JP4553466B2 - Printed circuit board - Google Patents

Printed circuit board Download PDF

Info

Publication number
JP4553466B2
JP4553466B2 JP2000267860A JP2000267860A JP4553466B2 JP 4553466 B2 JP4553466 B2 JP 4553466B2 JP 2000267860 A JP2000267860 A JP 2000267860A JP 2000267860 A JP2000267860 A JP 2000267860A JP 4553466 B2 JP4553466 B2 JP 4553466B2
Authority
JP
Japan
Prior art keywords
printed circuit
circuit board
copper foil
pattern
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000267860A
Other languages
Japanese (ja)
Other versions
JP2002076530A (en
Inventor
博之 内山
良典 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000267860A priority Critical patent/JP4553466B2/en
Publication of JP2002076530A publication Critical patent/JP2002076530A/en
Application granted granted Critical
Publication of JP4553466B2 publication Critical patent/JP4553466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁樹脂材料上に銅箔を添付した後にエッチングにより銅箔を除去することにより回路パターンを形成して電気回路を構成したプリント回路基板に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、高機能化の要求に伴って表面実装型の電子部品が普及し、電子部品の小型化が進展しているだけでなく、クリーム半田などによるリフロー半田付け技術の進歩とともにプリント回路基板への電子部品の高密度実装化に拍車がかかっている。これに対応すべく小型化が要求される電子機器に利用されるプリント回路基板では厚みも薄くなり、多層化が進展してきている。
【0003】
一方、大電流や高電圧を扱う分野等では電流容量や絶縁性を確保する必要性があるために依然大型の電子部品が使用されており、プリント回路基板も銅箔の厚いものが使用されている。
【0004】
図7に示すように、従来のプリント回路基板20の構造は、絶縁樹脂材料2からなる樹脂基板上に銅箔3で回路パターン4を形成したものである。絶縁樹脂材料2としては、紙基材やガラス基材、ガラス不織布基材といった補強用の基材にフェノール樹脂やエポキシ樹脂を含浸させたものが多く使用されている。また、回路パターン4は樹脂基板上に凸上に露出しており、隣接する回路パターン4との絶縁を確保するために、レジスト6と呼ばれる絶縁樹脂層が形成されている。
銅箔3の厚みはプリント回路基板20の用途により異なるが、一般的には35μmであり、100μmを超える銅箔3は使用されていない。なお、図7における7は電極部である。
【0005】
ここで従来のプリント回路基板20の製造方法について説明する。まず補強用基材に樹脂を含浸させた後、乾燥させる。この時、樹脂は硬化反応が進行して半硬化の状態になる。この状態の樹脂基板をプリプレグと呼ぶ。次にプリプレグ全面に銅箔3を貼り付ける。ここで、銅箔3はパターンが必要な面にのみ貼り付けるため、片面基板には一面だけ貼り付けられ、両面基板では両面に貼り付けられる。
【0006】
次に全面銅貼板を熱プレスして銅箔3を樹脂基板に密着させると同時に半硬化の樹脂基板を完全に硬化させる。この後、エッチングを行って不要部分の銅箔3を除去して、回路パターン4を形成する。片面基板、両面基板ではこれでプリント回路基板20として完成品であるが、多層基板の場合は、さらにパターン形成後の板を複数枚重ねて熱プレスにより圧着を行い、一体化させる。
【0007】
この後、必要に応じてドリリングによりスルーホールや部品挿入穴等の開口部を形成した後にレジスト6を印刷し、銅箔3上に電子部品接合に使用する電極7部分のみを露出させる。レジスト6は加熱もしくは紫外線照射により硬化させ、これによりプリント回路基板20が完成する。
【0008】
これらの製造工程においては、生産性を向上するために図8に示すように1m×1m程度の大きなプリプレグ8内に同一パターンのプリント回路基板20を複数個配置して、一度の熱プレスにより同一のプリント回路基板20を複数枚完成させる方法が一般的に採用されている。この時、所望のプリント回路基板20がワークシート内に必ずしも余分なく配置されるわけではないのと、熱プレス後に切断により所望のプリント回路基板20を得るために切断用の領域を設ける必要があるために、余白領域9が設けられるのが一般的である。
【0009】
【発明が解決しようとする課題】
しかしながら、上記のような従来のプリント回路基板20の構成では、プリント回路基板20の層構成やパターン形成で除去される銅箔3のパターンによってはプリント回路基板20に反りが発生し、正常なプリント回路基板20が得られないという問題点がある。
【0010】
絶縁樹脂材料2として用いられている一般的なガラスエポキシ基材の熱膨張係数は66ppm/℃であり、銅箔3の熱膨張係数は16ppm/℃であるため、両者を同じ面積で熱プレスにより貼り合わせると、プレス時の高温から常温に戻るにつれてガラスエポキシ基材の収縮が銅箔3の収縮より大きくなり、ガラスエポキシ基材が銅箔3を引っ張る形になるため、ガラスエポキシ基材側へ反りが発生する。この時、ガラスエポキシ基材の両面に銅箔3を貼り付けた場合には銅箔3がガラスエポキシ基材の収縮による変形を抑えることができるために反りは少なくなるが、ガラスエポキシ基材には熱膨張係数の差により発生している応力が残留しているために回路パターンを形成するために銅箔3をエッチングし、不要部分の銅箔3を除去することにより変形を抑えていた銅箔3部分が減少するため、残留応力が解放されて反りが発生する場合もある。
【0011】
これらプリント回路基板20の反りは銅箔3と絶縁樹脂材料2であるガラスエポキシ基材との界面の面積とガラスエポキシ基材の厚みとに依存する。通常、プリント回路基板20は全面に銅箔3を貼った状態では使用されず、銅箔3の部分を除去して回路パターン3を形成している。従って、銅箔3とガラスエポキシ基材との界面が広いほどガラスエポキシ基材が銅箔3を引っ張る力が大きくなり、プリント回路基板20が反りやすくなる。また、プリント回路基板20自体の剛性も影響するため、ガラスエポキシ基材の厚みが小さいほど、引っ張りによる力を支えることができなくなるために反りやすくなる。
【0012】
そして、偶数層で構成される多層基板では基本的には両表面に銅箔3が存在するため反りが発生しにくい状態にあるが、特に奇数層で構成される多層基板では中間工程として片側にしか銅箔3が存在しない状態を経るため、中間基材での反りが発生しやすい。この中間基材で発生した反りは完成品にも残留することになる。
【0013】
ここで、プリント回路基板20で許容される反り量について説明する。プリント回路基板20は電子部品を搭載して使用されるものであり、電子部品の半田付け方法にはフロー半田付けとリフロー半田付けの2つの方法がある。フロー半田付けは溶融した半田をノズルから噴流させ、プリント回路基板20の表面に接触させることで半田付けを行う半田付け方法であり、リードつき部品の半田付けに主に用いられている。リフロー半田付けは、プリント回路基板20の所定の位置にクリーム半田と呼ばれるペースト状の半田をスクリーン印刷等で印刷しておき、その上に電子部品を搭載し、プリント回路基板20ごと炉に入れて半田を溶融、再結晶させることにより半田付けを行う半田付け方法であり、表面実装型の電子部品で使用される。
【0014】
