JP2004297036A - Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method - Google Patents

Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method Download PDF

Info

Publication number
JP2004297036A
JP2004297036A JP2003405303A JP2003405303A JP2004297036A JP 2004297036 A JP2004297036 A JP 2004297036A JP 2003405303 A JP2003405303 A JP 2003405303A JP 2003405303 A JP2003405303 A JP 2003405303A JP 2004297036 A JP2004297036 A JP 2004297036A
Authority
JP
Japan
Prior art keywords
powder
iron
soft magnetic
coated
spinel ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003405303A
Other languages
Japanese (ja)
Inventor
Kazunori Igarashi
和則 五十嵐
Ryoji Nakayama
亮治 中山
Masaru Itakura
賢 板倉
Yoshiji Tomokiyo
芳二 友清
Noriyuki Kuwano
範之 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003405303A priority Critical patent/JP2004297036A/en
Publication of JP2004297036A publication Critical patent/JP2004297036A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a soft magnetic powder coated with a ferrite film having a spinel structure containing Zn which provides high relative permeability at a high frequency. <P>SOLUTION: (1) The method in which at least a surface of iron powder is coated with an alloy film containing iron and zinc and the powder coated with the alloy is treated with oxidization/diffusion is provided. (2) Alternatively, the method in which iron powder is coated with an iron oxide film and the surface of the iron powder coated with the iron oxide film is coated with a zinc oxide film and then the powder is treated with diffusion or oxidization/diffusion is provided. (3) The manufacturing method in which a soft magnetic sintered composite material is produced from the soft magnetic powder coated with a ferrite film provided with the method (1) or (2) presented above is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、モータ、アクチュエータ、磁気センサなどの製造に使用される、鉄粉末の表面にZnを含むスピネル構造を有するフェライト膜(以下、スピネル構造を有するフェライト膜を「スピネルフェライト膜」という)を被覆してなるZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法およびそのZnを含むスピネルフェライト膜被覆鉄軟磁性粉末を使用した複合焼結軟磁性材に関するものである。   The present invention relates to a ferrite film having a spinel structure containing Zn on the surface of iron powder (hereinafter, a ferrite film having a spinel structure is referred to as a "spinel ferrite film") used for manufacturing motors, actuators, magnetic sensors, and the like. The present invention relates to a method for producing an iron soft magnetic powder coated with a spinel ferrite film containing Zn and a composite sintered soft magnetic material using the iron soft magnetic powder coated with a spinel ferrite film containing Zn.

一般に、モータ、アクチュエータ、磁気センサなどの磁心には鉄粉末を燒結して得られた軟磁性焼結材料が用いられることは知られており、さらに、この軟磁性焼結材料の一つとしてスピネルフェライトが知られている。前記スピネルフェライトは、一般にMeFe24(但し、MeはMn,Zn,Ni,Mg,Cu,FeもしくはCoなどの二価金属またはこれらの混合物)で表され、MeにZnを含むスピネルフェライトも知られている。 It is generally known that a soft magnetic sintered material obtained by sintering iron powder is used for a magnetic core of a motor, an actuator, a magnetic sensor, and the like. Ferrite is known. The spinel ferrite is generally represented by MeFe 2 O 4 (where Me is a divalent metal such as Mn, Zn, Ni, Mg, Cu, Fe or Co, or a mixture thereof), and a spinel ferrite containing Zn in Me. Are known.

前記鉄粉末などを燒結して得られた鉄軟磁性焼結材料は、飽和磁束密度が高いが、高周波特性が悪く、一方、スピネルフェライトなど鉄酸化物粉末を焼結して得られた酸化物軟磁性焼結材料は、抵抗が高いために高周波特性に優れ、初透磁率が比較的高いが、飽和磁束密度が低い欠点があり、これらを改善するために、鉄粉末の表面にスピネルフェライト膜を被覆してなるスピネルフェライト膜被覆鉄軟磁性粉末が提案されており、このスピネルフェライト膜被覆鉄軟磁性粉末を焼結して得られた焼結材料は飽和磁束密度および高周波特性に共に優れると言われている。   The iron soft magnetic sintered material obtained by sintering the iron powder or the like has a high saturation magnetic flux density, but has a poor high frequency characteristic, while an oxide obtained by sintering an iron oxide powder such as spinel ferrite. Soft magnetic sintered materials have excellent high frequency characteristics due to high resistance and relatively high initial permeability, but have the disadvantage of low saturation magnetic flux density.To improve these, spinel ferrite film is applied to the surface of iron powder. A spinel ferrite film-coated iron soft magnetic powder coated with iron has been proposed, and the sintered material obtained by sintering this spinel ferrite film-coated iron soft magnetic powder has excellent saturation magnetic flux density and high frequency characteristics. It is said.

