JP2007091498A - Method of producing hydrogen - Google Patents

Method of producing hydrogen Download PDF

Info

Publication number
JP2007091498A
JP2007091498A JP2005280342A JP2005280342A JP2007091498A JP 2007091498 A JP2007091498 A JP 2007091498A JP 2005280342 A JP2005280342 A JP 2005280342A JP 2005280342 A JP2005280342 A JP 2005280342A JP 2007091498 A JP2007091498 A JP 2007091498A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
hydrogen
gas
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005280342A
Other languages
Japanese (ja)
Inventor
Akitoshi Fujisawa
彰利 藤澤
Keita Yura
慶太 由良
Takeshi Yamashita
岳史 山下
Noboru Nakao
昇 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005280342A priority Critical patent/JP2007091498A/en
Publication of JP2007091498A publication Critical patent/JP2007091498A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing hydrogen which uses a membrane reactor type reformer and has excellent safety and by which the flow-in of CO to a fuel cell electrode is surely prevented while keeping high hydrogen yield even in the leakage of CO from the membrane reactor type reformer. <P>SOLUTION: A hydrogen enriched reformed gas B is produced by reforming a reforming raw material A in the membrane reactor type reformer 1 and the reformed gas B is cooled to ≤60°C by a heat exchanger 3 and is passed through a CO adsorption column 2a in which a CO adsorbent comprising a material prepared by supporting copper (I) halide and/or copper (II) halide or the reduced material of them on a support of one or more kinds selected from a group of silica, alumina, activated carbon, graphite and a polystyrene based resin is filled to adsorb and remove CO and the CO removed gas C obtained by completely adsorbing and removing CO is supplied to the fuel cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リン酸形や固体高分子形等のプロトン伝導形燃料電池等に用いられる高純度水素の製造方法に関し、詳しくは、燃料電池のエネルギ源(燃料)である水素を製造する際に副生する一酸化炭素や二酸化炭素、水や、未反応のメタンなどのうち、特に燃料電池電極触媒への被毒性の高いCOを除去する方法に関する。   The present invention relates to a method for producing high-purity hydrogen used in proton conductive fuel cells and the like of phosphoric acid type and solid polymer type, and more specifically, in producing hydrogen which is an energy source (fuel) of a fuel cell. The present invention relates to a method for removing CO that is highly toxic to a fuel cell electrode catalyst, among carbon monoxide, carbon dioxide, water, and unreacted methane produced as by-products.

近年、地球温暖化防止対策ともあいまって、エネルギの原油依存体質からの脱却が世界的規模で重要課題となっており、環境保全に対する取組みが先行する欧州の先進国はもとより、米国や日本をはじめとするアジア諸国においても、水素ガスをエネルギ源とする燃料電池の実用化に向けての取組みが活発化している。   In recent years, coupled with measures to prevent global warming, the departure of energy from crude oil dependence has become an important issue on a global scale, and not only developed countries in Europe, where efforts for environmental conservation are ahead, but also the United States and Japan. In other Asian countries as well, efforts toward the practical application of fuel cells using hydrogen gas as an energy source have become active.

燃料電池の燃料として使用される水素ガスの製造方法についても多くの研究が進められているが、現時点で最も安価で実現性の高い製造方法は、原料として天然ガス、LPG、灯油、ガソリン、メタノール、ジメチルエーテルなどを使用し、これらを改質して水素ガスを製造する方法である。   Much research has been carried out on the production method of hydrogen gas used as fuel for fuel cells, but the most inexpensive and highly feasible production methods are currently natural gas, LPG, kerosene, gasoline, methanol as raw materials. In this method, dimethyl ether or the like is used to reform these to produce hydrogen gas.

このような原料を改質して水素ガスを製造する方法、例えば天然ガスを改質して水素を製造するプロセスでは、通常水蒸気改質法が最もよく用いられている。天然ガスの主成分はメタン(CH)であり、水蒸気改質法において以下のような2段階の反応で水素が生成する。 In a method for producing hydrogen gas by reforming such raw materials, for example, a process for producing hydrogen by reforming natural gas, the steam reforming method is usually used most often. The main component of natural gas is methane (CH 4 ), and hydrogen is generated by the following two-stage reaction in the steam reforming method.

(1)改質反応 CH+HO → CO+3H
(2)変成反応 CO+HO → CO+H
(1) Reforming reaction CH 4 + H 2 O → CO + 3H 2
(2) Metamorphic reaction CO + H 2 O → CO 2 + H 2

しかし、(1)の段階の改質反応は700〜800℃の反応温度で進行するため、多量の高温熱エネルギを要し、装置の効率が良いとはいえない。   However, since the reforming reaction in the stage (1) proceeds at a reaction temperature of 700 to 800 ° C., a large amount of high-temperature heat energy is required, and it cannot be said that the efficiency of the apparatus is good.

また、上記のような反応が理想的に進行すれば、生成物はHとCOのみとなるが、実際にはメタンのコーキングによって炭素が生成するのを防止する観点から過剰の水蒸気を用いているため、改質反応を経て変性反応された後のガス(以下、「改質ガス」と呼ぶ。)中には水素(H)と合わせて水蒸気(HO)や未反応メタン(CH)、一酸化炭素(CO)、および二酸化炭素(CO)などの不純物が含まれることになる。これらの不純物の中でも、特にCOについては固体高分子形燃料電池の電極用触媒に用いられる白金(Pt)の被毒劣化防止の観点から10ppm以下の濃度に下げる必要があり、燃料電池の耐久性を考慮した場合、さらに0.2ppm以下程度まで濃度を低減する必要があるとされている。 In addition, if the above reaction proceeds ideally, the products are only H 2 and CO 2 , but in actuality, excess water vapor is used from the viewpoint of preventing carbon from being generated by methane coking. Therefore, in the gas after the modification reaction through the reforming reaction (hereinafter referred to as “reformed gas”), together with hydrogen (H 2 ), water vapor (H 2 O) and unreacted methane ( CH 4), carbon monoxide (CO), and carbon dioxide (CO 2) will contain impurities such as. Among these impurities, in particular, CO must be reduced to a concentration of 10 ppm or less from the viewpoint of preventing poisoning deterioration of platinum (Pt) used as an electrode catalyst for a polymer electrolyte fuel cell. Is taken into consideration, it is said that the concentration needs to be further reduced to about 0.2 ppm or less.

