JP4883755B2 - Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment - Google Patents

Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment Download PDF

Info

Publication number
JP4883755B2
JP4883755B2 JP2005319247A JP2005319247A JP4883755B2 JP 4883755 B2 JP4883755 B2 JP 4883755B2 JP 2005319247 A JP2005319247 A JP 2005319247A JP 2005319247 A JP2005319247 A JP 2005319247A JP 4883755 B2 JP4883755 B2 JP 4883755B2
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
iron
oxide film
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005319247A
Other languages
Japanese (ja)
Other versions
JP2007070719A (en
Inventor
宗明 渡辺
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2005319247A priority Critical patent/JP4883755B2/en
Priority to PCT/JP2006/322028 priority patent/WO2007052772A1/en
Publication of JP2007070719A publication Critical patent/JP2007070719A/en
Application granted granted Critical
Publication of JP4883755B2 publication Critical patent/JP4883755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、Mg,Si,FeおよびOからなる酸化膜がFe−Si系鉄基軟磁性粉末の表面に被覆されてなる酸化膜被覆Fe−Si系鉄基軟磁性粉末およびその製造方法に関するものであり、この酸化膜被覆Fe−Si系鉄基軟磁性粉末を用いて作製した複合軟磁性材は低鉄損を必要とする各種電磁気回路部品、例えば、モータ、アクチュエータ、ヨーク、コア、リアクトルなどの各種電磁気部品の素材として使用される。 The present invention, Mg, Si, Fe and O Tona Ru oxidation film Fe-Si Keitetsumoto soft surface coated with Na Ru oxidation film-coated powder Fe-Si Keitetsumoto soft magnetic powder and and a method for manufacturing, prepared using the oxidation film coated Fe-Si Keitetsumoto soft magnetic powder of this composite soft magnetic material various electromagnetic circuit components that require low iron loss, for example, a motor, an actuator, Used as a material for various electromagnetic parts such as yokes, cores and reactors.

一般に、各種電磁気回路部品に使用される軟磁性材は、鉄損が小さいことが要求されるため、電気抵抗を高くして渦電流損を低減させ、保磁力を小さくしてヒステリシス損を低減させることは知られている。さらに、近年、電磁気回路の小型化、高応答化が求められているところから、磁束密度がより高いことも重要視されている。   In general, soft magnetic materials used in various electromagnetic circuit components are required to have low iron loss. Therefore, electrical resistance is increased to reduce eddy current loss, and coercive force is reduced to reduce hysteresis loss. It is known. Furthermore, in recent years, since the miniaturization and high response of the electromagnetic circuit have been demanded, higher magnetic flux density is also regarded as important.

かかる高比抵抗を有する軟磁性材料を製造するための原料粉末の一例としてSi:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性粉末が知られており、さらにこのFe−Si系鉄基軟磁性粉末の表面に高抵抗物質を被覆した軟磁性粉末も知られている。これら表面に高抵抗物質を形成した軟磁性粉末は圧縮成形され、得られた圧粉体を焼結して軟磁性粒子間に高抵抗物質が介在する組織を有し高比抵抗を有する複合軟磁性材料を製造する方法も知られている(特許文献1参照)。
特開平5−258934号公報
As an example of a raw material powder for producing a soft magnetic material having such a high specific resistance, an Fe—Si-based iron-based soft magnetic powder containing Si: 0.1 to 10% by mass with the balance being Fe and inevitable impurities is provided. Further, a soft magnetic powder in which the surface of this Fe—Si-based iron-based soft magnetic powder is coated with a high resistance substance is also known. The soft magnetic powder having a high resistance material formed on the surface is compression-molded, and the obtained green compact is sintered to have a structure in which the high resistance material is interposed between the soft magnetic particles and has a high specific resistance. A method of manufacturing a magnetic material is also known (see Patent Document 1).
JP-A-5-258934

前記Fe−Si系鉄基軟磁性粉末の表面に形成される高抵抗物質の一例としてMg含有フェライト酸化膜が考えられるが、このMg含有フェライト酸化膜を被覆した酸化膜被覆Fe−Si系鉄基軟磁性粉末をプレス成形して圧粉体を作製し、この圧粉体に高温歪取り焼成を施しても十分な高比抵抗が得られない。その理由として、一般にMg含有フェライトは熱に対して不安定であり、熱を加えるとフェライト構造が変化して絶縁性が低下しやすく、そのために得られた複合軟磁性材は絶縁性が低下する。さらに、従来のMg含有フェライト酸化膜を被覆したFe−Si系鉄基軟磁性粉末は表面にMg含有フェライト酸化膜を化学的方法により被覆するために、Fe−Si系鉄基軟磁性粉末の表面に対するMg含有フェライト酸化膜の密着性が十分でなく、従来のMg含有フェライト酸化膜を被覆したFe−Si系鉄基軟磁性粉末をプレス成形し焼成することにより作製した複合軟磁性材はプレス成形中にMg含有フェライト酸化膜が剥離したり破れるなどして十分な絶縁効果が発揮できず、したがって、十分な高比抵抗が得られないという欠点があった。   As an example of the high resistance material formed on the surface of the Fe-Si based iron-based soft magnetic powder, an Mg-containing ferrite oxide film can be considered. The oxide-coated Fe-Si based iron base coated with this Mg-containing ferrite oxide film is conceivable. Even if a green compact is produced by press-molding a soft magnetic powder, and the green compact is subjected to high-temperature distortion removal firing, a sufficient high specific resistance cannot be obtained. The reason for this is that Mg-containing ferrite is generally unstable with respect to heat, and when heat is applied, the ferrite structure changes and the insulation is likely to deteriorate, and the resulting composite soft magnetic material has a poor insulation. . Furthermore, the conventional Fe-Si-based iron-based soft magnetic powder coated with a Mg-containing ferrite oxide film is coated with a Mg-containing ferrite oxide film by a chemical method. The composite soft magnetic material produced by press-molding and firing a Fe-Si based iron-based soft magnetic powder coated with a conventional Mg-containing ferrite oxide film is not press-bonded. The Mg-containing ferrite oxide film is peeled off or torn, so that a sufficient insulating effect cannot be exerted. Therefore, there is a drawback that a sufficiently high specific resistance cannot be obtained.

そこで、本発明者らは、プレス成形してもプレス成形時にFe−Si系鉄基軟磁性粉末表面の高抵抗酸化膜が破れることが無く表面に高抵抗物質膜が強固に密着し、さらにプレス成形後に高温歪取り焼成を行っても表面の絶縁性が低下することなく高抵抗で渦電流損失が低く、さらに保磁力が一層低減できてヒステリシス損失が低くなる酸化膜被覆Fe−Si系鉄基軟磁性粉末を得るべく研究を行った。   Therefore, the present inventors do not break the high resistance oxide film on the surface of the Fe-Si-based iron-based soft magnetic powder even during press molding, and the high resistance material film adheres firmly to the surface. High-resistance, low eddy current loss without lowering surface insulation even after high-temperature strain relief firing after molding, and further reduced coercive force to lower hysteresis loss. Fe-Si based iron base Research was conducted to obtain soft magnetic powder.

