JP2007091498A - 水素製造方法 - Google Patents

水素製造方法 Download PDF

Info

Publication number
JP2007091498A
JP2007091498A JP2005280342A JP2005280342A JP2007091498A JP 2007091498 A JP2007091498 A JP 2007091498A JP 2005280342 A JP2005280342 A JP 2005280342A JP 2005280342 A JP2005280342 A JP 2005280342A JP 2007091498 A JP2007091498 A JP 2007091498A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
hydrogen
gas
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005280342A
Other languages
English (en)
Inventor
Akitoshi Fujisawa
彰利 藤澤
Keita Yura
慶太 由良
Takeshi Yamashita
岳史 山下
Noboru Nakao
昇 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005280342A priority Critical patent/JP2007091498A/ja
Publication of JP2007091498A publication Critical patent/JP2007091498A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】メンブレンリアクタ式改質器による水素製造方法において、高い水素収率を維持しつつ、たとえメンブレンリアクタ式改質器からCOがリークしても燃料電池電極へのCOの流入を確実に防止し得る、安全性にも優れた水素製造方法を提供する。
【解決手段】改質用原料Aをメンブレンリアクタ式改質器1で改質して水素リッチな改質ガスBを生成し、これを熱交換器3で60℃以下に冷却した後、たとえば、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこれを還元処理したものからなるCO吸着剤を充填したCO吸着塔2aに通じてCOをほぼ完全に吸着除去して得られたCO除去ガスCを燃料電池へ供給する。
【選択図】 図1

Description

本発明は、リン酸形や固体高分子形等のプロトン伝導形燃料電池等に用いられる高純度水素の製造方法に関し、詳しくは、燃料電池のエネルギ源(燃料)である水素を製造する際に副生する一酸化炭素や二酸化炭素、水や、未反応のメタンなどのうち、特に燃料電池電極触媒への被毒性の高いCOを除去する方法に関する。
近年、地球温暖化防止対策ともあいまって、エネルギの原油依存体質からの脱却が世界的規模で重要課題となっており、環境保全に対する取組みが先行する欧州の先進国はもとより、米国や日本をはじめとするアジア諸国においても、水素ガスをエネルギ源とする燃料電池の実用化に向けての取組みが活発化している。
燃料電池の燃料として使用される水素ガスの製造方法についても多くの研究が進められているが、現時点で最も安価で実現性の高い製造方法は、原料として天然ガス、LPG、灯油、ガソリン、メタノール、ジメチルエーテルなどを使用し、これらを改質して水素ガスを製造する方法である。
このような原料を改質して水素ガスを製造する方法、例えば天然ガスを改質して水素を製造するプロセスでは、通常水蒸気改質法が最もよく用いられている。天然ガスの主成分はメタン(CH)であり、水蒸気改質法において以下のような2段階の反応で水素が生成する。
(1)改質反応 CH+HO → CO+3H
(2)変成反応 CO+HO → CO+H
しかし、(1)の段階の改質反応は700〜800℃の反応温度で進行するため、多量の高温熱エネルギを要し、装置の効率が良いとはいえない。
また、上記のような反応が理想的に進行すれば、生成物はHとCOのみとなるが、実際にはメタンのコーキングによって炭素が生成するのを防止する観点から過剰の水蒸気を用いているため、改質反応を経て変性反応された後のガス(以下、「改質ガス」と呼ぶ。)中には水素(H)と合わせて水蒸気(HO)や未反応メタン(CH)、一酸化炭素(CO)、および二酸化炭素(CO)などの不純物が含まれることになる。これらの不純物の中でも、特にCOについては固体高分子形燃料電池の電極用触媒に用いられる白金(Pt)の被毒劣化防止の観点から10ppm以下の濃度に下げる必要があり、燃料電池の耐久性を考慮した場合、さらに0.2ppm以下程度まで濃度を低減する必要があるとされている。
従来から実施されている改質ガスからの水素の精製法としては、選択酸化触媒法、水素PSA法が代表的である。選択酸化触媒法は、主に定置形燃料電池(家庭用燃料電池を含む)に対して開発が進められている技術であり、改質ガスに空気または酸素を添加し触媒を用いて改質ガス中のCOガスを選択的に酸化しCOにして除去し、燃料電池に対するCOの被毒を防止する技術である。常圧プロセスであること、比較的高い空塔速度(SV)で使用できることにより装置のコンパクト化が可能なことが本技術の特徴であるが、CO以外の不純物である、CO、HO、CHの除去を行う技術ではないため、自動車用向けの燃料電池に対して要求される高純度水素を精製する方式としては利用できない。また 選択酸化触媒は耐久性が十分に確立されておらず、またCOの酸化のために酸素を導入するため、COだけでなく水素も酸化されるため水素収率が低下してしまう問題がある。
一方、水素PSA法は、ゼオライトやカーボンモレキュラーシーブ、アルミナなどの複数の吸着剤を組み合わせ、圧力スイングを行いながら改質ガス中のCO、CH、HO、COを全て除去するプロセスである。自動車用の燃料電池に供給するための水素に対してはCO以外の不純物の除去も要求されるため、水素供給ステーションで化石燃料を改質して燃料水素を製造する場合には、通常この水素PSA法が採用されている。しかしながら、水素PSA法に対する課題として、従来水素PSA法では、粗製水素中に最大1%程度含まれるCOの除去が難しく、多量の吸着剤が必要になるため、水素PSA設備のサイズ(吸着塔サイズ)が非常に大きくなるという問題や製品水素の回収率が十分ではないため、水素の精製コストが高くなるという問題がある。
以上の問題を同時に解決する方法として、メンブレンリアクタ式改質器が提案されている。これは水蒸気改質触媒層の中に水素分離膜を設置し、改質反応で精製したH、CO,CO、未反応CHの混合ガスから水素を選択的に分離する装置である。この装置を用いると生成した水素を水素分離膜によって抜き出すことにより、反応平衡を崩して水素生成側に反応を進めることができるため、700〜800℃の水蒸気改質反応温度を500〜550℃に大幅に低下させることができる。また、水素分離膜によって水素のみを抜き出すことが可能なため、水素精製装置を省略することが可能となる。以上より、コンパクト、シンプルで高効率な水素製造装置が実現できると期待されている。