従来から実施されている改質ガスからの水素の精製法としては、選択酸化触媒法、水素PSA法が代表的である。選択酸化触媒法は、主に定置形燃料電池(家庭用燃料電池を含む)に対して開発が進められている技術であり、改質ガスに空気または酸素を添加し触媒を用いて改質ガス中のCOガスを選択的に酸化しCOにして除去し、燃料電池に対するCOの被毒を防止する技術である。常圧プロセスであること、比較的高い空塔速度(SV)で使用できることにより装置のコンパクト化が可能なことが本技術の特徴であるが、CO以外の不純物である、CO、HO、CHの除去を行う技術ではないため、自動車用向けの燃料電池に対して要求される高純度水素を精製する方式としては利用できない。また 選択酸化触媒は耐久性が十分に確立されておらず、またCOの酸化のために酸素を導入するため、COだけでなく水素も酸化されるため水素収率が低下してしまう問題がある。 As a conventional method for purifying hydrogen from reformed gas, a selective oxidation catalyst method and a hydrogen PSA method are typical. The selective oxidation catalyst method is a technology that is being developed mainly for stationary fuel cells (including household fuel cells), and reformed gas using a catalyst by adding air or oxygen to the reformed gas. This is a technique for preventing CO poisoning of the fuel cell by selectively oxidizing the CO gas contained therein and removing it as CO 2 . The feature of the present technology is that the apparatus can be made compact by being a normal pressure process and being able to be used at a relatively high superficial velocity (SV), but it is an impurity other than CO, CO 2 , H 2 O. Since it is not a technique for removing CH 4 , it cannot be used as a method for purifying high purity hydrogen required for fuel cells for automobiles. In addition, the selective oxidation catalyst is not sufficiently durable, and since oxygen is introduced for the oxidation of CO, not only CO but also hydrogen is oxidized, resulting in a decrease in hydrogen yield. .

一方、水素PSA法は、ゼオライトやカーボンモレキュラーシーブ、アルミナなどの複数の吸着剤を組み合わせ、圧力スイングを行いながら改質ガス中のCO、CH、HO、COを全て除去するプロセスである。自動車用の燃料電池に供給するための水素に対してはCO以外の不純物の除去も要求されるため、水素供給ステーションで化石燃料を改質して燃料水素を製造する場合には、通常この水素PSA法が採用されている。しかしながら、水素PSA法に対する課題として、従来水素PSA法では、粗製水素中に最大1%程度含まれるCOの除去が難しく、多量の吸着剤が必要になるため、水素PSA設備のサイズ(吸着塔サイズ)が非常に大きくなるという問題や製品水素の回収率が十分ではないため、水素の精製コストが高くなるという問題がある。 On the other hand, the hydrogen PSA method is a process that removes all of CO 2 , CH 4 , H 2 O, and CO in the reformed gas while combining a plurality of adsorbents such as zeolite, carbon molecular sieve, and alumina while performing pressure swing. is there. Removal of impurities other than CO is also required for hydrogen supplied to fuel cells for automobiles. Therefore, when hydrogen is produced by reforming fossil fuel at a hydrogen supply station, this hydrogen is usually used. The PSA method is adopted. However, as a problem with the hydrogen PSA method, in the conventional hydrogen PSA method, it is difficult to remove CO contained in crude hydrogen at a maximum of about 1%, and a large amount of adsorbent is required. ) Becomes very large, and the recovery rate of product hydrogen is not sufficient, so that there is a problem that the cost of purifying hydrogen becomes high.

以上の問題を同時に解決する方法として、メンブレンリアクタ式改質器が提案されている。これは水蒸気改質触媒層の中に水素分離膜を設置し、改質反応で精製したH、CO,CO、未反応CHの混合ガスから水素を選択的に分離する装置である。この装置を用いると生成した水素を水素分離膜によって抜き出すことにより、反応平衡を崩して水素生成側に反応を進めることができるため、700〜800℃の水蒸気改質反応温度を500〜550℃に大幅に低下させることができる。また、水素分離膜によって水素のみを抜き出すことが可能なため、水素精製装置を省略することが可能となる。以上より、コンパクト、シンプルで高効率な水素製造装置が実現できると期待されている。 As a method for simultaneously solving the above problems, a membrane reactor type reformer has been proposed. This is an apparatus for selectively separating hydrogen from a mixed gas of H 2 , CO, CO 2 and unreacted CH 4 purified by a reforming reaction by installing a hydrogen separation membrane in a steam reforming catalyst layer. When this apparatus is used, the generated hydrogen is extracted by a hydrogen separation membrane, so that the reaction equilibrium can be broken and the reaction can proceed to the hydrogen generation side. Therefore, the steam reforming reaction temperature of 700 to 800 ° C. is increased to 500 to 550 ° C. It can be greatly reduced. Moreover, since only hydrogen can be extracted by the hydrogen separation membrane, the hydrogen purifier can be omitted. From the above, it is expected that a compact, simple and highly efficient hydrogen production apparatus can be realized.

しかしながら、メンブレンリアクタ式改質器内の水素分離膜に主に用いられているパラジウム膜・パラジウム合金膜などは極薄く柔らかいものであるため、熱応力や触媒との接触により破損し、ピンホールなどの欠陥が生じやすい。このため、不純物ガスのリークを完全に防止することが困難である。これを防ぐために水素分離膜の厚さを非常に厚く(例えば100μm以上に)すると、パラジウム膜は高価な貴金属なため、装置の製造コストが過大となる。また、耐久性にも問題があり、膜の耐久性試験(圧力4.4atm、改質器出口温度590℃、300時間運転)の結果では運転時間にほぼ比例したガス漏れ量の増加が認められている(非特許文献1参照)。   However, since palladium membranes and palladium alloy membranes mainly used for hydrogen separation membranes in membrane reactor reformers are extremely thin and soft, they can be damaged by thermal stress or contact with catalysts, causing pinholes, etc. The defect is likely to occur. For this reason, it is difficult to completely prevent impurity gas leakage. In order to prevent this, if the thickness of the hydrogen separation membrane is very thick (for example, 100 μm or more), the palladium membrane is an expensive noble metal, and the manufacturing cost of the apparatus becomes excessive. In addition, there is a problem in durability, and in the results of the membrane durability test (pressure 4.4 atm, reformer outlet temperature 590 ° C., operation for 300 hours), an increase in gas leakage almost proportional to the operation time is recognized. (See Non-Patent Document 1).

これらの水素分離膜の欠陥を補うために、メンブレンリアクタ式改質器の後段にCO選択酸化触媒やメタネーション触媒などを用いたCO除去装置を配置した水素製造装置が提案されている(特許文献1参照)。しかし、CO選択酸化触媒およびメタネーション触媒による反応は発熱反応であり、また温度に非常に敏感な反応であるため、入放熱が非定常な状態では温度コントロールに不具合があると、CO除去装置通過後でもCO濃度が数十〜数百ppmとなる恐れがある。また、触媒反応において水素を消費するため、水素収率が低下する問題がある。さらに、特にメタネーション触媒として用いられるニッケル系触媒は150℃以下で非常に有毒なニッケルカルボニルを生成するため、安全性にも問題がある。
石田政義監修:家庭用燃料電池の開発と課題、2004年12月28日出版、CMC出版、p203〜208 特開2004−75439号公報(特許請求の範囲など)
In order to compensate for these defects in the hydrogen separation membrane, a hydrogen production apparatus has been proposed in which a CO removal apparatus using a CO selective oxidation catalyst, a methanation catalyst, or the like is arranged at the subsequent stage of the membrane reactor reformer (Patent Document). 1). However, the reaction by the CO selective oxidation catalyst and methanation catalyst is an exothermic reaction, and it is a very sensitive reaction to temperature. Even after this, the CO concentration may be several tens to several hundred ppm. Moreover, since hydrogen is consumed in the catalytic reaction, there is a problem in that the hydrogen yield decreases. Furthermore, since the nickel-based catalyst used as a methanation catalyst produces highly toxic nickel carbonyl at 150 ° C. or lower, there is a problem in safety.
Supervised by Masayoshi Ishida: Development and Challenges of Household Fuel Cells, Published December 28, 2004, CMC Publishing, p203-208 JP 2004-75439 A (Claims etc.)

本発明はこのような状況に鑑みてなされたものであって、その目的は、メンブレンリアクタ式改質器による水素製造方法において、高い水素収率を維持しつつ、たとえメンブレンリアクタ式改質器からCOがリークしても燃料電池電極へのCOの流入を確実に防止し得る、安全性にも優れた水素製造方法を提供することにある。   The present invention has been made in view of such a situation, and the object thereof is to maintain a high hydrogen yield in a hydrogen production method using a membrane reactor reformer, even from a membrane reactor reformer. An object of the present invention is to provide a hydrogen production method excellent in safety that can reliably prevent the inflow of CO into a fuel cell electrode even if CO leaks.

請求項1に記載の発明は、改質用原料をメンブレンリアクタ式改質器で改質して水素リッチな改質ガスを得る改質工程と、前記改質ガスをCO吸着剤を充填したCO吸着塔に通じてCOを吸着除去してCO除去ガスを得るCO除去工程を備えたことを特徴とする水素製造方法である。   The invention described in claim 1 includes a reforming step of reforming a reforming raw material with a membrane reactor type reformer to obtain a hydrogen-rich reformed gas, and a CO adsorbing the reformed gas with a CO adsorbent. A hydrogen production method comprising a CO removal step of obtaining CO removal gas by adsorbing and removing CO through an adsorption tower.

請求項2に記載の発明は、前記CO除去工程が、COを吸着除去するCO吸着除去ステップと、前記CO吸着剤を再生するCO吸着剤再生ステップとを有する請求項1に記載の水素製造方法である。   The invention according to claim 2 is the method for producing hydrogen according to claim 1, wherein the CO removal step includes a CO adsorption removal step for adsorbing and removing CO, and a CO adsorbent regeneration step for regenerating the CO adsorbent. It is.

請求項3に記載の発明は、前記CO除去工程が、前記CO吸着剤を充填してなるCO吸着塔を複数備えたCO除去装置を用いて行うものであり、1つのCO吸着塔につき、前記CO吸着除去ステップと前記CO吸着剤ステップとを交互に行い、任意の時点において、少なくともいずれか1基のCO吸着塔にて前記CO吸着除去ステップを行う請求項2に記載の水素製造方法である。   According to a third aspect of the present invention, the CO removal step is performed using a CO removal apparatus including a plurality of CO adsorption towers filled with the CO adsorbent. The hydrogen production method according to claim 2, wherein the CO adsorption removal step and the CO adsorbent step are alternately performed, and the CO adsorption removal step is performed in at least any one CO adsorption tower at an arbitrary time point. .

請求項4に記載の発明は、前記CO除去工程が、前記CO吸着剤を充填したCO吸着塔を3塔以上備えたCO除去装置を用いて行うものであり、下記の(1)および(2)の工程を繰り返すものである請求項3に記載の水素製造方法である。
(1)いずれか1塔のCO吸着塔にて前記CO吸着剤再生ステップを行いつつ、残りのCO吸着塔を直列に接続して前記CO吸着除去ステップを行う工程
(2)ついで前記直列に接続したCO吸着塔のうち最上流側のCO吸着塔を前記直列接続から分離するとともに、前記CO吸着剤再生ステップを終了したCO吸着塔を前記直列接続の最下流側に接続する工程
In the invention according to claim 4, the CO removal step is performed using a CO removal apparatus including three or more CO adsorption towers filled with the CO adsorbent, and the following (1) and (2) The method for producing hydrogen according to claim 3, wherein the step (2) is repeated.
(1) A step of performing the CO adsorption removal step by connecting the remaining CO adsorption towers in series while performing the CO adsorbent regeneration step in any one CO adsorption tower. (2) Next, connecting in series Separating the most upstream CO adsorption tower from the series connection and connecting the CO adsorption tower having completed the CO adsorbent regeneration step to the most downstream side of the series connection.

請求項5に記載の発明は、前記CO吸着剤再生ステップにおいて、前記高純度水素ガスの一部を前記CO吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法である。   According to a fifth aspect of the present invention, in the CO adsorbent regeneration step, the CO adsorbent is regenerated by passing a part of the high purity hydrogen gas through the CO adsorption tower. The hydrogen production method described in 1.

請求項6に記載の発明は、前記CO吸着剤再生ステップにおいて、燃料電池スタックオフガスの全部または一部を前記CO吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法である。   According to a sixth aspect of the present invention, in the CO adsorbent regeneration step, the CO adsorbent is regenerated by passing all or part of the fuel cell stack off-gas through the CO adsorption tower. The method for producing hydrogen according to the item.

請求項7に記載の発明は、前記CO吸着剤再生ステップにおいて、前記改質工程における改質用原料の一部を前記吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法である。   The invention according to claim 7 is the CO adsorbent regeneration step, wherein the CO adsorbent is regenerated by passing a part of the reforming raw material in the reforming step through the adsorption tower. The method for producing hydrogen according to claim 1.

請求項8に記載の発明は、前記CO吸着剤再生ステップで前記CO吸着塔から排出されたCO吸着塔オフガスを、前記改質工程における改質ガス製造のための加熱用燃料の一部として用いる請求項5〜7のいずれか1項に記載の水素製造方法である。   The invention described in claim 8 uses the CO adsorption tower off-gas discharged from the CO adsorption tower in the CO adsorbent regeneration step as a part of heating fuel for producing reformed gas in the reforming step. It is a hydrogen production method of any one of Claims 5-7.

請求項9に記載の発明は、前記CO吸着剤再生ステップにおいて、前記CO吸着剤を再生するための熱量として、前記改質ガスの顕熱を用いる請求項5〜8のいずれか1項に記載の水素製造方法である。   According to a ninth aspect of the present invention, in the CO adsorbent regeneration step, the sensible heat of the reformed gas is used as the amount of heat for regenerating the CO adsorbent. This is a hydrogen production method.

請求項10に記載の発明は、前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこれを還元処理したものである請求項1〜9に記載の水素製造方法である。   The invention according to claim 10 is characterized in that the CO adsorbent is applied to one or more kinds of carriers selected from the group consisting of silica, alumina, activated carbon, graphite and polystyrene-based resin, with copper (I) halide and / or halogen. The method for producing hydrogen according to any one of claims 1 to 9, wherein the copper (II) halide is supported on the material, or a reduction treatment of the material.

本発明によれば、たとえメンブレンリアクタ式改質器内の水素分離膜に存在する欠陥や劣化によってCOがリークしても、後段の吸着剤を充填したCO吸着除去装置で安全かつ確実にCOをほぼ完全に除去することができ、燃料電池電極のCO被毒を確実に防止できるようになった。   According to the present invention, even if CO leaks due to defects or deterioration existing in the hydrogen separation membrane in the membrane reactor reformer, the CO adsorption / removal device filled with the adsorbent in the subsequent stage can safely and reliably It can be almost completely removed, and CO poisoning of the fuel cell electrode can be surely prevented.

以下、本発明の実施の形態について図1〜4のフロー図を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the flowcharts of FIGS.

〔実施形態1〕
本発明の実施形態に係る水素製造プロセスの一例を図1のフロー図に示す。本実施形態では、メンブレンリアクタ式改質器内の水素分離膜に欠陥や劣化がほとんどない場合のバックアップとしてCO除去装置を用いる例を示す。
Embodiment 1
An example of a hydrogen production process according to an embodiment of the present invention is shown in the flowchart of FIG. In the present embodiment, an example is shown in which a CO removal apparatus is used as a backup when there is almost no defect or deterioration in the hydrogen separation membrane in the membrane reactor reformer.

(改質工程)
水素リッチガスとしての改質ガスを製造するための改質工程には、メンブレンリアクタ式改質器1を用いる。メンブレンリアクタ式改質器1において天然ガスなどの改質用原料Aを水蒸気にて改質してHを主成分とする改質ガスBとする。メンブレンリアクタ式改質器1内の水素分離膜の欠陥や劣化がほとんどない場合、改質ガスBはほぼ全てHである。この改質ガスBの温度は550〜650℃であるが、CO吸着剤によるCO吸着は吸着温度が低いほど吸着量が大きくなることから、後段のCO除去工程における吸着温度は60℃以下とするのが好ましい。このため、メンブレンリアクタ式改質器1の後段に熱交換器3を設置して改質ガスBの顕熱を回収しつつ、ガス温度を60℃以下に低下させた改質ガスB’とする。このとき熱交換器3で回収された排熱はコジェネレーションシステムにおける熱源等として利用できる。
(Reforming process)
The membrane reactor type reformer 1 is used in the reforming process for producing the reformed gas as the hydrogen rich gas. The reforming raw material A, such as natural gas is reformed by steam and reformed gas B composed mainly of H 2 in a membrane reactor-type reformer 1. If defects or deterioration of the hydrogen separation membrane of the membrane reactor-type reformer 1 is little, the reformed gas B is nearly all H 2. The temperature of the reformed gas B is 550 to 650 ° C. However, since the adsorption amount of CO adsorption by the CO adsorbent increases as the adsorption temperature decreases, the adsorption temperature in the subsequent CO removal step is set to 60 ° C. or less. Is preferred. For this reason, the heat exchanger 3 is installed in the subsequent stage of the membrane reactor reformer 1 to recover the sensible heat of the reformed gas B, and the reformed gas B ′ is reduced to 60 ° C. or lower. . At this time, the exhaust heat recovered by the heat exchanger 3 can be used as a heat source or the like in the cogeneration system.

(CO除去工程)
本実施例では、メンブレンリアクタ式改質器1内の水素分離膜に何らかの理由により欠陥が生じ、H以外のCO,CH,CO、HO等のガスがリークしてきた際に、燃料電池電極に対して特に被毒性の強いCOのみを吸着除去するバックアップ装置としてCO除去工程を設ける。このCO除去工程には、CO吸着剤を充填した1基のCO吸着塔2aからなるCO除去器2を用いる。CO吸着剤としては、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)またはハロゲン化銅(II)を担持させた材料を用いるのが推奨される。このようなハロゲン化銅を担持させたCO吸着剤は、ゼオライトモレキュラーシーブス、カーボンモレキュラーシーブス、活性炭、または活性アルミナといった従来の吸着剤に比べ数倍の吸着性能を発揮するため、CO除去器2が大幅に小型化できる。上述したように、CO吸着剤によるCO吸着は吸着温度が低いほど吸着量が大きくなることから、高温の改質ガスBを冷却するためにCO除去器2の上流側に熱交換器3を設け、冷却後の改質ガスB’の温度を60℃以下に低下させ、吸着温度をこの温度以下とするのが好ましい。CO吸着除去後のCO除去ガスCのCO濃度は、燃料電池電極触媒の被毒を防ぐため、10ppm以下、さらには0.2ppm以下とするのが好ましい。
(CO removal process)
In this example, when a hydrogen separation membrane in the membrane reactor reformer 1 has a defect for some reason and a gas such as CO 2 , CH 4 , CO, H 2 O other than H 2 has leaked, A CO removal step is provided as a backup device that adsorbs and removes only CO that is particularly toxic to the fuel cell electrode. In this CO removal step, a CO remover 2 comprising a single CO adsorption tower 2a filled with a CO adsorbent is used. As the CO adsorbent, a material in which copper (I) halide or copper (II) halide is supported on one or more carriers selected from the group consisting of silica, alumina, activated carbon, graphite, and polystyrene resin. Recommended to use. Such a CO adsorbent carrying copper halide exhibits adsorption performance several times that of conventional adsorbents such as zeolite molecular sieves, carbon molecular sieves, activated carbon, or activated alumina. The size can be greatly reduced. As described above, since the adsorption amount of CO adsorption by the CO adsorbent increases as the adsorption temperature decreases, the heat exchanger 3 is provided upstream of the CO remover 2 in order to cool the high-temperature reformed gas B. The temperature of the reformed gas B ′ after cooling is preferably lowered to 60 ° C. or lower, and the adsorption temperature is preferably lower than this temperature. The CO concentration of the CO removal gas C after CO adsorption removal is preferably 10 ppm or less, more preferably 0.2 ppm or less in order to prevent poisoning of the fuel cell electrode catalyst.

このようなCO除去器2を後段に設置したことにより、万が一水素分離膜の欠陥によりメンブレンリアクタ式改質器1からCOを含む不純物がリークしてきても、CO除去器2で少なくともCOはほぼ完全に除去される。この結果、CO除去器2を通過したCOをほとんど含有しないCO除去ガスCが燃料電池に供給されるだけであるので、燃料電池電極にCOが流入することが防止され、装置全体の長寿命化・安定性の確保が可能となる。さらに、このようにバックアップとしてCO除去器2を後段に設置することで、メンブレンリアクタ式改質器1内の高価な水素分離膜の厚さを必要最小限にすることができるので、CO除去器2を余分に設置するコストを考慮しても装置全体の製造コストを大幅に低減できる。   By installing such a CO remover 2 in the subsequent stage, even if impurities including CO leak from the membrane reactor reformer 1 due to a defect in the hydrogen separation membrane, at least CO is almost completely removed by the CO remover 2. Removed. As a result, since the CO removal gas C containing almost no CO that has passed through the CO remover 2 is only supplied to the fuel cell, it is possible to prevent CO from flowing into the fuel cell electrode and to prolong the life of the entire apparatus.・ Stability can be ensured. Furthermore, by installing the CO remover 2 as a back-up in this way, the thickness of the expensive hydrogen separation membrane in the membrane reactor reformer 1 can be minimized, so the CO remover Even considering the cost of installing 2 extra, the manufacturing cost of the entire apparatus can be greatly reduced.

なお、CO吸着塔2aに充填されたCO吸着剤の吸着性能を維持するために、定期的にCO吸着剤を再生しておく必要があるが、たとえば、水素製造プロセスの定期点検の際に行うようにすればよい。   In order to maintain the adsorption performance of the CO adsorbent packed in the CO adsorption tower 2a, it is necessary to periodically regenerate the CO adsorbent. For example, it is performed at the periodic inspection of the hydrogen production process. What should I do?

〔実施形態2〕
本発明の別の実施形態に係る水素製造プロセスを図2のフロー図に示す。本実施形態では、メンブレンリアクタ式改質器の水素分離膜に欠陥が生じても継続して水素の製造を可能とするためにCO除去装置を用いる例を示す。
[Embodiment 2]
A hydrogen production process according to another embodiment of the present invention is shown in the flow diagram of FIG. In the present embodiment, an example is shown in which a CO removal device is used in order to enable continuous production of hydrogen even if a defect occurs in the hydrogen separation membrane of the membrane reactor reformer.

(改質工程)
実施形態1と同様、メンブレンリアクタ式改質器1とその後段に熱交換器3を設置したものを用い、ガス温度が60℃以下の改質ガスB’を得る。
(Reforming process)
As in the first embodiment, a reformed gas B ′ having a gas temperature of 60 ° C. or lower is obtained by using a membrane reactor type reformer 1 and a heat exchanger 3 installed in the subsequent stage.

(CO除去工程)
本実施形態のCO除去工程には、CO吸着剤を充填したCO吸着塔3基(2a、2b、2c)からなるCO除去器2を用いる。以下、CO吸着除去ステップとCO吸着剤再生ステップに分けて説明し、さらにそれらのステップの切り替え操作について説明を行う。
(CO removal process)
In the CO removal step of the present embodiment, a CO remover 2 comprising three CO adsorption towers (2a, 2b, 2c) filled with a CO adsorbent is used. Hereinafter, the CO adsorption removal step and the CO adsorbent regeneration step will be described separately, and the switching operation of those steps will be described.

[CO吸着除去ステップ]:改質ガスB’を、CO吸着剤を充填したCO除去器2を通過させ、改質ガスB’中のCOを選択的に除去する。CO吸着剤としては、上記実施形態1と同様、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)またはハロゲン化銅(II)を担持させた材料を用いるのが推奨される。CO吸着除去後のCO除去ガスCのCO濃度は、上記実施形態1と同様、燃料電池電極触媒の被毒を防ぐため、10ppm以下、さらには0.2ppm以下とするのが好ましい。     [CO Adsorption Removal Step]: The reformed gas B ′ is passed through the CO remover 2 filled with the CO adsorbent, and CO in the reformed gas B ′ is selectively removed. As the CO adsorbent, as in the first embodiment, copper (I) halide or copper halide (II) is used on one or more carriers selected from the group consisting of silica, alumina, activated carbon, graphite and polystyrene resin. ) Is recommended. The CO concentration of the CO removal gas C after CO adsorption removal is preferably 10 ppm or less, more preferably 0.2 ppm or less, in order to prevent poisoning of the fuel cell electrode catalyst, as in the first embodiment.

[CO吸着剤再生ステップ]:CO吸着剤の吸着性能を維持するために、CO吸着除去ステップにおいて所定の時間経過後に、ないしはCO除去器2の出口側のCO濃度が所定の濃度まで上昇(破過)したときにCO吸着剤を再生する必要がある。CO吸着剤の再生は、吸着サイトに吸着したCOを脱離させ、この脱離したCOを再吸着させないで除去する必要があるため、キャリアガスとしてCOを実質的に含まないガスを流通させつつ行う。また、COの脱離は吸着とは逆に温度が高いほど促進されるため、CO吸着剤再生ステップにおける再生温度は、上記CO吸着除去ステップにおける吸着温度より高くする。このような条件を満足させるため、上記キャリアガスとして用いるCOを実質的に含まないガスとしては、CO吸着除去ステップで得られたCO除去ガスCの一部C’を利用し、これを上述の熱交換器3で改質ガスBと熱交換し加熱して使用すればよい。ただし、250℃を超えて加熱すると、吸着剤に担持した活性種が不可逆的なダメージを受け、CO吸着剤の性能が低下するため250℃以下とする。とくに推奨される温度範囲は80〜150℃である。そして、このCO吸着剤を再生した後のガスC’’は、COを高濃度に含むため、例えばメンブレンリアクタ式改質器1の加熱用燃料Dの一部と代替して有効利用するとよい。     [CO adsorbent regeneration step]: In order to maintain the adsorption performance of the CO adsorbent, the CO concentration on the outlet side of the CO remover 2 rises to a predetermined concentration after elapse of a predetermined time in the CO adsorption removal step. It is necessary to regenerate the CO adsorbent. The regeneration of the CO adsorbent requires desorption of CO adsorbed on the adsorption site and removal of the desorbed CO without re-adsorption, so that a gas substantially free of CO is circulated as a carrier gas. Do. Further, since the desorption of CO is promoted as the temperature increases, the regeneration temperature in the CO adsorbent regeneration step is higher than the adsorption temperature in the CO adsorption removal step. In order to satisfy such conditions, as the gas substantially free of CO used as the carrier gas, a part C ′ of the CO removal gas C obtained in the CO adsorption removal step is used, and this is described above. What is necessary is just to heat-exchange with the reformed gas B with the heat exchanger 3, and to use it. However, when heated above 250 ° C., the active species carried on the adsorbent is irreversibly damaged, and the performance of the CO adsorbent is lowered. A particularly recommended temperature range is 80-150 ° C. The gas C ″ after the regeneration of the CO adsorbent contains CO at a high concentration, so that it may be effectively used instead of a part of the heating fuel D of the membrane reactor reformer 1, for example.

[CO吸着除去ステップとCO吸着剤再生ステップとの切り替え操作]:それぞれのCO吸着塔につき、上記CO吸着除去ステップとCO吸着剤再生ステップとを交互に切り替える必要があるが、連続的に高純度水素を製造するためには(すなわち、連続的にCO除去ガスCを得るためには)、3塔のうち少なくとも1塔は常にCO吸着除去ステップとしておく必要がある。なお、CO吸着除去ステップにあったCO吸着塔をCO吸着剤再生ステップに移行させ再生を十分に行うには、CO吸着剤をCO脱離反応が活発化する温度まで昇温させるのに長時間を要することから、3塔のうち2塔をCO吸着除去ステップとしておき、残りの1塔のみをCO吸着剤再生ステップとするのが推奨される。そして、図3(a)に示すように、CO吸着除去ステップにある2塔(2a、2b)を直列に接続し、改質ガスB’を2塔に分配して通過させるのでなく、2塔を順次通過させてCOを吸着除去するようにする。そして、所定時間経過後、上流側のCO吸着塔2aのCO吸着容量が満杯になったとき、この上流側のCO吸着塔2aを直列接続から切り離すとともに、吸着剤の再生が完了したCO吸着塔2cをCO吸着塔2bの下流側に接続する。そして、同図(b)に示すように、CO吸着塔2aの吸着剤を再生しつつ、CO吸着塔2b,2cからなる直列接続を用いてCOを吸着除去する。以下、同様の手順により、同図(c)さらには同図(a)の状態へと戻り、このような切り替え操作が繰り返される。このように、2塔を直列に接続し、その上流側から順次再生を行うことにより、下流側のCO吸着塔は常にCO吸着容量を残した状態にあるので、破過(CO濃度の上昇)が発生することなく、常にCOが十分に取り除かれたCO除去ガスCが得られる。また、上流側のCO吸着塔はその吸着容量をほぼ使い切った状態まで使用できるため、それぞれの吸着塔に吸着剤を過剰に充填する必要がなく、吸着剤コストの低減および設備の小型化を実現できる。     [Switching operation between CO adsorption removal step and CO adsorbent regeneration step]: For each CO adsorption tower, it is necessary to alternately switch the CO adsorption removal step and the CO adsorbent regeneration step. In order to produce hydrogen (that is, in order to obtain CO removal gas C continuously), at least one of the three towers must always be in the CO adsorption removal step. In order to perform the regeneration sufficiently by shifting the CO adsorption tower in the CO adsorption removal step to the CO adsorbent regeneration step, it takes a long time to raise the temperature of the CO adsorbent to a temperature at which the CO desorption reaction is activated. Therefore, it is recommended that two of the three columns be used as the CO adsorption removal step, and only the remaining one column be the CO adsorbent regeneration step. Then, as shown in FIG. 3 (a), the two towers (2a, 2b) in the CO adsorption removal step are connected in series, and the reformed gas B ′ is not distributed and passed through the two towers. In order to adsorb and remove CO. When the CO adsorption capacity of the upstream CO adsorption tower 2a is full after a predetermined time has elapsed, the upstream CO adsorption tower 2a is disconnected from the series connection, and the adsorbent regeneration is completed. 2c is connected to the downstream side of the CO adsorption tower 2b. Then, as shown in FIG. 5B, CO is adsorbed and removed using a series connection composed of the CO adsorption towers 2b and 2c while regenerating the adsorbent of the CO adsorption tower 2a. Thereafter, the same procedure is followed to return to the state shown in FIG. 5C and further to the state shown in FIG. In this way, by connecting two towers in series and performing regeneration sequentially from the upstream side, the downstream CO adsorption tower is always in a state of leaving the CO adsorption capacity, so breakthrough (CO concentration increase) Thus, the CO removal gas C from which CO has been sufficiently removed is always obtained. In addition, the upstream CO adsorption towers can be used up to the state where their adsorption capacity is almost used up, so there is no need to fill each adsorption tower with an excessive amount of adsorbent, reducing the adsorbent cost and downsizing the equipment. it can.

(変形例)
上記実施形態2では、CO吸着剤の再生に用いるCOを実質的に含まないガスとして、CO除去ガスCの一部C’を用いたが、図4に示すように、固体高分子形燃料電池4のスタック部から排出されるオフガス(燃料電池スタックオフガス)Eの全部または一部E’を熱交換器3で改質ガスBと熱交換し加熱して使用してもよい。この場合も、CO吸着剤を再生した後のガスE’’は、COを高濃度に含むため、例えばメンブレンリアクタ式改質器1の加熱用燃料Dの一部と代替して有効利用するとよい。
(Modification)
In the second embodiment, a part C ′ of the CO removal gas C is used as the gas that does not substantially contain CO used for the regeneration of the CO adsorbent. However, as shown in FIG. Alternatively, all or part of the off gas (fuel cell stack off gas) E ′ discharged from the stack portion 4 may be used by heat exchange with the reformed gas B in the heat exchanger 3. Also in this case, since the gas E ″ after the regeneration of the CO adsorbent contains CO at a high concentration, for example, it may be effectively used instead of part of the heating fuel D of the membrane reactor reformer 1. .

あるいは、上記COを実質的に含まないガスとして、図示を省略したが、メンブレンリアクタ式改質器1の改質用原料Aの一部を用いてもよい。   Or although illustration was abbreviate | omitted as gas which does not contain the said CO substantially, you may use a part of raw material A for a reforming of the membrane reactor type | formula reformer 1. FIG.

また、上記実施形態2では、CO除去工程として3塔のCO吸着塔を順次切り替えて用いる例を示したが、2塔または4塔以上のCO吸着塔を順次切り替えて用いてもよい。なお、2塔の吸着塔を切り替えて用いる場合は、吸着操作に用いている1つの吸着塔がCOにより破過する前に(すなわち、COが漏れ出す前に)吸着操作を停止し、もう1つの再生ずみの吸着塔に切り替える必要があるため、CO吸着剤の吸着容量を全て用いることができない。これに対し、上記実施形態2で説明した3塔の吸着塔を切り替えて用いる場合は、上述したようにCO吸着剤の吸着容量をほぼ全て用いることができ、吸着剤使用量が大幅に低減できるため、3塔切り替えのほうがより推奨される。   In the second embodiment, an example in which three CO adsorption towers are sequentially switched and used as the CO removal step has been described. However, two or four or more CO adsorption towers may be sequentially switched and used. When switching between two adsorption towers, the adsorption operation is stopped before one adsorption tower used for the adsorption operation breaks through with CO (that is, before CO leaks), Since it is necessary to switch to one regenerated adsorption tower, it is not possible to use all of the adsorption capacity of the CO adsorbent. In contrast, when the three adsorption towers described in the second embodiment are switched and used, almost all the adsorption capacity of the CO adsorbent can be used as described above, and the amount of adsorbent used can be greatly reduced. Therefore, switching to 3 towers is more recommended.

実施形態1に係る水素製造プロセスを示すフロー図である。FIG. 2 is a flowchart showing a hydrogen production process according to Embodiment 1. 実施形態2に係る水素製造プロセスを示すフロー図である。6 is a flowchart showing a hydrogen production process according to Embodiment 2. FIG. 実施形態2における、CO除去器の切り替え操作を説明するフロー図である。FIG. 6 is a flowchart for explaining a CO remover switching operation in the second embodiment. 実施形態2の変形例に係る水素製造プロセスを示すフロー図である。FIG. 6 is a flowchart showing a hydrogen production process according to a modification of the second embodiment.

符号の説明Explanation of symbols

1…メンブレンリアクタ式改質器
2…CO除去器
2a,2b,2c…CO吸着塔
3…熱交換器
4…固体高分子形燃料電池
A…改質用原料
B…改質ガス
C…CO除去ガス
D…加熱用燃料
E…燃料電池スタックオフガス
DESCRIPTION OF SYMBOLS 1 ... Membrane reactor type reformer 2 ... CO remover 2a, 2b, 2c ... CO adsorption tower 3 ... Heat exchanger 4 ... Polymer electrolyte fuel cell A ... Reforming raw material B ... Reformed gas C ... CO removal Gas D ... Heating fuel E ... Fuel cell stack off gas

Claims (10)

改質用原料をメンブレンリアクタ式改質器で改質して水素リッチな改質ガスを得る改質工程と、前記改質ガスをCO吸着剤を充填したCO吸着塔に通じてCOを吸着除去してCO除去ガスを得るCO除去工程を備えたことを特徴とする水素製造方法。   The reforming raw material is reformed with a membrane reactor reformer to obtain a hydrogen-rich reformed gas, and the reformed gas is passed through a CO adsorption tower filled with a CO adsorbent to remove CO by adsorption. And a CO removal step for obtaining a CO removal gas. 前記CO除去工程が、COを吸着除去するCO吸着除去ステップと、前記CO吸着剤を再生するCO吸着剤再生ステップとを有する請求項1に記載の水素製造方法。   The hydrogen production method according to claim 1, wherein the CO removal step includes a CO adsorption removal step for adsorbing and removing CO, and a CO adsorbent regeneration step for regenerating the CO adsorbent. 前記CO除去工程が、前記CO吸着剤を充填してなるCO吸着塔を複数備えたCO除去装置を用いて行うものであり、1つのCO吸着塔につき、前記CO吸着除去ステップと前記CO吸着剤ステップとを交互に行い、任意の時点において、少なくともいずれか1基のCO吸着塔にて前記CO吸着除去ステップを行う請求項2に記載の水素製造方法。   The CO removal step is performed by using a CO removal apparatus including a plurality of CO adsorption towers filled with the CO adsorbent, and the CO adsorption removal step and the CO adsorbent for one CO adsorption tower. The hydrogen production method according to claim 2, wherein the step is alternately performed, and the CO adsorption removal step is performed in at least one CO adsorption tower at an arbitrary time. 前記CO除去工程が、前記CO吸着剤を充填したCO吸着塔を3塔以上備えたCO除去装置を用いて行うものであり、下記の(1)および(2)の工程を繰り返すものである請求項3に記載の水素製造方法。
(1)いずれか1塔のCO吸着塔にて前記CO吸着剤再生ステップを行いつつ、残りのCO吸着塔を直列に接続して前記CO吸着除去ステップを行う工程
(2)ついで前記直列に接続したCO吸着塔のうち最上流側のCO吸着塔を前記直列接続から分離するとともに、前記CO吸着剤再生ステップを終了したCO吸着塔を前記直列接続の最下流側に接続する工程
The CO removal step is performed using a CO removal device provided with three or more CO adsorption towers filled with the CO adsorbent, and the following steps (1) and (2) are repeated. Item 4. The method for producing hydrogen according to Item 3.
(1) A step of performing the CO adsorption removal step by connecting the remaining CO adsorption towers in series while performing the CO adsorbent regeneration step in any one CO adsorption tower. (2) Next, connecting in series Separating the most upstream CO adsorption tower from the series connection and connecting the CO adsorption tower having completed the CO adsorbent regeneration step to the most downstream side of the series connection.
前記CO吸着剤再生ステップにおいて、前記高純度水素ガスの一部を前記CO吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法。   5. The hydrogen production method according to claim 2, wherein, in the CO adsorbent regeneration step, the CO adsorbent is regenerated by passing a part of the high-purity hydrogen gas through the CO adsorption tower. 前記CO吸着剤再生ステップにおいて、燃料電池スタックオフガスの全部または一部を前記CO吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法。   5. The hydrogen production method according to claim 2, wherein in the CO adsorbent regeneration step, all or part of the fuel cell stack off gas is passed through the CO adsorption tower to regenerate the CO adsorbent. 前記CO吸着剤再生ステップにおいて、前記改質工程における改質用原料の一部を前記吸着塔に通じて前記CO吸着剤を再生する請求項2〜4のいずれか1項に記載の水素製造方法。   5. The method for producing hydrogen according to claim 2, wherein in the CO adsorbent regeneration step, a part of the reforming raw material in the reforming step is passed through the adsorption tower to regenerate the CO adsorbent. . 前記CO吸着剤再生ステップで前記CO吸着塔から排出されたCO吸着塔オフガスを、前記改質工程における改質ガス製造のための加熱用燃料の一部として用いる請求項5〜7のいずれか1項に記載の水素製造方法。   8. The CO adsorption tower off-gas discharged from the CO adsorption tower in the CO adsorbent regeneration step is used as a part of heating fuel for producing reformed gas in the reforming process. The hydrogen production method according to item. 前記CO吸着剤再生ステップにおいて、前記CO吸着剤を再生するための熱量として、前記改質ガスの顕熱を用いる請求項5〜8のいずれか1項に記載の水素製造方法。   The method for producing hydrogen according to any one of claims 5 to 8, wherein, in the CO adsorbent regeneration step, sensible heat of the reformed gas is used as an amount of heat for regenerating the CO adsorbent. 前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこれを還元処理したものである請求項1〜9に記載の水素製造方法。   The CO adsorbent has copper (I) halide and / or copper (II) halide supported on one or more carriers selected from the group consisting of silica, alumina, activated carbon, graphite and polystyrene resin. The hydrogen production method according to claim 1, which is a material or a reduction treatment of the material.
JP2005280342A 2005-09-27 2005-09-27 Method of producing hydrogen Pending JP2007091498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280342A JP2007091498A (en) 2005-09-27 2005-09-27 Method of producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280342A JP2007091498A (en) 2005-09-27 2005-09-27 Method of producing hydrogen

Publications (1)

Publication Number Publication Date
JP2007091498A true JP2007091498A (en) 2007-04-12

Family

ID=37977631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280342A Pending JP2007091498A (en) 2005-09-27 2005-09-27 Method of producing hydrogen

Country Status (1)

Country Link
JP (1) JP2007091498A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288187A (en) * 2006-10-16 2008-11-27 Kobe Steel Ltd Fuel cell system
JP2009102186A (en) * 2007-10-22 2009-05-14 Kobe Steel Ltd Production method for hydrogen gas for fuel cell
WO2010061920A1 (en) * 2008-11-28 2010-06-03 ジェイパワー・エンテック株式会社 Regeneration tower for apparatus for dry discharge-gas treatment
JP2017077534A (en) * 2015-10-21 2017-04-27 大陽日酸株式会社 Hydrogen gas purification device and hydrogen gas purification method
JP2017077533A (en) * 2015-10-21 2017-04-27 大陽日酸株式会社 Adsorbent, hydrogen gas purification device, and hydrogen gas purification method
GB2595906A (en) * 2020-06-11 2021-12-15 Csk Inc Dry gas scrubber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110002A (en) * 1984-06-22 1986-01-17 Mitsubishi Heavy Ind Ltd Device for modifying fuel
JPH0812301A (en) * 1994-07-05 1996-01-16 Matsushita Electric Ind Co Ltd Methanol reformer
JP2001300244A (en) * 2000-04-20 2001-10-30 Mitsubishi Kakoki Kaisha Ltd Adsorption column for pressure fluctuation adsorption device for manufacturing hydrogen
JP2002100388A (en) * 2000-09-21 2002-04-05 Mitsubishi Kakoki Kaisha Ltd Hydrogen production method for fuel cell and manufacturing equipment
JP2002134152A (en) * 2000-10-26 2002-05-10 Nissan Motor Co Ltd Fuel cell system
JP2002201005A (en) * 2000-11-13 2002-07-16 Air Products & Chemicals Inc Removing carbon monoxide/water in feeding gas to fuel cell
JP2002324567A (en) * 2001-02-09 2002-11-08 General Motors Corp <Gm> Water gas shift reactor/carbon dioxide adsorber coupled for use with fuel cell system
WO2005061421A1 (en) * 2003-12-19 2005-07-07 Uop Llc Regenerative removal of trace carbon monoxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110002A (en) * 1984-06-22 1986-01-17 Mitsubishi Heavy Ind Ltd Device for modifying fuel
JPH0812301A (en) * 1994-07-05 1996-01-16 Matsushita Electric Ind Co Ltd Methanol reformer
JP2001300244A (en) * 2000-04-20 2001-10-30 Mitsubishi Kakoki Kaisha Ltd Adsorption column for pressure fluctuation adsorption device for manufacturing hydrogen
JP2002100388A (en) * 2000-09-21 2002-04-05 Mitsubishi Kakoki Kaisha Ltd Hydrogen production method for fuel cell and manufacturing equipment
JP2002134152A (en) * 2000-10-26 2002-05-10 Nissan Motor Co Ltd Fuel cell system
JP2002201005A (en) * 2000-11-13 2002-07-16 Air Products & Chemicals Inc Removing carbon monoxide/water in feeding gas to fuel cell
JP2002324567A (en) * 2001-02-09 2002-11-08 General Motors Corp <Gm> Water gas shift reactor/carbon dioxide adsorber coupled for use with fuel cell system
WO2005061421A1 (en) * 2003-12-19 2005-07-07 Uop Llc Regenerative removal of trace carbon monoxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288187A (en) * 2006-10-16 2008-11-27 Kobe Steel Ltd Fuel cell system
JP2009102186A (en) * 2007-10-22 2009-05-14 Kobe Steel Ltd Production method for hydrogen gas for fuel cell
WO2010061920A1 (en) * 2008-11-28 2010-06-03 ジェイパワー・エンテック株式会社 Regeneration tower for apparatus for dry discharge-gas treatment
JP2017077534A (en) * 2015-10-21 2017-04-27 大陽日酸株式会社 Hydrogen gas purification device and hydrogen gas purification method
JP2017077533A (en) * 2015-10-21 2017-04-27 大陽日酸株式会社 Adsorbent, hydrogen gas purification device, and hydrogen gas purification method
GB2595906A (en) * 2020-06-11 2021-12-15 Csk Inc Dry gas scrubber

Similar Documents

Publication Publication Date Title
Besancon et al. Hydrogen quality from decarbonized fossil fuels to fuel cells
US6964692B2 (en) Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP2006342014A (en) Method for producing high purity hydrogen
JP5280343B2 (en) Hydrogen separation type hydrogen production system with carbon dioxide separation and recovery equipment
CN101119785A (en) Temperature-based breakthrough detection and pressure swing adsorption systems and fuel processing systems including the same
JP2004527367A (en) Gas purification
US7276095B2 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
JP2002201005A (en) Removing carbon monoxide/water in feeding gas to fuel cell
JP2007091498A (en) Method of producing hydrogen
US7198862B2 (en) Process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP3947752B2 (en) High purity hydrogen production method
JP2015535792A (en) Syngas separation and reforming method
JP2004284875A (en) Hydrogen production system, and fuel cell system
JP3985006B2 (en) High purity hydrogen production method
JP5053029B2 (en) Fuel cell system
JP4357756B2 (en) High purity hydrogen production system using membrane reformer
JP5457854B2 (en) Production method of high purity hydrogen
JP2006202564A (en) Hydrogen manufacturing system for fuel cell
JP5357465B2 (en) High purity hydrogen production method
JP2004075439A (en) Hydrogen generating apparatus
JP2005256899A (en) Hydrogen storage and/or derivation device
JPH1121118A (en) Production of high purity carbon monoxide
JP5255896B2 (en) Hydrogen production method
JP2013203648A (en) Method and system for reducing co from co2 gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019