JP2007134369A - Manufacturing method of multilayer board - Google Patents

Manufacturing method of multilayer board Download PDF

Info

Publication number
JP2007134369A
JP2007134369A JP2005323214A JP2005323214A JP2007134369A JP 2007134369 A JP2007134369 A JP 2007134369A JP 2005323214 A JP2005323214 A JP 2005323214A JP 2005323214 A JP2005323214 A JP 2005323214A JP 2007134369 A JP2007134369 A JP 2007134369A
Authority
JP
Japan
Prior art keywords
substrate
heat treatment
manufacturing
laminated
thermocompression bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005323214A
Other languages
Japanese (ja)
Inventor
Toshihiko Mori
敏彦 森
Kazuhiko Honjo
和彦 本城
Eiji Kawamoto
英司 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005323214A priority Critical patent/JP2007134369A/en
Publication of JP2007134369A publication Critical patent/JP2007134369A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method without causing a multilayer board embedded with electronic components to be warped. <P>SOLUTION: A first substrate, a sheet, and a second substrate are heated and crimped for integration. The first substrate is composed of a thermosetting resin after curing while a land provided on the upper surface and the electrode of electronic components are connected and fixed by a connecting/fixing material. The sheet is arranged on the upper surface of the first substrate and is made of woven cloth or nonwoven cloth impregnated with resin having thermal flow behavior. The second substrate is arranged on the upper surface of the sheet and is composed of the thermosetting resin after curing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パソコン、移動体通信機器、ビデオカメラ、デジタルカメラ等の各種電子機器に用いられる電子部品が埋設された積層基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a laminated substrate in which electronic components used in various electronic devices such as a personal computer, a mobile communication device, a video camera, and a digital camera are embedded.

以下、従来の電子部品が埋設された積層基板について説明する。従来の電子部品が埋設された積層基板は、図6に示すような構成であった。図6において、30は金属ベース部材からなる基板であり、この基板30の上方には熱可塑性樹脂で形成された基板31a〜31eが積層されていた。   Hereinafter, a conventional multilayer substrate in which electronic components are embedded will be described. A conventional multilayer substrate in which electronic components are embedded has a structure as shown in FIG. In FIG. 6, reference numeral 30 denotes a substrate made of a metal base member, and substrates 31 a to 31 e made of a thermoplastic resin are stacked above the substrate 30.

そして、この基板31c、31d内に電子部品32を埋設すべく孔33が設けられていた。34は、基板31a〜31eに設けられたパターンであり、35は基板31a〜31eに設けられたビアホール36内に充填された導電ペーストである。また、37は電子部品32の両端に設けられた電極であり、導電ペースト35と導通するようになっていた。   And the hole 33 was provided in order to embed the electronic component 32 in this board | substrate 31c, 31d. Reference numeral 34 denotes a pattern provided on the substrates 31a to 31e, and reference numeral 35 denotes a conductive paste filled in a via hole 36 provided on the substrates 31a to 31e. Reference numeral 37 denotes electrodes provided at both ends of the electronic component 32, which are electrically connected to the conductive paste 35.

ここで、導電ペースト35は錫粒と銀粒の混合物である。また、電極37と導電ペースト35が充填されたビアホール36を精密に合わせるため、孔33と電子部品32とのクリアランスは電子部品32の全周にわたって20μmとしており、略電子部品32の外形寸法と略同一寸法になっていた。   Here, the conductive paste 35 is a mixture of tin grains and silver grains. In addition, in order to precisely align the electrode 37 and the via hole 36 filled with the conductive paste 35, the clearance between the hole 33 and the electronic component 32 is set to 20 μm over the entire circumference of the electronic component 32. It was the same size.

以上のように構成された積層基板を、温度250℃〜350℃、圧力1〜10MPa、時間10〜20分で加熱圧着して積層基板を形成していた。即ち、この加熱圧着により、錫が溶融して銀と一体化するとともに、電子部品32の電極37と接続されて、電子部品32が電気的・機械的に固定されていた。   The laminated substrate configured as described above was thermocompression bonded at a temperature of 250 ° C. to 350 ° C., a pressure of 1 to 10 MPa, and a time of 10 to 20 minutes to form a laminated substrate. That is, by this thermocompression bonding, tin was melted and integrated with silver, and connected to the electrode 37 of the electronic component 32, and the electronic component 32 was fixed electrically and mechanically.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

また上記構成の内、金属ベース部材に替えて熱硬化性樹脂基板をベース部材として採用し、その上方に織布あるいは不織布に加熱流動性のある熱硬化性樹脂を含浸させたシートを積層して同様の構成とする発明も提唱されている。   Also, in the above configuration, a thermosetting resin substrate is adopted as the base member instead of the metal base member, and a sheet in which a woven fabric or a nonwoven fabric is impregnated with a thermosetting resin having heat fluidity is laminated thereon. An invention having a similar configuration has also been proposed.

この発明に関連する先行技術文献情報としては、例えば、特許文献2が知られている。
特開2003−86949号公報 特開2005−158770号公報
As prior art document information related to this invention, for example, Patent Document 2 is known.
JP 2003-86949 A JP 2005-158770 A

しかしながら、前記従来の構成の金属ベース部材を用いた技術においては、金属ベース板に比較して、その上方に積層される熱可塑性樹脂基板の加熱圧着時の硬化収縮量が極端に大きいので、このことが主原因となって加熱圧着後の積層基板に上方向(上側から見て凹形状)のそりが発生するという課題を有していた。   However, in the technology using the metal base member having the conventional configuration, the amount of curing shrinkage at the time of thermocompression bonding of the thermoplastic resin substrate laminated thereon is extremely large compared to the metal base plate. For this reason, there has been a problem that warpage in the upward direction (concave shape when viewed from above) occurs in the laminated substrate after thermocompression bonding.

また同様に、従来の構成の熱硬化性樹脂基板を用いた技術においては、ベース部材である熱硬化性樹脂基板に比較して、その上方に積層される熱硬化性樹脂シートの加熱圧着時の硬化収縮量が極端に大きいので、このことが主原因となって加熱圧着後の積層基板に上方向(上側から見て凹形状)のそりが発生するという課題を有していた。   Similarly, in the technology using the thermosetting resin substrate having the conventional configuration, compared to the thermosetting resin substrate which is the base member, the thermosetting resin sheet laminated thereon is subjected to the thermocompression bonding. Since the amount of cure shrinkage is extremely large, this has a problem that warpage in the upward direction (concave shape when viewed from above) occurs in the laminated substrate after the thermocompression bonding.

ここでベース部材である熱硬化性樹脂基板には上面に予め電子部品が加熱リフロー等の手段により接続固定されており、この時の加熱温度は熱硬化性樹脂基板を硬化処理時の温度よりもはるかに高温である。そのため通常の熱硬化性樹脂基板よりも硬化反応が促進されており、加熱圧着時の硬化収縮量が通常の熱硬化性樹脂基板よりも小さく、上記のそり発生をより助長するという課題を有していた。   Here, an electronic component is connected and fixed to the upper surface of the thermosetting resin substrate as a base member in advance by means such as heating reflow, and the heating temperature at this time is higher than the temperature at the time of curing the thermosetting resin substrate. Much hotter. Therefore, the curing reaction is promoted more than a normal thermosetting resin substrate, the amount of curing shrinkage during thermocompression bonding is smaller than that of a normal thermosetting resin substrate, and has the problem of further promoting the occurrence of warping. It was.

またベース部材である熱硬化性樹脂基板は電子部品を接続固定するためにある程度の厚みを持たせなければならない。そのために、たとえ小さなそり量であってもその剛性を考慮するとこのそり量を打ち消すためには大きな力が必要となり、通常用いられる金属パターンによる設計的補強や完成品をローラーに通してそりの逆方向に力を加える等の周知の方法では改善できないという課題を有していた。   The thermosetting resin substrate as the base member must have a certain thickness in order to connect and fix the electronic component. For this reason, even if a small amount of warp is taken into consideration, a large force is required to counteract the amount of warpage. There is a problem that it cannot be improved by a known method such as applying a force in the direction.

本発明は前記従来の課題を解決するもので、そりが発生することのない電子部品が埋設された積層基板の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a method for manufacturing a laminated substrate in which electronic components that do not generate warp are embedded.

前記従来の課題を解決するために、本発明の請求項1に記載の発明は、硬化後の熱硬化性樹脂で構成され、上面に設けられたランドと電子部品の電極とが接続固定材により接続固定された第1の基板と、この第1の基板の上面に配置され、熱流動性を有する樹脂を含浸した織布あるいは不織布からなるシートと、このシートの上面に配置され、硬化後の熱硬化性樹脂で構成された第2の基板とを加熱圧着して一体化することを特徴とする積層基板の製造方法としたものである。   In order to solve the conventional problem, the invention according to claim 1 of the present invention is constituted by a thermosetting resin after curing, and the land provided on the upper surface and the electrode of the electronic component are formed by a connection fixing material. A first substrate connected and fixed, a sheet made of a woven or non-woven fabric impregnated with a resin having thermal fluidity, disposed on the upper surface of the first substrate, disposed on the upper surface of the sheet, and cured. A method for manufacturing a laminated substrate is characterized in that a second substrate made of a thermosetting resin is integrated by thermocompression bonding.

この構成により、第1の基板、第2の基板、シートの加熱圧着時の硬化収縮量を比較すると、シートの収縮量が第1の基板および第2の基板よりも極端に大きいため、第1の基板とシート間ではシートが配置された側、すなわち上方向(上側から見て凹形状)へそりを起こそうとする内部応力が発生するが、第2の基板とシート間では同じくシートが配置された側、すなわち下方向(上側から見て凸形状)へそりを起こそうとする内部応力が発生し、この2つの内部応力が相殺し加熱圧着後の積層基板のそりを低減することができる。   With this configuration, when the amount of cure shrinkage when the first substrate, the second substrate, and the sheet are heat-pressed is compared, the amount of shrinkage of the sheet is extremely larger than that of the first substrate and the second substrate. An internal stress is generated between the substrate and the sheet to cause warpage in the side where the sheet is arranged, that is, upward (concave shape when viewed from above), but the sheet is also arranged between the second substrate and the sheet. Internal stress that tends to warp in the bent direction, that is, downward (convex shape when viewed from above) is generated, and the two internal stresses cancel each other, and the warpage of the laminated substrate after thermocompression bonding can be reduced. .

本発明の請求項2に記載の発明は、第2の基板は加熱圧着工程前に単独で加熱する熱処理工程を有する請求項1に記載の積層基板の製造方法としたものであり、この構成により、第2の基板の硬化反応を促進させることで加熱圧着時の硬化収縮量を低減することができるので、第1の基板とシート間で発生する上方向(上側から見て凹形状)へそりを起こそうとする内部応力を相殺するための下方向(上側から見て凸形状)へそりを起こそうとする内部応力を確保することができ、加熱圧着後の積層基板のそりを低減することができる。   Invention of Claim 2 of this invention makes it the manufacturing method of the laminated substrate of Claim 1 which has a heat processing process in which a 2nd board | substrate heats alone before a thermocompression bonding process, By this structure, The amount of cure shrinkage at the time of thermocompression bonding can be reduced by promoting the curing reaction of the second substrate, so the warp in the upward direction (concave shape when viewed from above) generated between the first substrate and the sheet. It is possible to secure internal stress that causes warping downward (convex shape when viewed from the top) to offset internal stress that causes thermal stress, and to reduce warpage of the laminated substrate after thermocompression bonding Can do.

本発明の請求項3に記載の発明は、第2の基板は少なくとも1層以上の配線層を有する基板である請求項2に記載の積層基板の製造方法としたものであり、この構成により、加熱処理時の熱収縮が極めて小さい配線層が第2の基板の加熱圧着時の硬化収縮を妨げるので、第1の基板とシート間で発生する上方向(上側から見て凹形状)へそりを起こそうとする内部応力を相殺するための下方向(上側から見て凸形状)へそりを起こそうとする内部応力を確保することができ、加熱圧着後の積層基板のそりを低減することができる。   The invention described in claim 3 of the present invention is the method for manufacturing a laminated substrate according to claim 2, wherein the second substrate is a substrate having at least one wiring layer. With this configuration, Since the wiring layer having a very small thermal shrinkage during the heat treatment prevents the curing shrinkage during the thermocompression bonding of the second substrate, the warp in the upward direction (concave shape when viewed from above) generated between the first substrate and the sheet is prevented. It is possible to secure internal stress to cause downward warping (convex shape when viewed from above) to offset internal stress to be caused, and to reduce warpage of the laminated substrate after thermocompression bonding it can.

本発明の請求項4に記載の発明は、第2の基板の配線層を回路形成した後に熱処理を行う請求項3に記載の積層基板の製造方法としたものであり、この構成により、事前に硬化処理を施した第2の基板の配線層を回路形成した後に再度熱処理を行うことで、第2の基板の硬化処理時に発生した熱硬化性樹脂と配線層の間の残留応力を開放することができる。この残留応力を持ったままで後の加熱圧着を行うと、加熱圧着時にこの残留応力が開放され積層基板にそり、ねじれが発生する。しかもこのそり、ねじれの方向性もしくは形状は回路形成の図柄によって異なるものであるので層構成、板厚その他の要因で吸収することは不可能である。また、回路形成後に熱処理を行うとしたのは、回路形成によって配線層が除去された部分の熱硬化性樹脂の残留応力が熱処理によって開放されるためである。したがって第2の基板の配線層を回路形成した後に熱処理を行うことで、加熱圧着後の積層基板のそりを低減することができるという作用を有する。   According to a fourth aspect of the present invention, there is provided a method for manufacturing a laminated substrate according to the third aspect in which a heat treatment is performed after forming a circuit layer on the wiring layer of the second substrate. Release the residual stress between the thermosetting resin and the wiring layer generated during the curing process of the second substrate by performing the heat treatment again after forming the circuit on the wiring layer of the second substrate subjected to the curing process. Can do. If the subsequent thermocompression bonding is carried out with this residual stress, the residual stress is released during thermocompression bonding, causing warping to the laminated substrate and twisting. Moreover, since the direction or shape of the warp and twist differs depending on the pattern of circuit formation, it cannot be absorbed by the layer structure, plate thickness, or other factors. The reason why the heat treatment is performed after the circuit is formed is that the residual stress of the thermosetting resin in the portion where the wiring layer is removed by the circuit formation is released by the heat treatment. Therefore, by performing heat treatment after forming the circuit layer on the wiring layer of the second substrate, there is an effect that warpage of the laminated substrate after thermocompression bonding can be reduced.

本発明の請求項5に記載の発明は、第2の基板の熱処理工程の加熱温度が、第2の基板の硬化処理時の加熱温度以上の温度である請求項2に記載の積層基板の製造方法としたものであり、この構成により、第2の基板の硬化反応を事前の硬化処理よりもさらに促進させることで加熱圧着時の硬化収縮量を低減することができるので、第1の基板とシート間で発生する上方向(上側から見て凹形状)へそりを起こそうとする内部応力を相殺するための下方向(上側から見て凸形状)へそりを起こそうとする内部応力を確保することができ、加熱圧着後の積層基板のそりを低減することができる。   The invention according to claim 5 of the present invention is that the heating temperature in the heat treatment step of the second substrate is equal to or higher than the heating temperature at the time of curing the second substrate. With this configuration, the amount of curing shrinkage at the time of thermocompression bonding can be reduced by further promoting the curing reaction of the second substrate as compared with the prior curing process. Secure internal stress to cause warpage in the downward direction (convex shape when viewed from above) to offset internal stress that occurs between the sheets. It is possible to reduce warpage of the laminated substrate after thermocompression bonding.

本発明の請求項6に記載の発明は、第2の基板の熱処理工程の加熱温度が、第2の基板を構成する熱硬化性樹脂のガラス転移温度以上の温度であるという構成を有しており、熱硬化性樹脂の硬化を促進させる作用を有することで加熱圧着時の硬化収縮量を低減することができるので、第1の基板とシート間で発生する上方向(上側から見て凹形状)へそりを起こそうとする内部応力を相殺するための下方向(上側から見て凸形状)へそりを起こそうとする内部応力を確保することができ、加熱圧着後の積層基板のそりを低減することができる。   Invention of Claim 6 of this invention has the structure that the heating temperature of the heat treatment process of a 2nd board | substrate is temperature more than the glass transition temperature of the thermosetting resin which comprises a 2nd board | substrate. Since the amount of cure shrinkage during thermocompression bonding can be reduced by having the effect of promoting the curing of the thermosetting resin, the upward direction generated between the first substrate and the sheet (concave shape when viewed from above) ) It is possible to secure the internal stress to cause the downward slack (convex shape when viewed from above) to cancel the internal stress to cause the sled, and to prevent the laminated substrate warp after the thermocompression bonding. Can be reduced.

本発明の請求項7に記載の発明は、第2の基板の熱処理工程の加熱処理が、第2の基板の平面状態を保持した状態で施されるという構成を有しており、第2の基板単体でのそり量を低減することができ、加熱圧着後の積層基板のそりを低減することができるという作用を有する。   The invention according to claim 7 of the present invention has a configuration in which the heat treatment in the heat treatment step of the second substrate is performed in a state in which the planar state of the second substrate is maintained. The amount of warpage of the single substrate can be reduced, and the warpage of the laminated substrate after thermocompression bonding can be reduced.

本発明の請求項8に記載の発明は、第2の基板の熱処理工程の加熱処理が、複数枚の第2の基板同士を重ね合わせて処理するという構成を有しており、この構成により、複数枚の第2の基板同士を重ね合わせることで平面状態を保持することが可能となり、第2の基板単体でのそり量を低減することができ、加熱圧着後の積層基板のそりを低減することができるという作用を有する。また同時に多くの基板を処理することが可能となり、コストダウンとしての作用を有する。   Invention of Claim 8 of this invention has the structure that the heat processing of the heat treatment process of a 2nd board | substrate carries out the process of superimposing several 2nd board | substrates, By this structure, By superimposing a plurality of second substrates, a planar state can be maintained, the amount of warpage of the second substrate alone can be reduced, and the warpage of the laminated substrate after thermocompression bonding can be reduced. It has the effect of being able to. In addition, many substrates can be processed at the same time, which has the effect of reducing costs.

本発明の請求項9に記載の発明は、第2の基板の熱処理工程の加熱処理が、第2の基板を金属板で挟持した状態で施されるという構成を有しており、第2の基板単体でのそり量を低減することができ、加熱圧着後の積層基板のそりを低減することができるという作用を有する。また同時に第2の基板にあるパターン同士の密着を避け、基板の平坦性を向上する作用を有する。   The invention according to claim 9 of the present invention has a configuration in which the heat treatment in the heat treatment step of the second substrate is performed in a state where the second substrate is sandwiched between metal plates. The amount of warpage of the single substrate can be reduced, and the warpage of the laminated substrate after thermocompression bonding can be reduced. At the same time, it has the effect of avoiding close contact between the patterns on the second substrate and improving the flatness of the substrate.

本発明の請求項10に記載の発明は、第2の基板の熱処理工程の加熱処理が、第2の基板をステンレス板で挟持した状態で施されるという構成を有しており、第2の基板単体でのそり量を低減することができ、加熱圧着後の積層基板のそりを低減することができるという作用を有する。また同時に第2の基板にあるパターン同士の密着を避け、基板の平坦性を向上する作用を有する。   The invention according to claim 10 of the present invention has a configuration in which the heat treatment in the heat treatment step of the second substrate is performed in a state where the second substrate is sandwiched between stainless plates, The amount of warpage of the single substrate can be reduced, and the warpage of the laminated substrate after thermocompression bonding can be reduced. At the same time, it has the effect of avoiding close contact between the patterns on the second substrate and improving the flatness of the substrate.

本発明の請求項11に記載の発明は、第2の基板の熱処理工程の加熱処理が、酸素を含まない気体中で施されるという構成を有しており、第2の基板にある金属箔の酸化を防ぎ、金属箔の変色を防止する作用を有する。また同時に積層基板のそりを低減することができるという作用を有する。   According to an eleventh aspect of the present invention, the heat treatment in the heat treatment step of the second substrate is performed in a gas not containing oxygen, and the metal foil on the second substrate is provided. It has the effect | action which prevents the oxidation of metal foil and prevents discoloration of metal foil. Moreover, it has the effect | action that the curvature of a laminated substrate can be reduced simultaneously.

本発明の請求項12に記載の発明は、第2の基板の熱処理工程の加熱処理が、不活性ガス中で施されるという構成を有しており、第2の基板にある金属箔の酸化を防ぎ、金属箔の変色を防止する作用を有する。また同時に積層基板のそりを低減することができるという作用を有する。   The invention according to claim 12 of the present invention has a configuration in which the heat treatment in the heat treatment step of the second substrate is performed in an inert gas, and oxidation of the metal foil on the second substrate is performed. And has an effect of preventing discoloration of the metal foil. Moreover, it has the effect | action that the curvature of a laminated substrate can be reduced simultaneously.

本発明の請求項13に記載の発明は、第2の基板の熱処理工程の加熱処理が、窒素ガス中で施されるという構成を有しており、第2の基板にある金属箔の酸化および金属箔の変色の防止を安価で実現するという作用を有する。また同時に積層基板のそりを低減することができるという作用を有する。   The invention according to claim 13 of the present invention has a configuration in which the heat treatment in the heat treatment step of the second substrate is performed in nitrogen gas, and oxidation of the metal foil on the second substrate and It has the effect of preventing the discoloration of the metal foil at a low cost. Moreover, it has the effect | action that the curvature of a laminated substrate can be reduced simultaneously.

本発明の請求項14に記載の発明は、加熱圧着工程で用いる第1の基板に対して、加熱圧着工程と同等の加熱処理を単体で行った時の硬化収縮量をΔL1とし、加熱圧着工程で用いる第2の基板に対して、加熱圧着工程と同等の加熱処理を単体で行った時の硬化収縮量をΔL2とした場合に、ΔL2<ΔL1の関係を満足するという構成を有しており、この構成により、第2の基板の硬化収縮量を低減することで、第1の基板とシート間で発生する上方向(上側から見て凹形状)へそりを起こそうとする内部応力を相殺するための下方向(上側から見て凸形状)へそりを起こそうとする内部応力を確保することができ、加熱圧着後の積層基板のそりを低減することができる。   According to the fourteenth aspect of the present invention, the amount of curing shrinkage when a single heat treatment equivalent to the thermocompression bonding process is performed on the first substrate used in the thermocompression bonding process is ΔL1, and the thermocompression bonding process. When the amount of curing shrinkage when the heat treatment equivalent to the thermocompression bonding process is performed on the second substrate used in the above is ΔL2, the relationship of ΔL2 <ΔL1 is satisfied. This configuration reduces the amount of cure shrinkage of the second substrate, thereby canceling internal stress that tends to warp upward (concave shape when viewed from above) between the first substrate and the sheet. Therefore, it is possible to secure internal stress that tends to warp downward (convex shape when viewed from above), and to reduce warpage of the laminated substrate after thermocompression bonding.

本発明のプリント配線板の製造方法によれば、第2の基板の硬化収縮量を少なくすることにより、第1の基板とシート間で発生する上方向(上側から見て凹形状)へそりを起こそうとする内部応力を相殺するための下方向(上側から見て凸形状)へそりを起こそうとする内部応力を確保することができ、加熱圧着後の積層基板のそりを低減することができるという効果を奏するものである。   According to the method for manufacturing a printed wiring board of the present invention, by reducing the amount of cure shrinkage of the second substrate, the warp in the upward direction (concave shape when viewed from above) generated between the first substrate and the sheet is reduced. It is possible to secure internal stress to cause downward warping (convex shape when viewed from above) to offset internal stress to be caused, and to reduce warpage of the laminated substrate after thermocompression bonding It has the effect of being able to do it.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1における積層基板の製造方法を示す断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a method for manufacturing a laminated substrate in Embodiment 1 of the present invention.

まず、図1において、第1の基板1は熱硬化性の樹脂基板であり、多層に形成されている。そして、この層内にはインナービア8で各層の上面と下面が接続されている。また、各層毎に金属パターン9が敷設され、各電子回路を形成している。   First, in FIG. 1, the 1st board | substrate 1 is a thermosetting resin substrate, and is formed in the multilayer. In this layer, the upper and lower surfaces of each layer are connected by an inner via 8. In addition, a metal pattern 9 is laid for each layer to form each electronic circuit.

この金属パターン9は、電気導電性を有する物質、例えばCu(銅)箔や各種の導電性樹脂組成物からなっており、本実施の形態においてはCu箔を用いている。インナービア8は、例えば金属粒子と熱硬化性樹脂とを混合した導電性樹脂組成物でなる熱硬化性の電気導電性物質で充填され、その金属粒子としては、Au、AgあるいはCuなどを用いることができる。金属粒子としてのAu、AgあるいはCuは、電気導電性および熱伝導性が高いために好ましく、中でもCuは電気導電性が高くマイグレーションも少なく、また低コストであるためより好ましい。熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂あるいはシアネート樹脂を用いることができるが、中でもエポキシ樹脂は耐熱性が高いためにより好ましい。   The metal pattern 9 is made of a material having electrical conductivity, for example, Cu (copper) foil or various conductive resin compositions, and Cu foil is used in the present embodiment. The inner via 8 is filled with, for example, a thermosetting electric conductive material made of a conductive resin composition in which metal particles and a thermosetting resin are mixed, and Au, Ag, Cu, or the like is used as the metal particles. be able to. Au, Ag, or Cu as the metal particles is preferable because of high electrical conductivity and thermal conductivity, and Cu is more preferable because of its high electrical conductivity, low migration, and low cost. As the thermosetting resin, for example, an epoxy resin, a phenol resin, or a cyanate resin can be used. Among them, the epoxy resin is more preferable because of its high heat resistance.

そして第1の基板1の上面には金属パターン9が形成されていて、第1の基板1の上面に載置された集積回路2(電子部品の一例として用いた)や抵抗3(電子部品の一例として用いた)と半田4(接続固定材の一例として用いた)で接続されている。   A metal pattern 9 is formed on the upper surface of the first substrate 1, and an integrated circuit 2 (used as an example of an electronic component) and a resistor 3 (an electronic component) mounted on the upper surface of the first substrate 1. And a solder 4 (used as an example of a connection fixing material).

なお、この半田4は例えば、錫・銀・銅系の鉛フリー半田を用いることが可能であるが、その他の半田材料であっても使用可能である。ただし、近年の環境問題から鉛フリー半田を用いることが望ましい。   The solder 4 can be, for example, tin-silver-copper-based lead-free solder, but other solder materials can also be used. However, it is desirable to use lead-free solder because of recent environmental problems.

上記の電子部品が接続された第1の基板1の上にシート5を積層する。シート5は熱流動性を有する樹脂を含浸した織布あるいは不織布からなり、集積回路2や抵抗3が挿入される箇所には孔10が設けられている。この孔10はドリルやレーザーによって加工され、形状や個数は任意である。シート5の枚数は載置された部品の高さによって変更することが容易にできる。そして、シート5の上面には孔の形成されていないシート6が配置されている。シート6は熱流動性を有する樹脂を含浸した織布あるいは不織布からなる。   A sheet 5 is laminated on the first substrate 1 to which the electronic components are connected. The sheet 5 is made of a woven fabric or a non-woven fabric impregnated with a resin having thermal fluidity, and a hole 10 is provided at a place where the integrated circuit 2 and the resistor 3 are inserted. The holes 10 are processed by a drill or a laser, and the shape and number are arbitrary. The number of sheets 5 can be easily changed depending on the height of the mounted component. And the sheet | seat 6 in which the hole is not formed is arrange | positioned on the upper surface of the sheet | seat 5. As shown in FIG. The sheet 6 is made of a woven fabric or a nonwoven fabric impregnated with a resin having heat fluidity.

なお、シート5、6で使用される絶縁樹脂は、無機フィラーと熱硬化性樹脂とを含む混合物からなっている。無機フィラーには、例えばAl23、MgO、BN、AlN、SiO2およびBaTiO3などを用いることができる。 The insulating resin used in the sheets 5 and 6 is made of a mixture containing an inorganic filler and a thermosetting resin. As the inorganic filler, for example, Al 2 O 3 , MgO, BN, AlN, SiO 2 and BaTiO 3 can be used.

熱硬化性樹脂には、エポキシ樹脂、フェノール樹脂あるいはシアネート樹脂が好ましいが、中でもエポキシ樹脂は耐熱性が高いためにより好ましい。   As the thermosetting resin, an epoxy resin, a phenol resin, or a cyanate resin is preferable. Of these, an epoxy resin is more preferable because of its high heat resistance.

そして、シート6の上面に第2の基板7を積層する。第2の基板7は熱硬化性の樹脂基板であり、熱硬化処理を行った後、図2で述べるような熱処理を施したものである。図2については次段落にて説明する。また、この層内は第1の基板1と同様の構成によってインナービアで上面と下面が接続されていてもよい。また、各層毎に金属パターン9が敷設され、各電子回路を形成している。本実施の形態においては第2の基板7には2層基板を用いているが、多層基板にしてもかまわない。   Then, the second substrate 7 is laminated on the upper surface of the sheet 6. The second substrate 7 is a thermosetting resin substrate, and is subjected to heat treatment as described in FIG. FIG. 2 will be described in the next paragraph. In this layer, the upper surface and the lower surface may be connected by an inner via with the same configuration as that of the first substrate 1. In addition, a metal pattern 9 is laid for each layer to form each electronic circuit. In the present embodiment, a two-layer substrate is used as the second substrate 7, but a multilayer substrate may be used.

図2は、本発明の実施の形態1における積層基板の製造方法の熱処理工程を示す断面図である。次の加熱圧着工程の前に第2の基板7を予め加熱する熱処理工程を示すものであり、第2の基板7としては外層の回路形成後のものを用いた。金属板11は、第2の基板7をはさむようにして順々に重ねていく。重ねる枚数は任意に設定できる。金属板11は本実施の形態1ではSUS板を用いているが、その他の金属材料であってもかまわない。そのようにして重ねられた金属板11と第2の基板7を不活性ガス12の雰囲気に水平に保持し、加熱をする。不活性ガス12は本実施の形態1ではN2ガスを用いているが、その他のHe,Ar等の不活性ガスでもかまわない。 FIG. 2 is a cross-sectional view showing a heat treatment step of the method for manufacturing a laminated substrate in the first embodiment of the present invention. This shows a heat treatment step in which the second substrate 7 is pre-heated before the next thermocompression bonding step, and the second substrate 7 is used after the outer layer circuit is formed. The metal plates 11 are sequentially stacked so as to sandwich the second substrate 7. The number of sheets to be stacked can be set arbitrarily. In the first embodiment, the metal plate 11 is a SUS plate, but other metal materials may be used. The metal plate 11 and the second substrate 7 stacked in this manner are horizontally held in an atmosphere of an inert gas 12 and heated. The inert gas 12 uses N 2 gas in the first embodiment, but other inert gases such as He and Ar may be used.

熱処理の温度は第2の基板7の熱硬化を促進するために少なくともガラス転移温度(以下Tgとする)である190℃を超える温度にて設定する必要がある。特に、予め第2の基板7を熱硬化させた時の温度である200℃を超える温度にて設定するのがより好ましい。   The temperature of the heat treatment needs to be set at a temperature exceeding 190 ° C. which is at least a glass transition temperature (hereinafter referred to as Tg) in order to promote the thermosetting of the second substrate 7. In particular, it is more preferable to set at a temperature exceeding 200 ° C., which is the temperature when the second substrate 7 is thermally cured in advance.

ただし、温度が250℃を超えると、熱硬化性樹脂の劣化により、金属箔との剥離が起こるため、注意が必要である。Tgを超える温度域では温度は高いほうが、そり量の低下につながっている。本実施の形態1では、220℃で1時間の処理を行った。   However, if the temperature exceeds 250 ° C., care must be taken because peeling from the metal foil occurs due to deterioration of the thermosetting resin. In the temperature range exceeding Tg, the higher the temperature, the lower the amount of warpage. In Embodiment 1, the treatment was performed at 220 ° C. for 1 hour.

以上の手順によって得られた、第1の基板1、シート5、シート6、第2の基板7を図1に示すようにこの順に積層した後に加熱圧着を施すことで図3の状態が得られる。   The first substrate 1, the sheet 5, the sheet 6, and the second substrate 7 obtained by the above procedure are stacked in this order as shown in FIG. .

図3は、本発明の実施の形態1における積層基板の製造方法の加熱圧着後の積層基板の断面図である。半田4が溶融しない程度に低い温度で加熱圧着されて一体化される。本実施の形態1における加熱圧着条件は以下のような条件で行って良好な結果を得ている。即ち、加熱温度は180℃〜200℃、加圧圧力は1平方センチあたり約40kg、加圧時間は約1時間である。また、この加熱圧着は真空室内で行っている。これは孔10内の空気を十分に抜いて、樹脂を十分に充填する上で重要なことである。   FIG. 3 is a cross-sectional view of the multilayer substrate after thermocompression bonding in the method for manufacturing the multilayer substrate in Embodiment 1 of the present invention. The solder 4 is integrated by being thermocompression bonded at a temperature low enough not to melt. The thermocompression bonding conditions in the first embodiment are performed under the following conditions, and good results are obtained. That is, the heating temperature is 180 ° C. to 200 ° C., the pressing pressure is about 40 kg per square centimeter, and the pressing time is about 1 hour. This thermocompression bonding is performed in a vacuum chamber. This is important for sufficiently removing the air in the hole 10 and sufficiently filling the resin.

加熱圧着後の積層基板は必要に応じ、貫通孔加工と貫通孔に金属めっきを施すことで第1の基板1と第2の基板7を電気的に接続することも可能である。   The laminated substrate after the thermocompression bonding can electrically connect the first substrate 1 and the second substrate 7 by processing through holes and performing metal plating on the through holes, if necessary.

その後、必要に応じ周知の方法により、最外層にソルダレジスト形成、部品図印刷、実装ランドの防錆処理等を行って積層基板が完成する。   Thereafter, by using a known method if necessary, the outermost layer is subjected to solder resist formation, component drawing printing, rust prevention treatment of the mounting land, and the like, and the laminated substrate is completed.

次に、本実施の形態におけるそり低減の詳細なメカニズムについて説明する。本発明者は検討を繰り返し、以下のような考案を得た。   Next, a detailed mechanism for reducing warpage in the present embodiment will be described. The inventor has repeatedly studied and obtained the following ideas.

図4は、本発明のそりの低減のメカニズムを示した図である。第1の基板1の加熱圧着工程前の寸法をL1[mm]、単体で加熱圧着工程相当の熱処理を加えた時の硬化収縮量をΔL1[mm]とし、板厚をt1[mm]とする。また、第2の基板7についても同様に加熱圧着工程前の寸法をL2[mm]、単体で加熱圧着工程相当の熱処理を加えた時の硬化収縮量をΔL2[mm]とし、板厚をt2[mm]とする。シート5、6についても同様に加熱圧着工程前の寸法をLp[mm]、板厚をtp[mm]、単体で加熱圧着工程相当の熱処理を加えた時の硬化収縮量をΔLp[mm]とする。また、第1の基板1とシート5、6の層間で発生する応力をσa[N/mm2]、第2の基板7とシート5、6の層間で発生する応力をσb[N/mm2]とする。そりは各層での物性の相違によって、加熱圧着後の収縮量が異なるために、σa、σbといった、層間で応力を発生させる。各層間での力の差がそりを発生させている。よって、第1の基板1とシート5、6の層間で発生する力をF1[N]とし、第2の基板7とシート5、6の層間で発生する力をF2[N]として、それぞれの式を求めると、
F1=σa×(t1+tp)×{(L1−ΔL1)−(Lp−ΔLp)}
F2=σb×(t2+tp)×{(L2−ΔL2)−(Lp−ΔLp)}
となる。F1−F2の値の絶対値が小さくなるほどそりは少なくなり、また、大きくなるほどそりは増大する。
FIG. 4 is a diagram showing a warpage reduction mechanism of the present invention. The dimension of the first substrate 1 before the thermocompression bonding process is L1 [mm], the amount of curing shrinkage when a heat treatment equivalent to the thermocompression bonding process is applied alone is ΔL1 [mm], and the plate thickness is t1 [mm]. . Similarly, for the second substrate 7, the dimension before the thermocompression bonding process is L2 [mm], the amount of cure shrinkage when a heat treatment equivalent to the thermocompression bonding process is applied alone is ΔL2 [mm], and the plate thickness is t2. [Mm]. Similarly, for the sheets 5 and 6, the dimension before the thermocompression bonding process is Lp [mm], the plate thickness is tp [mm], and the cure shrinkage amount when the heat treatment corresponding to the thermocompression bonding process is applied alone is ΔLp [mm]. To do. The stress generated between the first substrate 1 and the sheets 5 and 6 is σa [N / mm 2 ], and the stress generated between the second substrate 7 and the sheets 5 and 6 is σb [N / mm 2]. ]. The warp generates stress between layers such as σa and σb because the amount of shrinkage after thermocompression bonding varies depending on the physical properties of each layer. The difference in force between each layer causes warpage. Therefore, the force generated between the first substrate 1 and the sheets 5 and 6 is F1 [N], and the force generated between the second substrate 7 and the sheets 5 and 6 is F2 [N]. When the equation is obtained,
F1 = σa × (t1 + tp) × {(L1−ΔL1) − (Lp−ΔLp)}
F2 = σb × (t2 + tp) × {(L2−ΔL2) − (Lp−ΔLp)}
It becomes. The warpage decreases as the absolute value of F1-F2 decreases, and the warpage increases as the absolute value increases.

上に示した図であるが、本発明の実施の形態では、第1の基板1と第2の基板7の材料としては、両者とも同系の樹脂を用いているため、σaとσb、ΔL1とΔL2の間に大きな差は出てこない。よって、第1の基板1と第2の基板7の板厚の差が大きな影響を与えることがわかる。ここで、第1の基板1は部品を実装するため、最低でも4層以上の積層板である必要がある。本実施の形態では6層基板としている。それに対して、近年の薄型化への要求が大きくなっている背景を踏まえると、部品を実装しない第2の基板7に対してはなるべく薄く作製することが要求されている。本実施の形態では2層基板を用いている。そのため板厚に関してはt1>t2となり、層間で発生する力の関係としてF1>F2となる。また、異系の樹脂を用いた場合、必ずしも板厚によらない場合が発生するが、その際は、F1、F2値を計算することにより、値の低い方に熱処理工程を施すことで同様の効果を得ることができる。   Although it is the figure shown above, since both use the resin of the same type as the material of the 1st board | substrate 1 and the 2nd board | substrate 7 in embodiment of this invention, (sigma) a, (sigma) b, (DELTA) L1 There is no significant difference between ΔL2. Therefore, it can be seen that the difference in thickness between the first substrate 1 and the second substrate 7 has a great influence. Here, in order to mount components, the first substrate 1 needs to be a laminated board having at least four layers. In this embodiment, a six-layer substrate is used. On the other hand, considering the recent increase in demand for thinning, it is required to make the second substrate 7 on which components are not mounted as thin as possible. In this embodiment, a two-layer substrate is used. Therefore, the plate thickness is t1> t2, and the relationship between the forces generated between the layers is F1> F2. In addition, when a different type of resin is used, there is a case where it does not necessarily depend on the plate thickness. In that case, by calculating the F1 and F2 values, the same value can be obtained by applying a heat treatment process to the lower value. An effect can be obtained.

ここで、第2の基板7が加熱圧着工程前に熱処理工程を施す時を考えてみる。   Here, consider the case where the second substrate 7 is subjected to a heat treatment step before the thermocompression bonding step.

図5は第2の基板7を単体で熱処理工程を施した回数とそのときの硬化収縮量を表したグラフである。1回目の熱処理では第2の基板の硬化収縮量は200μm程度なのに対して、2回目以降では硬化収縮量も10μm前後となり、それ以降何回熱処理を加えても一定の値となることがわかる。このことから、第2の基板7に1回予め熱処理を加えたものでは、上記したF2の式において、ΔL2が小さくなるので、F2の値としては大きくなることがわかる。したがってF1−F2の値の絶対値が熱処理を加えることによって、低減することが出来るために、そり量が小さくなる。   FIG. 5 is a graph showing the number of times that the second substrate 7 is subjected to a heat treatment step and the amount of curing shrinkage at that time. It can be seen that in the first heat treatment, the amount of cure shrinkage of the second substrate is about 200 μm, whereas in the second and later times, the amount of cure shrinkage is also about 10 μm, and it becomes a constant value no matter how many times the heat treatment is applied thereafter. From this, it can be seen that when the second substrate 7 is preheated once, ΔL2 becomes small in the above-described formula F2, so that the value of F2 becomes large. Therefore, since the absolute value of the value of F1-F2 can be reduced by applying heat treatment, the amount of warpage becomes small.

以上のように本発明の積層板の製造方法は、電子部品が埋設された積層板をそりが発生することなく製造し得るものであり、パソコン、移動体通信機器、ビデオカメラ、デジタルカメラ等の各種電子機器に用いられる積層基板の製造方法として有用である。   As described above, the method for manufacturing a laminated board according to the present invention is capable of producing a laminated board in which electronic components are embedded without causing warpage, such as a personal computer, a mobile communication device, a video camera, and a digital camera. This is useful as a method for producing a laminated substrate used in various electronic devices.

本発明の実施の形態1における積層基板の製造方法を示す断面図Sectional drawing which shows the manufacturing method of the multilayer substrate in Embodiment 1 of this invention 本発明の実施の形態1における積層基板の製造方法の熱処理工程を示す断面図Sectional drawing which shows the heat processing process of the manufacturing method of the laminated substrate in Embodiment 1 of this invention 本発明の実施の形態1における積層基板の製造方法の加熱圧着後の積層基板の断面図Sectional drawing of the laminated substrate after the thermocompression-bonding of the laminated substrate manufacturing method in Embodiment 1 of the present invention 本発明の実施の形態1における積層基板の製造方法のそり低減のメカニズムを示した図The figure which showed the mechanism of the curvature reduction of the manufacturing method of the multilayer substrate in Embodiment 1 of this invention 本発明の実施の形態1における積層基板の製造方法の第2の基板7を単体で熱処理工程を施した回数とそのときの硬化収縮量を表したグラフA graph showing the number of times that the second substrate 7 of the method for manufacturing a laminated substrate in the first embodiment of the present invention is subjected to a heat treatment step and the amount of curing shrinkage at that time 従来の積層基板の組み立てを示す断面図Sectional view showing assembly of conventional multilayer substrate

符号の説明Explanation of symbols

1 第1の基板
2 集積回路
3 抵抗
4 半田
5 シート(孔あり)
6 シート(孔なし)
7 第2の基板
8 インナービア
9 金属パターン
10 孔
11 金属板
12 不活性ガス
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2 Integrated circuit 3 Resistance 4 Solder 5 Sheet (with hole)
6 sheet (no holes)
7 Second substrate 8 Inner via 9 Metal pattern 10 Hole 11 Metal plate 12 Inert gas

Claims (14)

硬化後の熱硬化性樹脂で構成され、上面に設けられたランドと電子部品の電極とが接続固定材により接続固定された第1の基板と、この第1の基板の上面に配置され、熱流動性を有する樹脂を含浸した織布あるいは不織布からなるシートと、このシートの上面に配置され、硬化後の熱硬化性樹脂で構成された第2の基板とを加熱圧着して一体化することを特徴とする積層基板の製造方法。 A first substrate made of a thermosetting resin after curing and having a land provided on the upper surface and an electrode of an electronic component connected and fixed by a connection fixing material, and disposed on the upper surface of the first substrate, Integrating a sheet made of a woven or non-woven fabric impregnated with a resin having fluidity and a second substrate, which is disposed on the upper surface of the sheet and made of a cured thermosetting resin, by thermocompression bonding A method for producing a multilayer substrate, characterized by: 第2の基板は加熱圧着工程前に単独で加熱する熱処理工程を有する請求項1に記載の積層基板の製造方法。 The method for producing a laminated substrate according to claim 1, wherein the second substrate has a heat treatment step of heating alone before the thermocompression bonding step. 第2の基板は少なくとも1層以上の配線層を有する基板である請求項2に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 2, wherein the second substrate is a substrate having at least one wiring layer. 第2の基板の配線層を回路形成した後に熱処理を行う請求項3に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 3, wherein a heat treatment is performed after forming a circuit on the wiring layer of the second substrate. 第2の基板の熱処理工程の加熱温度が、第2の基板の硬化処理時の加熱温度以上の温度である請求項2に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 2, wherein the heating temperature in the heat treatment step of the second substrate is a temperature equal to or higher than the heating temperature at the time of curing the second substrate. 第2の基板の熱処理工程の加熱温度が、第2の基板を構成する熱硬化性樹脂のガラス転移温度以上の温度である請求項2に記載の積層基板の製造方法。 The method for producing a laminated substrate according to claim 2, wherein the heating temperature in the heat treatment step of the second substrate is a temperature equal to or higher than the glass transition temperature of the thermosetting resin constituting the second substrate. 第2の基板の熱処理工程の加熱処理が、第2の基板の平面状態を保持した状態で施される請求項2に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 2, wherein the heat treatment in the heat treatment step of the second substrate is performed in a state where the planar state of the second substrate is maintained. 第2の基板の熱処理工程の加熱処理が、複数枚の第2の基板同士を重ね合わせて処理する請求項2に記載の積層基板の製造方法。 The manufacturing method of the multilayer substrate according to claim 2, wherein the heat treatment in the heat treatment step of the second substrate is performed by overlapping a plurality of second substrates. 第2の基板の熱処理工程の加熱処理が、第2の基板を金属板で挟持した状態で施される請求項2に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 2, wherein the heat treatment in the heat treatment step of the second substrate is performed in a state where the second substrate is sandwiched between metal plates. 第2の基板の熱処理工程の加熱処理が、第2の基板をステンレス板で挟持した状態で施される請求項2に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 2, wherein the heat treatment in the heat treatment step of the second substrate is performed in a state where the second substrate is sandwiched between stainless plates. 第2の基板の熱処理工程の加熱処理が、酸素を含まない気体中で施される請求項2に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 2, wherein the heat treatment in the heat treatment step of the second substrate is performed in a gas not containing oxygen. 第2の基板の熱処理工程の加熱処理が、不活性ガス中で施される請求項11に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 11, wherein the heat treatment in the heat treatment step of the second substrate is performed in an inert gas. 第2の基板の熱処理工程の加熱処理が、窒素ガス中で施される請求項11に記載の積層基板の製造方法。 The method for manufacturing a laminated substrate according to claim 11, wherein the heat treatment in the heat treatment step of the second substrate is performed in nitrogen gas. 加熱圧着工程で用いる第1の基板に対して、加熱圧着工程と同等の加熱処理を単体で行った時の硬化収縮量をΔL1とし、加熱圧着工程で用いる第2の基板に対して、加熱圧着工程と同等の加熱処理を単体で行った時の硬化収縮量をΔL2とした場合に、ΔL2<ΔL1の関係を満足する請求項2に記載の積層基板の製造方法。 With respect to the first substrate used in the thermocompression bonding process, the amount of curing shrinkage when the heat treatment equivalent to the thermocompression bonding process is performed alone is ΔL1, and the second substrate used in the thermocompression bonding process is thermocompression bonded. The method for producing a laminated substrate according to claim 2, wherein ΔL2 <ΔL1 is satisfied, where ΔL2 is a curing shrinkage amount when the heat treatment equivalent to the process is performed alone.
JP2005323214A 2005-11-08 2005-11-08 Manufacturing method of multilayer board Pending JP2007134369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323214A JP2007134369A (en) 2005-11-08 2005-11-08 Manufacturing method of multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323214A JP2007134369A (en) 2005-11-08 2005-11-08 Manufacturing method of multilayer board

Publications (1)

Publication Number Publication Date
JP2007134369A true JP2007134369A (en) 2007-05-31

Family

ID=38155812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323214A Pending JP2007134369A (en) 2005-11-08 2005-11-08 Manufacturing method of multilayer board

Country Status (1)

Country Link
JP (1) JP2007134369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488280B1 (en) 2013-12-10 2015-02-04 현우산업 주식회사 Circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215514A (en) * 1988-02-24 1989-08-29 Matsushita Electric Works Ltd Manufacture of laminated sheet for electricity
JPH08264943A (en) * 1995-03-27 1996-10-11 Matsushita Electric Ind Co Ltd Manufacture of circuit forming board and device for manufacturing circuit forming board
JPH09214139A (en) * 1996-01-30 1997-08-15 Matsushita Electric Ind Co Ltd Manufacture of multilayer printed wiring board
JP2003209357A (en) * 2002-01-15 2003-07-25 Sony Corp Method for manufacturing multilayer board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215514A (en) * 1988-02-24 1989-08-29 Matsushita Electric Works Ltd Manufacture of laminated sheet for electricity
JPH08264943A (en) * 1995-03-27 1996-10-11 Matsushita Electric Ind Co Ltd Manufacture of circuit forming board and device for manufacturing circuit forming board
JPH09214139A (en) * 1996-01-30 1997-08-15 Matsushita Electric Ind Co Ltd Manufacture of multilayer printed wiring board
JP2003209357A (en) * 2002-01-15 2003-07-25 Sony Corp Method for manufacturing multilayer board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488280B1 (en) 2013-12-10 2015-02-04 현우산업 주식회사 Circuit board

Similar Documents

Publication Publication Date Title
JP4334996B2 (en) SUBSTRATE FOR MULTILAYER WIRING BOARD, DOUBLE WIRE WIRING BOARD AND METHOD FOR PRODUCING THEM
JP4617978B2 (en) Wiring board manufacturing method
JP2001044641A (en) Wiring board incorporating semiconductor element and its manufacture
WO2007043639A1 (en) Printed wiring board and method for manufacturing printed wiring board
WO2007126090A1 (en) Circuit board, electronic device and method for manufacturing circuit board
JP4553466B2 (en) Printed circuit board
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
JP4939916B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3633136B2 (en) Printed wiring board
KR20100095031A (en) Method for manufacturing electronic component module
JP2007324429A (en) Module component and manufacturing method therefor
JP6639934B2 (en) Wiring board, semiconductor device, and method of manufacturing wiring board
JP2011151048A (en) Method of manufacturing electronic component, and electronic component
WO2012032654A1 (en) Substrate with built-in components
JP4779668B2 (en) Manufacturing method of laminated substrate
JP2007134369A (en) Manufacturing method of multilayer board
JP2002151853A (en) Multilayer printed wiring board and manufacturing method thereof
JP2008118155A (en) Package for semiconductor device
JP2006351819A (en) Board with built-in component
JP2005268672A (en) Substrate
KR20090062590A (en) Pad for thermocompression bonding and method for thermocompression bonding cover layer to printed circuit board
JP2002076557A (en) Circuit wiring board and multilayer circuit wiring board using the same as well as its manufacturing method
JP5078451B2 (en) Electronic component built-in module
JP2001015922A (en) Manufacture of printed wiring board
JP2007329244A (en) Method of manufacturing laminated circuit wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907