このスピネルフェライト膜被覆鉄軟磁性粉末を製造するための方法として、鉄粉末の表面に湿式フェライトメッキによりスピネルフェライト膜を形成する方法(特許文献1または2参照)、
鉄粉末およびスピネルフェライト粉末をメカノフュージョン装置に入れて高速回転させることにより鉄粉末の表面にスピネルフェライト粉末を埋め込み、それによって鉄粉末の表面にスピネルフェライト膜を形成する方法(特許文献3参照)、などが知られており、Znを含むスピネルフェライト膜被覆鉄軟磁性粉末も同じ方法で製造することができることが知られている。
特開昭56−38402号公報 特開平11−1702号公報 特開平4−226003号公報
As a method for producing the spinel ferrite film-coated iron soft magnetic powder, a method of forming a spinel ferrite film on the surface of the iron powder by wet ferrite plating (see Patent Document 1 or 2),
A method in which an iron powder and a spinel ferrite powder are put into a mechanofusion device and rotated at a high speed to embed the spinel ferrite powder in the surface of the iron powder, thereby forming a spinel ferrite film on the surface of the iron powder (see Patent Document 3). It is known that iron soft magnetic powder coated with a spinel ferrite film containing Zn can be produced by the same method.
JP-A-56-38402 JP-A-11-1702 JP-A-4-226003

しかし、前記特許文献1および2に記載の湿式フェライトメッキ法で鉄粉末の表面にスピネルフェライト膜を被覆してなるスピネルフェライト膜被覆鉄軟磁性粉末は、湿式プロセスにより製造されるために必然的に後処理としての粉末ろ過工程、乾燥工程などを必要とするところから製造コストが高くなり、また大量生産に向かないという欠点があった。
また、前記特許文献3記載のメカノフュージョン法により製造されたスピネルフェライト膜被覆鉄軟磁性粉末は、形成されたスピネルフェライト膜が鉄粉末表面にスピネルフェライト粉末が並んだ構成の不連続膜からなるために、成形時にスピネルフェライト粉末が剥がれ落ちたりするので高い絶縁性を確保することができなくなることがあるなどの欠点があった。
However, a spinel ferrite film-coated iron soft magnetic powder obtained by coating a spinel ferrite film on the surface of an iron powder by the wet ferrite plating method described in Patent Documents 1 and 2 is inevitably produced by a wet process. There are drawbacks in that the production cost is high due to the necessity of a powder filtration step, a drying step, and the like as post-processing, and the method is not suitable for mass production.
In addition, the spinel ferrite film-coated iron soft magnetic powder produced by the mechanofusion method described in Patent Document 3 described above, because the formed spinel ferrite film is a discontinuous film having a configuration in which spinel ferrite powder is arranged on the surface of the iron powder. In addition, there is a drawback in that the spinel ferrite powder may be peeled off during molding, so that it may not be possible to ensure high insulation.

