JP2007050319A - Composite catalytic particle - Google Patents

Composite catalytic particle Download PDF

Info

Publication number
JP2007050319A
JP2007050319A JP2005235820A JP2005235820A JP2007050319A JP 2007050319 A JP2007050319 A JP 2007050319A JP 2005235820 A JP2005235820 A JP 2005235820A JP 2005235820 A JP2005235820 A JP 2005235820A JP 2007050319 A JP2007050319 A JP 2007050319A
Authority
JP
Japan
Prior art keywords
particles
particle
component
composite catalyst
catalytically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005235820A
Other languages
Japanese (ja)
Inventor
Chihiro Shiyounai
千尋 墻内
Hitoshi Suzuki
仁志 鈴木
Masayuki Shintaku
正行 新宅
Michio Hori
美知郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Daido Gakuen School
Original Assignee
Ritsumeikan Trust
Daido Gakuen School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust, Daido Gakuen School filed Critical Ritsumeikan Trust
Priority to JP2005235820A priority Critical patent/JP2007050319A/en
Publication of JP2007050319A publication Critical patent/JP2007050319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for a fuel cell, in which an active catalyst particle is deposited highly stably and which can keep excellent catalytic performance stably. <P>SOLUTION: The composite catalytic particle has a core part and a peripheral part. The core part is composed substantially of an inorganic component and has ≥10 nm diameter. The peripheral part contains a carbon component and the active catalyst particle and the active catalyst particle is embedded in the carbon component. The method for manufacturing the composite catalytic particle comprises the steps of depositing the active catalyst particle on the surface of an inorganic particle having ≥10 nm particle diameter and vacuum-depositing the carbon component on the active catalyst particle-deposited surface of the inorganic particle to embed the active catalyst particle in the carbon component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複合触媒粒子及び当該複合触媒粒子を含む電極を備えた燃料電池に関する。   The present invention relates to a composite catalyst particle and a fuel cell including an electrode including the composite catalyst particle.

従来、燃料電池用触媒として、担体としての導電性粒子(例えば、炭素粒子)の表面に触媒活性を有する金属粒子(例えば、白金粒子)を担持したものがある。具体的には、炭素粒子の表面にゾル・ゲル法により白金粒子を担持させたものがよく知られている。   Conventionally, there is a catalyst for a fuel cell in which metal particles (for example, platinum particles) having catalytic activity are supported on the surface of conductive particles (for example, carbon particles) as a carrier. Specifically, one in which platinum particles are supported on the surface of carbon particles by a sol-gel method is well known.

前記燃料電池用触媒は、触媒活性を有する金属粒子の担持安定性が不十分な場合が多い。具体的には、燃料電池用触媒を電極として用いた場合に、運転中の発熱により金属粒子が担体表面を移動する問題がある。また、炭素粒子自体が長時間加熱されることで変化する問題もあり、これにより金属粒子の担体表面上の移動が加速されて他の金属粒子との間で金属粒子どうしの凝集又は再結晶が生じ、電極の有効表面積が減少する。その結果、触媒活性は経時的に低下する。図1(a)は、炭素粒子の表面に白金粒子を担持してなる燃料電池用触媒のTEM像である。図1(b)は、当該触媒を空気中80℃で1100時間加熱した後のTEM像である。両図を比較すると、加熱により炭素粒子の微細構造が変化し、同時に白金粒子どうしの凝集が生じていることが分かる。   In many cases, the fuel cell catalyst has insufficient support stability of metal particles having catalytic activity. Specifically, when a fuel cell catalyst is used as an electrode, there is a problem that metal particles move on the surface of the carrier due to heat generated during operation. In addition, there is a problem that the carbon particles themselves change due to heating for a long time, which accelerates the movement of the metal particles on the support surface and causes aggregation or recrystallization of the metal particles with other metal particles. And the effective surface area of the electrode is reduced. As a result, the catalytic activity decreases with time. FIG. 1A is a TEM image of a fuel cell catalyst in which platinum particles are supported on the surface of carbon particles. FIG. 1 (b) is a TEM image after the catalyst was heated in air at 80 ° C. for 1100 hours. Comparing the two figures, it can be seen that the fine structure of the carbon particles is changed by heating, and at the same time, aggregation of the platinum particles occurs.

前記問題を改善する方策としては、例えば、次のものがある。特許文献1には、炭素に担持されたプラチナ結晶子の担持安定性を高めるため、担持後のプラチナ結晶子及びその周囲にCVD法により多孔性炭素を着装することが開示されている。しかしながら、この方策は操作が煩雑である。しかも、未分解一酸化炭素、酸素等、触媒活性を阻害する不純物が混入し易く、触媒活性は十分とは言い難いものである。   Examples of measures for improving the problem include the following. Patent Document 1 discloses that porous carbon is attached to the platinum crystallite after the support and the periphery thereof by a CVD method in order to enhance the support stability of the platinum crystallite supported on the carbon. However, this measure is complicated to operate. Moreover, impurities that hinder the catalytic activity, such as undecomposed carbon monoxide and oxygen, are likely to be mixed, and the catalytic activity is hardly sufficient.

従って、触媒活性粒子の担持安定性が高く、良好な触媒性能を安定して維持できる燃料電池用触媒の開発が望まれている。
特開昭54−82394号公報
Accordingly, there is a demand for the development of a fuel cell catalyst that has a high loading stability of catalytically active particles and can stably maintain good catalyst performance.
JP 54-82394 A

本発明は、触媒活性粒子の担持安定性が高く、良好な触媒性能を安定して維持できる複合触媒粒子を提供することを主な目的とする。   The main object of the present invention is to provide composite catalyst particles that have a high loading stability of catalytically active particles and can stably maintain good catalyst performance.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、コア部と周囲部とからなる特定の複合触媒粒子が上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that a specific composite catalyst particle composed of a core part and a peripheral part can achieve the above object, and has completed the present invention.

即ち、本発明は、下記の複合触媒粒子及び燃料電池に関する。   That is, the present invention relates to the following composite catalyst particles and fuel cell.

1.コア部とその周囲の周囲部からなる複合触媒粒子であって、
(1)前記コア部は実質的に無機成分からなり、コア部の径は10nm以上であり、
(2)前記周囲部は炭素成分と触媒活性粒子とを含み、触媒活性粒子は炭素成分に埋包されている、複合触媒粒子。
1. Composite catalyst particles comprising a core portion and a surrounding portion around the core portion,
(1) The core part is substantially composed of an inorganic component, and the core part has a diameter of 10 nm or more,
(2) Composite catalyst particles in which the surrounding portion includes a carbon component and catalytically active particles, and the catalytically active particles are embedded in the carbon component.

2.粒子径10nm以上の無機粒子の表面に触媒活性粒子を担持してなる複合粒子に対して、その表面に炭素成分を真空蒸着することにより製造される、触媒活性粒子が炭素成分に埋包されている複合触媒粒子。   2. For composite particles formed by supporting catalytically active particles on the surface of inorganic particles having a particle size of 10 nm or more, the catalytically active particles are embedded in the carbon component, which is produced by vacuum-depositing the carbon component on the surface. Composite catalyst particles.

3.無機成分が、炭素成分、酸化モリブデン成分、酸化タングステン成分、酸化インジウム成分、酸化アルミニウム成分、酸化チタン成分、酸化スズ成分及び酸化鉛成分からなる群から選択された少なくとも1種である、上記項1に記載の複合触媒粒子。   3. Item 1. The inorganic component is at least one selected from the group consisting of a carbon component, a molybdenum oxide component, a tungsten oxide component, an indium oxide component, an aluminum oxide component, a titanium oxide component, a tin oxide component, and a lead oxide component. The composite catalyst particle according to 1.

4.無機粒子が、炭素粒子、酸化モリブデン粒子、酸化タングステン粒子、酸化インジウム粒子、酸化アルミニウム粒子、酸化チタン粒子、酸化スズ粒子及び酸化鉛粒子からなる群から選択された少なくとも1種である、上記項2に記載の複合触媒粒子。   4). Item 2. The inorganic particle is at least one selected from the group consisting of carbon particles, molybdenum oxide particles, tungsten oxide particles, indium oxide particles, aluminum oxide particles, titanium oxide particles, tin oxide particles, and lead oxide particles. The composite catalyst particle according to 1.

5.コア部の径が10〜100nmである、上記項1又は3に記載の複合触媒粒子。   5. Item 4. The composite catalyst particle according to Item 1 or 3, wherein the core has a diameter of 10 to 100 nm.

6.無機粒子の粒子径が10〜100nmである、上記項2又は4に記載の複合触媒粒子。   6). Item 5. The composite catalyst particle according to Item 2 or 4, wherein the particle diameter of the inorganic particle is 10 to 100 nm.

7.触媒活性粒子の粒子径が1〜10nmである、上記項1〜6のいずれかに記載の複合触媒粒子。   7). Item 7. The composite catalyst particle according to any one of Items 1 to 6, wherein the particle diameter of the catalyst active particle is 1 to 10 nm.

8.触媒活性粒子が、白金、ニッケル、銅、スズ及びコバルトからなる群から選択された少なくとも1種の金属粒子である、上記項1〜7のいずれかに記載の複合触媒粒子。   8). Item 8. The composite catalyst particle according to any one of Items 1 to 7, wherein the catalytically active particle is at least one metal particle selected from the group consisting of platinum, nickel, copper, tin, and cobalt.

9.触媒活性粒子が白金粒子である、上記項1〜7のいずれかに記載の複合触媒粒子。   9. Item 8. The composite catalyst particle according to any one of Items 1 to 7, wherein the catalytically active particle is a platinum particle.

10.上記項1〜9のいずれかに記載の複合触媒粒子を含む電極を備えた燃料電池。   10. A fuel cell comprising an electrode comprising the composite catalyst particles according to any one of Items 1 to 9.

11.上記項1〜9のいずれかに記載の複合触媒粒子を含む電極を水素極として備えた固体高分子形燃料電池。

以下、本発明の複合触媒粒子及び燃料電池について詳細に説明する。
11. 10. A polymer electrolyte fuel cell comprising an electrode containing the composite catalyst particle according to any one of items 1 to 9 as a hydrogen electrode.

Hereinafter, the composite catalyst particle and the fuel cell of the present invention will be described in detail.

本発明の複合触媒粒子は、コア部とその周囲の周囲部からなり、
(1)前記コア部は実質的に無機成分からなり、コア部の径は10nm以上であり、
(2)前記周囲部は炭素成分と触媒活性粒子とを含み、触媒活性粒子は炭素成分に埋包されている、ことを特徴とする。
The composite catalyst particle of the present invention comprises a core portion and a peripheral portion around the core portion,
(1) The core part is substantially composed of an inorganic component, and the core part has a diameter of 10 nm or more,
(2) The surrounding portion includes a carbon component and catalytically active particles, and the catalytically active particles are embedded in the carbon component.

コア部は、実質的に無機成分からなる。例えば、無機粒子をコア部とできる。その際は、無機粒子1個をコア部としてもよく、無機粒子が凝集してなる凝集粒子をコア部としても良い。コア部は、球状又は略球状が好ましい。コア部は、実質的に無機成分からなると評価できれば良く、不可避的に混入し得る微量不純物の混入程度は許容される。   A core part consists of an inorganic component substantially. For example, inorganic particles can be used as the core portion. In that case, one inorganic particle may be used as the core part, and aggregated particles formed by aggregation of the inorganic particles may be used as the core part. The core part is preferably spherical or substantially spherical. The core portion only needs to be evaluated as being substantially made of an inorganic component, and the degree of contamination of trace impurities that can inevitably be mixed is allowed.

コア部の径は10nm以上であればよく、その中でも10〜100nm程度が好ましく、10〜30nm程度がより好ましい。コア部が無機粒子(凝集粒子も含む)の場合には、径は粒子径を示す。なお、本明細書における粒子径は、透過型電子顕微鏡(本明細書では「TEM」と記載する)を用いた観察により測定した値である。   The diameter of a core part should just be 10 nm or more, About 10-100 nm is preferable among these, About 10-30 nm is more preferable. When the core part is inorganic particles (including aggregated particles), the diameter indicates the particle diameter. In addition, the particle diameter in this specification is a value measured by observation using a transmission electron microscope (referred to as “TEM” in this specification).

無機成分としては、炭素成分のほか、金属酸化物成分が挙げられる。金属酸化物成分は、例えば、酸化モリブデン成分、酸化タングステン成分、酸化インジウム成分、酸化アルミニウム成分、酸化チタン成分、酸化スズ、酸化鉛等が挙げられる。図2〜図6に、金属酸化物粒子(無機導電性粒子)のTEM像の一例を示す。無機成分は触媒活性粒子の担体となり得る成分であれば特に限定されないが、前記例示の通り導電性成分が好ましく、当該観点からは炭素成分が最も好ましい。無機粒子としては、前記成分からなる一次粒子又は凝集粒子が挙げられる。   Examples of the inorganic component include a carbon oxide component and a metal oxide component. Examples of the metal oxide component include a molybdenum oxide component, a tungsten oxide component, an indium oxide component, an aluminum oxide component, a titanium oxide component, tin oxide, and lead oxide. 2 to 6 show examples of TEM images of metal oxide particles (inorganic conductive particles). The inorganic component is not particularly limited as long as it is a component that can serve as a carrier for catalytically active particles. However, as exemplified above, a conductive component is preferable, and a carbon component is most preferable from this viewpoint. Examples of the inorganic particles include primary particles or aggregated particles composed of the above components.

コア部の周囲には周囲部がある。周囲部は炭素成分と触媒活性粒子とを含み、触媒活性粒子は周囲部の炭素成分に埋包されている。そして、触媒活性粒子は周囲部の炭素成分に埋包されているとともにコア部の表面と結合(吸着)している態様が好ましい。   There is a peripheral part around the core part. The peripheral portion includes a carbon component and catalytically active particles, and the catalytically active particles are embedded in the peripheral carbon component. In addition, it is preferable that the catalytically active particles are embedded in the surrounding carbon component and bonded (adsorbed) to the surface of the core.

触媒活性粒子は所望の触媒活性を発揮する粒子であれば良く、適宜選択できる。例えば、燃料電池の燃料極(例えば、固体高分子形燃料電池「PEFC」の水素極)に含有させる触媒活性粒子としては、白金、ニッケル、銅、スズ、コバルト等の金属粒子(金属酸化物粒子の場合も含まれる)が挙げられる。触媒活性の観点から白金が好ましい。金属粒子は、単独又は2種以上を混合できる。金属粒子の粒子径は限定的ではないが、1〜10nm程度が好ましく、1〜5nm程度がより好ましい。   The catalytically active particles may be any particles that exhibit a desired catalytic activity and can be appropriately selected. For example, as the catalytically active particles contained in the fuel electrode of the fuel cell (for example, the hydrogen electrode of the polymer electrolyte fuel cell “PEFC”), metal particles (metal oxide particles) such as platinum, nickel, copper, tin, and cobalt Is also included). From the viewpoint of catalytic activity, platinum is preferred. A metal particle can be individual or can mix 2 or more types. The particle diameter of the metal particles is not limited, but is preferably about 1 to 10 nm, and more preferably about 1 to 5 nm.

周囲部の厚さは、炭素成分が触媒活性粒子を埋包できる厚さである。当該厚さは触媒活性粒子の粒子径に応じて適宜設定できるが、1〜30nm程度が好ましく、1〜10nm程度がより好ましい。なお、周囲部の炭素は、グラファイト層の数層からなる結晶質積層体が好ましい。   The thickness of the peripheral portion is a thickness at which the carbon component can embed the catalytically active particles. Although the said thickness can be suitably set according to the particle diameter of catalytically active particles, about 1-30 nm is preferable and about 1-10 nm is more preferable. The surrounding carbon is preferably a crystalline laminate composed of several graphite layers.

周囲部に埋包される触媒活性粒子の含有量は限定的ではないが、例えば、コア部100重量部に対して、触媒活性粒子10〜30重量部程度が好ましく、40〜50重量部程度がより好ましい。   The content of the catalytically active particles embedded in the surrounding part is not limited. For example, the catalytically active particles are preferably about 10 to 30 parts by weight and about 40 to 50 parts by weight with respect to 100 parts by weight of the core part. More preferred.

本発明の複合触媒粒子は、触媒活性粒子が周囲部の炭素成分に埋包されており耐熱性が高い。即ち、触媒活性粒子が炭素成分に埋包されているため、複合触媒粒子を燃料電池の触媒として使用して熱を受けた場合でも、触媒活性粒子が脱落し難い。また、加熱により触媒活性粒子が担体表面(コア部表面)を移動することに起因する触媒活性粒子どうしの凝集又は再結晶化に基づく触媒性能の低下も抑制されている。具体的には、本発明の複合触媒粒子は、400℃程度の熱を受けても触媒活性粒子の担持安定性は変わらず、好適な態様では1000〜1100℃程度でも安定な担持状態を維持できる。   The composite catalyst particles of the present invention have high heat resistance because the catalytically active particles are embedded in the surrounding carbon component. That is, since the catalytically active particles are embedded in the carbon component, even when the composite catalyst particles are used as a fuel cell catalyst and receive heat, the catalytically active particles are unlikely to fall off. In addition, a decrease in catalytic performance due to aggregation or recrystallization of the catalytically active particles caused by the catalytically active particles moving on the surface of the support (core surface) due to heating is also suppressed. Specifically, the composite catalyst particles of the present invention do not change the support stability of the catalytically active particles even when subjected to heat of about 400 ° C., and in a preferred embodiment, a stable support state can be maintained even at about 1000 to 1100 ° C. .

図7(a)は、本発明の複合触媒粒子(コア部が炭素粒子であり、触媒活性粒子が白金である)のTEM像の一例である。図7(b)は、前記複合触媒粒子を空気中80℃で1100時間加熱後のTEM像である。両図を比較すると、白金粒子の炭素粒子表面での移動及び凝集は抑制されていることが分かる。図8は、本発明の複合触媒粒子(コア部が炭素粒子であり、触媒活性粒子が白金である)を真空中において150℃、350℃、800℃に加熱した場合のTEM像である。図8からは、本発明の複合触媒粒子は、加熱温度を高くしても触媒活性粒子の凝集・脱落等が抑制されていることが分かる。他方、炭素粒子表面に白金粒子を担持(吸着)させただけの従来品の触媒は、真空加熱の場合には、155℃程度から白金粒子が炭素粒子表面を移動して凝集し易い。空気中加熱の場合には、80℃、545時間以上から炭素構造体の変化に伴い白金粒子が凝集を起こし易い。従来品の複合触媒粒子が熱を受けることにより、触媒活性粒子の移動・凝集が生じ易いことは、図1に示される通りである。   FIG. 7A is an example of a TEM image of the composite catalyst particle of the present invention (the core portion is carbon particles and the catalytically active particles are platinum). FIG. 7B is a TEM image after the composite catalyst particles are heated in air at 80 ° C. for 1100 hours. Comparing both figures, it can be seen that the movement and aggregation of the platinum particles on the carbon particle surface are suppressed. FIG. 8 is a TEM image when the composite catalyst particles of the present invention (the core portion is carbon particles and the catalytically active particles are platinum) are heated to 150 ° C., 350 ° C., and 800 ° C. in a vacuum. From FIG. 8, it can be seen that the composite catalyst particles of the present invention suppress the aggregation and dropping of the catalytically active particles even when the heating temperature is increased. On the other hand, a conventional catalyst in which platinum particles are only supported (adsorbed) on the surface of carbon particles tends to agglomerate because the platinum particles move from the surface of the carbon particles from about 155 ° C. in the case of vacuum heating. In the case of heating in the air, the platinum particles tend to agglomerate with changes in the carbon structure from 80 ° C. for 545 hours or longer. As shown in FIG. 1, when the conventional composite catalyst particles receive heat, the catalytically active particles are likely to move and aggregate.

前記特性を有する本発明の複合触媒粒子は、触媒活性粒子の担持安定性が高く、しかも耐熱性も高いため、燃料電池の電極に含有される触媒として有用である。とりわけ、固体高分子形燃料電池(PEFC)の電極(水素極)に含まれる触媒として有用である。特に燃料電池用電極として用いる場合には、運転中の発熱による触媒活性粒子の移動・凝集が抑制されているため、他の触媒活性粒子との凝集又は再結晶に基づく触媒活性粒子の有効表面積の減少が抑制されている。そのため、良好な触媒活性を安定に維持できる。また、触媒活性粒子が炭素成分に埋包されているため、燃料電池の運転時において一酸化炭素が触媒活性粒子に吸着することにより生じる触媒活性阻害(被毒)の問題が生じ難い。また、触媒活性粒子が炭素成分に埋包されているため、PEFC用触媒として用いる場合に、触媒活性粒子が強酸性の固体高分子電解質膜に溶解することも抑制されている。本発明の複合触媒粒子は、触媒活性粒子が周囲部の炭素成分に埋包されているにも関わらず、燃料電池用触媒として用いた場合に十分な発電性能を発揮する(図11参照)。   The composite catalyst particle of the present invention having the above characteristics is useful as a catalyst contained in an electrode of a fuel cell because it has high support stability of catalytically active particles and high heat resistance. In particular, it is useful as a catalyst contained in an electrode (hydrogen electrode) of a polymer electrolyte fuel cell (PEFC). In particular, when used as an electrode for a fuel cell, the movement and aggregation of catalytically active particles due to heat generation during operation is suppressed, so the effective surface area of catalytically active particles based on aggregation or recrystallization with other catalytically active particles is reduced. The decrease is suppressed. Therefore, good catalytic activity can be stably maintained. In addition, since the catalytically active particles are embedded in the carbon component, the problem of catalyst activity inhibition (poisoning) caused by the adsorption of carbon monoxide to the catalytically active particles during the operation of the fuel cell hardly occurs. Further, since the catalytically active particles are embedded in the carbon component, the catalytically active particles are also prevented from dissolving in the strongly acidic solid polymer electrolyte membrane when used as a PEFC catalyst. The composite catalyst particles of the present invention exhibit sufficient power generation performance when used as a fuel cell catalyst, even though the catalytically active particles are embedded in the surrounding carbon component (see FIG. 11).

本発明の複合触媒粒子の製造方法は限定的ではないが、例えば、粒子径10nm以上の無機粒子の表面に触媒活性粒子を担持したもの(以下「複合粒子」とも言う)の表面に炭素成分を真空蒸着することにより、触媒活性粒子を蒸着成分に埋包する工程を有する製造方法が好ましい。以下、本製造方法について説明する。但し、以下では無機粒子として炭素粒子を使用し、触媒活性粒子として白金粒子を使用する場合について例示する。   The production method of the composite catalyst particle of the present invention is not limited. For example, a carbon component is formed on the surface of an inorganic particle having a particle diameter of 10 nm or more (hereinafter also referred to as “composite particle”). A production method having a step of embedding the catalytically active particles in a vapor deposition component by vacuum vapor deposition is preferred. Hereinafter, this manufacturing method will be described. However, below, carbon particles are used as the inorganic particles and platinum particles are used as the catalytically active particles.

前記複合粒子としては、無機粒子と触媒活性粒子とを含み、粒子径10nm以上の無機粒子の表面に触媒活性粒子が担持されているものであれば特に限定されず、市販品も使用できる。例示すると、粒子径10nm以上の炭素粒子の表面にゾル・ゲル法などにより白金粒子を担持してなる市販の白金触媒などを好適に複合粒子として使用できる。   The composite particles are not particularly limited as long as they include inorganic particles and catalytically active particles, and the catalytically active particles are supported on the surface of inorganic particles having a particle diameter of 10 nm or more, and commercially available products can also be used. For example, a commercially available platinum catalyst in which platinum particles are supported on the surface of carbon particles having a particle diameter of 10 nm or more by a sol-gel method or the like can be suitably used as composite particles.

複合粒子の表面に炭素成分を真空蒸着する方法は限定的ではない。例えば、炭素材料に通電してアーク放電を生じさせることにより真空蒸着する方法が好ましい。真空蒸着を簡便に行うことができる蒸発源の概要を図9に示す。   The method of vacuum-depositing the carbon component on the surface of the composite particle is not limited. For example, a method of vacuum deposition by energizing a carbon material to generate arc discharge is preferable. FIG. 9 shows an outline of an evaporation source capable of simply performing vacuum deposition.

図9は、端部に凸部を有するカーボンロッドと端部が平面であるカーボンロッドとを対向配置した図である。ここで、カーボンロッドの凸部と他方のカーボンロッドの端面とをスプリングによって押し付け、接点を通電して抵抗加熱した場合にはアーク放電が生じて炭素蒸着を行うことができる。当該アーク放電は、いわゆる抵抗加熱補助交流アーク法によるアーク放電である。かかる手法によれば、蒸着量の制御が容易である。複合粒子は前記カーボンロッドの接点付近に配置すればよく、接点からの距離、蒸着時間等は、複合粒子の大きさ、蒸着量等に応じて適宜設定できる。   FIG. 9 is a view in which a carbon rod having a convex portion at an end and a carbon rod having a flat end are arranged to face each other. Here, when the convex portion of the carbon rod and the end surface of the other carbon rod are pressed by a spring and the contact is energized and resistance heated, arc discharge occurs and carbon deposition can be performed. The arc discharge is arc discharge by a so-called resistance heating auxiliary AC method. According to such a method, it is easy to control the deposition amount. The composite particles may be disposed in the vicinity of the contact point of the carbon rod, and the distance from the contact point, the deposition time, and the like can be appropriately set according to the size of the composite particle, the deposition amount, and the like.

カーボンロッドを収容するチャンバ雰囲気は真空雰囲気とする。具体的には、チャンバ内の真空度(ガス圧)は10−3〜10−4Pa程度が望ましい。本明細書では、かかる雰囲気は真空雰囲気と言う。交流アーク放電等の条件は、蒸着量に応じて適宜調整できる。印加電圧は15〜110V程度が好ましく、電流は15〜100A程度が好ましい。また、電力は1.5kW〜3.0kW程度が好ましい。 The chamber atmosphere for storing the carbon rod is a vacuum atmosphere. Specifically, the degree of vacuum (gas pressure) in the chamber is preferably about 10 −3 to 10 −4 Pa. In this specification, such an atmosphere is referred to as a vacuum atmosphere. Conditions such as AC arc discharge can be appropriately adjusted according to the deposition amount. The applied voltage is preferably about 15 to 110 V, and the current is preferably about 15 to 100 A. The power is preferably about 1.5 kW to 3.0 kW.

以上の過程を経て、本発明の複合触媒粒子は製造できる。図10(a)は、無機粒子が炭素粒子であり触媒活性粒子が白金粒子である複合粒子のTEM像である。(b)は、複合粒子表面に白金粒子を埋包する態様で炭素成分を真空蒸着した後のTEM像であり、白金粒子が周囲部の炭素成分に埋包されていることが分かる。   Through the above process, the composite catalyst particle of the present invention can be produced. FIG. 10A is a TEM image of composite particles in which the inorganic particles are carbon particles and the catalytically active particles are platinum particles. (B) is a TEM image after vacuum deposition of a carbon component in a mode in which platinum particles are embedded on the surface of the composite particle, and it can be seen that the platinum particles are embedded in the surrounding carbon component.

本発明の複合触媒粒子は、前記の通り、燃料電池用触媒として好適に使用できる。特に、PEFCの水素極触媒(アノード触媒)として好適である。PEFCの水素極触媒として用いる場合には、他の構成要素としては公知のものが使用できる。例えば、高分子電解質としては、フッ素系のパーフルオロスルホン酸イオン交換膜などが使用できる。そして、高分子電解質を挟んでアノード(水素極)とカソードを有し、各電極はガス拡散層と触媒層とに別れた構成のPEFCが良く知られている。   As described above, the composite catalyst particles of the present invention can be suitably used as a fuel cell catalyst. In particular, it is suitable as a hydrogen electrode catalyst (anode catalyst) for PEFC. When used as a hydrogen electrode catalyst for PEFC, known components can be used as other components. For example, a fluorine-based perfluorosulfonic acid ion exchange membrane can be used as the polymer electrolyte. A PEFC having a structure in which an anode (hydrogen electrode) and a cathode are sandwiched between polymer electrolytes and each electrode is divided into a gas diffusion layer and a catalyst layer is well known.

本発明の複合触媒粒子は、触媒活性粒子の担持安定性が高く、しかも耐熱性も高いため、燃料電池の電極に含有される触媒として有用である。特にPEFCの水素極触媒として有用である。特に燃料電池用電極として用いる場合には、運転中の発熱による触媒活性粒子の移動・凝集が抑制されているため、他の触媒活性粒子との凝集又は再結晶に基づく触媒活性粒子の有効表面積の減少が抑制されている。そのため、良好な触媒活性を安定に維持できる。また、触媒活性粒子が炭素成分に埋包されているため、燃料電池の運転時において一酸化炭素が触媒活性粒子に吸着することにより生じる触媒活性阻害(被毒)の問題が生じ難い。また、触媒活性粒子が炭素成分に埋包されているため、PEFC用触媒として用いる場合に、触媒活性粒子が強酸性の固体高分子電解質膜に溶解することも抑制されている。   The composite catalyst particle of the present invention is useful as a catalyst contained in an electrode of a fuel cell because it has high support stability of catalytically active particles and high heat resistance. It is particularly useful as a hydrogen electrode catalyst for PEFC. In particular, when used as an electrode for a fuel cell, the movement and aggregation of catalytically active particles due to heat generation during operation is suppressed, so the effective surface area of catalytically active particles based on aggregation or recrystallization with other catalytically active particles is reduced. The decrease is suppressed. Therefore, good catalytic activity can be stably maintained. In addition, since the catalytically active particles are embedded in the carbon component, the problem of catalyst activity inhibition (poisoning) caused by the adsorption of carbon monoxide to the catalytically active particles during the operation of the fuel cell hardly occurs. Further, since the catalytically active particles are embedded in the carbon component, the catalytically active particles are also prevented from dissolving in the strongly acidic solid polymer electrolyte membrane when used as a PEFC catalyst.

以下に実施例を示し、本発明をより具体的に説明する。但し、本発明は実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

実施例1(本発明複合触媒粒子の製造)
複合粒子(炭素粒子表面に白金粒子を担持したもの)として、製品名「TKK Pt」50重量%(田中貴金属工業株式会社製)を用意した。炭素粒子の平均粒子径は40nm、白金粒子の平均粒子径は4nmであった。複合粒子のTEM像(Hitachi H-9000NARによるTEM像;以下同じ)を図10(a)に示す。
Example 1 (Production of composite catalyst particles of the present invention)
A product name “TKK Pt” 50% by weight (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was prepared as composite particles (with platinum particles supported on the surface of carbon particles). The average particle diameter of the carbon particles was 40 nm, and the average particle diameter of the platinum particles was 4 nm. FIG. 10A shows a TEM image of composite particles (TEM image by Hitachi H-9000NAR; the same applies hereinafter).

図9に示される蒸発源(一対のカーボンロッド)をチャンバ内に収容した。ロッド接点付近に複合粒子を配置した。チャンバ内を10−4Paの真空雰囲気とし、交流アーク放電を行うことにより炭素を蒸発させて複合粒子の表面に堆積した。放電条件は、印加電圧30V、電流50〜100Aとした。蒸着膜の厚さは1〜10nmであった。 The evaporation source (a pair of carbon rods) shown in FIG. 9 was accommodated in the chamber. Composite particles were placed near the rod contact. The inside of the chamber was set to a vacuum atmosphere of 10 −4 Pa, and carbon was evaporated by ac arc discharge and deposited on the surface of the composite particles. The discharge conditions were an applied voltage of 30 V and a current of 50 to 100 A. The thickness of the deposited film was 1 to 10 nm.

真空蒸着により得られた本発明の複合触媒粒子のTEM像を図10(b)に示す。図10(b)から明らかなように、白金粒子は炭素成分に埋包されている。   FIG. 10B shows a TEM image of the composite catalyst particles of the present invention obtained by vacuum deposition. As is clear from FIG. 10B, the platinum particles are embedded in the carbon component.

実験例1(触媒粒子の特性評価)
実施例1の複合触媒粒子の特性評価を行った。具体的には、複合触媒粒子の発電可能性を確認した。
Experimental example 1 (characteristic evaluation of catalyst particles)
The characteristics of the composite catalyst particles of Example 1 were evaluated. Specifically, the power generation possibility of the composite catalyst particles was confirmed.

先ず、複合触媒粒子を用いて燃料電池の電極を作製した。   First, a fuel cell electrode was produced using the composite catalyst particles.

各々の電極を組み込んだ燃料電池を運転した。運転条件は、次の通りとした。
・セル温度:80℃
・アノード・カソード温度:70℃
・アノードガス組成:水素
・カソードガス組成:空気
・水素利用率:70%
・酸素利用率:40%
・セル面積9cm(3cm×3cm)
上記条件で電圧(V)、電流密度(A/cm)及び抵抗値(mΩ×cm)の関係を測定した。結果を図11に示す。図11から明らかな通り、本発明の複合触媒粒子は、燃料電池用触媒として用いた場合に、発電性能を発揮することが分かる。
A fuel cell incorporating each electrode was operated. The operating conditions were as follows.
-Cell temperature: 80 ° C
・ Anode and cathode temperature: 70 ℃
・ Anode gas composition: Hydrogen ・ Cathode gas composition: Air / hydrogen utilization ratio: 70%
・ Oxygen utilization rate: 40%
・ Cell area 9cm 2 (3cm × 3cm)
The relationship between voltage (V), current density (A / cm 2 ), and resistance value (mΩ × cm 2 ) was measured under the above conditions. The results are shown in FIG. As is clear from FIG. 11, it can be seen that the composite catalyst particles of the present invention exhibit power generation performance when used as a fuel cell catalyst.

従来品の燃料電池用触媒(炭素粒子の表面に白金粒子を担持してなるもの)のTEM像である。(a)は加熱処理前のTEM像である。(b)は空気中80℃で1100時間加熱後のTEM像である。2 is a TEM image of a conventional fuel cell catalyst (with carbon particles supported on platinum particles). (A) is the TEM image before heat processing. (B) is a TEM image after heating in air at 80 ° C. for 1100 hours. 酸化モリブデン粒子(無機導電性粒子)のTEM像(一例)である。It is a TEM image (an example) of molybdenum oxide particles (inorganic conductive particles). 酸化タングステン粒子(無機導電性粒子)のTEM像(一例)である。It is a TEM image (an example) of tungsten oxide particles (inorganic conductive particles). 酸化インジウム粒子(無機導電性粒子)のTEM像(一例)である。It is a TEM image (an example) of indium oxide particles (inorganic conductive particles). 酸化アルミニウム粒子(無機導電性粒子)のTEM像(一例)である。It is a TEM image (an example) of aluminum oxide particles (inorganic conductive particles). 酸化チタン粒子(無機導電性粒子)のTEM像(一例)である。It is a TEM image (an example) of titanium oxide particles (inorganic conductive particles). (a)本発明の複合触媒粒子(コア部が炭素粒子であり、触媒活性粒子が白金)のTEM像である。(b)空気中80℃で1100時間加熱後のTEM像である。(A) It is a TEM image of the composite catalyst particle of the present invention (the core part is carbon particles and the catalytically active particles are platinum). (B) TEM image after heating in air at 80 ° C. for 1100 hours. 本発明の複合触媒粒子(コア部が炭素粒子であり、触媒活性粒子が白金)を真空中において150℃、350℃、800℃に加熱した場合のTEM像である。It is a TEM image at the time of heating the composite catalyst particle of this invention (a core part is carbon particle, and a catalyst active particle is platinum) at 150 degreeC, 350 degreeC, and 800 degreeC in the vacuum. 実施例1で用いた蒸発源(一対のカーボンロッド)の模式図である。2 is a schematic diagram of an evaporation source (a pair of carbon rods) used in Example 1. FIG. (a)実施例1で用いた複合粒子のTEM像である。(b)実施例1で得た複合触媒粒子のTEM像である。(A) TEM image of composite particles used in Example 1. (B) It is a TEM image of the composite catalyst particle obtained in Example 1. 実施例1の複合触媒粒子の特性評価を示す図である。FIG. 3 is a diagram showing a characteristic evaluation of composite catalyst particles of Example 1.

Claims (11)

コア部とその周囲の周囲部からなる複合触媒粒子であって、
(1)前記コア部は実質的に無機成分からなり、コア部の径は10nm以上であり、
(2)前記周囲部は炭素成分と触媒活性粒子とを含み、触媒活性粒子は炭素成分に埋包されている、複合触媒粒子。
Composite catalyst particles comprising a core portion and a surrounding portion around the core portion,
(1) The core part is substantially composed of an inorganic component, and the core part has a diameter of 10 nm or more,
(2) Composite catalyst particles in which the surrounding portion includes a carbon component and catalytically active particles, and the catalytically active particles are embedded in the carbon component.
粒子径10nm以上の無機粒子の表面に触媒活性粒子を担持してなる複合粒子に対して、その表面に炭素成分を真空蒸着することにより製造される、触媒活性粒子が炭素成分に埋包されている複合触媒粒子。   For composite particles formed by supporting catalytically active particles on the surface of inorganic particles having a particle size of 10 nm or more, the catalytically active particles are embedded in the carbon component, which is produced by vacuum-depositing the carbon component on the surface. Composite catalyst particles. 無機成分が、炭素成分、酸化モリブデン成分、酸化タングステン成分、酸化インジウム成分、酸化アルミニウム成分、酸化チタン成分、酸化スズ成分及び酸化鉛成分からなる群から選択された少なくとも1種である、請求項1に記載の複合触媒粒子。   The inorganic component is at least one selected from the group consisting of a carbon component, a molybdenum oxide component, a tungsten oxide component, an indium oxide component, an aluminum oxide component, a titanium oxide component, a tin oxide component, and a lead oxide component. The composite catalyst particle according to 1. 無機粒子が、炭素粒子、酸化モリブデン粒子、酸化タングステン粒子、酸化インジウム粒子、酸化アルミニウム粒子、酸化チタン粒子、酸化スズ粒子及び酸化鉛粒子からなる群から選択された少なくとも1種である、請求項2に記載の複合触媒粒子。   The inorganic particles are at least one selected from the group consisting of carbon particles, molybdenum oxide particles, tungsten oxide particles, indium oxide particles, aluminum oxide particles, titanium oxide particles, tin oxide particles, and lead oxide particles. The composite catalyst particle according to 1. コア部の径が10〜100nmである、請求項1又は3に記載の複合触媒粒子。   The composite catalyst particle according to claim 1 or 3, wherein the core has a diameter of 10 to 100 nm. 無機粒子の粒子径が10〜100nmである、請求項2又は4に記載の複合触媒粒子。   The composite catalyst particle according to claim 2 or 4, wherein the particle diameter of the inorganic particle is 10 to 100 nm. 触媒活性粒子の粒子径が1〜10nmである、請求項1〜6のいずれかに記載の複合触媒粒子。   The composite catalyst particle according to any one of claims 1 to 6, wherein the particle diameter of the catalyst active particle is 1 to 10 nm. 触媒活性粒子が、白金、ニッケル、銅、スズ及びコバルトからなる群から選択された少なくとも1種の金属粒子である、請求項1〜7のいずれかに記載の複合触媒粒子。   The composite catalyst particle according to any one of claims 1 to 7, wherein the catalytically active particle is at least one metal particle selected from the group consisting of platinum, nickel, copper, tin and cobalt. 触媒活性粒子が白金粒子である、請求項1〜7のいずれかに記載の複合触媒粒子。   The composite catalyst particle according to any one of claims 1 to 7, wherein the catalytically active particle is a platinum particle. 請求項1〜9のいずれかに記載の複合触媒粒子を含む電極を備えた燃料電池。   A fuel cell comprising an electrode comprising the composite catalyst particle according to claim 1. 請求項1〜9のいずれかに記載の複合触媒粒子を含む電極を水素極として備えた固体高分子形燃料電池。   A polymer electrolyte fuel cell comprising an electrode containing the composite catalyst particle according to claim 1 as a hydrogen electrode.
JP2005235820A 2005-08-16 2005-08-16 Composite catalytic particle Pending JP2007050319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235820A JP2007050319A (en) 2005-08-16 2005-08-16 Composite catalytic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235820A JP2007050319A (en) 2005-08-16 2005-08-16 Composite catalytic particle

Publications (1)

Publication Number Publication Date
JP2007050319A true JP2007050319A (en) 2007-03-01

Family

ID=37915130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235820A Pending JP2007050319A (en) 2005-08-16 2005-08-16 Composite catalytic particle

Country Status (1)

Country Link
JP (1) JP2007050319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2010067509A (en) * 2008-09-11 2010-03-25 Nissan Motor Co Ltd Electrode catalyst
US9947937B2 (en) * 2014-12-25 2018-04-17 Showa Denko K.K. Catalyst carrier and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136307A (en) * 1974-04-08 1975-10-29
JPS5482394A (en) * 1977-11-23 1979-06-30 United Technologies Corp Method of improving platinum crystallite catalyst supported on carbon
JPH0741322A (en) * 1993-07-30 1995-02-10 Otsuka Chem Co Ltd Fibrous magnetite and production thereof
JP2003054922A (en) * 2001-08-13 2003-02-26 Sony Corp Structure including carbon-coated catalyst nanoparticle, method of making such structure, and method of producing carbon nanostructure therefrom
JP2005118671A (en) * 2003-10-16 2005-05-12 Catalysts & Chem Ind Co Ltd Fine particle for electrode catalyst, its dispersion liquid and method for preparing the dispersion liquid
WO2005057715A1 (en) * 2003-12-15 2005-06-23 Nec Corporation Secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136307A (en) * 1974-04-08 1975-10-29
JPS5482394A (en) * 1977-11-23 1979-06-30 United Technologies Corp Method of improving platinum crystallite catalyst supported on carbon
JPH0741322A (en) * 1993-07-30 1995-02-10 Otsuka Chem Co Ltd Fibrous magnetite and production thereof
JP2003054922A (en) * 2001-08-13 2003-02-26 Sony Corp Structure including carbon-coated catalyst nanoparticle, method of making such structure, and method of producing carbon nanostructure therefrom
JP2005118671A (en) * 2003-10-16 2005-05-12 Catalysts & Chem Ind Co Ltd Fine particle for electrode catalyst, its dispersion liquid and method for preparing the dispersion liquid
WO2005057715A1 (en) * 2003-12-15 2005-06-23 Nec Corporation Secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2010067509A (en) * 2008-09-11 2010-03-25 Nissan Motor Co Ltd Electrode catalyst
US9947937B2 (en) * 2014-12-25 2018-04-17 Showa Denko K.K. Catalyst carrier and method for producing the same

Similar Documents

Publication Publication Date Title
Zhang et al. Layered and heterostructured Pd/PdWCr sheet‐assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation
Cai et al. Nanostructuring noble metals as unsupported electrocatalysts for polymer electrolyte fuel cells
US8398884B2 (en) Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell
US8361924B2 (en) Fine particles of core-shell structure and functional device incorporated therewith
US11831025B2 (en) Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
JP5055788B2 (en) Electrocatalyst
JP2006179445A (en) Electrode catalyst, method for manufacturing the same, and direct alcohol fuel cell
CN107785588B (en) Fuel cell redox reaction catalyst
JP2008059841A (en) Fuel cell and manufacturing method of fuel cell
JP2004363056A (en) Catalyst carrying electrode for polymer electrolyte fuel cell and its manufacturing method
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP2008183508A (en) Composite material and its manufacturing method
JP2004172107A (en) Electrocatalyst for fuel cells and manufacturing method thereof
US10096841B2 (en) Catalyst carrier, method for producing catalyst carrier, and use of catalyst carrier
JP5900995B2 (en) Fuel cell electrode having a gradient catalyst structure
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2007050319A (en) Composite catalytic particle
JP6963811B2 (en) Electrode structure integrated with electrode catalyst layer / gas diffusion layer and its manufacturing method, membrane electrode assembly and polymer electrolyte fuel cell
JP6345663B2 (en) ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
WO2012053561A1 (en) Electrode material and method for producing same
JP2020047430A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
Huang et al. Pt–Co nanoparticles anchored by ZrO2 for highly efficient and durable oxygen reduction reaction in H2-air fuel cells
JP2006012691A (en) Electrode catalyst and its method of manufacture
JP2006140017A (en) Catalyst for fuel cell
JP2005108453A (en) Fuel cell membrane-electrode joint unit and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327