これらの工程においてクリーム半田印刷や部品搭載、半田付けで使用される設備はプリント回路基板20の外形やプリント回路基板20上に設けられたマークを基に正確な位置決めを行って、それぞれの工程を実現するため、プリント回路基板20が反っていると正確な位置決めが行えなくなる。また、これらの設備はベルトを介して接続されており、プリント回路基板20に反りが発生しているとベルト間の移載の時にひっかかって正常に搬送ができないという不具合が発生する。このため、実装設備ではプリント回路基板20の反りの許容量が設定されており、一般的には下側へ1.2mm、上側へ0.5mm程度の反り許容量となっている。従って、許容量を超える反りが発生しているプリント回路基板20は使用することができない。
【0015】
本発明は上記課題を解決するもので、絶縁樹脂材料上に銅箔を添付してエッチングで銅箔を除去することにより回路パターンを形成して、電気回路を構成するプリント回路基板において、反りを抑制することができるプリント回路基板を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、絶縁樹脂材料上に銅箔を添付しエッチングにより前記銅箔を除去することにより回路パターンを形成し、電気回路を構成するプリント回路基板において、前記プリント回路基板の表面の外周部に、電気的には不要で、前記エッチングで除去せずに前記銅箔を残して形成されたベタパターンからなる電気的不要領域が設けられ、前記電気的不要領域の長い方の辺に、前記ベタパターンが不連続になる不連続部分が複数箇所設けられ、前記電気的不要領域の短い方の辺に、複数の屈曲部が連続するバネ形状パターンの部分同士の間に前記ベタパターンの部分を有した状態で、前記バネ形状パターンの部分が複数箇所設けられたことを特徴とするものである。
この構成により、電気的不要領域にて絶縁樹脂と銅箔との界面面積が調整されるとともにプリント回路基板の剛性が増加され、熱膨張係数の差と絶縁樹脂材料に対する力の合成のつりあいを図って、プリント回路基板の反りを抑制することが可能となるという作用を有する。
また、必要な回路パターンに影響を与えずに反りを抑制するという作用を有する。
また、必要な回路パターンに影響を与えずにかつバネ形状パターンにて絶縁樹脂材料と銅箔にかかる力を効果的に分散させることができながら、反りを抑制することが可能となるという作用を有する。
また、必要な回路パターンに影響を与えずにかつ不連続部分にて絶縁樹脂材料と銅箔にかかる力を効果的に分散させることができながら、反りを抑制することが可能となるという作用を有する。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
まず、本発明の第1の実施の形態に係るプリント回路基板およびその製造方法について、図1を参照しつつ以下に説明する。
【0026】
本実施の形態のプリント回路基板1ではガラスエポキシ基材からなる絶縁樹脂材料2の片側に銅箔3を貼り付けた構成とされている。ガラスエポキシ基材の厚みは1.6mmで銅箔3の厚みは35μmである。また、プリント回路基板1の寸法は243mm×329mmである。プリント回路基板1の表面には所定の回路パターン4を形成し、銅箔3の占有面積は70%程度であった。
【0027】
ここで、プリント回路基板1の外周部分に電気的には不要なパターン(電気的には不要な領域であり、電気的不要パターンと称す)5が配置されている。この電気的不要パターン5は、全体としてはプリント回路基板1の外周から5mmの領域にベタパターンで配置され、短い方の辺には2箇所、長い方の辺には3箇所に複数の屈曲部を持つバネ形状(直線が交互に左右に折れ曲がったジグザグ形状)のパターン部5aが設けられている。このバネ形状パターン部5aでは、幅1mmのパターンをベタパターンの外周側から30°の傾斜でプリント回路基板1内部方向へ向かわせ、外周から5mmの部分で60°の角度で外周側へ屈曲させている。本実施の形態ではバネ形状パターン部5a内に3箇所の屈曲部を設けた。
【0028】
この状態でプリント回路基板1の反り量の測定を行った。本実施の形態のプリント回路基板1を定盤の上に静置すると長い方の辺の中央部が定盤から若干浮いており、定盤の上面からプリント回路基板1の下面までの距離を反り量とした。
この測定において反り量は0.2mmであった。この状態でプリント回路基板1の4隅は全て定盤と接していたので反り方向は1方向のみであることが確認された。
【0029】
次いで、比較例として外周部に電気的不要パターン5を設けず、電気的には同等の機能を有する回路パターンを形成したプリント回路基板を作製した。この基板においても同様に反り量の測定を行ったところ、中央部での反り量は1.0mmであり、反り方向は上記と同様に1方向のみであった。このように、プリント回路基板1の外周部分に電気的不要パターン5を設けたことにより、絶縁樹脂材料2と銅箔3との界面面積が調整されるとともにプリント回路基板1の剛性が増加されるので、熱膨張係数の差と絶縁樹脂材料2に対する力の合成のつりあいが図られ、プリント回路基板1の反り量が小さくなり、その効果が確認された。また、バネ形状パターン部5aを形成したことにより、絶縁樹脂材料2と銅箔3とにかかる力を効果的に分散させることができながら、反りを抑制することも可能となることが確認された。
【0030】
本発明の第2の実施の形態について、図2(a),(b)を参照しつつ以下に説明する。
本実施の形態のプリント回路基板1ではガラスエポキシ基材からなる絶縁樹脂材料2の両面に銅箔3の回路パターン4aを設け、プリント回路基板1の内部にも1層の銅箔3の回路パターン4bを設けた3層構成とした。製品となるプリント回路基板1の厚みは1.6mmで、銅箔3の回路パターン4(4a,4b)の厚みは全て35μmである。また、プリント回路基板1の寸法は243mm×329mmの寸法である。ここで、プリント回路基板1内部の銅箔3の回路パターン4b(以降内層パターン4bと呼ぶ)には外周部に5mm幅のベタパターンを設け、長い方の辺では5箇所、短い方の辺では3箇所に不連続部分5bを設けている。不連続部分5bの長さは全て2mmとした。また、プリント回路基板1の両表面箇所の銅箔3の回路パターン4a(以降表層パターン4aと呼ぶ)にも外周部に5mm幅のベタパターンを設け、内層パターン4bと同様に不連続部分5bを設けている。ただし、両表層パターン4a同士の不連続部分5bは同一部分に設けたが、内層パターン4bに設けた不連続部分5bとは位置が同じにならないように配置した。
【0031】
次に図3を参照しながら本実施の形態のプリント回路基板の製造方法について説明する。
まず、厚みが0.7mmであるガラスエポキシの片面コア材11を準備した。
コア材11とはプリプレグを熱プレス等により圧着し、樹脂を硬化させた材料のことであり、本実施の形態においてはコア材11の片側全面に35μmの厚みの銅箔3を貼り付けた状態の片面コア材11を準備した。次いで、このコア材11の銅箔3をエッチングにより除去して、内層パターン4bとして必要な回路パターン4を形成した。
【0032】
この時、コア材11は全面に銅箔3を張った状態で反り量を測定すると中央部が1.0mm程度反っていたが、エッチングによる銅箔3の除去を行った後では0.3mm程度に小さくなっていた。
【0033】
次いで、このコア材11を図3に示すように熱プレスの各プレス板12の上に静置した。このときプレス板12の上には、プリプレグ8がプレス板12と密着するのを防止するために離型紙13を配している。この上に厚み18μmの銅箔3を配し、その上に厚み0.1mmのプリプレグ8を配した。この上にコア材11を銅箔3を上にして配置し、その上に厚み0.2mmの4枚のプリプレグ8と厚み18μmの銅箔3とを配し、最後に離型紙13を配した。
【0034】
この状態で熱プレスを作動させてプリプレグ8の完全硬化を行った。このときプリプレグ8から溶融してくる樹脂分がコア材11上に形成された銅箔3の回路パターン4の隙間を埋めていき、コア材11との密着を確保すると同時にプリプレグ8同士、プリプレグ8と表層用の銅箔3との密着も確保され、一体となったプリント回路基板1が完成する。この時の熱プレスの条件はプレス圧力が15kg/cm2で温度条件は175℃とした。熱プレスは175℃で30分放置した後、圧力をかけたまま30分間除冷し、その後プレス板12を降ろして完成したプリント回路基板1を取り出した。
【0035】
ここでプリント回路基板1は全体の厚みが1.6mmになっており、外形は樹脂の広がりによりプレス前よりも若干大きくなっている。そこで、必要な寸法に外形を切り落とした後に、図4で示すようにドリル14で部品挿入穴15やスルーホール16を開口した。
【0036】
次に、銅をメッキすることにより開口部の側面に銅を付着させると同時に表層パターンの箇所にも銅を付着させ、内層パターン4bと表層の銅箔3との導通を図った。次いで、表層の銅箔3をエッチングにより除去して表層パターン4aを形成し、プリント回路基板1上にシルクスクリーンを用いてレジストを印刷した。印刷にあたっては、電極部として使用する部分を除くプリント回路基板1の全面に印刷を行った。使用したレジスト6は従来のプリント回路基板においても一般的に使用されている感光性樹脂であり、印刷後に紫外線硬化炉でレジスト6の硬化を行い、プリント回路基板1を完成させた。
【0037】
こうして完成したプリント回路基板1の反り量を測定すると0.2mm程度と、コア材11と比較しても反り量が低減されており、本発明の効果が確認された。
【0038】
本発明の第3の実施の形態について、図5、図6を参照しつつ以下に説明する。本実施の形態においてはプリント回路基板1の積層構成、プリント回路基板1に形成されている銅箔3の回路パターン4、絶縁樹脂材料2およびプリント回路基板1の製造方法については上記第2の実施の形態のものと基本的に同一であり、重複する部分については説明を割愛する。
【0039】
本発明のプリント回路基板1ではガラスエポキシ基材からなる絶縁樹脂材料2を用いた3層構成とした点は同じであるけれども、プリント回路基板1内には電気的には不要な部分を設けていない。製品となるプリント回路基板1の厚みは1.6mmで銅箔3の回路パターン4の厚みは全て35μmである。また、プリント回路基板1の寸法は240mm×320mmの寸法である。
【0040】
まず、厚み0.7mmの片面銅箔のコア材11を製造するために、図5に示すようにプレス板12の上に、厚み0.2mmの3枚のプリプレグ8と、厚み0.1mmの1枚のプリプレグ8と、厚み35μmの銅箔3とを静置し、加圧、樹脂硬化を行った。ここで使用した材料の大きさは生産性を上げるために所望の寸法のプリント回路基板1が2枚入る大きさのものを使用した。具体的には、材料メーカーから定尺として得られる1030mm×1020mmのプリプレグ8を6分割し、340mm×515mmの寸法のプリプレグ8を使用した。
【0041】
ここで得られたコア材11の反り量は3.00mm程度であった。次いで本発明の第2の実施の形態と同様にコア材11の銅箔3をエッチングして内層パターン4bを形成した。この時、プリント回路基板1内には電気的不要パターン5は設けず、図8に示す余白領域9は銅箔3の殆どの部分を除去せずに置いておき電気的不要パターン5による不連続部分5b及びバネ形状パターン部5aを設けた。不連続部分5bの長さは2mmとし、長い方の辺にそれぞれ10箇所設けた。バネ形状パターン部5aは短い方の辺にそれぞれ箇所設けた。
【0042】
ここで得られたエッチング後のコア材11の反り量は1.3mm程度に低減した。
次いで、本発明の第2の実施の形態と同様の積層構成にて熱プレスで積層を行い、開口部を設けた後に銅メッキにより開口部に銅を付着させ、エッチングにより表層パターン4aの形成を行った。本発明の実施形態では使用したプリプレグ8の寸法が340mm×515mmの寸法であることと、2枚分のプリント回路基板1が同時に製造されるところが異なる。
【0043】
ここで得られたプリント回路基板1の反り量は0.8mm程度に低減していた。
次いで、余白領域9をルーターにより切断し、所望のプリント回路基板1を得た。この時、余白領域9に設けられた電気的不要パターン5は除去されるため、所望のプリント回路基板1には電気的不要パターン5が形成されていない。このプリント回路基板1の反り量は0.2mm程度であり、最終製品の反り量を低減したまま、効率よくプリント回路基板1を製造できる効果が確認できた。
【0044】
【発明の効果】
以上のように本発明によれば、絶縁樹脂材料上に銅箔を添付しエッチングにより銅箔を除去することにより回路パターンを形成し、電気回路を構成するプリント回路基板において、基板の表面に電気的には不要なエッチングで除去しない電気的不要領域を設けたことにより、プリント回路基板の反りを抑制することが可能となり、この結果、反りの少ないプリント回路基板を得ることができる。
【0045】
またさらに、電気的不要領域をプリント回路基板の外周部に設けることにより、必要な回路パターンに影響を与えずに反りを抑制することができる。
またさらに、電気的不要領域に形成される形状は複数の屈曲部が連続するバネ形状パターンであることにより、必要な回路パターンに影響を与えずにかつ絶縁樹脂材料と銅箔にかかる力を効果的に分散させ、反りを抑制することができる。
【0046】
またさらに、電気的不要領域間に不連続部分を設けることにより、必要な回路パターンに影響を与えずにかつ絶縁樹脂材料と銅箔にかかる力を効果的に分散させ、反りを抑制することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るプリント回路基板の構成を概念的に示す平面図である。
【図2】本発明の第2の実施の形態に係るプリント回路基板の構成を示し、(a)は概念的に示す断面図、(b)はプリント回路基板を上から見た表層パターンの概念的な構成を示す平面図である。
【図3】本発明の第2の実施の形態に係るプリント回路基板の製造方法のうち、コア材、プリプレグ、銅箔を熱圧着する工程を概念的に示す図である。
【図4】本発明の第2の実施の形態に係るプリント回路基板の製造方法のうち、熱圧着された絶縁樹脂に開口部を形成する工程を概念的に示す図である。
【図5】本発明の第3の実施の形態に係るプリント回路基板の製造方法のうち、コア材の熱圧着工程を概念的に示す図である。
【図6】本発明の第3の実施の形態に係るプリント回路基板の構成を概念的に示す平面図である。
【図7】従来のプリント回路基板の構成を概念的に示す斜視図である。
【図8】従来のプリント回路基板の製造方法のうち、同一プリント回路基板を複数製造するための構成を概念的に示す平面図である。
【符号の説明】
1 プリント回路基板
2 絶縁樹脂材料
3 銅箔
4 回路パターン
5 電気的不要パターン(電気的不要領域)
5a バネ形状パターン部
5b 不連続部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a printed circuit board which constitutes the electrical circuit by forming a circuit pattern by removing the copper foil by etching after attaching a copper foil on the insulating resin material.
[0002]
[Prior art]
In recent years, along with the demand for downsizing and high functionality of electronic equipment, surface mount type electronic parts have become widespread, and not only the downsizing of electronic parts has progressed, but also progress in reflow soldering technology using cream solder etc. At the same time, high-density mounting of electronic components on printed circuit boards has been spurred. In response to this, printed circuit boards used in electronic devices that are required to be miniaturized are also becoming thinner and are becoming increasingly multilayered.
[0003]
On the other hand, large electronic parts are still used in fields that handle large currents and high voltages because of the need to ensure current capacity and insulation, and printed circuit boards with thick copper foil are still used. Yes.
[0004]
As shown in FIG. 7, the conventional printed circuit board 20 has a structure in which a circuit pattern 4 is formed of a copper foil 3 on a resin substrate made of an insulating resin material 2. As the insulating resin material 2, a material obtained by impregnating a reinforcing base material such as a paper base material, a glass base material, or a glass nonwoven fabric base material with a phenol resin or an epoxy resin is often used. In addition, the circuit pattern 4 is convexly exposed on the resin substrate, and an insulating resin layer called a resist 6 is formed in order to ensure insulation from the adjacent circuit pattern 4.
Although the thickness of the copper foil 3 varies depending on the use of the printed circuit board 20, it is generally 35 μm, and the copper foil 3 exceeding 100 μm is not used. In addition, 7 in FIG. 7 is an electrode part.
[0005]
Here, a conventional method for manufacturing the printed circuit board 20 will be described. First, the reinforcing base material is impregnated with resin and then dried. At this time, the resin undergoes a curing reaction and becomes semi-cured. The resin substrate in this state is called a prepreg. Next, the copper foil 3 is stuck on the entire surface of the prepreg. Here, since the copper foil 3 is affixed only on the surface where the pattern is required, only one surface is affixed to the single-sided substrate, and is affixed on both sides of the double-sided substrate.
[0006]
Next, the entire copper-clad plate is hot-pressed to bring the copper foil 3 into close contact with the resin substrate, and at the same time, the semi-cured resin substrate is completely cured. Thereafter, etching is performed to remove the unnecessary copper foil 3 to form a circuit pattern 4. With single-sided and double-sided substrates, this is a finished product as a printed circuit board 20, but in the case of a multi-layer board, a plurality of boards after pattern formation are further stacked and bonded together by hot pressing and integrated.
[0007]
Thereafter, if necessary, an opening such as a through hole or a component insertion hole is formed by drilling, and then a resist 6 is printed to expose only the portion of the electrode 7 used for joining the electronic component on the copper foil 3. The resist 6 is cured by heating or ultraviolet irradiation, whereby the printed circuit board 20 is completed.
[0008]
In these manufacturing processes, in order to improve productivity, a plurality of printed circuit boards 20 having the same pattern are arranged in a large prepreg 8 of about 1 m × 1 m as shown in FIG. A method of completing a plurality of printed circuit boards 20 is generally employed. At this time, the desired printed circuit board 20 is not necessarily arranged in the work sheet, and it is necessary to provide a cutting area in order to obtain the desired printed circuit board 20 by cutting after hot pressing. For this purpose, a blank area 9 is generally provided.
[0009]
[Problems to be solved by the invention]
However, in the configuration of the conventional printed circuit board 20 as described above, the printed circuit board 20 is warped depending on the layer configuration of the printed circuit board 20 or the pattern of the copper foil 3 removed by pattern formation, and normal printing is performed. There is a problem that the circuit board 20 cannot be obtained.
[0010]
The general glass epoxy base material used as the insulating resin material 2 has a coefficient of thermal expansion of 66 ppm / ° C., and the copper foil 3 has a coefficient of thermal expansion of 16 ppm / ° C. When pasted together, the shrinkage of the glass epoxy base material becomes larger than the shrinkage of the copper foil 3 as the temperature returns from the high temperature during pressing to the normal temperature, and the glass epoxy base material pulls the copper foil 3. Warping occurs. At this time, when the copper foil 3 is attached to both surfaces of the glass epoxy base material, the warp is reduced because the copper foil 3 can suppress deformation due to the shrinkage of the glass epoxy base material. In this case, since the stress generated due to the difference in thermal expansion coefficient remains, the copper foil 3 is etched to form a circuit pattern, and the copper foil 3 in an unnecessary portion is removed to suppress deformation. Since the foil 3 portion is reduced, the residual stress may be released and warping may occur.
[0011]
The warpage of the printed circuit board 20 depends on the area of the interface between the copper foil 3 and the glass epoxy base material that is the insulating resin material 2 and the thickness of the glass epoxy base material. Usually, the printed circuit board 20 is not used in a state where the copper foil 3 is pasted on the entire surface, and the circuit pattern 3 is formed by removing the copper foil 3 portion. Therefore, the wider the interface between the copper foil 3 and the glass epoxy substrate, the greater the force with which the glass epoxy substrate pulls the copper foil 3, and the printed circuit board 20 is more likely to warp. In addition, since the rigidity of the printed circuit board 20 itself is also affected, the smaller the thickness of the glass epoxy base material, the more difficult it is to support the force caused by the tension, and thus the more easily warped.
[0012]
And, in the multilayer substrate composed of even layers, basically, the copper foil 3 exists on both surfaces, so that the warpage is hardly generated. However, since it passes through the state in which the copper foil 3 does not exist, warpage at the intermediate base material is likely to occur. The warp generated in the intermediate substrate remains in the finished product.
[0013]
Here, the amount of warpage allowed in the printed circuit board 20 will be described. The printed circuit board 20 is used by mounting electronic components, and there are two methods of soldering electronic components: flow soldering and reflow soldering. Flow soldering is a soldering method in which molten solder is jetted from a nozzle and brought into contact with the surface of the printed circuit board 20, and is mainly used for soldering components with leads. In reflow soldering, paste solder called cream solder is printed on a predetermined position of the printed circuit board 20 by screen printing or the like, electronic components are mounted on the solder, and the printed circuit board 20 is placed in a furnace. This is a soldering method in which solder is melted and recrystallized to be used in surface-mount type electronic components.
[0014]
The equipment used for cream solder printing, component mounting, and soldering in these processes performs accurate positioning based on the outer shape of the printed circuit board 20 and the marks provided on the printed circuit board 20, and performs each process. For this reason, if the printed circuit board 20 is warped, accurate positioning cannot be performed. In addition, these facilities are connected via a belt, and if the printed circuit board 20 is warped, there is a problem that it cannot be normally conveyed because it is caught during transfer between the belts. For this reason, the allowable amount of warping of the printed circuit board 20 is set in the mounting facility, and generally the allowable amount of warping is about 1.2 mm downward and about 0.5 mm upward. Therefore, the printed circuit board 20 in which the warpage exceeding the allowable amount has occurred cannot be used.
[0015]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem. In a printed circuit board constituting an electric circuit, a warp is warped by forming a circuit pattern by attaching a copper foil on an insulating resin material and removing the copper foil by etching. and to provide a printed circuit board can be suppressed.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 is a printed circuit board comprising an electric circuit by forming a circuit pattern by attaching a copper foil on an insulating resin material and removing the copper foil by etching. in the outer peripheral portion of the surface of the printed circuit board, the electrical unnecessary electrical unnecessary region consisting of solid pattern formed by leaving the copper foil is not removed by the etching is provided, the electric A plurality of discontinuous portions where the solid pattern is discontinuous are provided on the longer side of the unnecessary area, and a plurality of bent portions are continuous on the shorter side of the electrically unnecessary area. A plurality of the spring-shaped pattern portions are provided in a state where the solid pattern portion is provided between the portions.
With this configuration , the interface area between the insulating resin and the copper foil is adjusted in the electrically unnecessary region and the rigidity of the printed circuit board is increased, thereby balancing the difference in thermal expansion coefficient and the force on the insulating resin material. Thus, it is possible to suppress warping of the printed circuit board.
Moreover, it has the effect | action which suppresses curvature, without affecting a required circuit pattern.
In addition, it is possible to suppress warping while effectively dispersing the force applied to the insulating resin material and the copper foil in the spring-shaped pattern without affecting the necessary circuit pattern. Have.
In addition, it is possible to suppress warpage while effectively dispersing the force applied to the insulating resin material and the copper foil in the discontinuous portion without affecting the necessary circuit pattern. Have.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a printed circuit board and a manufacturing method thereof according to the first embodiment of the present invention will be described below with reference to FIG.
[0026]
In the printed circuit board 1 of this Embodiment, it is set as the structure which affixed the copper foil 3 on the one side of the insulating resin material 2 which consists of a glass epoxy base material. The thickness of the glass epoxy substrate is 1.6 mm, and the thickness of the copper foil 3 is 35 μm. The size of the printed circuit board 1 is 243 mm × 329 mm. A predetermined circuit pattern 4 was formed on the surface of the printed circuit board 1, and the area occupied by the copper foil 3 was about 70%.
[0027]
Here, an electrically unnecessary pattern (an electrically unnecessary area, referred to as an electrically unnecessary pattern) 5 is disposed on the outer peripheral portion of the printed circuit board 1. The electrical unnecessary pattern 5 is arranged in a solid pattern in a region 5 mm from the outer periphery of the printed circuit board 1 as a whole, and has a plurality of bent portions at two places on the short side and three places on the long side. A pattern portion 5a having a spring shape (zigzag shape in which straight lines are alternately bent to the left and right) is provided. In this spring-shaped pattern portion 5a, a pattern having a width of 1 mm is directed toward the inside of the printed circuit board 1 with an inclination of 30 ° from the outer peripheral side of the solid pattern, and is bent outward at an angle of 60 ° at a portion 5 mm from the outer periphery. ing. In the present embodiment, three bent portions are provided in the spring-shaped pattern portion 5a.
[0028]
In this state, the amount of warpage of the printed circuit board 1 was measured. When the printed circuit board 1 according to the present embodiment is placed on a surface plate, the central part of the longer side is slightly lifted from the surface plate, and the distance from the upper surface of the surface plate to the lower surface of the printed circuit board 1 is warped. The amount.
In this measurement, the amount of warpage was 0.2 mm. In this state, since all four corners of the printed circuit board 1 were in contact with the surface plate, it was confirmed that the warping direction was only one direction.
[0029]
Next, as a comparative example, a printed circuit board on which a circuit pattern having an electrically equivalent function was formed without providing the electrically unnecessary pattern 5 on the outer peripheral portion was produced. When the amount of warpage was also measured on this substrate, the amount of warpage at the center was 1.0 mm, and the warping direction was only one direction as described above. Thus, by providing the electrical unnecessary pattern 5 on the outer peripheral portion of the printed circuit board 1, the interface area between the insulating resin material 2 and the copper foil 3 is adjusted, and the rigidity of the printed circuit board 1 is increased. Therefore, the balance between the difference in thermal expansion coefficient and the synthesis of the force against the insulating resin material 2 was achieved, and the amount of warping of the printed circuit board 1 was reduced, and the effect was confirmed. In addition, it was confirmed that by forming the spring-shaped pattern portion 5a, it is possible to effectively disperse the force applied to the insulating resin material 2 and the copper foil 3 while suppressing warpage. .
[0030]
A second embodiment of the present invention will be described below with reference to FIGS. 2 (a) and 2 (b).
In the printed circuit board 1 of the present embodiment, the circuit pattern 4a of the copper foil 3 is provided on both surfaces of the insulating resin material 2 made of a glass epoxy base material, and the circuit pattern of the copper foil 3 of one layer is also provided inside the printed circuit board 1. It was set as the 3 layer structure which provided 4b. The thickness of the printed circuit board 1 as a product is 1.6 mm, and the thickness of the circuit pattern 4 (4a, 4b) of the copper foil 3 is 35 μm. The printed circuit board 1 has a size of 243 mm × 329 mm. Here, the circuit pattern 4b (hereinafter referred to as the inner layer pattern 4b) of the copper foil 3 inside the printed circuit board 1 is provided with a solid pattern having a width of 5 mm on the outer peripheral portion, and at five points on the longer side and on the shorter side, Discontinuous portions 5b are provided at three locations. The lengths of the discontinuous portions 5b were all 2 mm. In addition, a solid pattern having a width of 5 mm is provided on the outer peripheral portion of the circuit pattern 4a (hereinafter referred to as a surface layer pattern 4a) of the copper foil 3 on both surface portions of the printed circuit board 1, and the discontinuous portion 5b is provided in the same manner as the inner layer pattern 4b. Provided. However, although the discontinuous portion 5b between the surface layer patterns 4a is provided in the same portion, the discontinuous portion 5b provided in the inner layer pattern 4b is disposed so as not to have the same position.
[0031]
Next, a method for manufacturing a printed circuit board according to the present embodiment will be described with reference to FIG.
First, a glass epoxy single-sided core material 11 having a thickness of 0.7 mm was prepared.
The core material 11 is a material obtained by press-bonding a prepreg with a hot press or the like and curing the resin, and in this embodiment, a state in which the copper foil 3 having a thickness of 35 μm is attached to the entire surface of one side of the core material 11. The single-sided core material 11 was prepared. Next, the copper foil 3 of the core material 11 was removed by etching to form a necessary circuit pattern 4 as the inner layer pattern 4b.
[0032]
At this time, when the amount of warpage of the core material 11 was measured with the copper foil 3 stretched over the entire surface, the center portion was warped by about 1.0 mm, but after the removal of the copper foil 3 by etching, about 0.3 mm. It was getting smaller.
[0033]
Subsequently, this core material 11 was left still on each press plate 12 of a hot press as shown in FIG. At this time, a release paper 13 is disposed on the press plate 12 in order to prevent the prepreg 8 from coming into close contact with the press plate 12. A copper foil 3 having a thickness of 18 μm was disposed thereon, and a prepreg 8 having a thickness of 0.1 mm was disposed thereon. On top of this, the core material 11 is arranged with the copper foil 3 facing up, on which four prepregs 8 having a thickness of 0.2 mm and the copper foil 3 having a thickness of 18 μm are arranged, and finally the release paper 13 is arranged. .
[0034]
In this state, the heat press was operated to completely cure the prepreg 8. At this time, the resin component melted from the prepreg 8 fills the gaps in the circuit pattern 4 of the copper foil 3 formed on the core material 11, and ensures close contact with the core material 11, and at the same time, the prepregs 8 and the prepreg 8. And the copper foil 3 for the surface layer are secured, and the integrated printed circuit board 1 is completed. The hot press conditions at this time were a press pressure of 15 kg / cm 2 and a temperature condition of 175 ° C. The hot press was allowed to stand at 175 ° C. for 30 minutes and then cooled for 30 minutes while pressure was applied. Thereafter, the press plate 12 was lowered and the completed printed circuit board 1 was taken out.
[0035]
Here, the total thickness of the printed circuit board 1 is 1.6 mm, and the outer shape is slightly larger than before the press due to the spread of the resin. Therefore, after cutting out the outer shape to the required dimensions, the component insertion hole 15 and the through hole 16 were opened with a drill 14 as shown in FIG.
[0036]
Next, copper was deposited on the side surface of the opening by plating copper, and at the same time, copper was deposited on the surface layer pattern, thereby conducting electrical connection between the inner layer pattern 4 b and the surface layer copper foil 3. Next, the surface layer copper foil 3 was removed by etching to form a surface layer pattern 4a, and a resist was printed on the printed circuit board 1 using a silk screen. In printing, printing was performed on the entire surface of the printed circuit board 1 excluding a portion used as an electrode portion. The resist 6 used is a photosensitive resin that is generally used in conventional printed circuit boards. After printing, the resist 6 was cured in an ultraviolet curing furnace to complete the printed circuit board 1.
[0037]
When the amount of warpage of the printed circuit board 1 thus completed was measured, the amount of warpage was reduced to about 0.2 mm as compared with the core material 11, and the effect of the present invention was confirmed.
[0038]
A third embodiment of the present invention, FIG. 5 will be described below with reference to FIG. In the present embodiment, the second embodiment of the laminated structure of the printed circuit board 1, the circuit pattern 4 of the copper foil 3 formed on the printed circuit board 1, the insulating resin material 2, and the method of manufacturing the printed circuit board 1 are described above. This is basically the same as that of the embodiment, and the description of the overlapping parts is omitted.
[0039]
The printed circuit board 1 of the present invention is the same in that it has a three-layer configuration using an insulating resin material 2 made of a glass epoxy base material, but an electrically unnecessary portion is provided in the printed circuit board 1. Absent. The thickness of the printed circuit board 1 as a product is 1.6 mm, and the thickness of the circuit pattern 4 of the copper foil 3 is all 35 μm. The printed circuit board 1 has a size of 240 mm × 320 mm.
[0040]
First, in order to manufacture a core material 11 of a single-sided copper foil having a thickness of 0.7 mm, three prepregs 8 having a thickness of 0.2 mm and a thickness of 0.1 mm are formed on the press plate 12 as shown in FIG. One prepreg 8 and 35 μm-thick copper foil 3 were allowed to stand, and pressurization and resin curing were performed. The size of the material used here was such that two printed circuit boards 1 having desired dimensions could be inserted in order to increase productivity. Specifically, the prepreg 8 of 1030 mm × 1020 mm obtained as a standard from a material manufacturer was divided into six, and the prepreg 8 having a size of 340 mm × 515 mm was used.
[0041]
The warpage of the core material 11 obtained here was about 3.00 mm. Subsequently, the inner layer pattern 4b was formed by etching the copper foil 3 of the core material 11 in the same manner as in the second embodiment of the present invention. At this time, the electrical surplus pattern 5 is not provided on the printed circuit board 1, blank regions 9 shown in FIG. 8 to leave without removing the most part of the copper foil 3, not by electrical surplus pattern 5 A continuous portion 5b and a spring-shaped pattern portion 5a were provided. The length of the discontinuous portion 5b was 2 mm, and 10 portions were provided on the longer side. Three spring-shaped pattern portions 5a are provided on the shorter side.
[0042]
The amount of warping of the core material 11 after etching obtained here was reduced to about 1.3 mm.
Next, laminating is performed by hot pressing in the same laminating structure as that of the second embodiment of the present invention. After providing the opening, copper is deposited on the opening by copper plating, and the formation of the surface layer pattern 4a is performed by etching. went. In the embodiment of the present invention, the size of the prepreg 8 used is 340 mm × 515 mm, and two printed circuit boards 1 are manufactured simultaneously.
[0043]
The amount of warpage of the printed circuit board 1 obtained here was reduced to about 0.8 mm.
Next, the blank area 9 was cut by a router to obtain a desired printed circuit board 1. At this time, since the electrical unnecessary pattern 5 provided in the blank area 9 is removed, the electrical unnecessary pattern 5 is not formed on the desired printed circuit board 1. The amount of warpage of the printed circuit board 1 was about 0.2 mm, and it was confirmed that the printed circuit board 1 could be efficiently manufactured while reducing the amount of warpage of the final product.
[0044]
【The invention's effect】
As described above, according to the present invention, a circuit pattern is formed by attaching a copper foil on an insulating resin material and removing the copper foil by etching. In particular, by providing an electrically unnecessary region that is not removed by unnecessary etching, warping of the printed circuit board can be suppressed, and as a result, a printed circuit board with less warpage can be obtained.
[0045]
Furthermore, by providing an electrically unnecessary region on the outer peripheral portion of the printed circuit board, it is possible to suppress warping without affecting the required circuit pattern.
Furthermore, the shape formed in the electrically unnecessary area is a spring-shaped pattern in which a plurality of bent portions are continuous, so that the force applied to the insulating resin material and the copper foil is effective without affecting the required circuit pattern. Can be dispersed and warpage can be suppressed.
[0046]
Furthermore, by providing discontinuous portions between unnecessary electrical regions, it is possible to effectively disperse the force applied to the insulating resin material and the copper foil without affecting the required circuit pattern and to suppress warpage. it can.
[Brief description of the drawings]
FIG. 1 is a plan view conceptually showing the structure of a printed circuit board according to a first embodiment of the invention.
FIGS. 2A and 2B show a configuration of a printed circuit board according to a second embodiment of the present invention, wherein FIG. 2A is a conceptual cross-sectional view, and FIG. 2B is a concept of a surface layer pattern when the printed circuit board is viewed from above. It is a top view which shows a typical structure.
FIG. 3 is a diagram conceptually showing a process of thermocompression bonding a core material, a prepreg, and a copper foil in a printed circuit board manufacturing method according to a second embodiment of the present invention.
FIG. 4 is a diagram conceptually showing a step of forming an opening in a thermocompression-bonded insulating resin in a printed circuit board manufacturing method according to a second embodiment of the present invention.
FIG. 5 is a diagram conceptually illustrating a thermocompression bonding process of a core material in a printed circuit board manufacturing method according to a third embodiment of the present invention.
FIG. 6 is a plan view conceptually showing the structure of a printed circuit board according to a third embodiment of the invention.
FIG. 7 is a perspective view conceptually showing the structure of a conventional printed circuit board.
FIG. 8 is a plan view conceptually showing a configuration for manufacturing a plurality of the same printed circuit boards in a conventional printed circuit board manufacturing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Printed circuit board 2 Insulating resin material 3 Copper foil 4 Circuit pattern 5 Electrically unnecessary pattern (electrically unnecessary area)
5a Spring shape pattern part 5b Discontinuous part

Claims (1)

絶縁樹脂材料上に銅箔を添付しエッチングにより前記銅箔を除去することにより回路パターンを形成し、電気回路を構成するプリント回路基板において、前記プリント回路基板の表面の外周部に、電気的には不要で、前記エッチングで除去せずに前記銅箔を残して形成されたベタパターンからなる電気的不要領域が設けられ、
前記電気的不要領域の長い方の辺に、前記ベタパターンが不連続になる不連続部分が複数箇所設けられ、
前記電気的不要領域の短い方の辺に、複数の屈曲部が連続するバネ形状パターンの部分同士の間に前記ベタパターンの部分を有した状態で、前記バネ形状パターンの部分が複数箇所設けられたことを特徴とするプリント回路基板。
A printed circuit board is formed by attaching a copper foil on an insulating resin material and removing the copper foil by etching. In a printed circuit board constituting an electric circuit, the outer peripheral portion of the surface of the printed circuit board is electrically Is unnecessary, provided with an electrically unnecessary region consisting of a solid pattern formed by leaving the copper foil without being removed by the etching,
A plurality of discontinuous portions where the solid pattern is discontinuous are provided on the longer side of the electrically unnecessary region,
A plurality of portions of the spring-shaped pattern are provided on the shorter side of the electrically unnecessary region with the solid pattern portion between the portions of the spring-shaped pattern in which a plurality of bent portions are continuous. A printed circuit board characterized by that.