その結果、Fe−Si系鉄基軟磁性粉末またはFe粉末にSi粉末を添加し混合したのち非酸化性雰囲気中で加熱することにより予め前記Fe−Si系鉄基軟磁性粉末またはFe粉末の表面に前記Fe−Si系鉄基軟磁性粉末またはFe粉末に含まれるSiよりも高濃度のSiを含む高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末を作製し、得られた高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末を酸化処理することにより高濃度Si拡散層の上に酸化層を有する表面酸化高濃度Fe−Si系鉄基軟磁性原料粉末を作製し、この表面酸化高濃度Fe−Si系鉄基軟磁性原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱すると、Fe−Si系鉄基軟磁性粉末の表面にMg,Si,FeおよびOからなる酸化膜が形成され、
(イ)このMg,Si,FeおよびOからなる酸化膜に含まれるMgは最表面に近いほどMg含有量が増加するMgの濃度勾配を有し、Oは最表面に近いほどO含有量が増加するOの濃度勾配を有し、一方、Feは最表面に近いほどFe含有量が減少する濃度勾配を有し、Siは酸化膜の最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有する、
(ロ)前記Mg、Si、FeおよびOからなる酸化膜には、素地中に、MgおよびOが結晶質のMgO固溶ウスタイト(MgOがウスタイト(FeO)に固溶している物質)型相を含まれており、FeおよびSiの一部は金属FeまたはFe−Si合金として含まれており、前記Mg、Si、FeおよびOからなる酸化膜は金属Feを含むために靭性を有し、圧粉成形時の粉末の変形に追従しやすい、
(ハ)前記Mg、Si、FeおよびOからなる酸化膜は、結晶粒径:200nm以下の微細結晶組織を有するために靭性を有し、圧粉成形時の粉末の変形に追従しやすい、などの研究結果が得られ、
この表面にMg,Si,FeおよびOからなる酸化膜が形成された酸化膜被覆Fe−Si系鉄基軟磁性粉末は、従来のFe−Si系鉄基軟磁性粉末の表面にMg含有フェライト酸化膜を形成したMg含有フェライト酸化膜被覆Fe−Si系鉄基軟磁性粉末に比べてFe−Si系鉄基軟磁性粉末に対する酸化膜の密着性が格段に優れることから、プレス成形中に絶縁皮膜である酸化膜が破壊されてFe−Si系鉄基軟磁性粉末同士が接触することが少なく、また前記Mg,Si,FeおよびOからなる酸化膜はMg含有フェライト酸化膜に比べて化学的に安定であることから、プレス成形後に高温歪取り焼成を行っても酸化膜の絶縁性が低下することなく高抵抗を維持することができて渦電流損失が低くなり、さらに歪取り焼成を行った場合に、より保磁力が低減できることからヒステリシス損失を低く抑えることができ、したがって、低鉄損を有する複合軟磁性材料が得られるという研究結果が得られたのである。
As a result, the surface of the Fe-Si-based iron-based soft magnetic powder or Fe powder is preliminarily prepared by adding Si powder to the Fe-Si-based iron-based soft magnetic powder or Fe powder, and then heating in a non-oxidizing atmosphere. The Fe-Si iron-based soft magnetic powder or the Fe-Si iron-based soft magnetic powder having a high-concentration Si diffusion layer containing Si at a higher concentration than Si contained in the Fe powder was obtained. A surface-oxidized high-concentration Fe-Si iron-based soft magnetic raw material powder having an oxide layer on a high-concentration Si diffusion layer was prepared by oxidizing a Fe-Si-based iron-based soft magnetic powder having a concentration Si diffusion layer. The mixed powder obtained by adding and mixing Mg powder to this surface oxidized high concentration Fe—Si based iron-based soft magnetic raw material powder was temperature: 150 to 1100 ° C., pressure: 1 × 10 −12 to 1 × 10 − 1 MPa inert gas atmosphere or When heated in a vacuum atmosphere, Mg, Si, Fe and O Tona Ru oxidation film is formed on the surface of the Fe-Si Keitetsumoto soft magnetic powder,
(B) The Mg, Mg contained Si, the Fe and O Tona Ru oxidation film has a concentration gradient of Mg increases as the Mg content near the outermost surface, O is O content closer to the outermost surface a concentration gradient of O amount is increased, whereas, Fe has a concentration gradient that decreases as the Fe content close to the outermost surface, Si is Si contained closer to the outermost surface at the outermost surface near the oxidation film Having a Si concentration gradient with increasing amounts;
(Ii) the Mg, Si, and Fe and O Tona Ru oxidation film, in the matrix, Mg and O MgO solid solution wustite crystalline (substances MgO is dissolved in the wustite (FeO)) includes the mold phase, part of Fe and Si are included as a metal Fe, or Fe-Si alloy, toughness the Mg, Si, Fe and O Tona Ru acid film is to include a metal Fe Easy to follow the deformation of the powder during compacting,
(C) the Mg, Si, Fe and O Tona Ru acid film, the crystal grain size: have toughness in order to have a 200nm or less fine crystalline structure, easy to follow the deformation of the powder during compacting , And so on,
Mg on the surface, Si, Fe and O Tona Ru oxidation film oxidation film formed coated Fe-Si Keitetsumoto soft magnetic powder, Mg on the surface of a conventional Fe-Si Keitetsumoto soft magnetic powder Compared to Mg-containing ferrite oxide film-coated Fe-Si iron-based soft magnetic powder with a ferrite oxide film formed, the adhesion of the oxide film to Fe-Si iron-based soft magnetic powder is much better, the insulating film in which oxide film is destroyed Fe-Si Keitetsumoto soft magnetic powder less likely to contact each other, also the Mg, Si, Fe and O Tona Ru acid film on the Mg-containing ferrite oxide film Compared to chemical stability, high resistance can be maintained without lowering the insulating properties of the oxide film even if high temperature strain relief firing is performed after press forming, resulting in low eddy current loss and further distortion. When removing and firing More hysteresis losses because the coercive force can be reduced can be kept low, thus, is the finding that a composite soft magnetic material having a low core loss can be obtained is obtained.

この発明は、これら研究結果に基づいてなされたものであって、
(1)Fe−Si系鉄基軟磁性粉末の表面にMg,Si,FeおよびOからなる酸化膜が形成されており、かつ前記表面層が粉末全体に含まれるSi組成よりも高濃度のSiを含む高濃度Si拡散表面層であって、前記Mg,Si,FeおよびOからなる酸化膜は、表面に向かってMgおよびO含有量が増加し、表面に向かってFe含有量が減少し、Siは酸化膜の最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有する酸化膜被覆Fe−Si系鉄基軟磁性粉末、
(2)前記Fe−Si系鉄基軟磁性粉末は、Si:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する前記(1)記載の酸化膜被覆Fe−Si系鉄基軟磁性粉末、
(3)前記Mg,Si,FeおよびOからなる酸化膜には、結晶質のMgO固溶ウスタイト型相として含まれており、金属FeまたはFe−Si合金が含まれている前記(1)または(2)記載の酸化膜被覆Fe−Si系鉄基軟磁性粉末、
(4)前記Mg,Si,FeおよびOからなる酸化膜は、平均結晶粒径:200nm以下の微細結晶組織を有する前記(1)、(2)または(3)記載の酸化膜被覆Fe−Si系鉄基軟磁性粉末、に特徴を有するものである。
This invention was made based on these research results,
(1) Fe-Si Keitetsumoto Mg on the surface of the soft magnetic powder, Si, a higher concentration than the Si composition Fe and O Tona Ru oxidation film is formed, and the surface layer is contained in the entire powder A high-concentration Si diffusion surface layer containing Si, wherein the Mg, Si, Fe and O oxide film increases in Mg and O content toward the surface and decreases in Fe content toward the surface and, Si is oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder having a concentration gradient of Si Si content closer to the outermost surface increases in the outermost surface near the oxide film,
(2) the Fe-Si Keitetsumoto soft magnetic powder, Si: contains 0.1 to 10 mass%, the having a component composition and the balance being Fe and inevitable impurities (1) oxidation film coating according Fe-Si based iron-based soft magnetic powder,
(3) the Mg, Si, the Fe and O Tona Ru oxidation film is included as MgO solid solution wustite phase-crystalline, the contains a metal Fe, or Fe-Si alloy (1 ) or (2) oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder according,
(4) the Mg, Si, Fe and O Tona Ru acid film has an average crystal grain size: the having 200nm or less fine crystalline structure (1), (2) or (3) oxidation film coating according Fe—Si-based iron-based soft magnetic powder.

この発明のFe−Si系鉄基軟磁性粉末の表面にMg,Si,FeおよびOからなる酸化膜が形成されている酸化膜被覆Fe−Si系鉄基軟磁性粉末を製造するには、まず、Fe−Si系鉄基軟磁性粉末にSi粉末を添加し混合したのち非酸化性雰囲気中で加熱することにより前記Fe−Si系鉄基軟磁性粉末の表面に前記Fe−Si系鉄基軟磁性粉末に含まれるSiよりも高濃度のSiを含む高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末を作製し、得られた高濃度Si拡散層部分を有するFe−Si系鉄基軟磁性粉末を酸化処理することにより前記高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末を作製し、この表面酸化Fe−Si系鉄基軟磁性原料粉末にMg粉末を添加し混合して混合粉末を作製し、得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱することにより得られる。
また、前記Fe−Si系鉄基軟磁性粉末の表面にFe−Si系鉄基軟磁性粉末に含まれるSiよりも高濃度のSiを含む高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末は、Fe粉末にSi粉末を添加し混合したのち非酸化性雰囲気中で加熱し、Fe粉末にSiを拡散浸透させることにより得ることができる。
On the surface of the Fe-Si Keitetsumoto soft magnetic powder of the present invention Mg, Si, in the production of oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder that has Fe and O Tona Ru oxidation film is formed First, Si powder is added to Fe-Si-based iron-based soft magnetic powder, mixed, and then heated in a non-oxidizing atmosphere to thereby form the Fe-Si-based soft magnetic powder on the surface of the Fe-Si-based iron-based soft magnetic powder. Fe—Si-based iron-based soft magnetic powder having a high-concentration Si diffusion layer containing Si at a higher concentration than Si contained in the iron-based soft magnetic powder was prepared, and Fe— By oxidizing the Si-based iron-based soft magnetic powder, a surface-oxidized Fe-Si-based iron-based soft magnetic raw material powder having an oxide layer on the high-concentration Si diffusion layer is produced, and this surface-oxidized Fe-Si-based iron is produced. Add the Mg powder to the base soft magnetic raw material powder and mix to obtain the mixed powder. Papermaking, mixed powder obtained temperature: from 150 to 1,100 ° C., pressure: obtained by heating at 1 × 10-12~1 × inert gas atmosphere or vacuum atmosphere 10-1MPa.
The Fe-Si iron-based soft magnetic powder has a high-concentration Si diffusion layer containing Si at a higher concentration than Si contained in the Fe-Si-based iron-based soft magnetic powder on the surface of the Fe-Si-based iron-based soft magnetic powder. The magnetic powder can be obtained by adding and mixing Si powder to Fe powder, heating in a non-oxidizing atmosphere, and diffusing and infiltrating Si into Fe powder.

したがって、この発明は、
(5)Fe−Si系鉄基軟磁性粉末またはFe粉末にSi粉末を添加し混合したのち非酸化性雰囲気中で加熱することによりFe−Si系鉄基軟磁性粉末またはFe粉末の表面に前記Fe−Si系鉄基軟磁性粉末またはFe粉末に含まれるSiよりも高濃度のSiを含む高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末を作製し、得られた高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末を酸化処理することにより高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末を作製し、この高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱する酸化膜被覆Fe−Si系鉄基軟磁性粉末の製造方法、
前記高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末の酸化処理は、軟磁性金属粉末を酸化雰囲気中、温度:50〜500℃で加熱処理である酸化膜被覆Fe−Si系鉄基軟磁性粉末の製造方法、に特徴を有するものである。
Therefore, the present invention
(5) The Fe-Si-based iron-based soft magnetic powder or Fe powder is mixed with Si powder, and then heated in a non-oxidizing atmosphere to thereby form the Fe-Si-based iron-based soft magnetic powder or Fe powder on the surface. Fe-Si-based iron-based soft magnetic powder or Fe-Si-based iron-based soft magnetic powder having a high-concentration Si diffusion layer containing Si at a higher concentration than Si contained in Fe powder was prepared, and the obtained high-concentration Si A surface-oxidized Fe-Si-based iron-based soft magnetic raw material powder having an oxide layer on a high-concentration Si diffusion layer is produced by oxidizing a Fe-Si-based iron-based soft magnetic powder having a diffusion layer. A mixed powder obtained by adding and mixing Mg powder to a surface-oxidized Fe—Si-based iron-based soft magnetic raw material powder having an oxide layer on the Si diffusion layer is temperature: 150 to 1100 ° C., pressure: 1 × 10 − 12-1 × 10-1 MPa inert gas A method for producing an oxide film-coated Fe-Si-based iron-based soft magnetic powder heated in an atmosphere or vacuum atmosphere,
The oxidation treatment of the Fe—Si based iron-based soft magnetic powder having the high-concentration Si diffusion layer is performed by heating the soft magnetic metal powder in an oxidizing atmosphere at a temperature of 50 to 500 ° C. the method of manufacturing based soft magnetic powder, and it has the characteristics to.

一般に、「酸化膜」という用語は、真空蒸発やスパッタされた皮膜構成原子が例えば基板上に堆積した酸化皮膜を示すこともあるが、この発明のFe−Si系鉄基軟磁性粉末の表面に形成されているMg,Si,FeおよびOからなる酸化膜は、Fe−Si系鉄基軟磁性粉末表面のSiおよびMgが反応を伴って当該Fe−Si系鉄基軟磁性粉末表面に形成された皮膜を示す。そして、このFe−Si系鉄基軟磁性粉末の表面に形成されているMg,Si,FeおよびOからなる酸化膜の膜厚は、圧粉成形し焼成して得られた複合軟磁性材の高磁束密度と高比抵抗を得るために、5nm〜500nmの範囲内にあることが好ましい。膜厚が5nmより薄いと圧粉成形した複合軟磁性材の比抵抗が充分でなく渦電流損が増加するので好ましくなく、一方、膜厚が500nmより厚いと圧粉成形した複合軟磁性材の磁束密度が低下して好ましくないからである。さらに好ましい膜厚は5nm〜200nmの範囲内である。 In general, the term "oxidation film" is sometimes show an oxide film deposited in vacuum evaporation or sputtered film constituent atoms, for example, on the substrate, the Fe-Si Keitetsumoto soft magnetic powder of the present invention Mg formed on the surface, Si, Fe and O Tona Ru acid film is, Fe-Si Keitetsumoto soft the Si and Mg powder surface with a reaction Fe-Si Keitetsumoto soft magnetic powder The film formed on the surface is shown. The film thickness of the Fe-Si Keitetsumoto Mg formed on the surface of the soft magnetic powder, Si, Fe and O Tona Ru oxidation film, a composite soft magnetic obtained by compacting and sintering In order to obtain a high magnetic flux density and a high specific resistance of the material, it is preferably in the range of 5 nm to 500 nm. If the film thickness is less than 5 nm, the specific resistance of the powder-molded composite soft magnetic material is not sufficient and the eddy current loss increases. On the other hand, if the film thickness is thicker than 500 nm, it is not preferable. This is because the magnetic flux density is lowered, which is not preferable. A more preferable film thickness is in the range of 5 nm to 200 nm.

前記(1)〜(4)の酸化膜被覆Fe−Si系鉄基軟磁性粉末の表面に形成されているMg,Si,FeおよびOからなる酸化膜は、その結晶粒が微細であるほど好ましく、結晶粒径が200nm以下の微細結晶組織を有する事が好ましい。この様な微細結晶組織を有することにより、圧粉成形時の粉末の変形に微結晶酸化膜が追従して被覆の破れを防止することができ、焼成時にもFe−Si系鉄基軟磁性粉末同士の接触結合を防止することができ、また、高温歪取り焼成を行っても酸化物が安定で絶縁性低下が防止でき高抵抗で渦電流損失が低くなる。結晶粒径が200nmより大きいと圧粉成形した複合軟磁性材の磁束密度が低下するようになるので好ましくない。 Wherein (1) to (4) oxidation film-coated Fe-Si Keitetsumoto Mg formed on the surface of the soft magnetic powder, Si, Fe and O Tona Ru acid film of, its crystal grains fine It is more preferable that the crystal grain size has a fine crystal structure of 200 nm or less. By having such a fine crystal structure, can be the deformation of the powder during compacting is Biyui Akirasan monolayer to prevent breaking to cover follow, even during sintering Fe-Si Keitetsumoto軟Contact bonding between magnetic powders can be prevented, and even when high-temperature strain relief firing is performed, the oxide is stable and insulation deterioration can be prevented, and eddy current loss is reduced with high resistance. If the crystal grain size is larger than 200 nm, the magnetic flux density of the compacted composite soft magnetic material is lowered, which is not preferable.

前記(1)〜(4)の酸化膜被覆Fe−Si系鉄基軟磁性粉末を製造する際に使用するFe−Si系鉄基軟磁性粉末の平均粒径は5〜500μmの範囲内にある粉末を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、粉末の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、粉末内部の渦電流が増大して高周波における透磁率が低下することによるものである。 Wherein (1) to an average particle size of Fe-Si Keitetsumoto soft magnetic powder to be used in making the oxidation film coated Fe-Si Keitetsumoto soft magnetic powder (4) is in the range of 5~500μm It is preferred to use a certain powder. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the powder is lowered, so the value of the magnetic flux density is lowered. On the other hand, the average particle size is less than 500 μm. If it is too large, the eddy current inside the powder increases and the magnetic permeability at high frequency decreases.

前述のこの発明の酸化膜被覆Fe−Si系鉄基軟磁性粉末に有機絶縁材料や無機絶縁材料、あるいは有機絶縁材料と無機絶縁材料との混合材料を混合して比抵抗および強度のさらに向上した複合軟磁性材を作製することができる。この場合、有機絶縁材料では、エポキシ樹脂やフッ素樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、フェノキシ樹脂、ユリア樹脂、イソシアネート樹脂、アクリル樹脂、ポリイミド樹脂、PPS樹脂,等を用いることができる。また無機絶縁材料では、リン酸鉄などのリン酸塩、各種ガラス状絶縁物、珪酸ソーダを主成分とする水ガラス、絶縁性酸化物、等を用いることができる。
また、この発明の酸化膜被覆Fe−Si系鉄基軟磁性粉末を圧粉成形し、得られた圧粉成形体を温度:500〜1000℃で燒結することにより複合軟磁性材を作製することができる。
Further improvement in oxidation film-coated Fe-Si Keitetsumoto soft organic insulating material or an inorganic insulating material powder or an organic insulating material and mixed and the specific resistance and strength a mixed material of an inorganic insulating material, of the present invention described above The composite soft magnetic material can be produced. In this case, as the organic insulating material, epoxy resin, fluorine resin, phenol resin, urethane resin, silicone resin, polyester resin, phenoxy resin, urea resin, isocyanate resin, acrylic resin, polyimide resin, PPS resin, or the like can be used. . As the inorganic insulating material, phosphates such as iron phosphate, various glassy insulators, water glass mainly composed of sodium silicate, insulating oxides, and the like can be used.
Also, the oxidation film coated Fe-Si Keitetsumoto soft magnetic powder of the present invention was compacted, temperature and the resulting green compact: preparing a composite soft magnetic material by sintering at 500 to 1000 ° C. be able to.

この発明の酸化膜被覆Fe−Si系鉄基軟磁性粉末を用いて作製した複合軟磁性材は高密度、高強度、高比抵抗および高磁束密度を有し、この複合軟磁性材は、高磁束密度で高周波低鉄損の特徴を有する事からこの特徴を生かした各種電磁気回路部品の材料として使用できる。前記電磁気回路部品は、磁心、電動機コア,発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサコアなどがある。そして、この発明の酸化膜被覆Fe−Si系鉄基軟磁性粉末を用いた高抵抗を有する複合軟磁性材からなる電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、電気機器の高効率高性能化や小型軽量化を行うことができる。 The oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder composite soft magnetic material produced by using the invention a high density, high strength, has a high resistivity and high magnetic flux density, the composite soft magnetic material, Since it has the characteristics of high magnetic flux density and high frequency and low iron loss, it can be used as a material for various electromagnetic circuit components that make use of this characteristic. Examples of the electromagnetic circuit component include a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, and a magnetic sensor core. And the electric equipment incorporating the electromagnetic circuit component made of the composite soft magnetic material having high resistance using the oxide film-coated Fe-Si based iron-based soft magnetic powder of the present invention includes an electric motor, a generator, a solenoid, an injector, There are electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc., which can improve the efficiency and performance of electric devices and reduce the size and weight.

この発明の酸化膜被覆Fe−Si系鉄基軟磁性粉末を使用して複合軟磁性材を製造すると、高比抵抗を有することから低渦電流損失を有し、さらに保磁力が低いことから低ヒステリシス損失を有する複合軟磁性材を低コスト安定して作製することができ、電気・電子産業上優れた効果をもたらすものである。 When using an acid of film-coated Fe-Si Keitetsumoto soft magnetic powder of the present invention to produce a composite soft magnetic material having a low eddy current loss because it has a high resistivity, since even less coercivity A composite soft magnetic material having a low hysteresis loss can be produced stably at a low cost, and brings about an excellent effect in the electric and electronic industries.

実施例1
原料粉末として平均粒径:75μmを有し、Si:1質量%、残りFeおよび不可避不純物からなるFe−Si系鉄基軟磁性粉末を用意し、さらに平均粒径:1μm以下の純Si粉末を用意した。さらに平均粒径:50μmのMg粉末を用意した。
Example 1
As a raw material powder, Fe—Si-based iron-based soft magnetic powder having an average particle diameter of 75 μm, Si: 1 mass%, remaining Fe and inevitable impurities is prepared, and pure Si powder having an average particle diameter of 1 μm or less is prepared. Prepared. Furthermore, Mg powder having an average particle diameter of 50 μm was prepared.

まず、Fe−Si系鉄基軟磁性粉末に純Si粉末をFe−Si系鉄基軟磁性粉末:純Si粉末=99.5質量%:0.5%質量となるように配合し、混合して混合粉末を作製し、得られた混合粉末を水素雰囲気中、温度:950℃、1時間保持の条件で熱処理することによりFe−Si系鉄基軟磁性粉末表面に高濃度Si拡散層を形成し、その後、大気中、温度:250℃の条件で保持することにより高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末を作製した。   First, pure Si powder is mixed with Fe-Si iron-based soft magnetic powder so that Fe-Si iron-based soft magnetic powder: pure Si powder = 99.5% by mass: 0.5% by mass and mixed. A mixed powder is prepared, and the obtained mixed powder is heat-treated in a hydrogen atmosphere at a temperature of 950 ° C. for 1 hour to form a high-concentration Si diffusion layer on the surface of the Fe—Si-based iron-based soft magnetic powder. Then, a surface-oxidized Fe—Si-based iron-based soft magnetic raw material powder having an oxide layer on the high-concentration Si diffusion layer was produced by maintaining the temperature in the atmosphere at a temperature of 250 ° C.

この表面酸化Fe−Si系鉄基軟磁性原料粉末に先に用意したMg粉末を表面酸化Fe−Si系鉄基軟磁性原料粉末:Mg粉末=99.8質量%:0.2質量%の割合となるように配合し混合して混合粉末を作製し、得られた混合粉末を温度:650℃、圧力:2.7×10−4MPaの条件で転動しながら1時間保持することによりFe−Si系鉄基軟磁性粉末の表面にMg,Si,FeおよびOからなる酸化膜が形成されている本発明酸化膜被覆Fe−Si系鉄基軟磁性粉末(以下、本発明酸化膜被覆粉末という)1を作製した。 The Mg powder previously prepared for the surface-oxidized Fe-Si-based iron-based soft magnetic raw material powder is a ratio of the surface-oxidized Fe-Si-based iron-based soft magnetic raw material powder: Mg powder = 99.8% by mass: 0.2% by mass. A mixed powder is prepared by mixing and mixing so that the obtained mixed powder is held for 1 hour while rolling under the conditions of temperature: 650 ° C. and pressure: 2.7 × 10 −4 MPa. Mg on the surface of the Si Keitetsumoto soft magnetic powder, Si, present onset Akirasan monolayer coating Fe-Si Keitetsumoto soft magnetic powder Fe and O Tona Ru oxidation film is formed (hereinafter, the onset Ming was prepared oxidation of film-coated powder) 1.

本発明酸化膜被覆粉末1に形成された酸化膜は、Mg,Si,FeおよびOからなる酸化膜であることおよびこの酸化膜には素地中に金属FeおよびFe−Si合金が含まれていることはX線光電子分光装置により分析を行い、結合エネルギーを解析することにより確認した。さらに、本発明酸化膜被覆粉末1における酸化膜の組織を電子顕微鏡で観察し、その酸化膜の厚さと最大結晶粒径を測定し、その結果を表1に示した。さらに前記Mg,Si,FeおよびOからなる酸化膜に含まれるMgおよびOは結晶質のMgO固溶ウスタイト型相として含まれていることは電子線回折図形により確認した。 This onset Akirasan monolayer coating powder 1 in acid formed film, the metal Fe and Mg, Si, in the matrix in the oxidation film of the child that it is oxidation film Ru Fe and O Tona Fe- The presence of the Si alloy was confirmed by analyzing with an X-ray photoelectron spectrometer and analyzing the binding energy. Furthermore, the tissue of the onset Akirasan monolayer that put the covering powder 1 oxidation film was observed by an electron microscope, measuring the thickness and the maximum grain size of the oxidation film of that, and the results are shown in Table 1 . Further, the Mg, Si, Mg and O contained in the Fe and O Tona Ru oxidation film was confirmed by electron beam diffraction pattern that contains as MgO solid solution wustite phase-crystalline.

さらに、Mg,Si,FeおよびOからなる酸化膜の深さ方向のMg、O、SiおよびFeの濃度分布をオージェ電子分光装置を用いて測定し、その結果を表1に示した。本発明酸化膜被覆粉末1のMg,Si,FeおよびOからなる酸化膜の深さ方向のMg、O、SiおよびFeの濃度分布をオージェ電子分光装置を用いて測定した時の測定図を図1に示す。図1において、横軸のEtching Timeの0の所が最表面であるから、図1において、Mg,Si,FeおよびOからなる酸化膜に含まれるMgおよびOは表面に向かってMgおよびO含有量が増加し、Feは表面に向かってが減少し、Siは酸化膜の最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有することが分かる。 Furthermore, Mg, Si, in the depth direction of the Fe and O Tona Ru oxidation film Mg, O, the concentration distribution of Si and Fe were measured using Auger electron spectrometer, and the results are shown in Table 1. Of the onset Akirasan monolayer coating powder 1 Mg, Si, in the depth direction of the Fe and O Tona Ru oxidation film Mg, O, the concentration distribution of Si and Fe when measured using the Auger electron spectrometer The measurement diagram is shown in FIG. In Figure 1, because at the zero Etching Time of the horizontal axis is the outermost surface in Fig. 1, Mg and O contained Mg, Si, the Fe and O Tona Ru oxidation film Mg and toward the surface O content is increased, Fe is toward the surface is reduced, Si is found to have a concentration gradient of Si as Si content increases closer to the outermost surface at the outermost surface near the oxidation film.

このようにして得られた本発明酸化膜被覆粉末1を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。 Put this way this onset Akirasan monolayer coating powder 1 obtained in the mold, the vertical by press-forming: 55 mm, Horizontal: 10 mm, thickness: plate green compact and the outer diameter having a dimension of 5mm A ring-shaped green compact having dimensions of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was molded, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 500 ° C. for 30 minutes, A composite soft magnetic material made of a plate-like and ring-like fired body was prepared, the specific resistance of the composite soft magnetic material made of this plate-like fired body was measured, and the result is shown in Table 1, and further made of a ring-like fired body Winding the composite soft magnetic material and measuring magnetic properties such as magnetic flux density, coercive force, iron loss at magnetic flux density 1.5T, frequency 50Hz, and iron loss at magnetic flux density 1.0T, frequency 400Hz The results are shown in Table 1.

従来例1
実施例1で用意したFe−Si系鉄基軟磁性粉末の表面にMg含有フェライト酸化物層を化学的に形成した従来Mg含有フェライト酸化物被覆Fe−Si系鉄基軟磁性粉末(以下、従来酸化膜被覆粉末という)を作製し、この従来酸化膜被覆粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼結を行い、板状およびリング状焼結体からなる複合軟磁性材を作製し、板状焼結体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状焼結体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Conventional Example 1
Conventional Mg-containing ferrite oxide-coated Fe-Si-based iron-based soft magnetic powder (hereinafter referred to as subordinate powder) in which an Mg-containing ferrite oxide layer is chemically formed on the surface of the Fe-Si-based iron-based soft magnetic powder prepared in Example 1. to prepare a) that come oxidation film-coated powder, put the slave come oxidation film-coated powder into a mold, the vertical by press-forming: 55 mm, horizontal: 10 mm, thickness: plate dust having dimensions of 5mm The body and outer diameter: 35 mm, inner diameter: 25 mm, and height: 5 mm were molded into a ring-shaped green compact. The resulting green compact was maintained in a nitrogen atmosphere at a temperature of 500 ° C. for 30 minutes. Sintering was performed to produce a composite soft magnetic material composed of a plate-shaped and ring-shaped sintered body, the specific resistance of the composite soft magnetic material composed of a plate-shaped sintered body was measured, and the results are shown in Table 1, Winding a composite soft magnetic material made of a ring-shaped sintered body to produce a magnetic flux density Coercive force, and magnetic flux density 1.5T, measured iron loss and magnetic flux density 1.0 T, the magnetic properties such as iron loss at a frequency 400Hz when the frequency 50 Hz, The results are shown in Table 1.

Figure 0004883755
Figure 0004883755

表1に示される結果から、実施例1で作製した本発明酸化膜被覆粉末1は、従来例1で作製したMg含有フェライト酸化物被覆Fe−Si系鉄基軟磁性粉末を使用して作製した複合軟磁性材と比べて、密度については大差は無いが、実施例1で作製した本発明酸化膜被覆粉末1を使用して作製した複合軟磁性材は、従来例1で作製した従来酸化膜被覆粉末のMg含有フェライト酸化膜被覆Fe−Si系鉄基軟磁性粉末を使用して作製した複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。 From the results shown in Table 1, the onset Akirasan monolayer coating powder 1 produced in Example 1, using the Mg-containing ferrite oxide-coated Fe-Si Keitetsumoto soft magnetic powder prepared in the conventional example 1 fabricated as compared with the composite soft magnetic material, is not much difference for density were made using the onset Akirasan monolayer coating powder 1 produced in example 1 composite soft magnetic material is produced in the conventional example 1 compared to the slave came oxidation film Mg-containing ferrite oxide film-coated Fe-Si Keitetsumoto soft magnetic powder composite soft magnetic material produced by using the coating powder, high magnetic flux density, low coercivity, further specific It can be seen that the resistance is remarkably high, so that the iron loss is remarkably small, and in particular, the iron loss decreases as the frequency increases.

実施例2
原料粉末として、表2に示される粒度を有しかつSi:1質量%を含有し、残りFeおよび不可避不純物からなる組成のFe−Si系鉄基軟磁性粉末を用意した。さらに平均粒径:1μm以下の純Si粉末および平均粒径:50μmのMg粉末を用意した。
これら粒度の異なるFe−Si系鉄基軟磁性粉末に純Si粉末をFe−Si系鉄基軟磁性粉末:純Si粉末=97質量%:2%質量となるように配合し、混合して混合粉末を作製し、得られた混合粉末を水素雰囲気中、温度:950℃、1時間保持の条件で熱処理することによりFe−Si系鉄基軟磁性粉末表面に高濃度Si拡散層を形成し、その後、大気中、温度:220℃の条件で保持することにより高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末を作製した。
Example 2
As a raw material powder, an Fe—Si-based iron-based soft magnetic powder having a particle size shown in Table 2 and containing Si: 1% by mass and having a composition composed of the remaining Fe and inevitable impurities was prepared. Further, pure Si powder having an average particle size of 1 μm or less and Mg powder having an average particle size of 50 μm were prepared.
Pure Si powder is mixed with Fe-Si-based iron-based soft magnetic powders having different particle sizes so that Fe-Si-based iron-based soft magnetic powder: pure Si powder = 97% by mass: 2% by mass, mixed and mixed. A high concentration Si diffusion layer is formed on the surface of the Fe-Si-based iron-based soft magnetic powder by heat-treating the obtained mixed powder in a hydrogen atmosphere under conditions of temperature: 950 ° C. and holding for 1 hour, Then, the surface oxidation Fe-Si type | system | group iron-based soft magnetic raw material powder which has an oxidation layer on a high concentration Si diffusion layer was produced by hold | maintaining on the conditions of temperature: 220 degreeC in air | atmosphere.

この表面酸化Fe−Si系鉄基軟磁性原料粉末に対して先に用意したMg粉末を表面酸化Fe−Si系鉄基軟磁性原料粉末:Mg粉末=99.8質量%:0.2質量%の割合となるように配合し混合して混合粉末を作製し、得られた混合粉末を温度:650℃、圧力:2.7×10−4MPaの条件で転動しながら1時間保持する処理(この表面酸化Fe−Si系鉄基軟磁性原料粉末:Mg粉末=99.8質量%:0.2質量%の割合となるように配合し混合して混合粉末を作製し、得られた混合粉末を温度:650℃、圧力:2.7×10−4MPaの条件で転動しながら1時間保持する処理を、以下、「Mg被覆処理」という)を施すことによりFe−Si系鉄基軟磁性粉末の表面にMg,Si,FeおよびOからなる酸化膜が形成されている酸化膜被覆Fe−Si系鉄基軟磁性粉末を作製する本発明法1〜3を実施した。 The Mg powder previously prepared for the surface oxidized Fe—Si based iron-based soft magnetic raw material powder was converted into the surface oxidized Fe—Si based iron based soft magnetic raw material powder: Mg powder = 99.8 mass%: 0.2 mass%. A mixed powder is prepared by mixing and mixing so that the ratio is as follows, and the obtained mixed powder is held for 1 hour while rolling under conditions of temperature: 650 ° C. and pressure: 2.7 × 10 −4 MPa ( This surface-oxidized Fe—Si-based iron-based soft magnetic raw material powder: Mg powder = 99.8% by mass: mixed and mixed so as to have a ratio of 0.2% by mass to produce a mixed powder, and the obtained mixed powder The Fe-Si-based iron-based soft magnetism is performed by performing a treatment for holding for 1 hour while rolling under the conditions of temperature: 650 ° C. and pressure: 2.7 × 10 −4 MPa) (hereinafter referred to as “Mg coating treatment”). Mg on the surface of the powder, Si, and Fe and O Tona Ru oxidation film is formed The present invention method 1-3 for making oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder while creating was performed.

本発明法1〜3により得られた酸化膜被覆Fe−Si系鉄基軟磁性粉末に形成された酸化膜は、Mg,Si,FeおよびOからなる酸化膜であることおよびこの酸化膜には素地中に金属FeおよびFe−Si合金が含まれていることはX線光電子分光装置により分析を行い、結合エネルギーを解析することにより確認した。さらに、酸化膜被覆Fe−Si系鉄基軟磁性粉末における酸化膜の組織を電子顕微鏡で観察し、さらに前記Mg,Si,FeおよびOからなる酸化膜に含まれるMgおよびOは結晶質のMgO固溶ウスタイト型相として含まれていることは電子線回折図形により確認した。 Acid film formed on the oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder obtained by the present invention method 1-3, Mg, Si, it is oxidation film Ru Fe and O Tona child the acid monolayer that contains metal Fe and Fe-Si alloy in the matrix is analyzed by X-ray photoelectron spectrometer was confirmed by analyzing the binding energy. Further, oxide film-coated Fe-Si Keitetsumoto tissue of the soft magnetic powder to put that oxidation film was observed by an electron microscope, further the Mg, Si, Mg and O contained in the Fe and O Tona Ru oxidation film Was confirmed to be contained as a crystalline MgO solid solution wustite type phase by an electron diffraction pattern.

さらに、Mg,Si,FeおよびOからなる酸化膜の深さ方向のMg、O、SiおよびFeの濃度分布をオージェ電子分光装置を用いて測定したところ、酸化膜に含まれるMgおよびOは表面に向かってMgおよびO含有量が増加し、Feは表面に向かってが減少し、Siは酸化膜の最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有することが分かった。 Moreover, as measured using Mg, Si, Fe and O in the depth direction of Tona Ru oxidation film Mg, O, the concentration distribution of Si and Fe Auger electron spectrometer, Mg and contained in the oxidation film O is Mg and O content increases toward the surface, Fe is toward the surface is reduced, Si concentration gradient of Si as Si content near the outermost surface increases in the outermost surface near the oxidation film It was found to have

本発明法1〜3により得られた酸化膜被覆Fe−Si系鉄基軟磁性粉末に対し、配合比2質量%でシリコーン樹脂を添加し混合して酸化膜被覆Fe−Si系鉄基軟磁性粉末の表面をシリコーン樹脂で被覆した樹脂被覆複合粉末を作製し、この樹脂被覆複合粉末を120℃に加熱した金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空中、温度:700℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表2に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数20kHzの時の鉄損を測定し、それらの結果を表2に示した。 To oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder obtained by the present invention method 1-3, oxidation film were mixed by adding the silicone resin at the mixing ratio of 2% by weight coated Fe-Si Keitetsumoto A resin-coated composite powder in which the surface of the soft magnetic powder is coated with a silicone resin is prepared. The resin-coated composite powder is placed in a mold heated to 120 ° C. and press-molded to obtain a length of 55 mm, a width of 10 mm, and a thickness: A plate-shaped green compact having a size of 5 mm and a ring-shaped green compact having dimensions of an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm are formed, and the obtained green compact is vacuumed at a temperature of 700. Firing is carried out at a temperature of 30 ° C. for 30 minutes to produce a composite soft magnetic material made of a plate-like and ring-like fired body, and the specific resistance of the composite soft magnetic material made of this plate-like fired body is measured and the result is obtained. Composite soft magnets shown in Table 2 and made of a ring-shaped fired body Applying windings to wood, the magnetic flux density, coercive force, and magnetic flux density 0.1 T, the iron loss at a frequency 20kHz were measured. The results are shown in Table 2.

従来例2
原料粉末として、表2に示される粒度を有しかつSi:1質量%を含有し、残りFeおよび不可避不純物からなる組成のFe−Si系鉄基軟磁性粉末を用意し、このFe−Si系鉄基軟磁性粉末をMg被覆処理することなく配合比2質量%でシリコーン樹脂を添加し、混合してFe−Si系鉄基軟磁性粉末の表面をシリコーン樹脂で被覆した樹脂被覆複合粉末を作製した。この樹脂被覆複合粉末を120℃に加熱した金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空中、温度:700℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表2に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数20kHzの時の鉄損を測定し、それらの結果を表2に示した。
Conventional example 2
As a raw material powder, an Fe—Si-based iron-based soft magnetic powder having a particle size shown in Table 2 and containing Si: 1% by mass and comprising the remaining Fe and inevitable impurities is prepared. A resin-coated composite powder in which a silicone resin is added at a blending ratio of 2% by mass without mixing Mg-based iron-based soft magnetic powder, and the surface of the Fe-Si-based iron-based soft magnetic powder is coated with the silicone resin is produced. did. This resin-coated composite powder is placed in a mold heated to 120 ° C. and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm A ring-shaped green compact having a height of 5 mm was formed, and the obtained green compact was fired in vacuum at a temperature of 700 ° C. for 30 minutes to obtain a plate-shaped and ring-shaped fired body. A composite soft magnetic material made of the above-mentioned plate-like fired body was measured, and the specific resistance of the composite soft magnetic material made of this plate-like fired body was measured. The iron loss was measured when the magnetic flux density, the coercive force, and the magnetic flux density were 0.1 T and the frequency was 20 kHz, and the results are shown in Table 2.

Figure 0004883755
Figure 0004883755

本発明法1〜3で作製した複合軟磁性材は、従来法1で作製した複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。 Compared with the composite soft magnetic material manufactured by the conventional method 1, the composite soft magnetic material manufactured by the present invention methods 1 to 3 has a higher magnetic flux density, a smaller coercive force, and a remarkably high specific resistance, and thus iron loss. is much smaller, it is found and this having characteristics such as particularly iron loss as the frequency increases becomes smaller.

実施例3
原料粉末として、表3に示される粒度を有しかつSi:3質量%を含有し、残りFeおよび不可避不純物からなる組成のFe−Si系鉄基軟磁性粉末を用意した。さらに平均粒径:1μm以下の純Si粉末および平均粒径:50μmのMg粉末を用意した。
これら粒度の異なるFe−Si系鉄基軟磁性粉末に純Si粉末をFe−Si系鉄基軟磁性粉末:純Si粉末=99.5質量%:0.5%質量となるように配合し混合して混合粉末を作製し、得られた混合粉末を水素雰囲気中、温度:950℃、1時間保持の条件で熱処理することによりFe−Si系鉄基軟磁性粉末表面に高濃度Si拡散層を形成し、その後、大気中、温度:220℃の条件で保持することにより高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末を作製した。
Example 3
As a raw material powder, an Fe—Si-based iron-based soft magnetic powder having a particle size shown in Table 3 and containing 3% by mass of Si and composed of the remaining Fe and inevitable impurities was prepared. Further, pure Si powder having an average particle size of 1 μm or less and Mg powder having an average particle size of 50 μm were prepared.
Pure Si powder is mixed with Fe-Si based iron-based soft magnetic powders having different particle sizes so that Fe-Si based iron-based soft magnetic powder: pure Si powder = 99.5% by mass: 0.5% by mass. A mixed powder is prepared, and the resulting mixed powder is heat-treated in a hydrogen atmosphere at a temperature of 950 ° C. for 1 hour to form a high-concentration Si diffusion layer on the surface of the Fe—Si-based iron-based soft magnetic powder. After that, a surface-oxidized Fe—Si-based iron-based soft magnetic raw material powder having an oxide layer on a high-concentration Si diffusion layer was produced by maintaining in the atmosphere at a temperature of 220 ° C.

この表面酸化Fe−Si系鉄基軟磁性原料粉末に対してMg被覆処理を施すことによりFe−Si系鉄基軟磁性粉末の表面にMg,Si,FeおよびOからなる酸化膜が形成されている酸化膜被覆Fe−Si系鉄基軟磁性粉末を作製する本発明法4〜6を実施した。 Mg by applying a Mg coating process on the surface oxide Fe-Si Keitetsumoto soft magnetic material powder to the surface of the Fe-Si Keitetsumoto soft magnetic powder, Si, Fe and O Tona Ru oxidation film is formed the present invention method 4-6 was performed to produce an oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder that has been.

本発明法4〜6により得られた酸化膜被覆Fe−Si系鉄基軟磁性粉末に形成された酸化膜は、Mg,Si,FeおよびOからなる酸化膜であることおよびこの酸化膜には素地中に金属FeおよびFe−Si合金が含まれていることはX線光電子分光装置により分析を行い、結合エネルギーを解析することにより確認した。さらに、酸化膜被覆Fe−Si系鉄基軟磁性粉末における酸化膜の組織を電子顕微鏡で観察し、さらに前記Mg,Si,FeおよびOからなる酸化膜に含まれるMgおよびOは結晶質のMgO固溶ウスタイト型相として含まれていることは電子線回折図形により確認した。さらに、Mg,Si,FeおよびOからなる酸化膜の深さ方向のMg、O、SiおよびFeの濃度分布をオージェ電子分光装置を用いて測定したところ、酸化膜に含まれるMgおよびOは表面に向かってMgおよびO含有量が増加し、Feは表面に向かってが減少し、Siは酸化膜の最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有することが分かった。 Acid film formed on the oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder obtained by the present invention method 4-6, Mg, Si, it is oxidation film Ru Fe and O Tona child the acid monolayer that contains metal Fe and Fe-Si alloy in the matrix is analyzed by X-ray photoelectron spectrometer was confirmed by analyzing the binding energy. Further, oxide film-coated Fe-Si Keitetsumoto tissue of the soft magnetic powder to put that oxidation film was observed by an electron microscope, further the Mg, Si, Mg and O contained in the Fe and O Tona Ru oxidation film Was confirmed to be contained as a crystalline MgO solid solution wustite type phase by an electron diffraction pattern. Moreover, as measured using Mg, Si, Fe and O in the depth direction of Tona Ru oxidation film Mg, O, the concentration distribution of Si and Fe Auger electron spectrometer, Mg and contained in the oxidation film O is Mg and O content increases toward the surface, Fe is toward the surface is reduced, Si concentration gradient of Si as Si content near the outermost surface increases in the outermost surface near the oxidation film It was found to have

本発明法4〜6により得られた酸化膜被覆Fe−Si系鉄基軟磁性粉末に対し、配合比2質量%でシリコーン樹脂を添加し混合して酸化膜被覆Fe−Si系鉄基軟磁性粉末の表面をシリコーン樹脂で被覆した樹脂被覆複合粉末を作製した。この樹脂被覆複合粉末を120℃に加熱した金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空中、温度:700℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表3に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数20kHzの時の鉄損を測定し、それらの結果を表3に示した。 To oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder obtained by the present invention method 4-6, oxidation film were mixed by adding the silicone resin at the mixing ratio of 2% by weight coated Fe-Si Keitetsumoto A resin-coated composite powder in which the surface of the soft magnetic powder was coated with a silicone resin was produced. This resin-coated composite powder is placed in a mold heated to 120 ° C. and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm A ring-shaped green compact having a height of 5 mm was formed, and the obtained green compact was fired in vacuum at a temperature of 700 ° C. for 30 minutes to obtain a plate-shaped and ring-shaped fired body. A composite soft magnetic material made of the above-mentioned plate-like fired body was measured, and the specific resistance of the composite soft magnetic material made of this plate-like fired body was measured. The iron loss was measured when the magnetic flux density, the coercive force, and the magnetic flux density were 0.1 T and the frequency was 20 kHz, and the results are shown in Table 3.

従来例3
原料粉末として、表3に示される粒度を有しかつSi:1質量%を含有し、残りFeおよび不可避不純物からなる組成のFe−Si系鉄基軟磁性粉末を用意し、このFe−Si系鉄基軟磁性粉末をMg被覆処理することなく配合比2質量%でシリコーン樹脂を添加し、混合してFe−Si系鉄基軟磁性粉末の表面をシリコーン樹脂で被覆した樹脂被覆複合粉末を作製した。この樹脂被覆複合粉末を120℃に加熱した金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空中、温度:700℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表2に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数20kHzの時の鉄損を測定し、それらの結果を表3に示した。
Conventional example 3
As a raw material powder, an Fe—Si-based iron-based soft magnetic powder having a particle size shown in Table 3 and containing Si: 1% by mass and comprising the remaining Fe and inevitable impurities is prepared. A resin-coated composite powder in which a silicone resin is added at a blending ratio of 2% by mass without mixing Mg-based iron-based soft magnetic powder, and the surface of the Fe-Si-based iron-based soft magnetic powder is coated with the silicone resin is produced. did. This resin-coated composite powder is placed in a mold heated to 120 ° C. and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm A ring-shaped green compact having a height of 5 mm was formed, and the obtained green compact was fired in vacuum at a temperature of 700 ° C. for 30 minutes to obtain a plate-shaped and ring-shaped fired body. A composite soft magnetic material made of the above-mentioned plate-like fired body was measured, and the specific resistance of the composite soft magnetic material made of this plate-like fired body was measured. The iron loss was measured when the magnetic flux density, the coercive force, and the magnetic flux density were 0.1 T and the frequency was 20 kHz, and the results are shown in Table 3.

Figure 0004883755
Figure 0004883755

本発明法4〜6で作製した複合軟磁性材は、従来法2で作製した複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。 Compared with the composite soft magnetic material manufactured by the conventional method 2, the composite soft magnetic material manufactured by the present invention methods 4 to 6 has a higher magnetic flux density, a smaller coercive force, and a remarkably high specific resistance. is much smaller, it is found and this having characteristics such as particularly iron loss as the frequency increases becomes smaller.

実施例4
原料粉末として、表4に示される粒度を有するFe粉末を用意した。さらに平均粒径:1μm以下の純Si粉末および平均粒径:50μmのMg粉末を用意した。
これら粒度の異なるFe粉末に純Si粉末をFe粉末:純Si粉末=97質量%:3%質量となるように配合し混合して混合粉末を作製し、得られた混合粉末を水素雰囲気中、温度:950℃、1時間保持の条件で熱処理することによりFe−Si系鉄基軟磁性粉末表面に高濃度Si拡散層を形成し、その後、大気中、温度:220℃の条件で保持することにより高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末を作製した。
Example 4
Fe powder having a particle size shown in Table 4 was prepared as a raw material powder. Further, pure Si powder having an average particle size of 1 μm or less and Mg powder having an average particle size of 50 μm were prepared.
A pure Si powder is mixed with these Fe powders having different particle sizes so as to be Fe powder: pure Si powder = 97 mass%: 3% mass to prepare a mixed powder, and the obtained mixed powder is placed in a hydrogen atmosphere. A high-concentration Si diffusion layer is formed on the surface of the Fe—Si-based iron-based soft magnetic powder by heat treatment under the condition of temperature: 950 ° C. and held for 1 hour, and then held in air at a temperature of 220 ° C. Thus, a surface-oxidized Fe—Si-based iron-based soft magnetic raw material powder having an oxide layer on a high-concentration Si diffusion layer was produced.

この表面酸化Fe−Si系鉄基軟磁性原料粉末に対してMg被覆処理を施すことによりFe−Si系鉄基軟磁性粉末の表面にMg,Si,FeおよびOからなる酸化膜が形成されている酸化膜被覆Fe−Si系鉄基軟磁性粉末を作製する本発明法7〜9を実施した。 Mg by applying a Mg coating process on the surface oxide Fe-Si Keitetsumoto soft magnetic material powder to the surface of the Fe-Si Keitetsumoto soft magnetic powder, Si, Fe and O Tona Ru oxidation film is formed the present invention method 7-9 was performed to produce an oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder that has been.

本発明法7〜9により得られた酸化膜被覆Fe−Si系鉄基軟磁性粉末に形成された酸化膜は、Mg,Si,FeおよびOからなる酸化膜であることおよびこの酸化膜には素地中に金属FeおよびFe−Si合金が含まれていることはX線光電子分光装置により分析を行い、結合エネルギーを解析することにより確認した。さらに、酸化膜被覆Fe−Si系鉄基軟磁性粉末における酸化膜の組織を電子顕微鏡で観察し、さらに前記Mg,Si,FeおよびOからなる酸化膜に含まれるMgおよびOは結晶質のMgO固溶ウスタイト型相として含まれていることは電子線回折図形により確認した。さらに、Mg,Si,FeおよびOからなる酸化膜の深さ方向のMg、O、SiおよびFeの濃度分布をオージェ電子分光装置を用いて測定したところ、酸化膜に含まれるMgおよびOは表面に向かってMgおよびO含有量が増加し、Feは表面に向かってが減少し、Siは酸化膜の最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有することが分かった。 Acid film formed on the oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder obtained by the present invention method 7-9, Mg, Si, it is oxidation film Ru Fe and O Tona child the acid monolayer that contains metal Fe and Fe-Si alloy in the matrix is analyzed by X-ray photoelectron spectrometer was confirmed by analyzing the binding energy. Further, oxide film-coated Fe-Si Keitetsumoto tissue of the soft magnetic powder to put that oxidation film was observed by an electron microscope, further the Mg, Si, Mg and O contained in the Fe and O Tona Ru oxidation film Was confirmed to be contained as a crystalline MgO solid solution wustite type phase by an electron diffraction pattern. Further, as measured using Mg, Si, Fe and O in the depth direction of Tona Ru oxidation film Mg, O, the concentration distribution of Si and Fe Auger electron spectrometer, Mg and contained in the oxidation film O is Mg and O content increases toward the surface, Fe is toward the surface is reduced, Si concentration gradient of Si as Si content near the outermost surface increases in the outermost surface near the oxidation film It was found to have

本発明法7〜9により得られた酸化膜被覆Fe−Si系鉄基軟磁性粉末に対し、配合比2質量%でシリコーン樹脂を添加し混合して酸化膜被覆Fe−Si系鉄基軟磁性粉末の表面をシリコーン樹脂で被覆した樹脂被覆複合粉末を作製した。この樹脂被覆複合粉末を120℃に加熱した金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体、外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空中、温度:700℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表4に示し、さらに小径リング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数20kHzの時の鉄損を測定し、それらの結果を表4に示した。 To oxidation film-coated Fe-Si Keitetsumoto soft magnetic powder obtained by the present invention method 7-9, oxidation film adding and mixing the silicone resin with mixing ratio 2 wt% coated Fe-Si Keitetsumoto A resin-coated composite powder in which the surface of the soft magnetic powder was coated with a silicone resin was produced. This resin-coated composite powder is placed in a mold heated to 120 ° C. and press-molded to form a plate compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, outer diameter: 35 mm, inner diameter: 25 mm A ring-shaped green compact having a height of 5 mm was formed, and the obtained green compact was fired in vacuum at a temperature of 700 ° C. for 30 minutes to obtain a plate-shaped and ring-shaped fired body. A composite soft magnetic material made of the above-mentioned plate-like fired body was measured, and the specific resistance of the composite soft magnetic material made of this plate-like fired body was measured. Wires were applied to measure the magnetic flux density, the coercive force, and the iron loss when the magnetic flux density was 0.1 T and the frequency was 20 kHz. The results are shown in Table 4.

従来例4
原料粉末として、表4に示される粒度を有するFe粉末を用意し、このFe粉末をMg被覆処理することなく配合比2質量%でシリコーン樹脂を添加し、混合してFe粉末の表面をシリコーン樹脂で被覆した樹脂被覆複合粉末を作製した。この樹脂被覆複合粉末を120℃に加熱した金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体、外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空中、温度:700℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表4に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数20kHzの時の鉄損を測定し、それらの結果を表4に示した。
Conventional example 4
As a raw material powder, Fe powder having the particle size shown in Table 4 is prepared, and this Fe powder is added with a silicone resin at a blending ratio of 2% by mass without being coated with Mg, and the surface of the Fe powder is mixed with the silicone resin. A resin-coated composite powder coated with was prepared. This resin-coated composite powder is placed in a mold heated to 120 ° C. and press-molded to form a plate compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, outer diameter: 35 mm, inner diameter: 25 mm A ring-shaped green compact having a height of 5 mm was formed, and the obtained green compact was fired in vacuum at a temperature of 700 ° C. for 30 minutes to obtain a plate-shaped and ring-shaped fired body. A composite soft magnetic material made of the above-mentioned plate-like fired body was measured, and the specific resistance of the composite soft magnetic material made of this plate-like fired body was measured. The iron loss was measured when the magnetic flux density, the coercive force, and the magnetic flux density were 0.1 T and the frequency was 20 kHz. The results are shown in Table 4.

Figure 0004883755
Figure 0004883755

本発明法7〜9で作製した複合軟磁性材は、従来法3で作製した複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。 Compared with the composite soft magnetic material manufactured by the conventional method 3, the composite soft magnetic material manufactured by the inventive methods 7 to 9 has a higher magnetic flux density, a smaller coercive force, and a remarkably high specific resistance. is much smaller, it is found and this having characteristics such as particularly iron loss as the frequency increases becomes smaller.

実施例5
実施例1で作製した本発明堆積酸化膜被覆粉末1を用いて外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体および外径:50mm、内径:25mm、高さ:25mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空中、温度:700℃、30分保持の条件で焼成を行うことによりこの小径リング状圧粉焼成体および大外径リング状圧粉焼成体を作製した。
Example 5
Using the deposited oxide film-coated powder 1 of the present invention produced in Example 1, an outer diameter: 35 mm, an inner diameter: 25 mm, a height: 5 mm, a ring-shaped green compact and an outer diameter: 50 mm, an inner diameter: 25 mm, high The ring-shaped green compact having a size of 25 mm is molded, and the obtained green compact is fired under vacuum at a temperature of 700 ° C. for 30 minutes. And a large-diameter ring-shaped green compact was produced.

この小径リング状圧粉焼成体を用いて磁束密度、保磁力および10kT、10kHz時の鉄損を測定し、さらに20A直流重畳時の20kHzにおけるインダクタンスを測定して交流の透磁率を求め、それらの結果を表5に示した。次に、大外径リング状圧粉焼成体に巻線を施してインダクタンスがほぼ一定になるリアクトルを作製した。一般的なアクティブフィルタ付きスイッチング電源に、このリアクトルを接続し、入力電力1000Wおよび1500Wに対する出力電力の効率(%)を測定し、その結果を表5に示した。 Magnetic flux density using a small diameter ring-shaped green compact sintered body, coercive force and 1 0KT, measure the iron loss at 10 kHz, determine the permeability of the alternating current by measuring the inductance at more 20A 20 kHz at DC superposition The results are shown in Table 5. Next, a coil having a large outer diameter ring-shaped powder compact was wound to produce a reactor having substantially constant inductance. This reactor was connected to a general switching power supply with an active filter, and the efficiency (%) of the output power with respect to the input power of 1000 W and 1500 W was measured. The results are shown in Table 5.

従来例5
従来例1で作製した従来酸化膜被覆粉末1を用いて外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体および外径:50mm、内径:25mm、高さ:25mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空中、温度:700℃、30分保持の条件で焼成を行うことによりこの小径リング状圧粉焼成体および大外径リング状圧粉焼成体を作製した。
Conventional Example 5
Outer diameter using sub come oxidation film-coated powder 1 produced in the conventional example 1: 35 mm, inner diameter: 25 mm, height: ring-shaped green compact having a size of 5mm and outer diameter: 50 mm, inner diameter: 25 mm, height The ring-shaped green compact having a size of 25 mm is molded, and the obtained green compact is fired under vacuum at a temperature of 700 ° C. for 30 minutes. And a large-diameter ring-shaped green compact was produced.

この小径リング状圧粉焼成体を用いて磁束密度、保磁力および10kT、10kHz時の鉄損を測定し、さらに20A直流重畳時の20kHzにおけるインダクタンスを測定して交流の透磁率を求め、それらの結果を表5に示した。次に、大外径リング状圧粉焼成体に巻線を施してインダクタンスがほぼ一定になるリアクトルを作製した。一般的なアクティブフィルタ付きスイッチング電源に、このリアクトルを接続し、入力電力:1000Wおよび1500Wに対する出力電力の効率(%)を測定し、その結果を表5に示した。   Using this small-diameter ring-shaped powder fired body, magnetic flux density, coercive force and iron loss at 10 kT and 10 kHz are measured, and further, the inductance at 20 kHz when 20 A DC is superimposed is measured to determine the AC permeability. The results are shown in Table 5. Next, a coil having a large outer diameter ring-shaped powder compact was wound to produce a reactor having substantially constant inductance. This reactor was connected to a general switching power supply with an active filter, and the efficiency (%) of the output power with respect to the input power: 1000 W and 1500 W was measured.

Figure 0004883755
Figure 0004883755

表5に示される結果から、本発明酸化膜被覆粉末1は従来酸化膜被覆粉末1に比べてリアクトルコアを製造するための原料粉末として優れた特性を有することがわかる。 From the results shown in Table 5, the onset Akirasan monolayer coating powder 1 is seen to have superior characteristics as a raw material powder for the production of reactor core in comparison with the slave come oxidation film-coated powder 1.

化膜の深さ方向のMg、O、SiおよびFeの濃度分布をオージェ電子分光装置を用いて測定した結果を示すグラフである。Depth of Mg oxidation film, O, the concentration distribution of Si and Fe is a graph showing the results of measurement using an Auger electron spectrometer.

Claims (14)

Fe−Si系鉄基軟磁性粉末の表面に、Mg,Si,FeおよびOからなる酸化膜が形成されており、かつ前記表面層が粉末全体に含まれるSi組成よりも高濃度のSiを含む高濃度Si拡散表面層であり、
前記酸化膜は、表面に向かってMgおよびO含有量が増加し、表面に向かってFe含有量が減少し、Siは該酸化膜の最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有することを特徴とする酸化膜被覆Fe−Si系鉄基軟磁性粉末。
An oxide film made of Mg, Si, Fe, and O is formed on the surface layer of the Fe-Si-based iron-based soft magnetic powder, and the surface layer has a higher concentration of Si than the Si composition contained in the entire powder. A high concentration Si diffusion surface layer containing,
In the oxide film, the Mg and O contents increase toward the surface, the Fe content decreases toward the surface, and the Si content increases near the outermost surface in the vicinity of the outermost surface of the oxide film. An oxide film-coated Fe—Si-based iron-based soft magnetic powder characterized by having a concentration gradient of Si.
前記Fe−Si系鉄基軟磁性粉末は、Si:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有することを特徴とする請求項1記載の酸化膜被覆Fe−Si系鉄基軟磁性粉末。 2. The oxide film coating according to claim 1, wherein the Fe—Si-based iron-based soft magnetic powder contains Si: 0.1 to 10% by mass, and the remainder has a composition composed of Fe and inevitable impurities. Fe-Si based iron-based soft magnetic powder. 前記Mg,Si,FeおよびOからなる酸化膜には、結晶質のMgO固溶ウスタイト型相が含まれていることを特徴とする請求項1または2記載の酸化膜被覆Fe−Si系鉄基軟磁性粉末。 3. The oxide film-coated Fe—Si based iron group according to claim 1, wherein the oxide film made of Mg, Si, Fe and O contains a crystalline MgO solid solution wustite type phase. Soft magnetic powder. 前記Mg,Si,FeおよびOからなる酸化膜には、金属FeまたはFe−Si合金が含まれていることを特徴とする請求項1または2記載の堆積酸化膜被覆Fe−Si系鉄基軟磁性粉末。 3. The deposited oxide film-covered Fe—Si based iron-based soft film according to claim 1, wherein the oxide film made of Mg, Si, Fe and O contains metal Fe or an Fe—Si alloy. Magnetic powder. 前記Mg,Si,FeおよびOからなる酸化膜は、平均結晶粒径:200nm以下の微細結晶組織を有することを特徴とする請求項1、2、3または4記載の酸化膜被覆Fe−Si系鉄基軟磁性粉末。 The oxide film-covered Fe-Si system according to claim 1, wherein the oxide film made of Mg, Si, Fe and O has a fine crystal structure with an average crystal grain size of 200 nm or less. Iron-based soft magnetic powder. Fe−Si系鉄基軟磁性粉末またはFe粉末にSi粉末を添加し混合したのち非酸化性雰囲気中で加熱することによりFe−Si系鉄基軟磁性粉末またはFe粉末の表面に前記Fe−Si系鉄基軟磁性粉末またはFe粉末に含まれるSiよりも高濃度のSiを含む高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末を作製し、得られた高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末を酸化処理することにより高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末を作製し、この高濃度Si拡散層の上に酸化層を有する表面酸化Fe−Si系鉄基軟磁性原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱することを特徴とする酸化膜被覆Fe−Si系鉄基軟磁性粉末の製造方法。 The Fe-Si based iron-based soft magnetic powder or Fe powder is mixed with Si powder, and then heated in a non-oxidizing atmosphere to heat the Fe-Si based iron powder on the surface of the Fe-Si based iron-based soft magnetic powder or Fe powder. Fe-Si-based iron-based soft magnetic powder having a high-concentration Si diffusion layer containing Si at a higher concentration than Si contained in the Fe-based iron-based soft magnetic powder or Fe powder, and the obtained high-concentration Si diffusion layer The surface-oxidized Fe-Si-based iron-based soft magnetic raw material powder having an oxide layer on the high-concentration Si diffusion layer is produced by oxidizing the Fe-Si-based iron-based soft magnetic powder having the high-concentration Si diffusion layer. A mixed powder obtained by adding and mixing Mg powder to a surface-oxidized Fe—Si-based iron-based soft magnetic raw material powder having an oxide layer on top thereof: temperature: 150 to 1100 ° C., pressure: 1 × 10 to 12 to 1 × 10-1 MPa inert gas atmosphere Or the manufacturing method of the oxide film coating Fe-Si type iron group soft magnetic powder characterized by heating in a vacuum atmosphere. 請求項6記載の高濃度Si拡散層を有するFe−Si系鉄基軟磁性粉末の酸化処理は、軟磁性金属粉末を酸化雰囲気中、温度:50〜500℃で加熱処理することを特徴とする酸化膜被覆Fe−Si系鉄基軟磁性粉末の製造方法。 The oxidation treatment of the Fe-Si-based iron-based soft magnetic powder having the high-concentration Si diffusion layer according to claim 6 is characterized in that the soft magnetic metal powder is heat-treated in an oxidizing atmosphere at a temperature of 50 to 500 ° C. A method for producing an oxide film-coated Fe-Si iron-based soft magnetic powder. 請求項1、2、3、4または5記載の酸化膜被覆Fe−Si系鉄基軟磁性粉末の圧粉焼成体からなることを特徴とする複合軟磁性材。 A composite soft magnetic material comprising the powder fired body of the oxide film-coated Fe-Si-based iron-based soft magnetic powder according to claim 1, 2, 3, 4 or 5. 請求項1、2、3、4または5記載の酸化膜被覆Fe−Si系鉄基軟磁性粉末の粒子間にシリコーン樹脂、ポリイミド樹脂またはPPS樹脂の絶縁材料が介在してなる圧粉焼成体からなることを特徴とする請求項記載の複合軟磁性材。 A powdered fired body comprising an insulating material such as a silicone resin, a polyimide resin or a PPS resin interposed between the particles of the oxide film-coated Fe-Si-based iron-based soft magnetic powder according to claim 1, 2, 3, 4, or 5. The composite soft magnetic material according to claim 8 . Fe−Si系鉄基軟磁性粒子相とこのFe−Si系鉄基軟磁性粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト型相を含有する酸化物が含まれていることを特徴とする請求項8または9記載の複合軟磁性材。 An Fe-Si-based iron-based soft magnetic particle phase and a grain boundary phase surrounding the Fe-Si-based iron-based soft magnetic particle phase, and the grain boundary phase contains an oxidation containing a crystalline MgO solid solution wustite type phase. 10. The composite soft magnetic material according to claim 8 or 9, wherein an object is contained. 請求項8、9または10記載の複合軟磁性材からなることを特徴とするリアクトル用コア。 A reactor core comprising the composite soft magnetic material according to claim 8, 9 or 10 . 請求項8、9または10記載の複合軟磁性材からなることを特徴とするコアを有するリアクトル。 A reactor having a core made of the composite soft magnetic material according to claim 8, 9 or 10 . 請求項8、9または10記載の複合軟磁性材からなる磁心、電動機コア,発電機コア,ソレノイドコア,イグニッションコア,トランスコア,チョークコイルコアまたは磁気センサコアであることを特徴とする電磁気回路部品。 An electromagnetic circuit component comprising a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a transformer core, a choke coil core, or a magnetic sensor core made of the composite soft magnetic material according to claim 8, 9 or 10 . 請求項13記載の前記電磁気回路部品を組み込んだ電気機器。 An electric device incorporating the electromagnetic circuit component according to claim 13 .
JP2005319247A 2005-05-31 2005-11-02 Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment Expired - Fee Related JP4883755B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005319247A JP4883755B2 (en) 2005-05-31 2005-11-02 Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
PCT/JP2006/322028 WO2007052772A1 (en) 2005-11-02 2006-11-02 Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005159770 2005-05-31
JP2005159770 2005-05-31
JP2005231191 2005-08-09
JP2005231191 2005-08-09
JP2005319247A JP4883755B2 (en) 2005-05-31 2005-11-02 Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment

Publications (2)

Publication Number Publication Date
JP2007070719A JP2007070719A (en) 2007-03-22
JP4883755B2 true JP4883755B2 (en) 2012-02-22

Family

ID=37932430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319247A Expired - Fee Related JP4883755B2 (en) 2005-05-31 2005-11-02 Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment

Country Status (1)

Country Link
JP (1) JP4883755B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141346A (en) * 2007-11-16 2009-06-25 Mitsubishi Materials Corp High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP5049845B2 (en) * 2008-03-31 2012-10-17 三菱マテリアル株式会社 High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
KR101768975B1 (en) * 2010-05-11 2017-08-18 한국생산기술연구원 Technology of soft magnetic properties in rolled sheet by means of cr coating and thermal diffusion
JP6911402B2 (en) * 2017-03-09 2021-07-28 Tdk株式会社 Powder magnetic core
US11459646B2 (en) 2017-09-25 2022-10-04 National Institute Of Advanced Industrial Science And Technology Magnetic material and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187123A (en) * 1997-09-08 1999-03-30 Mitsubishi Materials Corp High-frequency soft magnetic powder
JP2003306704A (en) * 2002-04-17 2003-10-31 Mitsubishi Materials Corp Fe-Si COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2007070719A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
EP1710815B1 (en) Powder core and method of producing thereof
EP2502689B1 (en) Iron powder coated with Mg-containing oxide film
KR20070049670A (en) Method for producing soft magnetic metal powder coated with mg-containing oxidized film and method for producing composite soft magnetic material using said powder
JP4646768B2 (en) Soft magnetic material, dust core, and method for producing soft magnetic material
JP4430607B2 (en) Method for producing surface high Si layer coated iron powder
KR20110079789A (en) Powder magnetic core and production method thereof
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP2008244347A (en) Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material
JP2008277775A (en) Dust core and its manufacturing method
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2004288983A (en) Dust core and method for manufacturing same
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4480015B2 (en) Laminated oxide film coated iron powder
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
KR101436720B1 (en) Powder mixture for dust cores
JP2010236018A (en) High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts
JP4367709B2 (en) Laminated oxide film coated iron powder
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
WO2007052772A1 (en) Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
JP2006324612A (en) Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
JPH10208923A (en) Composite magnetic material and production thereof
JP4480628B2 (en) Composite soft magnetic powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees