced in Example 3 is shown. 実施例3で作製した銀ナノ粒子の粒度分布を示す。The particle size distribution of the silver nanoparticles produced in Example 3 is shown. 実施例3で作製した銀ナノ粒子の透過電子顕微鏡写真を示す。(a)は試料5、(b)は試料6、(c)は試料7、(d)は試料8、(e)は試料9の場合を示す。The transmission electron micrograph of the silver nanoparticle produced in Example 3 is shown. (A) shows sample 5, (b) shows sample 6, (c) shows sample 7, (d) shows sample 8, and (e) shows sample 9. 実施例4で作製した銀ナノ粒子のコロイド溶液の紫外可視分光スペクトルを示す。The ultraviolet visible spectrum of the colloidal solution of the silver nanoparticle produced in Example 4 is shown. 実施例4で作製した銀ナノ粒子の透過電子顕微鏡写真を示す。The transmission electron micrograph of the silver nanoparticle produced in Example 4 is shown. 実施例5で作製したシリカと銀のナノ複合粒子の透過電子顕微鏡写真を示す。The transmission electron micrograph of the silica-silver nanocomposite particle produced in Example 5 is shown. 実施例6で作製したアルミナと銀のナノ複合粒子の透過電子顕微鏡写真を示す。The transmission electron micrograph of the alumina and silver nanocomposite particle produced in Example 6 is shown. 実施例7で作製した銀とハイドロキシアパタイトのナノ複合体の透過電子顕微鏡写真を示す。The transmission electron micrograph of the nanocomposite of silver and hydroxyapatite produced in Example 7 is shown. 実施例8で作製したチタニアナノチューブと銀のナノ複合体の透過電子顕微鏡写真を示す。The transmission electron micrograph of the titania nanotube and silver nanocomposite produced in Example 8 is shown. 実施例9で作製した銀ナノ粒子のコロイド溶液の紫外可視分光スペクトルを示す。The ultraviolet visible spectrum of the colloidal solution of the silver nanoparticle produced in Example 9 is shown. 実施例9で作製した銀ナノ粒子の透過電子顕微鏡写真を示す。The transmission electron micrograph of the silver nanoparticle produced in Example 9 is shown.

Claims (10)

プラズモン共鳴特性が生じる貴金属ナノ粒子の粒子径及び形状の形態特性に基づいて、吸収スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成したことを特徴とする化粧品着色用ナノ粒子。   Precious metal nanoparticles having a specific color tone and saturation in which the absorption spectrum is controlled to a predetermined absorption spectrum in the wavelength range of 390 nm to 1100 nm based on the particle diameter and shape morphological characteristics of the noble metal nanoparticles that cause plasmon resonance characteristics A nanoparticle for coloring cosmetics, characterized in that the color tone and saturation can be selected in any combination and configured. 吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに任意に制御して色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子であって、1)粒子の粒径が5〜300nmであり、2)平板状の粒子を含有する、請求項1に記載の化粧品着色用ナノ粒子。   A cosmetic coloring nanoparticle constructed by arbitrarily controlling a light absorption spectrum to a predetermined absorption spectrum in a wavelength range of 390 nm to 1100 nm and selecting a color tone and a saturation. 1) The particle size of the particle is 5 The nanoparticle for coloring cosmetics according to claim 1, which is ˜300 nm and 2) contains tabular particles. 請求項1又は2に記載の化粧品着色用ナノ粒子を、基材と複合化したこと又は基材上に析出させたことを特徴とする化粧品用複合体。   A cosmetic composite, wherein the cosmetic coloring nanoparticles according to claim 1 or 2 are combined with a base material or deposited on the base material. 上記化粧品着色用ナノ粒子を、無機白色顔料、無機有色顔料、無機黒色顔料、効果顔料、発光顔料、炭酸マグネシウム、雲母、シリカ、チタニア、アルミナ、ガラス、雲母状酸化鉄、又は酸化黒鉛の基材と複合化した又は当該基材上に析出させた、請求項3に記載の化粧品用複合体。   The cosmetic coloring nanoparticles are made of an inorganic white pigment, inorganic colored pigment, inorganic black pigment, effect pigment, luminescent pigment, magnesium carbonate, mica, silica, titania, alumina, glass, mica-like iron oxide, or graphite oxide base material. The composite for cosmetics according to claim 3, which is complexed with or deposited on the base material. 請求項1又は2に記載の化粧品着色用ナノ粒子を製造する方法であって、1)還元水溶液中に金又は銀の貴金属塩を溶解した反応液を作製し、当該反応液に、酸又は塩基を添加又は無添加でナノ粒子を生成させる、2)それにより、粒子の粒径が5〜300nmであり、平板状の粒子を含有する、吸光スペクトルを波長390nmから1100nmまでの範囲の所定の吸収スペクトルに制御した特定の色調及び彩度を有する貴金属ナノ粒子を合成する、3)当該ナノ粒子を任意に組み合わせて色調及び彩度を選択可能に組み合わせて構成した化粧品着色用ナノ粒子を作製する、ことを特徴とする化粧品着色用ナノ粒子の製造方法。   A method for producing nanoparticles for coloring cosmetics according to claim 1 or 2, wherein 1) a reaction solution in which a noble metal salt of gold or silver is dissolved in a reducing aqueous solution is prepared, and an acid or a base is added to the reaction solution. 2) Thereby, the particle size of the particles is 5 to 300 nm, and the absorption spectrum is a predetermined absorption in the wavelength range from 390 nm to 1100 nm. Synthesizing noble metal nanoparticles having a specific color tone and saturation controlled in the spectrum; 3) producing nanoparticles for cosmetic coloring constituted by arbitrarily combining the nanoparticles and selecting a color tone and saturation; A method for producing cosmetic coloring nanoparticles. 貴金属塩として、塩化金酸又は硝酸銀を用いる、請求項5に記載の化粧品着色用ナノ粒子の製造方法。   The method for producing cosmetic coloring nanoparticles according to claim 5, wherein chloroauric acid or silver nitrate is used as the noble metal salt. 還元水溶液が、還元剤として、過酸化水素、テトラヒドロほう酸ナトリウム、蟻酸、又はアスコルビン酸を含む、請求項5に記載の化粧品着色用ナノ粒子の製造方法。   The method for producing nanoparticles for cosmetic coloring according to claim 5, wherein the reducing aqueous solution contains hydrogen peroxide, sodium tetrahydroborate, formic acid, or ascorbic acid as a reducing agent. 反応液が、分散剤として、コポリマー、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ドデシル硫酸ナトリウム及びヘキサメタリン酸ナトリウムからなる群より選択される少なくとも1種を含む、請求項5に記載の化粧品着色用ナノ粒子の製造方法。   The cosmetic according to claim 5, wherein the reaction liquid contains at least one selected from the group consisting of a copolymer, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, sodium dodecyl sulfate and sodium hexametaphosphate as a dispersant. Method for producing coloring nanoparticles. 請求項1又は2に記載の化粧品着色用ナノ粒子が着色剤として配合されていることを特徴とする着色用貴金属ナノ粒子含有化粧品。   A cosmetic containing noble metal nanoparticles for coloring, wherein the cosmetic coloring nanoparticles according to claim 1 or 2 are blended as a colorant. 請求項3又は4に記載の化粧品用複合体が配合されていることを特徴とする着色用貴金属ナノ粒子含有化粧品。   A cosmetic containing noble metal nanoparticles for coloring, wherein the composite for cosmetics according to claim 3 or 4 is blended.
JP2008066859A 2008-03-14 2008-03-14 Colored nanoparticles for cosmetic and its manufacturing method Pending JP2009221140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066859A JP2009221140A (en) 2008-03-14 2008-03-14 Colored nanoparticles for cosmetic and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066859A JP2009221140A (en) 2008-03-14 2008-03-14 Colored nanoparticles for cosmetic and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009221140A true JP2009221140A (en) 2009-10-01

Family

ID=41238314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066859A Pending JP2009221140A (en) 2008-03-14 2008-03-14 Colored nanoparticles for cosmetic and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009221140A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521491A (en) * 2009-03-24 2012-09-13 ビーエーエスエフ ソシエタス・ヨーロピア Production of molded metal particles and their use
JP2013036114A (en) * 2011-08-11 2013-02-21 Shinshu Univ Method of manufacturing metal nanoparticle
JP2013181123A (en) * 2012-03-02 2013-09-12 Dainippon Printing Co Ltd Resin composition for reflector, resin frame for reflector, reflector, semiconductor light emitting device and molding method
KR101317387B1 (en) * 2010-12-20 2013-10-11 한국세라믹기술원 Manufacture Method of stability Nano Silver coated Mica by Liquid Reduction
KR101369129B1 (en) * 2011-12-15 2014-03-06 한국콜마주식회사 UV Protecting Cosmetic Composition Comprising Titania Nano Tube and Manufacturing Method Thereof
US20140076600A1 (en) * 2012-09-14 2014-03-20 Apple Inc. Changing colors of materials
CN105772739A (en) * 2016-03-12 2016-07-20 常州大学 Preparation method for graphene/nano-silver composite antibacterial material
JP2017171586A (en) * 2016-03-22 2017-09-28 ゲオール化学株式会社 Cosmetic
US9839974B2 (en) 2013-11-13 2017-12-12 Apple Inc. Forming white metal oxide films by oxide structure modification or subsurface cracking
US10017872B2 (en) 2013-10-30 2018-07-10 Apple Inc. Metal oxide films with reflective particles
US10184190B2 (en) 2012-06-22 2019-01-22 Apple Inc. White appearing anodized films
KR20190043093A (en) * 2017-10-17 2019-04-25 이화여자대학교 산학협력단 Color generating composition, and cosmetic composition or refractive index sensor
JP2020083839A (en) * 2018-11-29 2020-06-04 トピー工業株式会社 Powder and cosmetics
WO2020175701A1 (en) * 2019-02-28 2020-09-03 株式会社日本触媒 Aqueous dispersion, cosmetic composition and method for producing cosmetic
JP2021119213A (en) * 2020-01-27 2021-08-12 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Thin film interference pigments with coating of nanoparticles

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287210A (en) * 1988-05-12 1989-11-17 Tanaka Kikinzoku Kogyo Kk Manufacture of silver fine particle
JPH09255533A (en) * 1996-03-22 1997-09-30 Nippon Sheet Glass Co Ltd Flaky metal oxide and cosmetic mixed with the same
JP2004244433A (en) * 2003-02-10 2004-09-02 National Institute Of Advanced Industrial & Technology Natural polymer powder
JP2005068019A (en) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp Metal nanorod-containing cosmetic
JP2005320616A (en) * 2003-09-05 2005-11-17 Mitsubishi Materials Corp Metal microparticle, composition containing the same or the like
JP2006037221A (en) * 2004-07-26 2006-02-09 Korea Research Inst Of Standards & Science Gold nanostructure and method for producing the same
JP2006169544A (en) * 2004-12-10 2006-06-29 Mitsubishi Materials Corp Metal particulate, method for producing the same, composition containing the same and application thereof
JP2006299051A (en) * 2005-04-20 2006-11-02 Shiseido Co Ltd Composite powder for coloring and cosmetic material containing the same
WO2006126771A1 (en) * 2005-05-23 2006-11-30 Korea Research Institute Of Bioscience And Biotechnology Multicolor-encoded colloidal particles coated with metal nanoparticles mixture having colors in the visible region and method for preparing the same
WO2007011103A1 (en) * 2005-07-18 2007-01-25 Korea Research Institute Of Bioscience And Biotechnology Cosmetic pigment composition containing gold or silver nano-particles