JP2000267860A 2000-09-05 2000-09-05 Printed circuit board Expired - Fee Related JP4553466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000267860A JP4553466B2 (en) 2000-09-05 2000-09-05 Printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267860A JP4553466B2 (en) 2000-09-05 2000-09-05 Printed circuit board

Publications (2)

Publication Number Publication Date
JP2002076530A JP2002076530A (en) 2002-03-15
JP4553466B2 true JP4553466B2 (en) 2010-09-29

Family

ID=18754702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267860A Expired - Fee Related JP4553466B2 (en) 2000-09-05 2000-09-05 Printed circuit board

Country Status (1)

Country Link
JP (1) JP4553466B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200638812A (en) 2004-11-18 2006-11-01 Matsushita Electric Ind Co Ltd Wiring board, method for manufacturing same and semiconductor device
JP4721926B2 (en) * 2005-06-28 2011-07-13 京セラ株式会社 Multiple wiring board
WO2007099641A1 (en) * 2006-03-03 2007-09-07 Matsushita Electric Industrial Co., Ltd. Board structure for product board, product board manufacturing method, and electronic apparatus
JP5230157B2 (en) * 2006-09-27 2013-07-10 三星電子株式会社 Circuit board for warpage prevention and manufacturing method thereof
JP5280032B2 (en) * 2007-09-27 2013-09-04 新光電気工業株式会社 Wiring board
JP5144222B2 (en) 2007-11-14 2013-02-13 新光電気工業株式会社 Wiring board and manufacturing method thereof
JP2009302188A (en) * 2008-06-11 2009-12-24 Denki Kagaku Kogyo Kk Insulated metal base circuit board and hybrid integrated circuit module using the same
KR101169686B1 (en) 2008-11-07 2012-08-06 에스케이하이닉스 주식회사 Substrate for semicondouctor package and methode thereof
JP4473935B1 (en) 2009-07-06 2010-06-02 新光電気工業株式会社 Multilayer wiring board
JP4576480B1 (en) * 2010-01-18 2010-11-10 新光電気工業株式会社 Multilayer wiring board
JP4669908B2 (en) * 2010-07-12 2011-04-13 新光電気工業株式会社 Multilayer wiring board
JP5723187B2 (en) * 2011-03-23 2015-05-27 日本特殊陶業株式会社 Multi-chip substrate
JP5653893B2 (en) * 2011-12-07 2015-01-14 信越化学工業株式会社 Laminated board
KR101926560B1 (en) * 2011-12-15 2018-12-10 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same
US9355967B2 (en) 2013-06-24 2016-05-31 Qualcomm Incorporated Stress compensation patterning
KR102329799B1 (en) 2017-08-11 2021-11-22 삼성전자주식회사 Semiconductor package
JP2020031090A (en) * 2018-08-21 2020-02-27 イビデン株式会社 Printed wiring board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241993A (en) * 1987-03-30 1988-10-07 株式会社日立製作所 Multilayer printed board and manufacture of the same
JP2000228566A (en) * 1999-02-04 2000-08-15 Matsushita Electric Ind Co Ltd Aggregate printed-wiring board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783179B2 (en) * 1989-12-14 1995-09-06 日本電気株式会社 Method for manufacturing multilayer printed wiring board
JPH09148689A (en) * 1995-11-22 1997-06-06 Advantest Corp Printed board manufacture and printed board
JPH10135648A (en) * 1996-10-29 1998-05-22 Oki Electric Ind Co Ltd Multilayer printed wiring board
JP2000151035A (en) * 1998-11-18 2000-05-30 Toshiba Corp Wiring board and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241993A (en) * 1987-03-30 1988-10-07 株式会社日立製作所 Multilayer printed board and manufacture of the same
JP2000228566A (en) * 1999-02-04 2000-08-15 Matsushita Electric Ind Co Ltd Aggregate printed-wiring board

Also Published As

Publication number Publication date
JP2002076530A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP4553466B2 (en) Printed circuit board
JP5000809B2 (en) MULTILAYER PRINTED CIRCUIT BOARD, MANUFACTURING METHOD THEREOF, AND BGA SEMICONDUCTOR PACKAGE USING MULTILAYER PRINTED CIRCUIT BOARD
JP4575071B2 (en) Manufacturing method of electronic component built-in substrate
JP4334005B2 (en) Wiring board manufacturing method and electronic component mounting structure manufacturing method
JP3429734B2 (en) Wiring board, multilayer wiring board, circuit component package, and method of manufacturing wiring board
US20060101640A1 (en) Method of fabricating rigid-flexible printed circuit board
US20060180344A1 (en) Multilayer printed wiring board and process for producing the same
JP4651597B2 (en) Semiconductor package substrate
WO2007126090A1 (en) Circuit board, electronic device and method for manufacturing circuit board
JP4994988B2 (en) Wiring board manufacturing method
KR101044103B1 (en) Multilayer printed circuit board and a fabricating method of the same
TW201334647A (en) Multi-layer wiring substrate and method for manufacturing the same
KR20160099934A (en) Rigid-flexible printed circuit board and method for manufacturing the same
JP2002204049A (en) Transfer material and its manufacturing method as well as wiring board manufactured by using the same
JP2004186265A (en) Method for manufacturing multilayer wiring board
KR101905879B1 (en) The printed circuit board and the method for manufacturing the same
JP2004119729A (en) Method of manufacturing circuit device
US20080000874A1 (en) Printed wiring board and method of manufacturing the same
JP2000133916A (en) Formation material for wiring pattern transfer, manufacture of formation material for wiring pattern transfer, wiring board using formation material for wiring pattern transfer and manufacture thereof
JP2003110240A (en) Composite wiring board and manufacturing method thereof
JP5221682B2 (en) Printed circuit board and manufacturing method thereof
JP4779668B2 (en) Manufacturing method of laminated substrate
JP2001177244A (en) Method of manufacturing multilayered board
JP7479162B2 (en) Multilayer wiring board and its manufacturing method
KR100797693B1 (en) Fabricating Method of Embedded Chip Printed Circuit Board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees