JP2006307312A - Deposition film coated iron powder - Google Patents

Deposition film coated iron powder Download PDF

Info

Publication number
JP2006307312A
JP2006307312A JP2005158893A JP2005158893A JP2006307312A JP 2006307312 A JP2006307312 A JP 2006307312A JP 2005158893 A JP2005158893 A JP 2005158893A JP 2005158893 A JP2005158893 A JP 2005158893A JP 2006307312 A JP2006307312 A JP 2006307312A
Authority
JP
Japan
Prior art keywords
deposited film
iron powder
coated iron
coated
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005158893A
Other languages
Japanese (ja)
Other versions
JP5027390B2 (en
Inventor
Muneaki Watanabe
宗明 渡辺
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005158893A priority Critical patent/JP5027390B2/en
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to EP10172637.0A priority patent/EP2248617B1/en
Priority to CA002598842A priority patent/CA2598842A1/en
Priority to US11/814,603 priority patent/US9269481B2/en
Priority to EP12172935.4A priority patent/EP2502689B8/en
Priority to CN2005800491939A priority patent/CN101142044B/en
Priority to PCT/JP2005/020204 priority patent/WO2006080121A1/en
Priority to EP05805498A priority patent/EP1852199B1/en
Publication of JP2006307312A publication Critical patent/JP2006307312A/en
Priority to US13/228,139 priority patent/US8481178B2/en
Application granted granted Critical
Publication of JP5027390B2 publication Critical patent/JP5027390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deposition film coated iron powder for producing a high resistance composite soft magnetic material. <P>SOLUTION: There is provided a deposition film coated iron powder comprising an iron powder having its surface coated with a deposition film containing an Mg-Fe-P-O quarternary phosphate compound composed of Mg, Fe, P and O and an Mg-Fe-O ternary oxide composed of Mg, Fe and O, and in which iron phosphate particulates are dispersed into a matrix, wherein the Mg-Fe-P-O quarternary phosphate compound and the Mg-Fe-O ternary oxide contain a crystalline MgO solid solution wustite type phase, and the deposition film has a microcrystalline structure of ≤200 nm crystal grain diameter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、高抵抗複合軟磁性材を製造するための堆積膜被覆鉄粉末に関するものであり、この堆積膜被覆鉄粉末で作製した複合軟磁性材は低鉄損を必要とする各種電磁気回路部品、例えば、モータ、アクチュエータ、ヨーク、コア、リアクトルなどの各種電磁気部品の素材として使用される。   The present invention relates to a deposited film-coated iron powder for producing a high-resistance composite soft magnetic material, and the composite soft magnetic material produced from this deposited film-coated iron powder is used in various electromagnetic circuit components that require low iron loss. For example, it is used as a material for various electromagnetic parts such as motors, actuators, yokes, cores, and reactors.

一般に、各種電磁気回路部品に使用される軟磁性材は、鉄損が小さいことが要求とされるため、電気抵抗を高くして渦電流損を低減させ、保磁力を小さくしてヒステリシス損を低減させることは一般に知られていることである。さらに、近年、電磁気回路の小型化、高応答化が求められているところから、磁束密度がより高いことも重要視されている。   Generally, soft magnetic materials used in various electromagnetic circuit components are required to have low iron loss. Therefore, electrical resistance is increased to reduce eddy current loss, and coercive force is reduced to reduce hysteresis loss. This is generally known. Furthermore, in recent years, since the miniaturization and high response of the electromagnetic circuit have been demanded, higher magnetic flux density is also regarded as important.

かかる高比抵抗を有する軟磁性材料を製造するための原料粉末の一例として鉄粉末の表面に絶縁性を有するMg含有フェライト膜を被覆した酸化膜被覆鉄粉末が知られている(特許文献1参照)。
特開平11−1702号公報
As an example of a raw material powder for producing a soft magnetic material having such a high specific resistance, an oxide film-coated iron powder in which an iron-containing Mg-containing ferrite film is coated on the surface of an iron powder is known (see Patent Document 1). ).
Japanese Patent Laid-Open No. 11-1702

しかし、従来のMg含有フェライト膜を被覆した酸化膜被覆鉄粉末は鉄粉末の表面にMg含有フェライト膜を化学的方法により被覆するために、従来のMg含有フェライト膜を被覆した酸化膜被覆鉄粉末をプレス成形した圧粉体に高温歪取り焼成を行って作製した複合軟磁性材は、Mg含有フェライト膜が一般に熱に対して不安定であるところから、焼成中に変化して絶縁性が低下する。   However, the conventional oxide-coated iron powder coated with Mg-containing ferrite film is coated with the conventional Mg-containing ferrite film in order to coat the surface of the iron powder with Mg-containing ferrite film by a chemical method. The composite soft magnetic material produced by performing high-temperature strain-relief firing on a green compact that has been press-molded from the Mg-containing ferrite film is generally unstable to heat, and changes during firing, resulting in a decrease in insulation. To do.

さらにMg含有フェライト膜は鉄粉末の表面に対する密着性が十分でなく、そのために従来のMg含有フェライト膜を被覆した酸化膜被覆鉄粉末をプレス成形し焼成することにより作製した複合軟磁性材はプレス成形中にMg含有フェライト膜が剥離したり破れるなどして十分な絶縁効果が発揮できず、したがって、十分な高比抵抗を有する複合軟磁性材が得られないという欠点があった。   Furthermore, the Mg-containing ferrite film does not have sufficient adhesion to the surface of the iron powder. For this reason, the composite soft magnetic material produced by press-molding and firing the oxide film-coated iron powder coated with the conventional Mg-containing ferrite film is pressed. The Mg-containing ferrite film is peeled off or torn during the molding, so that a sufficient insulating effect cannot be exhibited. Therefore, there is a drawback that a composite soft magnetic material having a sufficiently high specific resistance cannot be obtained.