JP2007138250A (en) * 2005-11-18 2007-06-07 Mitsubishi Materials Corp Method for producing silver grain, silver grain-containing composition comprising the obtained silver grain and its use
JP2007138249A (en) * 2005-11-18 2007-06-07 Mitsubishi Materials Corp Method for producing silver grain, silver grain-containing composition containing the obtained silver grain and its use
JP2007154292A (en) * 2005-12-08 2007-06-21 Mitsubishi Materials Corp Method for producing silver particle, silver particle-containing composition containing the silver particle and its use
JP2007186798A (en) * 2007-03-07 2007-07-26 Dowa Holdings Co Ltd Silver powder and its production method
JP2007217794A (en) * 2006-02-15 2007-08-30 Samsung Electro-Mechanics Co Ltd Metal nanoparticle and method of producing the same
JP2007239054A (en) * 2006-03-09 2007-09-20 Osaka Univ Tetrahedral palladium particulate and method for producing metal particulate

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287210A (en) * 1988-05-12 1989-11-17 Tanaka Kikinzoku Kogyo Kk Manufacture of silver fine particle
JPH09255533A (en) * 1996-03-22 1997-09-30 Nippon Sheet Glass Co Ltd Flaky metal oxide and cosmetic mixed with the same
JP2004244433A (en) * 2003-02-10 2004-09-02 National Institute Of Advanced Industrial & Technology Natural polymer powder
JP2005068019A (en) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp Metal nanorod-containing cosmetic
JP2005320616A (en) * 2003-09-05 2005-11-17 Mitsubishi Materials Corp Metal microparticle, composition containing the same or the like
JP2006037221A (en) * 2004-07-26 2006-02-09 Korea Research Inst Of Standards & Science Gold nanostructure and method for producing the same
JP2006169544A (en) * 2004-12-10 2006-06-29 Mitsubishi Materials Corp Metal particulate, method for producing the same, composition containing the same and application thereof
JP2006299051A (en) * 2005-04-20 2006-11-02 Shiseido Co Ltd Composite powder for coloring and cosmetic material containing the same
WO2006126771A1 (en) * 2005-05-23 2006-11-30 Korea Research Institute Of Bioscience And Biotechnology Multicolor-encoded colloidal particles coated with metal nanoparticles mixture having colors in the visible region and method for preparing the same
WO2007011103A1 (en) * 2005-07-18 2007-01-25 Korea Research Institute Of Bioscience And Biotechnology Cosmetic pigment composition containing gold or silver nano-particles
JP2007138250A (en) * 2005-11-18 2007-06-07 Mitsubishi Materials Corp Method for producing silver grain, silver grain-containing composition comprising the obtained silver grain and its use
JP2007138249A (en) * 2005-11-18 2007-06-07 Mitsubishi Materials Corp Method for producing silver grain, silver grain-containing composition containing the obtained silver grain and its use
JP2007154292A (en) * 2005-12-08 2007-06-21 Mitsubishi Materials Corp Method for producing silver particle, silver particle-containing composition containing the silver particle and its use
JP2007217794A (en) * 2006-02-15 2007-08-30 Samsung Electro-Mechanics Co Ltd Metal nanoparticle and method of producing the same
JP2007239054A (en) * 2006-03-09 2007-09-20 Osaka Univ Tetrahedral palladium particulate and method for producing metal particulate
JP2007186798A (en) * 2007-03-07 2007-07-26 Dowa Holdings Co Ltd Silver powder and its production method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802151B2 (en) 2009-03-24 2014-08-12 Basf Se Preparation of shaped metal particles and their uses
JP2012521491A (en) * 2009-03-24 2012-09-13 ビーエーエスエフ ソシエタス・ヨーロピア Production of molded metal particles and their use
KR101317387B1 (en) * 2010-12-20 2013-10-11 한국세라믹기술원 Manufacture Method of stability Nano Silver coated Mica by Liquid Reduction
JP2013036114A (en) * 2011-08-11 2013-02-21 Shinshu Univ Method of manufacturing metal nanoparticle
KR101369129B1 (en) * 2011-12-15 2014-03-06 한국콜마주식회사 UV Protecting Cosmetic Composition Comprising Titania Nano Tube and Manufacturing Method Thereof
JP2013181123A (en) * 2012-03-02 2013-09-12 Dainippon Printing Co Ltd Resin composition for reflector, resin frame for reflector, reflector, semiconductor light emitting device and molding method
US10941503B2 (en) 2012-06-22 2021-03-09 Apple Inc. White appearing anodized films
US10184190B2 (en) 2012-06-22 2019-01-22 Apple Inc. White appearing anodized films
US20140076600A1 (en) * 2012-09-14 2014-03-20 Apple Inc. Changing colors of materials
US9493876B2 (en) * 2012-09-14 2016-11-15 Apple Inc. Changing colors of materials
US10017872B2 (en) 2013-10-30 2018-07-10 Apple Inc. Metal oxide films with reflective particles
US9839974B2 (en) 2013-11-13 2017-12-12 Apple Inc. Forming white metal oxide films by oxide structure modification or subsurface cracking
US10434602B2 (en) 2013-11-13 2019-10-08 Apple Inc. Forming white metal oxide films by oxide structure modification or subsurface cracking
CN105772739A (en) * 2016-03-12 2016-07-20 常州大学 Preparation method for graphene/nano-silver composite antibacterial material
JP2017171586A (en) * 2016-03-22 2017-09-28 ゲオール化学株式会社 Cosmetic
KR20190043093A (en) * 2017-10-17 2019-04-25 이화여자대학교 산학협력단 Color generating composition, and cosmetic composition or refractive index sensor
KR102114361B1 (en) * 2017-10-17 2020-05-22 이화여자대학교 산학협력단 Color generating composition, and cosmetic composition or refractive index sensor
JP2020083839A (en) * 2018-11-29 2020-06-04 トピー工業株式会社 Powder and cosmetics
WO2020175701A1 (en) * 2019-02-28 2020-09-03 株式会社日本触媒 Aqueous dispersion, cosmetic composition and method for producing cosmetic
JPWO2020175701A1 (en) * 2019-02-28 2021-10-21 株式会社日本触媒 Aqueous dispersions, cosmetic compositions, and methods for producing cosmetics
JP7186277B2 (en) 2019-02-28 2022-12-08 株式会社日本触媒 Aqueous dispersion, cosmetic composition, and method for producing cosmetic
JP2021119213A (en) * 2020-01-27 2021-08-12 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Thin film interference pigments with coating of nanoparticles

Similar Documents

Publication Publication Date Title
JP2009221140A (en) Colored nanoparticles for cosmetic and its manufacturing method
Chouhan Silver nanoparticles: Synthesis, characterization and applications
Kuo et al. Seed‐mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm
Raveendran et al. A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles
Courrol et al. A simple method to synthesize silver nanoparticles by photo-reduction
Altavilla et al. Inorganic nanoparticles: synthesis, applications and perspectives—an overview
Lu et al. Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+
Salem et al. Synthesis and characterization of CdSe nanoparticles via thermal treatment technique
Begletsova et al. Chemical synthesis of copper nanoparticles in aqueous solutions in the presence of anionic surfactant sodium dodecyl sulfate
JP4958082B2 (en) Nanoparticles for LPR sensor, method for producing nanoparticle, slurry, paint, coating film, and LPR sensor
Zou et al. Controlled growth of silver nanoparticles in a hydrothermal process
Jiang et al. TiN nanoparticles: synthesis and application as near-infrared photothermal agents for cancer therapy
Ashkarran et al. Controlling the geometry of silver nanostructures for biological applications
KR20190081353A (en) Gold-nanodiamond composite, and cosmetic composition comprising the same
Nasiri et al. Synthesis of Au/Si nanocomposite using laser ablation method
Liu et al. Synthesis of gold/poly (methyl methacrylate) hybrid nanocomposites
WO2005023466A1 (en) Metal microparticle, composition containing the same and process for producing metal microparticle
Gedanken et al. Power ultrasound for the production of nanomaterials
Braim et al. Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design
Wang et al. Facile synthesis and optical properties of polymer-laced ZnO-Au hybrid nanoparticles
Soleymani et al. Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems
Han et al. Synthesis of Ag-SiO 2 composite nanospheres and their catalytic activity
JP2000072432A (en) Silica-fine metal oxide particle composite and production of silica aggregate particles used for same
CN111872377B (en) Hollow composite material and super-assembly method thereof
WO2006006397A1 (en) Coated fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120816