しかしながら、メンブレンリアクタ式改質器内の水素分離膜に主に用いられているパラジウム膜・パラジウム合金膜などは極薄く柔らかいものであるため、熱応力や触媒との接触により破損し、ピンホールなどの欠陥が生じやすい。このため、不純物ガスのリークを完全に防止することが困難である。これを防ぐために水素分離膜の厚さを非常に厚く(例えば100μm以上に)すると、パラジウム膜は高価な貴金属なため、装置の製造コストが過大となる。また、耐久性にも問題があり、膜の耐久性試験(圧力4.4atm、改質器出口温度590℃、300時間運転)の結果では運転時間にほぼ比例したガス漏れ量の増加が認められている(非特許文献1参照)。
これらの水素分離膜の欠陥を補うために、メンブレンリアクタ式改質器の後段にCO選択酸化触媒やメタネーション触媒などを用いたCO除去装置を配置した水素製造装置が提案されている(特許文献1参照)。しかし、CO選択酸化触媒およびメタネーション触媒による反応は発熱反応であり、また温度に非常に敏感な反応であるため、入放熱が非定常な状態では温度コントロールに不具合があると、CO除去装置通過後でもCO濃度が数十〜数百ppmとなる恐れがある。また、触媒反応において水素を消費するため、水素収率が低下する問題がある。さらに、特にメタネーション触媒として用いられるニッケル系触媒は150℃以下で非常に有毒なニッケルカルボニルを生成するため、安全性にも問題がある。
石田政義監修:家庭用燃料電池の開発と課題、2004年12月28日出版、CMC出版、p203〜208 特開2004−75439号公報(特許請求の範囲など)
本発明はこのような状況に鑑みてなされたものであって、その目的は、メンブレンリアクタ式改質器による水素製造方法において、高い水素収率を維持しつつ、たとえメンブレンリアクタ式改質器からCOがリークしても燃料電池電極へのCOの流入を確実に防止し得る、安全性にも優れた水素製造方法を提供することにある。
請求項1に記載の発明は、改質用原料をメンブレンリアクタ式改質器で改質して水素リッチな改質ガスを得る改質工程と、前記改質ガスをCO吸着剤を充填したCO吸着塔に通じてCOを吸着除去してCO除去ガスを得るCO除去工程を備えたことを特徴とする水素製造方法である。
請求項2に記載の発明は、前記CO除去工程が、COを吸着除去するCO吸着除去ステップと、前記CO吸着剤を再生するCO吸着剤再生ステップとを有する請求項1に記載の水素製造方法である。
請求項3に記載の発明は、前記CO除去工程が、前記CO吸着剤を充填してなるCO吸着塔を複数備えたCO除去装置を用いて行うものであり、1つのCO吸着塔につき、前記CO吸着除去ステップと前記CO吸着剤ステップとを交互に行い、任意の時点において、少なくともいずれか1基のCO吸着塔にて前記CO吸着除去ステップを行う請求項2に記載の水素製造方法である。
請求項4に記載の発明は、前記CO除去工程が、前記CO吸着剤を充填したCO吸着塔を3塔以上備えたCO除去装置を用いて行うものであり、下記の(1)および(2)の工程を繰り返すものである請求項3に記載の水素製造方法である。
(1)いずれか1塔のCO吸着塔にて前記CO吸着剤再生ステップを行いつつ、残りのCO吸着塔を直列に接続して前記CO吸着除去ステップを行う工程
(2)ついで前記直列に接続したCO吸着塔のうち最上流側のCO吸着塔を前記直列接続から分離するとともに、前記CO吸着剤再生ステップを終了したCO吸着塔を前記直列接続の最下流側に接続する工程
請求項5に記載の発明は、前記CO吸着剤再生ステップにおいて、前記高純度水素ガスの一部を前記CO吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法である。
請求項6に記載の発明は、前記CO吸着剤再生ステップにおいて、燃料電池スタックオフガスの全部または一部を前記CO吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法である。
請求項7に記載の発明は、前記CO吸着剤再生ステップにおいて、前記改質工程における改質用原料の一部を前記吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法である。
請求項8に記載の発明は、前記CO吸着剤再生ステップで前記CO吸着塔から排出されたCO吸着塔オフガスを、前記改質工程における改質ガス製造のための加熱用燃料の一部として用いる請求項5〜7のいずれか1項に記載の水素製造方法である。
請求項9に記載の発明は、前記CO吸着剤再生ステップにおいて、前記CO吸着剤を再生するための熱量として、前記改質ガスの顕熱を用いる請求項5〜8のいずれか1項に記載の水素製造方法である。
請求項10に記載の発明は、前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこれを還元処理したものである請求項1〜9に記載の水素製造方法である。
本発明によれば、たとえメンブレンリアクタ式改質器内の水素分離膜に存在する欠陥や劣化によってCOがリークしても、後段の吸着剤を充填したCO吸着除去装置で安全かつ確実にCOをほぼ完全に除去することができ、燃料電池電極のCO被毒を確実に防止できるようになった。
以下、本発明の実施の形態について図1〜4のフロー図を参照しつつ詳細に説明する。
〔実施形態1〕
本発明の実施形態に係る水素製造プロセスの一例を図1のフロー図に示す。本実施形態では、メンブレンリアクタ式改質器内の水素分離膜に欠陥や劣化がほとんどない場合のバックアップとしてCO除去装置を用いる例を示す。
(改質工程)
水素リッチガスとしての改質ガスを製造するための改質工程には、メンブレンリアクタ式改質器1を用いる。メンブレンリアクタ式改質器1において天然ガスなどの改質用原料Aを水蒸気にて改質してHを主成分とする改質ガスBとする。メンブレンリアクタ式改質器1内の水素分離膜の欠陥や劣化がほとんどない場合、改質ガスBはほぼ全てHである。この改質ガスBの温度は550〜650℃であるが、CO吸着剤によるCO吸着は吸着温度が低いほど吸着量が大きくなることから、後段のCO除去工程における吸着温度は60℃以下とするのが好ましい。このため、メンブレンリアクタ式改質器1の後段に熱交換器3を設置して改質ガスBの顕熱を回収しつつ、ガス温度を60℃以下に低下させた改質ガスB’とする。このとき熱交換器3で回収された排熱はコジェネレーションシステムにおける熱源等として利用できる。
(CO除去工程)
本実施例では、メンブレンリアクタ式改質器1内の水素分離膜に何らかの理由により欠陥が生じ、H以外のCO,CH,CO、HO等のガスがリークしてきた際に、燃料電池電極に対して特に被毒性の強いCOのみを吸着除去するバックアップ装置としてCO除去工程を設ける。このCO除去工程には、CO吸着剤を充填した1基のCO吸着塔2aからなるCO除去器2を用いる。CO吸着剤としては、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)またはハロゲン化銅(II)を担持させた材料を用いるのが推奨される。このようなハロゲン化銅を担持させたCO吸着剤は、ゼオライトモレキュラーシーブス、カーボンモレキュラーシーブス、活性炭、または活性アルミナといった従来の吸着剤に比べ数倍の吸着性能を発揮するため、CO除去器2が大幅に小型化できる。上述したように、CO吸着剤によるCO吸着は吸着温度が低いほど吸着量が大きくなることから、高温の改質ガスBを冷却するためにCO除去器2の上流側に熱交換器3を設け、冷却後の改質ガスB’の温度を60℃以下に低下させ、吸着温度をこの温度以下とするのが好ましい。CO吸着除去後のCO除去ガスCのCO濃度は、燃料電池電極触媒の被毒を防ぐため、10ppm以下、さらには0.2ppm以下とするのが好ましい。
このようなCO除去器2を後段に設置したことにより、万が一水素分離膜の欠陥によりメンブレンリアクタ式改質器1からCOを含む不純物がリークしてきても、CO除去器2で少なくともCOはほぼ完全に除去される。この結果、CO除去器2を通過したCOをほとんど含有しないCO除去ガスCが燃料電池に供給されるだけであるので、燃料電池電極にCOが流入することが防止され、装置全体の長寿命化・安定性の確保が可能となる。さらに、このようにバックアップとしてCO除去器2を後段に設置することで、メンブレンリアクタ式改質器1内の高価な水素分離膜の厚さを必要最小限にすることができるので、CO除去器2を余分に設置するコストを考慮しても装置全体の製造コストを大幅に低減できる。
なお、CO吸着塔2aに充填されたCO吸着剤の吸着性能を維持するために、定期的にCO吸着剤を再生しておく必要があるが、たとえば、水素製造プロセスの定期点検の際に行うようにすればよい。
〔実施形態2〕
本発明の別の実施形態に係る水素製造プロセスを図2のフロー図に示す。本実施形態では、メンブレンリアクタ式改質器の水素分離膜に欠陥が生じても継続して水素の製造を可能とするためにCO除去装置を用いる例を示す。
(改質工程)
実施形態1と同様、メンブレンリアクタ式改質器1とその後段に熱交換器3を設置したものを用い、ガス温度が60℃以下の改質ガスB’を得る。
(CO除去工程)
本実施形態のCO除去工程には、CO吸着剤を充填したCO吸着塔3基(2a、2b、2c)からなるCO除去器2を用いる。以下、CO吸着除去ステップとCO吸着剤再生ステップに分けて説明し、さらにそれらのステップの切り替え操作について説明を行う。
[CO吸着除去ステップ]:改質ガスB’を、CO吸着剤を充填したCO除去器2を通過させ、改質ガスB’中のCOを選択的に除去する。CO吸着剤としては、上記実施形態1と同様、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)またはハロゲン化銅(II)を担持させた材料を用いるのが推奨される。CO吸着除去後のCO除去ガスCのCO濃度は、上記実施形態1と同様、燃料電池電極触媒の被毒を防ぐため、10ppm以下、さらには0.2ppm以下とするのが好ましい。
[CO吸着剤再生ステップ]:CO吸着剤の吸着性能を維持するために、CO吸着除去ステップにおいて所定の時間経過後に、ないしはCO除去器2の出口側のCO濃度が所定の濃度まで上昇(破過)したときにCO吸着剤を再生する必要がある。CO吸着剤の再生は、吸着サイトに吸着したCOを脱離させ、この脱離したCOを再吸着させないで除去する必要があるため、キャリアガスとしてCOを実質的に含まないガスを流通させつつ行う。また、COの脱離は吸着とは逆に温度が高いほど促進されるため、CO吸着剤再生ステップにおける再生温度は、上記CO吸着除去ステップにおける吸着温度より高くする。このような条件を満足させるため、上記キャリアガスとして用いるCOを実質的に含まないガスとしては、CO吸着除去ステップで得られたCO除去ガスCの一部C’を利用し、これを上述の熱交換器3で改質ガスBと熱交換し加熱して使用すればよい。ただし、250℃を超えて加熱すると、吸着剤に担持した活性種が不可逆的なダメージを受け、CO吸着剤の性能が低下するため250℃以下とする。とくに推奨される温度範囲は80〜150℃である。そして、このCO吸着剤を再生した後のガスC’’は、COを高濃度に含むため、例えばメンブレンリアクタ式改質器1の加熱用燃料Dの一部と代替して有効利用するとよい。
[CO吸着除去ステップとCO吸着剤再生ステップとの切り替え操作]:それぞれのCO吸着塔につき、上記CO吸着除去ステップとCO吸着剤再生ステップとを交互に切り替える必要があるが、連続的に高純度水素を製造するためには(すなわち、連続的にCO除去ガスCを得るためには)、3塔のうち少なくとも1塔は常にCO吸着除去ステップとしておく必要がある。なお、CO吸着除去ステップにあったCO吸着塔をCO吸着剤再生ステップに移行させ再生を十分に行うには、CO吸着剤をCO脱離反応が活発化する温度まで昇温させるのに長時間を要することから、3塔のうち2塔をCO吸着除去ステップとしておき、残りの1塔のみをCO吸着剤再生ステップとするのが推奨される。そして、図3(a)に示すように、CO吸着除去ステップにある2塔(2a、2b)を直列に接続し、改質ガスB’を2塔に分配して通過させるのでなく、2塔を順次通過させてCOを吸着除去するようにする。そして、所定時間経過後、上流側のCO吸着塔2aのCO吸着容量が満杯になったとき、この上流側のCO吸着塔2aを直列接続から切り離すとともに、吸着剤の再生が完了したCO吸着塔2cをCO吸着塔2bの下流側に接続する。そして、同図(b)に示すように、CO吸着塔2aの吸着剤を再生しつつ、CO吸着塔2b,2cからなる直列接続を用いてCOを吸着除去する。以下、同様の手順により、同図(c)さらには同図(a)の状態へと戻り、このような切り替え操作が繰り返される。このように、2塔を直列に接続し、その上流側から順次再生を行うことにより、下流側のCO吸着塔は常にCO吸着容量を残した状態にあるので、破過(CO濃度の上昇)が発生することなく、常にCOが十分に取り除かれたCO除去ガスCが得られる。また、上流側のCO吸着塔はその吸着容量をほぼ使い切った状態まで使用できるため、それぞれの吸着塔に吸着剤を過剰に充填する必要がなく、吸着剤コストの低減および設備の小型化を実現できる。
(変形例)
上記実施形態2では、CO吸着剤の再生に用いるCOを実質的に含まないガスとして、CO除去ガスCの一部C’を用いたが、図4に示すように、固体高分子形燃料電池4のスタック部から排出されるオフガス(燃料電池スタックオフガス)Eの全部または一部E’を熱交換器3で改質ガスBと熱交換し加熱して使用してもよい。この場合も、CO吸着剤を再生した後のガスE’’は、COを高濃度に含むため、例えばメンブレンリアクタ式改質器1の加熱用燃料Dの一部と代替して有効利用するとよい。
あるいは、上記COを実質的に含まないガスとして、図示を省略したが、メンブレンリアクタ式改質器1の改質用原料Aの一部を用いてもよい。
また、上記実施形態2では、CO除去工程として3塔のCO吸着塔を順次切り替えて用いる例を示したが、2塔または4塔以上のCO吸着塔を順次切り替えて用いてもよい。なお、2塔の吸着塔を切り替えて用いる場合は、吸着操作に用いている1つの吸着塔がCOにより破過する前に(すなわち、COが漏れ出す前に)吸着操作を停止し、もう1つの再生ずみの吸着塔に切り替える必要があるため、CO吸着剤の吸着容量を全て用いることができない。これに対し、上記実施形態2で説明した3塔の吸着塔を切り替えて用いる場合は、上述したようにCO吸着剤の吸着容量をほぼ全て用いることができ、吸着剤使用量が大幅に低減できるため、3塔切り替えのほうがより推奨される。
実施形態1に係る水素製造プロセスを示すフロー図である。 実施形態2に係る水素製造プロセスを示すフロー図である。 実施形態2における、CO除去器の切り替え操作を説明するフロー図である。 実施形態2の変形例に係る水素製造プロセスを示すフロー図である。
符号の説明
1…メンブレンリアクタ式改質器
2…CO除去器
2a,2b,2c…CO吸着塔
3…熱交換器
4…固体高分子形燃料電池
A…改質用原料
B…改質ガス
C…CO除去ガス
D…加熱用燃料
E…燃料電池スタックオフガス

Claims (10)

  1. 改質用原料をメンブレンリアクタ式改質器で改質して水素リッチな改質ガスを得る改質工程と、前記改質ガスをCO吸着剤を充填したCO吸着塔に通じてCOを吸着除去してCO除去ガスを得るCO除去工程を備えたことを特徴とする水素製造方法。
  2. 前記CO除去工程が、COを吸着除去するCO吸着除去ステップと、前記CO吸着剤を再生するCO吸着剤再生ステップとを有する請求項1に記載の水素製造方法。
  3. 前記CO除去工程が、前記CO吸着剤を充填してなるCO吸着塔を複数備えたCO除去装置を用いて行うものであり、1つのCO吸着塔につき、前記CO吸着除去ステップと前記CO吸着剤ステップとを交互に行い、任意の時点において、少なくともいずれか1基のCO吸着塔にて前記CO吸着除去ステップを行う請求項2に記載の水素製造方法。
  4. 前記CO除去工程が、前記CO吸着剤を充填したCO吸着塔を3塔以上備えたCO除去装置を用いて行うものであり、下記の(1)および(2)の工程を繰り返すものである請求項3に記載の水素製造方法。
    (1)いずれか1塔のCO吸着塔にて前記CO吸着剤再生ステップを行いつつ、残りのCO吸着塔を直列に接続して前記CO吸着除去ステップを行う工程
    (2)ついで前記直列に接続したCO吸着塔のうち最上流側のCO吸着塔を前記直列接続から分離するとともに、前記CO吸着剤再生ステップを終了したCO吸着塔を前記直列接続の最下流側に接続する工程
  5. 前記CO吸着剤再生ステップにおいて、前記高純度水素ガスの一部を前記CO吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法。
  6. 前記CO吸着剤再生ステップにおいて、燃料電池スタックオフガスの全部または一部を前記CO吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法。
  7. 前記CO吸着剤再生ステップにおいて、前記改質工程における改質用原料の一部を前記吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法。
  8. 前記CO吸着剤再生ステップで前記CO吸着塔から排出されたCO吸着塔オフガスを、前記改質工程における改質ガス製造のための加熱用燃料の一部として用いる請求項5〜7のいずれか1項に記載の水素製造方法。
  9. 前記CO吸着剤再生ステップにおいて、前記CO吸着剤を再生するための熱量として、前記改質ガスの顕熱を用いる請求項5〜8のいずれか1項に記載の水素製造方法。
  10. 前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこれを還元処理したものである請求項1〜9に記載の水素製造方法。
JP2005280342A 2005-09-27 2005-09-27 水素製造方法 Pending JP2007091498A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280342A JP2007091498A (ja) 2005-09-27 2005-09-27 水素製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280342A JP2007091498A (ja) 2005-09-27 2005-09-27 水素製造方法

Publications (1)

Publication Number Publication Date
JP2007091498A true JP2007091498A (ja) 2007-04-12

Family

ID=37977631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280342A Pending JP2007091498A (ja) 2005-09-27 2005-09-27 水素製造方法

Country Status (1)

Country Link
JP (1) JP2007091498A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288187A (ja) * 2006-10-16 2008-11-27 Kobe Steel Ltd 燃料電池システム
JP2009102186A (ja) * 2007-10-22 2009-05-14 Kobe Steel Ltd 燃料電池用水素ガスの製造方法
WO2010061920A1 (ja) * 2008-11-28 2010-06-03 ジェイパワー・エンテック株式会社 乾式排ガス処理装置用の再生塔
JP2017077534A (ja) * 2015-10-21 2017-04-27 大陽日酸株式会社 水素ガス精製装置および水素ガス精製方法
JP2017077533A (ja) * 2015-10-21 2017-04-27 大陽日酸株式会社 吸着剤、水素ガス精製装置、および水素ガス精製方法
GB2595906A (en) * 2020-06-11 2021-12-15 Csk Inc Dry gas scrubber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110002A (ja) * 1984-06-22 1986-01-17 Mitsubishi Heavy Ind Ltd 燃料改質装置
JPH0812301A (ja) * 1994-07-05 1996-01-16 Matsushita Electric Ind Co Ltd メタノール改質器
JP2001300244A (ja) * 2000-04-20 2001-10-30 Mitsubishi Kakoki Kaisha Ltd 水素製造用圧力変動吸着装置の吸着塔
JP2002100388A (ja) * 2000-09-21 2002-04-05 Mitsubishi Kakoki Kaisha Ltd 燃料電池用の水素製造方法及びその製造装置
JP2002134152A (ja) * 2000-10-26 2002-05-10 Nissan Motor Co Ltd 燃料電池システム
JP2002201005A (ja) * 2000-11-13 2002-07-16 Air Products & Chemicals Inc 燃料電池供給ガスからの一酸化炭素/水の除去
JP2002324567A (ja) * 2001-02-09 2002-11-08 General Motors Corp <Gm> 燃料電池システムで使用するための結合された水ガスシフト反応器/二酸化炭素吸着器
WO2005061421A1 (en) * 2003-12-19 2005-07-07 Uop Llc Regenerative removal of trace carbon monoxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110002A (ja) * 1984-06-22 1986-01-17 Mitsubishi Heavy Ind Ltd 燃料改質装置
JPH0812301A (ja) * 1994-07-05 1996-01-16 Matsushita Electric Ind Co Ltd メタノール改質器
JP2001300244A (ja) * 2000-04-20 2001-10-30 Mitsubishi Kakoki Kaisha Ltd 水素製造用圧力変動吸着装置の吸着塔
JP2002100388A (ja) * 2000-09-21 2002-04-05 Mitsubishi Kakoki Kaisha Ltd 燃料電池用の水素製造方法及びその製造装置
JP2002134152A (ja) * 2000-10-26 2002-05-10 Nissan Motor Co Ltd 燃料電池システム
JP2002201005A (ja) * 2000-11-13 2002-07-16 Air Products & Chemicals Inc 燃料電池供給ガスからの一酸化炭素/水の除去
JP2002324567A (ja) * 2001-02-09 2002-11-08 General Motors Corp <Gm> 燃料電池システムで使用するための結合された水ガスシフト反応器/二酸化炭素吸着器
WO2005061421A1 (en) * 2003-12-19 2005-07-07 Uop Llc Regenerative removal of trace carbon monoxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288187A (ja) * 2006-10-16 2008-11-27 Kobe Steel Ltd 燃料電池システム
JP2009102186A (ja) * 2007-10-22 2009-05-14 Kobe Steel Ltd 燃料電池用水素ガスの製造方法
WO2010061920A1 (ja) * 2008-11-28 2010-06-03 ジェイパワー・エンテック株式会社 乾式排ガス処理装置用の再生塔
JP2017077534A (ja) * 2015-10-21 2017-04-27 大陽日酸株式会社 水素ガス精製装置および水素ガス精製方法
JP2017077533A (ja) * 2015-10-21 2017-04-27 大陽日酸株式会社 吸着剤、水素ガス精製装置、および水素ガス精製方法
GB2595906A (en) * 2020-06-11 2021-12-15 Csk Inc Dry gas scrubber

Similar Documents

Publication Publication Date Title
US6964692B2 (en) Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
Besancon et al. Hydrogen quality from decarbonized fossil fuels to fuel cells
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP2006342014A (ja) 高純度水素製造方法
JP5280343B2 (ja) 二酸化炭素分離回収装置を伴う水素分離型水素製造システム
JP2004527367A (ja) ガスの精製
US7276095B2 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
JP2002201005A (ja) 燃料電池供給ガスからの一酸化炭素/水の除去
JP2007091498A (ja) 水素製造方法
JP4330846B2 (ja) 燃料電池システムにおいて用いられるための低硫黄改質油ガスを調製するプロセス
JP3947752B2 (ja) 高純度水素製造方法
JP2015535792A (ja) 合成ガスの分離及び改質方法
JP2004284875A (ja) 水素製造システムおよび燃料電池システム
JP3985006B2 (ja) 高純度水素製造方法
JP5053029B2 (ja) 燃料電池システム
JP4357756B2 (ja) メンブレンリフォーマによる高純度水素製造システム
JP2006202564A (ja) 燃料電池用水素製造システム
JP5357465B2 (ja) 高純度水素製造方法
JP2004075439A (ja) 水素製造装置
JP2005256899A (ja) 水素貯蔵及び/又は導出装置
JP5795280B2 (ja) 水素製造システムにおけるco2ガス中のco低減システム
JP2005179083A (ja) 水素製造装置および燃料電池システム並びにその運転方法
JPH1121118A (ja) 高純度一酸化炭素の製造方法
JP5255896B2 (ja) 水素製造方法
JP5270215B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019