そこで、本発明者らは、プレス成形しても、プレス成形時に鉄粉表面の高抵抗膜が破れることが無く表面に高抵抗膜が強固に密着した鉄粉末であり、プレス成形後に高温歪取り焼成を行っても表面の絶縁性が低下することなく高抵抗で渦電流損失が低くなり、また歪取り焼鈍の焼成を行った場合に、より保磁力が低減できてヒステリシス損失が低くなる高抵抗膜被覆鉄粉末を作製すべく研究を行った。   Therefore, the present inventors are an iron powder in which the high resistance film on the surface of the iron powder is not torn during the press molding and the high resistance film is firmly adhered to the surface even after press molding. High resistance that reduces eddy current loss with high resistance without reducing surface insulation even when firing, and lowers coercive force and lowers hysteresis loss when firing with strain relief annealing Research was conducted to produce film-coated iron powder.

その結果、(イ)鉄粉末にリン酸処理を施すことにより鉄粉末の表面にリン酸塩膜を形成した鉄粉末(以下、リン酸塩被覆鉄粉末という)を作製し、このリン酸塩被覆鉄粉末にMg粉末を添加し混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中で転動しながら加熱処理を施すと、Mg、Fe、PおよびOからなる堆積膜が鉄粉末の表面に被覆された堆積膜被覆鉄粉末が得られ、このMg、Fe、PおよびOからなる堆積膜は、Mg、Fe、PおよびOからなるMg−Fe−P−O四元系リン酸塩化合物およびMg、FeおよびOからなるMg−Fe−O三元系酸化物を含みかつ素地中に燐化鉄微粒子が分散していること、
(ロ)前記堆積膜被覆鉄粉末の堆積膜は、燐化鉄微粒子が堆積膜の素地中に分散しているために高度の靭性を有することから、従来の酸化膜被覆鉄粉末の表面に形成されているMg含有フェライト膜に比べてプレス成形時の鉄粉末の変形に追従しやすく、さらにこの堆積膜は鉄粉末に対する密着性が格段に優れることから、プレス成形中に絶縁皮膜である堆積膜が破壊されて鉄粉末同士が接触することが少なく、前記堆積膜被覆鉄粉末をプレス成形後に高温歪取り焼成を行っても堆積膜の絶縁性が低下することが少ないことから高抵抗を維持できて渦電流損失が低くなり、さらに歪取り焼成を行った場合に一層保磁力が低減できてヒステリシス損失が低くなり、したがって、低鉄損を有する複合軟磁性材料が得られること、
(ハ)前記堆積膜に含まれるMg−Fe−P−O四元系リン酸塩化合物およびMg−Fe−O三元系酸化物には結晶質のMgO固溶ウスタイト型相が含まれていること、
(ニ)前記燐化鉄微粒子が素地中に分散している堆積膜は結晶粒径:200nm以下の微細結晶組織を有することが好ましいこと、などの知見が得られたのである。
As a result, (i) iron powder in which a phosphate film was formed on the surface of the iron powder (hereinafter referred to as phosphate-coated iron powder) was prepared by subjecting the iron powder to phosphoric acid treatment. When the mixed powder obtained by adding and mixing the Mg powder to the iron powder is subjected to heat treatment while rolling in an inert gas atmosphere or a vacuum atmosphere, the deposited film composed of Mg, Fe, P and O becomes an iron powder. The deposited film-coated iron powder coated on the surface of this was obtained, and the deposited film composed of Mg, Fe, P and O was composed of Mg—Fe—P—O quaternary phosphoric acid composed of Mg, Fe, P and O. Containing a salt compound and an Mg—Fe—O ternary oxide composed of Mg, Fe and O, and having iron phosphide fine particles dispersed in the substrate,
(B) The deposited film of the deposited film-coated iron powder is formed on the surface of the conventional oxide film-coated iron powder because the iron phosphide fine particles are dispersed in the substrate of the deposited film and has high toughness. Compared to the Mg-containing ferrite film, it is easier to follow the deformation of the iron powder during press molding, and this deposited film has much better adhesion to the iron powder, so the deposited film is an insulating film during press molding Can be maintained and high resistance can be maintained because the deposited film-coated iron powder is less likely to come into contact with each other, and even if high temperature strain relief firing is performed after press forming the deposited film-coated iron powder, the insulation of the deposited film is unlikely to deteriorate. The eddy current loss is reduced, and further, when the strain relief firing is performed, the coercive force can be further reduced and the hysteresis loss is reduced, so that a composite soft magnetic material having low iron loss can be obtained.
(C) The Mg—Fe—P—O quaternary phosphate compound and the Mg—Fe—O ternary oxide contained in the deposited film contain a crystalline MgO solid solution wustite phase. thing,
(D) The knowledge that the deposited film in which the iron phosphide fine particles are dispersed in the substrate preferably has a fine crystal structure with a crystal grain size of 200 nm or less has been obtained.

この発明は、かかる知見に基づいて成されたものであって、
(1)Mg、Fe、PおよびOからなる堆積膜が鉄粉末の表面に被覆されている堆積膜被覆鉄粉末、
(2)前記堆積膜は、Mg、Fe、PおよびOからなるMg−Fe−P−O四元系リン酸塩化合物およびMg、FeおよびOからなるMg−Fe−O三元系酸化物を含みかつ素地中に燐化鉄微粒子が分散している前記(1)記載の堆積膜被覆鉄粉末、
(3)前記堆積膜に含まれるMg−Fe−P−O四元系リン酸塩化合物およびMg−Fe−O三元系酸化物には結晶質のMgO固溶ウスタイト型相が含まれている前記(1)または(2)記載の堆積膜被覆鉄粉末、
(4)前記堆積膜は、結晶粒径:200nm以下の微細結晶組織を有する前記(1)、(2)または(3)記載の堆積膜被覆鉄粉末、に特徴を有するものである。
This invention is made based on such knowledge,
(1) Deposited film-coated iron powder in which a deposited film made of Mg, Fe, P and O is coated on the surface of the iron powder,
(2) The deposited film is made of Mg—Fe—P—O quaternary phosphate compound composed of Mg, Fe, P and O and Mg—Fe—O ternary oxide composed of Mg, Fe and O. The deposited film-coated iron powder according to (1), wherein the iron phosphide fine particles are dispersed in the substrate.
(3) The Mg—Fe—P—O quaternary phosphate compound and the Mg—Fe—O ternary oxide contained in the deposited film contain a crystalline MgO solid solution wustite phase. The deposited film-coated iron powder according to (1) or (2),
(4) The deposited film is characterized by the deposited film-coated iron powder according to (1), (2), or (3) having a crystal grain size of 200 nm or less.

この発明の前記(1)〜(4)記載の堆積膜被覆鉄粉末は、前述のように、リン酸塩被覆鉄粉末にMg粉末を添加し混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中で転動しながら加熱処理を施したのち、さらに酸化雰囲気中で酸化処理を施すことにより作製するが、一層具体的には、リン酸塩被覆鉄粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で転動しながら加熱処理したのち、さらに酸化雰囲気中で酸化処理を施すことにより作製する。
「堆積膜」という用語は、通常、真空蒸発やスパッタされた皮膜構成原子が例えば基板上に堆積した皮膜を示すが、この発明の鉄粉末の表面に形成されている堆積膜は、リン酸塩被覆鉄粉末表面のリン酸鉄(Fe−P−O)とMgが反応を伴って当該鉄粉末表面に堆積した皮膜を示す。この発明の鉄粉末の表面に形成されている燐化鉄微粒子が素地中に分散している堆積膜は燐化鉄微粒子が素地中に分散していることから高度の靭性を有する。このためプレス成形時の鉄粉末の変形に充分に追従すると共に酸化膜の鉄粉末に対する密着性が格段に優れたものとなっている。
As described above, the deposited film-coated iron powder according to (1) to (4) of the present invention is obtained by adding a mixed powder obtained by adding Mg powder to phosphate-coated iron powder and mixing it with an inert gas atmosphere. Alternatively, it is prepared by performing heat treatment while rolling in a vacuum atmosphere, and then performing oxidation treatment in an oxidizing atmosphere. More specifically, Mg powder is added to and mixed with phosphate-coated iron powder. The mixed powder thus obtained was heat-treated while rolling in an inert gas atmosphere or vacuum atmosphere at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −1 MPa, and then further oxidized. It is produced by performing an oxidation treatment in an atmosphere.
The term “deposited film” usually indicates a film in which atoms constituting the film formed by vacuum evaporation or sputtering are deposited on, for example, a substrate. The deposited film formed on the surface of the iron powder of the present invention is a phosphate. The film in which iron phosphate (Fe—PO) and Mg on the surface of the coated iron powder are deposited on the iron powder surface with a reaction is shown. The deposited film in which the iron phosphide fine particles formed on the surface of the iron powder of the present invention are dispersed in the substrate has high toughness because the iron phosphide fine particles are dispersed in the substrate. For this reason, the deformation of the iron powder at the time of press molding is sufficiently followed and the adhesion of the oxide film to the iron powder is remarkably excellent.

この発明の鉄粉末の表面に形成されている堆積膜の膜厚は、圧粉成形して得られた複合軟磁性材の高磁束密度と高比抵抗を得るために5〜500nmの範囲内にあるのが好ましい。膜厚が5nmより薄いと圧粉成形した複合軟磁性材の比抵抗が充分でなく渦電流損が増加するので好ましくなく、一方、膜厚が500nmより厚いと圧粉成形した複合軟磁性材の磁束密度が低下し好ましくないからである。さらに好ましい膜厚は5〜200nmである。   The film thickness of the deposited film formed on the surface of the iron powder of the present invention is within the range of 5 to 500 nm in order to obtain the high magnetic flux density and high specific resistance of the composite soft magnetic material obtained by compacting. Preferably there is. If the film thickness is less than 5 nm, the specific resistance of the powder-molded composite soft magnetic material is not sufficient and the eddy current loss increases. On the other hand, if the film thickness is thicker than 500 nm, it is not preferable. This is because the magnetic flux density is lowered, which is not preferable. A more preferable film thickness is 5 to 200 nm.

この発明の堆積膜被覆鉄粉末を構成する堆積膜に含まれるMg−Fe−P−O四元系リン酸塩化合物およびMg−Fe−O三元系酸化物には結晶質のMgO固溶ウスタイト型相が含まれていることが好ましい。前記結晶質のMgO固溶ウスタイト型相はFeまたは/およびMgの一部をPで置換した場合もあるが、NaCl型結晶構造を有することが最も好ましい。   The Mg—Fe—P—O quaternary phosphate compound and the Mg—Fe—O ternary oxide contained in the deposited film constituting the deposited film-coated iron powder of the present invention include crystalline MgO solid solution wustite It is preferable that a mold phase is included. The crystalline MgO solid solution wustite type phase may have Fe or / and Mg partially substituted with P, but most preferably has an NaCl type crystal structure.

この発明の堆積膜被覆鉄粉末を構成する堆積膜は、その結晶粒が微細であるほど好ましく、結晶粒径:200nm以下の微細結晶組織を有することが好ましい。この様な微細結晶組織を有することにより、圧粉成形時の粉末の変形に微結晶堆積膜が追従して被覆の破れを防止することができ、さらに焼成時にも鉄粉末同士の接触結合を防止することができ、また、高温歪取り焼成を行っても酸化物が安定で絶縁性低下が防止できて高抵抗を維持することができ、そのため渦電流損失が低くなる。結晶粒径が200nmより大きいと、堆積膜の膜厚が500nmよりも厚くなり圧粉成形した複合軟磁性材の磁束密度が低下するので好ましくない。
この発明の堆積膜被覆鉄粉末を製造するための原料粉末である鉄粉末は、平均粒径が5〜500μmの範囲内にあることが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、粉末の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、粉末内部の渦電流が増大して高周波における透磁率が低下することによるものである。
The deposited film constituting the deposited film-coated iron powder of the present invention preferably has finer crystal grains, and preferably has a fine crystal structure with a crystal grain size of 200 nm or less. By having such a fine crystal structure, the microcrystalline deposition film can follow the deformation of the powder during compaction molding to prevent the coating from being broken, and also prevent contact bonding between iron powders during firing. In addition, even when high-temperature strain relief firing is performed, the oxide is stable and can prevent deterioration in insulation, and can maintain a high resistance. Therefore, eddy current loss is reduced. If the crystal grain size is larger than 200 nm, the thickness of the deposited film becomes thicker than 500 nm, and the magnetic flux density of the compacted soft magnetic material is reduced, which is not preferable.
The iron powder that is a raw material powder for producing the deposited film-coated iron powder of the present invention preferably has an average particle size in the range of 5 to 500 μm. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the powder is lowered, so the value of the magnetic flux density is lowered. On the other hand, the average particle size is less than 500 μm. If it is too large, the eddy current inside the powder increases and the magnetic permeability at high frequency decreases.

この発明の堆積膜被覆鉄粉末を構成するMg、Fe、PおよびOからなるMg−Fe−P−O四元系リン酸塩化合物およびMg、FeおよびOからなるMg−Fe−O三元系酸化物は、Mgの一部をMgに対して10%以下のAl,Si,Ni,Mn,Zn,Cu,Coのうち1種以上で置換した疑三元系酸化物堆積膜でも良い。   Mg-Fe-P-O quaternary phosphate compound comprising Mg, Fe, P and O and Mg-Fe-O ternary system comprising Mg, Fe and O constituting the deposited film-coated iron powder of the present invention The oxide may be a quasi-ternary oxide deposited film in which a part of Mg is substituted with one or more of Al, Si, Ni, Mn, Zn, Cu, and Co of 10% or less with respect to Mg.

次に、この発明の堆積膜被覆鉄粉末を使用した複合軟磁性材の製造方法を説明する。   Next, a method for producing a composite soft magnetic material using the deposited film-coated iron powder of the present invention will be described.

この発明の堆積膜被覆鉄粉末を通常の方法で圧粉成形し焼結することにより作製することができる。また、この発明の堆積膜被覆鉄粉末に平均粒径:0.5μm以下の酸化ケイ素,酸化アルミニウムのうちの1種または2種を0.05〜1質量%添加して混合粉末を作製し、この混合粉末を通常の方法で圧粉成形し、焼結することにより作製することができる。   The deposited film-coated iron powder of the present invention can be produced by compacting and sintering by a conventional method. Moreover, 0.05 to 1% by mass of one or two of silicon oxide and aluminum oxide having an average particle size of 0.5 μm or less is added to the deposited film-coated iron powder of the present invention to produce a mixed powder, The mixed powder can be produced by compacting and sintering by a conventional method.

この製造方法により作製した複合軟磁性材は、Mg、Fe、PおよびOからなるMg−Fe−P−O四元系リン酸塩化合物およびMg、FeおよびOからなるMg−Fe−O三元系酸化物を含みかつ素地中に燐化鉄微粒子が分散している堆積膜が鉄粉末を包囲した堆積膜被覆鉄粉末を酸化ケイ素や酸化アルミニウムで結合した組織を有する高比抵抗の複合軟磁性材が得られ、この複合軟磁性材はケイ素や酸化アルミニウムを介して焼結されるために機械的強度を一層高めることができる。   The composite soft magnetic material produced by this production method includes an Mg—Fe—P—O quaternary phosphate compound composed of Mg, Fe, P and O and an Mg—Fe—O ternary composed of Mg, Fe and O. High resistivity composite soft magnetism having a structure in which a deposited film containing iron oxide is surrounded by iron oxide and a structure in which deposited film coated iron powder is bonded with silicon oxide or aluminum oxide Since the composite soft magnetic material is sintered via silicon or aluminum oxide, the mechanical strength can be further increased.

この場合、酸化ケイ素や酸化アルミニウムが主体となって焼結されるところから保磁力を小さく保つことができ、したがって、ヒステリシス損の少ない複合軟磁性材を製造することができる、前記焼成は、不活性ガス雰囲気または酸化性ガス雰囲気中、温度:400〜1300℃で行われることが好ましい。   In this case, the coercive force can be kept small from being sintered mainly with silicon oxide or aluminum oxide, and thus a composite soft magnetic material with little hysteresis loss can be produced. It is preferably performed at a temperature of 400 to 1300 ° C. in an active gas atmosphere or an oxidizing gas atmosphere.

また、この発明の堆積膜被覆鉄粉末にシリカのゾルゲル(シリケート)溶液やアルミナのゾルゲル溶液などの湿式溶液を添加し混合したのち乾燥し、この乾燥した混合物を圧縮成形後、不活性ガス雰囲気または酸化性ガス雰囲気中、温度:400〜1300℃で焼成することにより複合軟磁性材を製造することができる。   Further, a wet solution such as a silica sol-gel (silicate) solution or an alumina sol-gel solution is added to the deposited film-coated iron powder of the present invention, followed by drying. After the compression mixture is compression-molded, an inert gas atmosphere or A composite soft magnetic material can be produced by firing at a temperature of 400 to 1300 ° C. in an oxidizing gas atmosphere.

さらに、この発明の堆積膜被覆鉄粉末に有機絶縁材料や無機絶縁材料、あるいは有機絶縁材料と無機絶縁材料との混合材料を混合して比抵抗および強度のさらに向上した複合軟磁性材を作製することができる。この場合、有機絶縁材料では、エポキシ樹脂やフッ素樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、フェノキシ樹脂、ユリア樹脂、イソシアネート樹脂、アクリル樹脂、ポリイミド樹脂,等を用いることができる。また無機絶縁材料では、リン酸鉄などのリン酸塩、各種ガラス状絶縁物、珪酸ソーダを主成分とする水ガラス、絶縁性酸化物、等を用いることができる。
また、この発明の堆積膜被覆鉄粉末に、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%を配合し混合したのち圧粉成形し、得られた圧粉成形体を温度:500〜1000℃で燒結することにより複合軟磁性材を作製することができる。このようにして作製した複合軟磁性材は、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%を含有し、残部がこの発明の堆積膜被覆鉄粉末からなる組成を有し、堆積膜と、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上とが反応した皮膜が形成される。
Further, a composite soft magnetic material having further improved specific resistance and strength is prepared by mixing the deposited film-coated iron powder of the present invention with an organic insulating material, an inorganic insulating material, or a mixed material of an organic insulating material and an inorganic insulating material. be able to. In this case, as the organic insulating material, epoxy resin, fluorine resin, phenol resin, urethane resin, silicone resin, polyester resin, phenoxy resin, urea resin, isocyanate resin, acrylic resin, polyimide resin, or the like can be used. As the inorganic insulating material, phosphates such as iron phosphate, various glassy insulators, water glass mainly composed of sodium silicate, insulating oxides, and the like can be used.
Further, one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide are added to the deposited film-coated iron powder of the present invention as B 2 O 3 , V 2 O 5 , Bi 2 O 3. , Sb 2 O 3 , MoO 3 in terms of 0.05 to 1% by mass, mixed and then compacted, and the compacted product obtained is sintered at a temperature of 500 to 1000 ° C. to form a composite soft magnetism A material can be produced. The composite soft magnetic material produced in this way is composed of one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide, B 2 O 3 , V 2 O 5 , Bi 2 O 3. , Sb 2 O 3 , MoO 3 in terms of 0.05 to 1% by mass, with the balance being composed of the deposited film-coated iron powder of the present invention, the deposited film, boron oxide, vanadium oxide, bismuth oxide A film is formed by reacting one or more of antimony oxide and molybdenum oxide.

また、この複合軟磁性材は、酸化硼素のゾル溶液または粉末、酸化バナジウムのゾル溶液または粉末、酸化ビスマスのゾル溶液または粉末、酸化アンチモンのゾル溶液または粉末および酸化モリブデンのゾル溶液または粉末の内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%、残部が前記この発明の堆積膜被覆鉄粉末からなる組成となるように配合し、混合し、乾燥して前記この発明の堆積膜被覆鉄粉末を酸化物乾燥ゲルまたは粉末からなる混合酸化物で被覆してなる混合堆積膜被覆鉄粉末を作製し、この混合堆積膜被覆鉄粉末を圧粉し、成形したのち、温度:500〜1000℃で燒結することにより得ることができる。
これらのこの発明の堆積膜被覆鉄粉末を用いて作製した高比抵抗を有する複合軟磁性材は、鉄粒子相とこの鉄粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト型相を含有する酸化物を含むことが好ましい。前記結晶質のMgO固溶ウスタイト型相はFeまたは/およびMgの一部をPで置換した場合もあるが、NaCl型結晶構造を有することが最も好ましい。
この発明の堆積膜被覆鉄粉末を用いて作製した複合軟磁性材は高密度、高強度、高比抵抗および高磁束密度を有し、この複合軟磁性材は、高磁束密度で高周波低鉄損の特徴を有することからこの特徴を生かした各種電磁気回路部品の材料として使用できる。前記電磁気回路部品は、磁心、電動機コア,発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサコアなどがある。そして、この発明の堆積膜被覆鉄粉末を用いた高抵抗を有する複合軟磁性材からなる電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、電気機器の高効率高性能化や小型軽量化を行うことができる。
Further, this composite soft magnetic material is composed of a boron oxide sol solution or powder, a vanadium oxide sol solution or powder, a bismuth oxide sol solution or powder, an antimony oxide sol solution or powder, and a molybdenum oxide sol solution or powder. 1 to 2 or more of B 2 O 3 , V 2 O 5 , Bi 2 O 3 , Sb 2 O 3 , MoO 3 in terms of 0.05 to 1% by mass, the balance being the deposited film-coated iron of the present invention A mixed deposited film-coated iron powder obtained by blending, mixing and drying so as to have a composition composed of powder and coating the deposited film-coated iron powder of the present invention with an oxide dry gel or a mixed oxide composed of powder. This mixed deposited film-coated iron powder is compacted and molded, and then sintered at a temperature of 500 to 1000 ° C. to obtain.
A composite soft magnetic material having a high specific resistance produced by using these deposited film-coated iron powders of the present invention comprises an iron particle phase and a grain boundary phase surrounding the iron particle phase. It is preferable to include an oxide containing a high-quality MgO solid solution wustite type phase. The crystalline MgO solid solution wustite type phase may have Fe or / and Mg partially substituted with P, but most preferably has an NaCl type crystal structure.
The composite soft magnetic material produced using the deposited film-coated iron powder of the present invention has high density, high strength, high specific resistance and high magnetic flux density. This composite soft magnetic material has high magnetic flux density, high frequency and low iron loss. Therefore, it can be used as a material for various electromagnetic circuit components utilizing this feature. Examples of the electromagnetic circuit component include a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, and a magnetic sensor core. And in electric equipment incorporating an electromagnetic circuit component made of a composite soft magnetic material having high resistance using the deposited film-coated iron powder of the present invention, an electric motor, a generator, a solenoid, an injector, an electromagnetically driven valve, an inverter, a converter There are transformers, relays, magnetic sensor systems, etc., and it is possible to improve the efficiency, performance, size and weight of electrical equipment.

この発明の堆積膜被覆鉄粉末をプレス成形して複合軟磁性材を製造すると、堆積膜は燐化鉄微粒子が素地中に分散していることから高度の靭性を有し、この堆積膜被覆鉄粉末をプレス成形しても成形中に膜が破壊することが少なく、したがって、得られた複合軟磁性材は高比抵抗を有することから低渦電流損失を有し、さらに保磁力が低いことから低ヒステリシス損失を有する複合軟磁性材を低コスト安定して作製することができ、電気・電子産業上優れた効果をもたらすものである。   When a composite soft magnetic material is produced by press molding the deposited film-coated iron powder of the present invention, the deposited film has a high degree of toughness because the iron phosphide fine particles are dispersed in the substrate. Even if the powder is press-molded, the film is less likely to break during molding. Therefore, the resulting composite soft magnetic material has high specific resistance, so it has low eddy current loss and low coercive force. A composite soft magnetic material having a low hysteresis loss can be produced stably at a low cost, and brings about an excellent effect in the electric and electronic industries.

実施例
原料粉末として、平均粒径:70μmを有する市販のリン酸塩被覆鉄粉末を用意し、さらに、平均粒径:50μmのMg粉末を用意した。前記リン酸塩被覆鉄粉末に対しMg粉末を、リン酸塩被覆鉄粉末:Mg粉末=99.8質量%:0.2質量%の割合で添加し混合して混合粉末を作製し、得られた混合粉末を温度:650℃、圧力:1×10−4MPa、1時間保持の条件で転動しながら加熱することにより鉄粉末の表面に堆積膜が被覆されている本発明堆積膜被覆鉄粉末を作製した。本発明堆積膜被覆鉄粉末に形成されている堆積膜の断面組織を透過電子顕微鏡で観察し、その透過電子顕微鏡組織写真を図1に示した。図1の写真から本発明堆積膜被覆鉄粉末に形成されている堆積膜の厚さと最大結晶粒径を求め、その結果を表1に示した。
Example Commercially available phosphate-coated iron powder having an average particle size of 70 μm was prepared as a raw material powder, and Mg powder having an average particle size of 50 μm was further prepared. Mg powder is added to the phosphate-coated iron powder at a ratio of phosphate-coated iron powder: Mg powder = 99.8% by mass: 0.2% by mass to prepare a mixed powder. The deposited powder coated iron of the present invention in which the deposited film is coated on the surface of the iron powder by heating the mixed powder while rolling under the conditions of temperature: 650 ° C., pressure: 1 × 10 −4 MPa, and holding for 1 hour. A powder was prepared. The cross-sectional structure of the deposited film formed on the deposited film-coated iron powder of the present invention was observed with a transmission electron microscope, and the transmission electron microscope structure photograph thereof is shown in FIG. The thickness and maximum crystal grain size of the deposited film formed on the deposited film-coated iron powder of the present invention were determined from the photograph of FIG. 1, and the results are shown in Table 1.

さらに、堆積膜の深さ方向のMg、O、PおよびFeの濃度分布をオージェ電子分光装置を用いて調べた結果を図2のグラフに示す。図2のグラフに示される結果から、堆積膜を構成する元素はMg、Fe、PおよびOであることが解った。   Furthermore, the graph of FIG. 2 shows the result of examining the concentration distribution of Mg, O, P and Fe in the depth direction of the deposited film using an Auger electron spectrometer. From the results shown in the graph of FIG. 2, it was found that the elements constituting the deposited film were Mg, Fe, P and O.

さらに、この本発明堆積膜被覆鉄粉末の表面に形成された堆積膜をX線光電子分光装置により分析を行ない、結合エネルギーを解析したところ、燐化鉄微粒子が素地中に分散していること、並びにMg、Fe、PおよびOからなるMg−Fe−P−O四元系リン酸塩化合物およびMg、FeおよびOからなるMg−Fe−O三元系酸化物が存在していることが解った。さらに本発明堆積膜被覆鉄粉末の表面に形成された堆積膜の電子線回折図形から、Mg、Fe、PおよびOからなるMg−Fe−P−O四元系リン酸塩化合物およびMg、FeおよびOからなるMg−Fe−O三元系酸化物は結晶質のMgO固溶ウスタイト型相を含有することが解った。   Furthermore, when the deposited film formed on the surface of the deposited film-coated iron powder of the present invention was analyzed by an X-ray photoelectron spectrometer and the binding energy was analyzed, the iron phosphide fine particles were dispersed in the substrate. And Mg—Fe—P—O quaternary phosphate compound composed of Mg, Fe, P and O and Mg—Fe—O ternary oxide composed of Mg, Fe and O are present. It was. Further, from the electron diffraction pattern of the deposited film formed on the surface of the deposited film-coated iron powder of the present invention, Mg—Fe—P—O quaternary phosphate compound composed of Mg, Fe, P and O and Mg, Fe It was found that the Mg—Fe—O ternary oxide composed of and O contains a crystalline MgO solid solution wustite type phase.

得られた本発明堆積膜被覆鉄粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の密度および比抵抗を測定してその結果を表1に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
さらに本発明堆積膜被覆鉄粉末を用いた複合軟磁性材を透過電子顕微鏡で観察したところ、鉄粒子相とこの鉄粒子相を包囲する粒界相が観察され、前記粒界相から得られた電子線回折図形から、粒界相には結晶質のMgO固溶ウスタイト型相を含有することが解った。
従来例
純鉄粉末の表面にMg含有フェライト層を化学的に形成した従来酸化物被覆鉄粉末を作製し、この従来酸化物被覆鉄粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼結を行い、板状およびリング状焼結体からなる複合軟磁性材を作製し、板状焼結体からなる複合軟磁性材の密度および比抵抗を測定してその結果を表1に示し、さらにリング状焼結体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
The obtained deposited film-coated iron powder of the present invention was put into a mold and press-molded to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, outer diameter: 35 mm, and inner diameter: 25 mm. A ring-shaped green compact having a height of 5 mm is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature of 500 ° C. and held for 30 minutes to form a plate and a ring. A composite soft magnetic material made of a body was prepared, the density and specific resistance of the composite soft magnetic material made of this plate-like fired body were measured, and the results are shown in Table 1. Further, the composite soft magnetic material made of a ring-like fired body The magnetic properties of magnetic flux density, coercive force, and magnetic loss such as iron loss at a magnetic flux density of 1.5 T and a frequency of 50 Hz, and iron loss at a magnetic flux density of 1.0 T and a frequency of 400 Hz are measured. The results are shown in Table 1.
Furthermore, when the composite soft magnetic material using the deposited film-coated iron powder of the present invention was observed with a transmission electron microscope, an iron particle phase and a grain boundary phase surrounding the iron particle phase were observed and obtained from the grain boundary phase. From the electron diffraction pattern, it was found that the grain boundary phase contains a crystalline MgO solid solution wustite type phase.
Conventional Example A conventional oxide-coated iron powder in which a Mg-containing ferrite layer is chemically formed on the surface of pure iron powder is prepared, and this conventional oxide-coated iron powder is placed in a mold and press-molded to obtain a length of 55 mm and a width. : A plate-shaped green compact having dimensions of 10 mm, thickness: 5 mm, and a ring-shaped green compact having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. Sintering was performed in a nitrogen atmosphere at a temperature of 500 ° C. for 30 minutes to produce a composite soft magnetic material composed of a plate-shaped and ring-shaped sintered body. The density and specific resistance were measured and the results are shown in Table 1. Further, the composite soft magnetic material made of a ring-shaped sintered body was wound, and the magnetic flux density, coercive force, magnetic flux density 1.5T, frequency 50 Hz Iron loss and magnetic flux density 1.0T, frequency 400H Measuring the magnetic properties such as iron loss at the time of, and the results are reported in Table 1.

Figure 2006307312
Figure 2006307312

表1に示される結果から、本発明堆積膜被覆鉄粉末を使用して作製した複合軟磁性材は、従来酸化物被覆鉄粉末を使用して作製した複合軟磁性材従来複合軟磁性材と比べて、密度については大差は無いが、本発明堆積膜被覆鉄粉末を使用して作製した複合軟磁性材は、従来酸化物被覆鉄粉末を使用して作製した複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することから、本発明堆積膜被覆鉄粉末は従来酸化物被覆鉄粉末と比べて一層優れた特性を有する複合軟磁性材を提供することができる軟磁性原料粉末であることが分かる。   From the results shown in Table 1, the composite soft magnetic material produced using the deposited film-coated iron powder of the present invention was compared with the composite soft magnetic material produced using the conventional oxide-coated iron powder and the conventional composite soft magnetic material. Although there is not much difference in density, the composite soft magnetic material produced using the deposited film-coated iron powder of the present invention has a higher magnetic flux than the conventional composite soft magnetic material produced using the oxide-coated iron powder. The deposited film-coated iron powder of the present invention has characteristics such as high density, low coercive force, and extremely high specific resistance, so that the iron loss is remarkably small, especially the iron loss decreases as the frequency increases. It can be seen that is a soft magnetic raw material powder that can provide a composite soft magnetic material having more excellent characteristics than conventional oxide-coated iron powder.

この発明の堆積膜被覆鉄粉末に形成されている堆積膜の断面組織の透過電子顕微鏡写真である。It is a transmission electron micrograph of the cross-sectional structure | tissue of the deposited film currently formed in the deposited film coating iron powder of this invention. この発明の堆積膜被覆鉄粉末に形成されている堆積膜の深さ方向のMg、O、PおよびFeの濃度分布をオージェ電子分光装置を用いて調べたグラフである。It is the graph which investigated the density | concentration distribution of Mg, O, P, and Fe of the depth direction of the deposited film formed in the deposited film coating iron powder of this invention using the Auger electron spectrometer.

Claims (9)

Mg、Fe、PおよびOからなる堆積膜が鉄粉末の表面に被覆されていることを特徴とする堆積膜被覆鉄粉末。 A deposited film-coated iron powder, characterized in that a deposited film composed of Mg, Fe, P and O is coated on the surface of the iron powder. 前記堆積膜は、Mg、Fe、PおよびOからなるMg−Fe−P−O四元系リン酸塩化合物およびMg、FeおよびOからなるMg−Fe−O三元系酸化物を含みかつ素地中に燐化鉄微粒子が分散していることを特徴とする請求項1記載の堆積膜被覆鉄粉末。 The deposited film contains a Mg—Fe—P—O quaternary phosphate compound composed of Mg, Fe, P and O and a Mg—Fe—O ternary oxide composed of Mg, Fe and O and 2. The deposited film-coated iron powder according to claim 1, wherein fine particles of iron phosphide are dispersed therein. 前記堆積膜に含まれるMg−Fe−P−O四元系リン酸塩化合物およびMg−Fe−O三元系酸化物には結晶質のMgO固溶ウスタイト型相が含まれていることを特徴とする請求項1または2記載の堆積膜被覆鉄粉末。 The Mg—Fe—P—O quaternary phosphate compound and the Mg—Fe—O ternary oxide contained in the deposited film contain a crystalline MgO solid solution wustite phase. The deposited film-coated iron powder according to claim 1 or 2. 前記堆積膜は、結晶粒径:200nm以下の微細結晶組織を有することを特徴とする請求項1、2または3記載の堆積膜被覆鉄粉末。 The deposited film-coated iron powder according to claim 1, 2 or 3, wherein the deposited film has a fine crystal structure of crystal grain size: 200 nm or less. 請求項1、2、3または4記載の堆積膜被覆鉄粉末を用いて作製した高比抵抗を有する複合軟磁性材。 A composite soft magnetic material having a high specific resistance produced by using the deposited film-coated iron powder according to claim 1, 2, 3 or 4. 鉄粒子相とこの鉄粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト型相を含有する酸化物を含むことを特徴とする請求項5の複合軟磁性材。 6. The composite softening according to claim 5, comprising an iron particle phase and a grain boundary phase surrounding the iron particle phase, wherein the grain boundary phase contains an oxide containing a crystalline MgO solid solution wustite type phase. Magnetic material. 請求項5または6記載の複合軟磁性材からなる電磁気回路部品。 An electromagnetic circuit component comprising the composite soft magnetic material according to claim 5. 前記電磁気回路部品は、磁心、電動機コア,発電機コア,ソレノイドコア,イグニッションコア,リアクトル,トランス,チョークコイルコアまたは磁気センサコアであることを特徴とする請求項7記載の電磁気回路部品。 8. The electromagnetic circuit component according to claim 7, wherein the electromagnetic circuit component is a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, or a magnetic sensor core. 請求項7または8前記電磁気回路部品を組み込んだ電気機器。 9. An electric device incorporating the electromagnetic circuit component.
JP2005158893A 2005-01-25 2005-05-31 Deposited film-coated iron powder Active JP5027390B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005158893A JP5027390B2 (en) 2005-03-28 2005-05-31 Deposited film-coated iron powder
CA002598842A CA2598842A1 (en) 2005-01-25 2005-11-02 Iron powder coated with mg-containing oxide film
US11/814,603 US9269481B2 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
EP12172935.4A EP2502689B8 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
EP10172637.0A EP2248617B1 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
CN2005800491939A CN101142044B (en) 2005-01-25 2005-11-02 Iron powder coated with mg-containing oxide film
PCT/JP2005/020204 WO2006080121A1 (en) 2005-01-25 2005-11-02 Mg-CONTAINING OXIDE COATED IRON POWDER
EP05805498A EP1852199B1 (en) 2005-01-25 2005-11-02 Mg-CONTAINING OXIDE COATED IRON POWDER
US13/228,139 US8481178B2 (en) 2005-01-25 2011-09-08 Iron powder coated with Mg-containing oxide film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005091053 2005-03-28
JP2005091053 2005-03-28
JP2005158893A JP5027390B2 (en) 2005-03-28 2005-05-31 Deposited film-coated iron powder

Publications (2)

Publication Number Publication Date
JP2006307312A true JP2006307312A (en) 2006-11-09
JP5027390B2 JP5027390B2 (en) 2012-09-19

Family

ID=37474524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158893A Active JP5027390B2 (en) 2005-01-25 2005-05-31 Deposited film-coated iron powder

Country Status (1)

Country Link
JP (1) JP5027390B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115309A (en) * 1986-11-04 1988-05-19 Tdk Corp Magnetic alloy powder
JPH06260319A (en) * 1993-03-08 1994-09-16 Kobe Steel Ltd Dust core for high frequency and manufacture thereof
JPH07179982A (en) * 1993-12-24 1995-07-18 Toshiba Electron Eng Corp Soft-magnetic sintered alloy reduced in coercive force and residual magnetic flux density and its production and convergence yoke using the same alloy
JPH111702A (en) * 1997-06-11 1999-01-06 Kawasaki Steel Corp Manufacture of ferrous metal-ferritic oxide composite powder
JP2001254168A (en) * 2000-03-10 2001-09-18 Kinya Adachi Surface rust prevention and performance improving treatment of magnetic material
JP2003197416A (en) * 2001-12-26 2003-07-11 Daido Steel Co Ltd Method of manufacturing powder magnetic core, and powder magnetic core manufactured by the method
JP2003522298A (en) * 2000-02-11 2003-07-22 ホガナス アクチボラゲット Iron powder and method for producing the same
JP2004297036A (en) * 2002-12-04 2004-10-21 Mitsubishi Materials Corp Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115309A (en) * 1986-11-04 1988-05-19 Tdk Corp Magnetic alloy powder
JPH06260319A (en) * 1993-03-08 1994-09-16 Kobe Steel Ltd Dust core for high frequency and manufacture thereof
JPH07179982A (en) * 1993-12-24 1995-07-18 Toshiba Electron Eng Corp Soft-magnetic sintered alloy reduced in coercive force and residual magnetic flux density and its production and convergence yoke using the same alloy
JPH111702A (en) * 1997-06-11 1999-01-06 Kawasaki Steel Corp Manufacture of ferrous metal-ferritic oxide composite powder
JP2003522298A (en) * 2000-02-11 2003-07-22 ホガナス アクチボラゲット Iron powder and method for producing the same
JP2001254168A (en) * 2000-03-10 2001-09-18 Kinya Adachi Surface rust prevention and performance improving treatment of magnetic material
JP2003197416A (en) * 2001-12-26 2003-07-11 Daido Steel Co Ltd Method of manufacturing powder magnetic core, and powder magnetic core manufactured by the method
JP2004297036A (en) * 2002-12-04 2004-10-21 Mitsubishi Materials Corp Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Also Published As

Publication number Publication date
JP5027390B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2502689B1 (en) Iron powder coated with Mg-containing oxide film
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
KR101152042B1 (en) Powder magnetic core and production method thereof
JP4430607B2 (en) Method for producing surface high Si layer coated iron powder
KR20070049670A (en) Method for producing soft magnetic metal powder coated with mg-containing oxidized film and method for producing composite soft magnetic material using said powder
JP2008244347A (en) Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4480015B2 (en) Laminated oxide film coated iron powder
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP2011202213A (en) Soft magnetic powder for magnetic green compact, magnetic green compact using the same and method for producing the same
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
JP4367709B2 (en) Laminated oxide film coated iron powder
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
JP5027390B2 (en) Deposited film-coated iron powder
JP2006324612A (en) Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder
WO2007052772A1 (en) Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
JP4480627B2 (en) Composite soft magnetic powder and method for producing the same
JPH10208923A (en) Composite magnetic material and production thereof
JP4480628B2 (en) Composite soft magnetic powder and method for producing the same
JP4748772B2 (en) Oxide film-coated iron powder and method for producing the same
JP2008088537A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM HAVING LOW RETENTION FORCE AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL HAVING LOW RETENTION FORCE FROM THE POWDER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250