そこで、本発明者らは、鉄粉末の表面に連続的でかつ均一なスピネルフェライト膜を有するスピネルフェライト膜被覆鉄軟磁性粉末を低コストで大量生産できる方法を開発すべく研究を行った。その結果、
(イ)Fe粉末にZn粉末を0.01〜15質量%添加した混合粉末を加熱すると、Fe粉末の表面にFe4Zn9等のFeおよびZnからなる合金膜が形成された金属膜被覆鉄粉末が得られ、この金属膜被覆鉄粉末を酸化性雰囲気中で加熱することにより酸化・拡散処理すると、(FeZn)Fe23等のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末が得られる、
(ロ)鉄粉末を酸化して鉄粉末の表面にFe34膜を形成し、このFe34膜が形成された鉄酸化膜被覆鉄粉末にZn粉末を0.01〜15質量%添加して作製した混合粉末を加熱すると、Fe34膜の上にさらにZnO膜が形成されて積層酸化物膜被覆鉄粉末が形成され、このFe34膜およびZnO膜が形成された積層酸化物膜被覆鉄粉末を真空または非酸化性ガス雰囲気中で加熱することにより拡散処理するかまたは酸化性雰囲気中で加熱することにより酸化・拡散処理すると、鉄粉末の表面に(FeZn)Fe23からなる組成のZnを含むスピネルフェライト膜が形成されたスピネルフェライト膜被覆鉄軟磁性粉末が得られる、
(ハ)前記加熱するだけで鉄粉末の表面に二価金属の化合物を形成することができるのは、二価金属のうちでもZnが最も蒸気圧の高い金属であるために低温での蒸着が可能であり、低コストで鉄粉末の表面に二価金属を被覆することができるところから、低コストでスピネルフェライト膜被覆鉄軟磁性粉末を製造することができる、などの研究結果が得られたのである。
Therefore, the present inventors conducted research to develop a method capable of mass-producing a low-cost mass production of a spinel ferrite film-coated iron soft magnetic powder having a continuous and uniform spinel ferrite film on the surface of the iron powder. as a result,
(A) When a mixed powder obtained by adding 0.01 to 15% by mass of Zn powder to Fe powder is heated, a metal film-coated iron in which an alloy film made of Fe and Zn such as Fe 4 Zn 9 is formed on the surface of the Fe powder A powder is obtained, and when this metal film-coated iron powder is oxidized and diffused by heating in an oxidizing atmosphere, a spinel ferrite film-coated iron soft magnetic powder containing Zn such as (FeZn) Fe 2 O 3 is obtained. ,
(B) Iron powder is oxidized to form an Fe 3 O 4 film on the surface of the iron powder, and Zn powder is added to the iron oxide film-coated iron powder having the Fe 3 O 4 film formed thereon in an amount of 0.01 to 15% by mass. When the mixed powder produced by heating was heated, a ZnO film was further formed on the Fe 3 O 4 film to form a laminated oxide film-coated iron powder, and the Fe 3 O 4 film and the ZnO film were formed. When the diffusion treatment is performed by heating the laminated oxide film-coated iron powder in a vacuum or a non-oxidizing gas atmosphere or by performing the oxidation and diffusion treatment by heating in an oxidizing atmosphere, (FeZn) Fe A spinel ferrite film-coated iron soft magnetic powder on which a spinel ferrite film containing Zn having a composition of 2 O 3 is obtained,
(C) The divalent metal compound can be formed on the surface of the iron powder only by heating, because Zn is the metal having the highest vapor pressure among the divalent metals, so that deposition at a low temperature can be performed. Research results have shown that it is possible to produce a spinel ferrite film-coated iron soft magnetic powder at low cost because it is possible and can coat the surface of the iron powder with a divalent metal at low cost. It is.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)鉄粉末にZn粉末を添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄粉末の表面にFeおよびZnからなる合金膜を形成した金属膜被覆鉄粉末を作製し、この金属膜被覆鉄粉末を酸化性雰囲気中で加熱することにより酸化・拡散処理するZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法、
(2)鉄粉末にZn粉末を0.01〜15質量%添加した混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄粉末の表面にFeおよびZnからなる合金膜を形成した金属膜被覆鉄粉末を作製し、この金属膜被覆鉄粉末を酸化性雰囲気中で加熱することにより酸化・拡散処理するZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法、
(3)鉄粉末を酸化性雰囲気中で加熱することにより鉄粉末の表面に鉄酸化膜を形成して鉄酸化膜被覆鉄粉末を作製し、この鉄酸化膜被覆鉄粉末にZn粉末を添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面にZnを蒸着し拡散する拡散処理を施すZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法、
(4)鉄粉末を酸化性雰囲気中で加熱することにより鉄粉末の表面に鉄酸化膜を形成して鉄酸化膜被覆鉄粉末を作製し、この鉄酸化膜被覆鉄粉末にZn粉末を添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面にZnを蒸着し拡散する拡散処理を施し、引き続いてさらに真空または非酸化性ガス雰囲気中で加熱することにより拡散処理するか、または酸化性雰囲気中で加熱することにより酸化、拡散処理するZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。
(5)前記Znを含むスピネルフェライト膜被覆鉄軟磁性粉末は、鉄酸化膜被覆鉄粉末にZn粉末を0.01〜15質量%添加した混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより形成する前記(3)または(4)記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法、
(6)鉄粉末を酸化性雰囲気中で加熱することにより鉄粉末の表面に鉄酸化膜を形成して鉄酸化膜被覆鉄粉末を作製し、この鉄酸化膜被覆鉄粉末にZn粉末を添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面に酸化Zn膜を形成した積層酸化物膜被覆鉄粉末を作製し、この積層酸化物膜被覆鉄粉末を真空または非酸化性ガス雰囲気中で加熱することにより拡散処理するかまたは酸化性雰囲気中で加熱することにより酸化・拡散処理するZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法、
(7)前記鉄酸化膜被覆鉄粉末にZn粉末を0.01〜15質量%添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面に酸化Zn膜を形成して積層酸化物膜被覆鉄粉末を形成する前記(7)記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法、
(8)前記酸化性雰囲気は、大気雰囲気、二酸化炭素雰囲気、酸素と不活性ガスの混合ガス雰囲気または二酸化炭素と不活性ガスの混合ガス雰囲気である前記(1)、(2)、(3)、(4)、(5)、(6)または(7)記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法、に特徴を有するものである。
この発明のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法において、「真空または非酸化性ガスの減圧雰囲気」とは1Torr以下の真空雰囲気または200Torr以下の非酸化性ガス減圧雰囲気である。
The present invention has been made based on such research results,
(1) A metal film in which an alloy film made of Fe and Zn is formed on the surface of an iron powder by heating a mixed powder obtained by adding a Zn powder to an iron powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas. Producing a coated iron powder, a method for producing a spinel ferrite film-coated iron soft magnetic powder containing Zn to be oxidized and diffused by heating the metal film-coated iron powder in an oxidizing atmosphere,
(2) An alloy film composed of Fe and Zn is formed on the surface of the iron powder by heating a mixed powder obtained by adding 0.01 to 15% by mass of Zn powder to iron powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas. A method for producing a spinel ferrite film-coated iron soft magnetic powder containing Zn to be oxidized and diffused by heating the metal film-coated iron powder in an oxidizing atmosphere by preparing the metal film-coated iron powder,
(3) An iron oxide film is formed on the surface of the iron powder by heating the iron powder in an oxidizing atmosphere to form an iron oxide film-coated iron powder, and Zn powder is added to the iron oxide film-coated iron powder. The powder obtained by heating is heated in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas to deposit Zn on the surface of the iron powder coated with an iron oxide film and to perform a diffusion treatment to diffuse the Zn. Manufacturing method of magnetic powder,
(4) An iron oxide film is formed on the surface of the iron powder by heating the iron powder in an oxidizing atmosphere to form an iron oxide film-coated iron powder, and Zn powder is added to the iron oxide film-coated iron powder. The resulting mixed powder is heated in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas to perform a diffusion process of depositing and diffusing Zn on the surface of the iron oxide-coated iron powder, and then further performing a vacuum or non-oxidizing A method for producing an iron soft magnetic powder coated with a spinel ferrite film containing Zn, which is subjected to diffusion treatment by heating in a gas atmosphere or oxidization and diffusion treatment by heating in an oxidizing atmosphere.
(5) The spinel ferrite film-coated iron soft magnetic powder containing Zn is obtained by mixing a powder obtained by adding 0.01 to 15% by mass of Zn powder to an iron oxide film-coated iron powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas. The method for producing a spinel ferrite film-coated iron soft magnetic powder containing Zn according to the above (3) or (4), which is formed by heating;
(6) An iron oxide film is formed on the surface of the iron powder by heating the iron powder in an oxidizing atmosphere to produce an iron oxide film-coated iron powder, and Zn powder is added to the iron oxide film-coated iron powder. By heating the mixed powder obtained in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas, a laminated oxide film-coated iron powder having a Zn oxide film formed on the surface of the iron oxide film-coated iron powder is produced. Diffusion treatment by heating oxide film-coated iron powder in vacuum or non-oxidizing gas atmosphere, or oxidation and diffusion treatment by heating in oxidizing atmosphere Spin-containing ferrite film-containing iron soft magnetic powder containing Zn Manufacturing method,
(7) The mixed powder obtained by adding 0.01 to 15% by mass of Zn powder to the iron oxide film-coated iron powder is heated in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas to thereby reduce the iron oxide-coated iron powder. (7) The method for producing a Zn-containing spinel ferrite film-coated iron soft magnetic powder according to (7), wherein a Zn oxide film is formed on the surface of the powder to form a laminated oxide film-coated iron powder.
(8) The oxidizing atmosphere is an air atmosphere, a carbon dioxide atmosphere, a mixed gas atmosphere of oxygen and an inert gas, or a mixed gas atmosphere of carbon dioxide and an inert gas. (1), (2), (3) , (4), (5), (6) or (7), characterized in that it is characterized by a method for producing a spinel ferrite film-coated iron soft magnetic powder containing Zn.
In the method for producing a Zn-containing spinel ferrite film-coated iron soft magnetic powder of the present invention, the “vacuum or reduced pressure atmosphere of non-oxidizing gas” refers to a vacuum atmosphere of 1 Torr or less or a reduced pressure atmosphere of non-oxidizing gas of 200 Torr or less.

この発明のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法をさらに一層具体的に説明する。
この発明のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法において使用する鉄粉末は、カルボニル鉄粉、水素還元鉄粉末、電解鉄粉末などの純鉄粉末が好ましい。しかし、不純物の少ない商用純鉄として知られているJIS
C 2504で規定される化学成分の電磁軟鉄粉末なども使用することができる。そして、これら鉄粉末は平均粒径:5〜150μmの範囲内にある鉄粉末を使用することが好ましい。その理由は、鉄粉末の平均粒径が小さすぎると、粉末の圧縮性が低下し、また鉄の体積割合が低くなるために飽和磁束密度の値が低下するので好ましくなく、一方、平均粒径が大きすぎると、鉄粉末内部の渦電流が増大して高周波における透磁率が低下するので好ましくないことによるものである。
The method for producing a Zn-containing spinel ferrite film-coated iron soft magnetic powder of the present invention will be described more specifically.
The iron powder used in the method for producing a spinel ferrite film-coated iron soft magnetic powder containing Zn of the present invention is preferably a pure iron powder such as a carbonyl iron powder, a hydrogen reduced iron powder, and an electrolytic iron powder. However, JIS, which is known as commercial pure iron with few impurities,
Electromagnetic soft iron powder having a chemical component defined by C2504 can also be used. It is preferable to use iron powder having an average particle size of 5 to 150 μm. The reason is that if the average particle size of the iron powder is too small, the compressibility of the powder decreases, and the value of the saturation magnetic flux density decreases because the volume ratio of iron decreases. Is too large, it is not preferable because the eddy current inside the iron powder increases and the magnetic permeability at high frequencies decreases.

この鉄粉末にZn粉末:0.01〜15質量%(好ましくは0.1〜5質量%)を添加して混合粉末を作製し、この混合粉末を真空または非酸化性ガスの減圧雰囲気(すなわち、1Torr以下の真空雰囲気または200Torr以下の非酸化性ガス減圧雰囲気)中、温度:200〜420℃(好ましくは、250〜420℃)に保持すると、鉄粉末の表面に鉄とZnの合金膜(Fe4Zn9等の合金膜)が形成された金属膜被覆鉄粉末が得られる。このとき使用されるZn粉末は300μm以下であることが好ましい。Zn粉末の粒径が大きすぎると処理後にZn蒸気とならずにそのままZn粉末として残存することがあるので好ましくないからである。
また、混合粉末を真空または非酸化性ガスの減圧雰囲気(すなわち、1Torr以下の真空雰囲気または200Torr以下の非酸化性ガス減圧雰囲気)中で加熱する理由は、1Torrを越えた真空雰囲気または200Torrを越えて高い非酸化性ガス減圧雰囲気にすると、十分にZn蒸気が発生せず、粉末表面へのZn蒸着量が不十分となったり、Zn蒸気とならずに残存するZn粉末が発生するなどして好ましくないからである。また、この時の温度を200〜420℃に限定した理由は、200℃未満では十分にZn蒸気が発生せず、鉄粉末表面へのZn蒸着量が不十分となったり、Zn蒸気とならずに残存するZn粉末が発生するなどして好ましくなく、一方、420℃を越えると、Znが溶融し、鉄粉末が凝集するなどしてZnが鉄粉末表面に均一に蒸着されなくなるので好ましくないことによるものである。さらに、この処理を行うに当り、鉄粉末の凝集を防ぎ、鉄粉末の表面に均一にZnを蒸着するために、鉄粉末とZn粉末の混合粉末を撹拌しながら処理するのが好ましい。
Zn powder: 0.01 to 15% by mass (preferably 0.1 to 5% by mass) is added to the iron powder to prepare a mixed powder, and the mixed powder is vacuumed or a reduced-pressure atmosphere of a non-oxidizing gas (that is, In a vacuum atmosphere of 1 Torr or less or a reduced pressure atmosphere of a non-oxidizing gas at 200 Torr or less), when the temperature is maintained at 200 to 420 ° C. (preferably 250 to 420 ° C.), an alloy film of iron and Zn ( An iron powder coated with a metal film on which an alloy film of Fe 4 Zn 9 or the like is formed is obtained. The Zn powder used at this time is preferably 300 μm or less. This is because if the particle size of the Zn powder is too large, it may not remain as a Zn vapor after the treatment but may remain as the Zn powder as it is, which is not preferable.
The reason why the mixed powder is heated in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas (that is, a vacuum atmosphere of 1 Torr or less or a reduced-pressure atmosphere of a non-oxidizing gas of 200 Torr or less) is a vacuum atmosphere exceeding 1 Torr or exceeding 200 Torr. When the pressure is reduced to a high non-oxidizing gas atmosphere, Zn vapor is not generated sufficiently, the amount of Zn deposited on the powder surface becomes insufficient, or residual Zn powder is generated without being converted to Zn vapor. This is not desirable. In addition, the reason for limiting the temperature at this time to 200 to 420 ° C. is that if the temperature is lower than 200 ° C., Zn vapor is not sufficiently generated, and the amount of Zn deposited on the surface of the iron powder becomes insufficient, or Zn vapor does not occur. On the other hand, if the temperature exceeds 420 ° C., Zn is melted and the iron powder is agglomerated, and Zn is not uniformly deposited on the surface of the iron powder. It is due to. Further, in performing this treatment, it is preferable to carry out the treatment while stirring the mixed powder of the iron powder and the Zn powder in order to prevent agglomeration of the iron powder and uniformly deposit Zn on the surface of the iron powder.

このようにして得られた金属膜被覆鉄粉末を大気中または炭酸ガス雰囲気中などの酸化性雰囲気中で加熱することにより酸化・拡散処理すると、鉄粉末の表面にZnを含むスピネルフェライト膜が形成され、Znを含むスピネルフェライト膜被覆鉄軟磁性粉末を製造することができる。酸化性雰囲気中での酸化・拡散処理は、大気中で行なう場合は温度:100〜400℃で行ない、大気圧の炭酸ガス雰囲気中で行なう場合は温度:200〜600℃で行なうことが好ましい。温度:200〜600℃では炭酸ガスは分解して微弱な酸化性雰囲気となるからである。
鉄粉末にZn粉末:0.01〜15質量%を添加して混合粉末を作製し、この混合粉末を200Torr以下の真空または非酸化性ガスの減圧雰囲気中、温度:200〜420℃(好ましくは、250〜420℃)に保持する処理を行うと、鉄粉末の表面には鉄とZnの合金膜(Fe4Zn9等の組成を有する合金膜)が必ず形成されて金属膜被覆鉄粉末が得られるが、形成された合金膜の最表面に金属Zn蒸気が凝集して金属Zn膜が形成されることがあり、合金膜および金属Zn膜とで構成された複合金属膜が形成されて複合金属膜被覆鉄粉末が形成されることがある。この複合金属膜被覆鉄粉末を大気中または炭酸ガス雰囲気中などの酸化性雰囲気中で加熱し拡散しながら酸化・拡散処理してもZnを含むスピネルフェライト膜被覆鉄軟磁性粉末を製造することができる。また、この処理を行うに当り、粉末同士の凝集を防ぎ、粉末表面を均一に酸化するために、粉末を撹拌しながら処理するのが好ましい。
When the thus-obtained metal film-coated iron powder is oxidized and diffused by heating it in an oxidizing atmosphere such as air or carbon dioxide, a spinel ferrite film containing Zn is formed on the surface of the iron powder. Thus, an iron soft magnetic powder coated with a spinel ferrite film containing Zn can be produced. The oxidation / diffusion treatment in an oxidizing atmosphere is preferably performed at a temperature of 100 to 400 ° C. when performed in the air, and at a temperature of 200 to 600 ° C. when performed in a carbon dioxide gas atmosphere at atmospheric pressure. At a temperature of 200 to 600 ° C., the carbon dioxide gas is decomposed to form a weak oxidizing atmosphere.
Zn powder: 0.01 to 15% by mass is added to iron powder to prepare a mixed powder, and the mixed powder is placed in a vacuum of 200 Torr or less or a reduced pressure atmosphere of a non-oxidizing gas at a temperature of 200 to 420 ° C. (preferably, , 250-420 ° C.), an alloy film of iron and Zn (an alloy film having a composition such as Fe 4 Zn 9 ) is always formed on the surface of the iron powder, and the metal film-coated iron powder is formed. However, metal Zn vapor may aggregate on the outermost surface of the formed alloy film to form a metal Zn film, and a composite metal film composed of an alloy film and a metal Zn film is formed to form a composite. A metal film-coated iron powder may be formed. Even if the composite metal film-coated iron powder is heated and diffused in an oxidizing atmosphere such as an air atmosphere or a carbon dioxide gas atmosphere, it can be oxidized and diffused to produce a Zn-containing spinel ferrite film-coated iron soft magnetic powder. it can. In carrying out this treatment, it is preferable to carry out the treatment while stirring the powder in order to prevent agglomeration of the powders and uniformly oxidize the powder surface.

さらに、Znを含むスピネルフェライト膜被覆鉄軟磁性粉末を下記のごとき方法で製造することができる。
まず、平均粒径:5〜150μmの鉄粉末を大気中、二酸化炭素雰囲気中、酸素分圧を調整した不活性ガス雰囲気中などの酸化性雰囲気中で加熱することにより鉄粉末の表面に鉄酸化膜を形成して鉄酸化膜被覆鉄粉末を作製する。鉄粉末を酸化性雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末を作製する際の温度は、大気中の場合は100〜400℃、大気圧の二酸化炭素雰囲気中の場合は200〜600℃であることが好ましく、鉄粉末の表面に形成される鉄酸化膜はマグネタイト(Fe34)であることが好ましい。この鉄酸化膜被覆鉄粉末にZn粉末:0.01〜15質量%(好ましくは0.1〜5質量%)を添加して混合粉末を作製し、この混合粉末を真空または非酸化性ガスの減圧雰囲気中で温度:200〜420℃(好ましくは、250〜420℃)に保持すると、鉄酸化膜被覆鉄粉末の表面に酸化Zn膜が形成されて積層酸化物膜被覆鉄粉末が形成される。
このようにして得られた積層酸化物膜被覆鉄粉末を真空または非酸化性ガス雰囲気中で加熱することにより拡散処理するかまたは酸化性雰囲気中で加熱することにより酸化・拡散処理すると、鉄粉末の表面にZnを含むスピネルフェライト膜が形成され、Znを含むスピネルフェライト膜被覆鉄軟磁性粉末を製造することができる。積層酸化物膜被覆鉄粉末を真空または非酸化性ガス雰囲気中で加熱し拡散する処理は、鉄酸化膜被覆鉄粉末の表面に酸化Zn膜を形成する処理と一回の処理で同時にまたは連続して行なうこともでき、その場合には改めて拡散処理を行う必要はない。積層酸化物膜被覆鉄粉末を酸化性雰囲気中で加熱し、酸化・拡散処理する場合は、その温度は大気中の場合には400℃以下、大気圧の二酸化炭素雰囲気中の場合は600℃以下であることが好ましい。
Further, a spinel ferrite film-coated iron soft magnetic powder containing Zn can be produced by the following method.
First, iron powder having an average particle size of 5 to 150 μm is heated in an oxidizing atmosphere such as the air, carbon dioxide atmosphere, or an inert gas atmosphere in which oxygen partial pressure is adjusted, so that iron oxide is formed on the surface of the iron powder. A film is formed to produce an iron oxide-coated iron powder. The temperature at the time of producing the iron oxide film-coated iron powder by heating the iron powder in an oxidizing atmosphere is 100 to 400 ° C. in the air and 200 to 600 ° C. in the atmospheric carbon dioxide atmosphere. It is preferable that the iron oxide film formed on the surface of the iron powder be magnetite (Fe 3 O 4 ). Zn powder: 0.01 to 15% by mass (preferably 0.1 to 5% by mass) is added to the iron oxide film-coated iron powder to prepare a mixed powder. When the temperature is maintained at 200 to 420 ° C. (preferably 250 to 420 ° C.) in a reduced-pressure atmosphere, a Zn oxide film is formed on the surface of the iron oxide-coated iron powder, and a laminated oxide film-coated iron powder is formed. .
The iron oxide powder coated with the laminated oxide film thus obtained is subjected to a diffusion treatment by heating in a vacuum or a non-oxidizing gas atmosphere or an oxidation / diffusion treatment by heating in an oxidizing atmosphere. A spinel ferrite film containing Zn is formed on the surface of the ferrite film, and an iron soft magnetic powder coated with a spinel ferrite film containing Zn can be produced. The process of heating and diffusing the laminated oxide film-coated iron powder in a vacuum or a non-oxidizing gas atmosphere is performed simultaneously or continuously in one process with the process of forming a Zn oxide film on the surface of the iron oxide film-coated iron powder. In this case, it is not necessary to perform the diffusion process again. When the iron oxide coated with a laminated oxide film is heated in an oxidizing atmosphere and subjected to oxidation / diffusion treatment, the temperature is 400 ° C. or less in the air, and 600 ° C. or less in the atmospheric carbon dioxide atmosphere. It is preferable that

前記鉄酸化膜被覆鉄粉末にZn粉末:0.01〜15質量%(好ましくは0.1〜5質量%)を添加して混合粉末を作製し、この混合粉末を真空または非酸化性ガスの減圧雰囲気中で温度:200〜420℃(好ましくは、250〜420℃)に保持すると、鉄酸化膜被覆鉄粉末の表面にはじめ酸化Zn膜が必ず形成されるため積層酸化物膜被覆鉄粉末が形成されたり、あるいはこのとき形成された酸化Zn膜の最表面にZn蒸気が凝集して極めて薄い金属Zn膜が形成されて鉄粉末の表面に、鉄酸化膜およびZn酸化膜からなる積層酸化物膜並びに金属Zn膜からなる酸化膜−Zn膜が形成された複合膜被覆鉄粉末が形成されることがあるが、この場合にも複合膜被覆鉄粉末を真空中または非酸化性雰囲気中で加熱することにより拡散処理するかまたは大気中または炭酸ガス雰囲気中などの酸化性雰囲気中で加熱し酸化・拡散処理することによりZnを含むスピネルフェライト膜被覆鉄軟磁性粉末を製造することができる。 Zn powder: 0.01 to 15% by mass (preferably 0.1 to 5% by mass) is added to the iron oxide film-coated iron powder to prepare a mixed powder. When the temperature is maintained at 200 to 420 ° C. (preferably 250 to 420 ° C.) in a reduced-pressure atmosphere, a Zn oxide film is always formed on the surface of the iron oxide film-coated iron powder, so that the laminated oxide film-coated iron powder is A Zn oxide is formed on the outermost surface of the formed Zn oxide film or an extremely thin metal Zn film is formed on the outermost surface of the Zn oxide film, and a laminated oxide including an iron oxide film and a Zn oxide film is formed on the surface of the iron powder. In some cases, a composite film-coated iron powder having an oxide film and a Zn film formed of a film and a metal Zn film is formed. In this case, too, the composite film-coated iron powder is heated in a vacuum or in a non-oxidizing atmosphere. Diffusion processing by doing It is possible to produce a spinel ferrite film coated iron soft magnetic powder containing Zn by heating and oxidation-diffusion process in an oxidizing atmosphere such as Luke or in the air or in carbon dioxide atmosphere.

この発明のスピネルフェライト膜被覆鉄軟磁性粉末の製造方法において、スピネルフェライトに含まれる二価金属のうちでもZnを選んだのはZnは蒸気圧が高い金属であるために低温での蒸着が可能であり、かつスピネルフェライトの飽和磁化を増大する効果があるために最適であるからである。
また、鉄粉末または鉄酸化膜被覆鉄粉末に添加するZn粉末量を0.01〜15質量%に限定したのは、Zn粉末量が0.01質量%未満ではZnの量が少なくて、形成されるスピネルフェライトに含まれるZnの量が少なすぎ、そのためにスピネルフェライト膜の電気抵抗が低くなって十分な絶縁性が保てなくなり、また圧粉成形、燒結して得られた焼結体の周波数特性が低下するので好ましくないからである。一方、15質量%を越えて添加すると、未反応の金属Znが残ったり、形成されるスピネルフェライト中のZn量が多すぎてスピネルフェライトが非磁性化したり、鉄粉末の表面にZn酸化物が形成されたりするので好ましくない理由によるものである。また、前記Zn粉末は純Znの他、Pb,Cd,Fe,Al,Cu,Mg,Sn,Li,Na,K,Ga,Ge,Ag,In,Sb,Ba,Bi,Mnのうち少なくとも1種以上をZnに対して5%以下であれば含んでも良い。
In the method for producing an iron soft magnetic powder coated with a spinel ferrite film of the present invention, Zn was selected from among the divalent metals contained in the spinel ferrite because Zn is a metal having a high vapor pressure, so that deposition at a low temperature is possible. And the effect of increasing the saturation magnetization of the spinel ferrite is optimal.
Further, the amount of Zn powder added to the iron powder or the iron oxide film-coated iron powder is limited to 0.01 to 15% by mass because when the amount of Zn powder is less than 0.01% by mass, the amount of Zn is small, The amount of Zn contained in the spinel ferrite is too small, so that the electrical resistance of the spinel ferrite film is low and sufficient insulation cannot be maintained. This is because frequency characteristics deteriorate, which is not preferable. On the other hand, if it is added in excess of 15% by mass, unreacted metallic Zn remains, the amount of Zn in the formed spinel ferrite is too large, the spinel ferrite becomes non-magnetic, and Zn oxide is formed on the surface of the iron powder. This is due to undesirable reasons. The Zn powder is at least one of Pb, Cd, Fe, Al, Cu, Mg, Sn, Li, Na, K, Ga, Ge, Ag, In, Sb, Ba, Bi, and Mn in addition to pure Zn. More than one species may be included if it is 5% or less with respect to Zn.

このようにして製造したZnを含むスピネルフェライト膜被覆鉄軟磁性粉末を、Znを含むスピネルフェライトが分解しない温度:300〜600℃(好ましくは400〜550℃)で燒結することにより複合焼結軟磁性材を得ることができる。この焼結時の雰囲気は、大気、Ar,窒素などの不活性ガス、真空など何れでも良く、特に限定されるものではない。   The thus-prepared iron soft magnetic powder coated with the spinel ferrite film containing Zn is sintered at a temperature at which the spinel ferrite containing Zn does not decompose: 300 to 600 ° C (preferably 400 to 550 ° C) to obtain a composite sintered soft powder. A magnetic material can be obtained. The atmosphere during the sintering may be any of air, an inert gas such as Ar and nitrogen, and vacuum, and is not particularly limited.

したがって、この発明は、
(9)前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法により製造されたZnを含むスピネルフェライト膜被覆鉄軟磁性粉末を、Znを含むスピネルフェライトが分解しない温度で焼成する複合焼結軟磁性材の製造方法、に特徴を有するものである。
前記前記Znを含むスピネルフェライトが分解しない焼成温度とは、具体的には、温度:300〜600℃(好ましくは400〜550℃)である。したがって、この発明は、
(10)前記Znを含むスピネルフェライトが分解しない焼成温度は、300〜600℃である前記(9)記載の複合焼結軟磁性材の製造方法、に特徴を有するものである。
Therefore, the present invention
(9) Production of a spinel ferrite film-coated iron soft magnetic powder containing Zn according to (1), (2), (3), (4), (5), (6), (7) or (8). A method for producing a composite sintered soft magnetic material in which the Zn-containing spinel ferrite film-coated iron soft magnetic powder produced by the method is fired at a temperature at which the Zn-containing spinel ferrite is not decomposed.
The firing temperature at which the spinel ferrite containing Zn does not decompose is, specifically, a temperature of 300 to 600 ° C (preferably 400 to 550 ° C). Therefore, the present invention
(10) The method for producing a composite sintered soft magnetic material according to (9), wherein the firing temperature at which the spinel ferrite containing Zn is not decomposed is 300 to 600 ° C.

前記(9)または(10)記載の製造方法で作製した高密度、高強度および高磁束密度を有する複合焼結軟磁性材は、その素地組織がα鉄粒子相とこのα鉄粒子相を包囲する粒界相からなり、前記粒界相は、Znを含むスピネルフェライト微細粒子相と六方晶構造を有するZnの酸化物微細粒子相との混合相により構成されている。したがって、この発明は、
(11)素地組織がα鉄粒子相とこのα鉄粒子相を包囲する粒界相からなり、前記粒界相は、Znを含むスピネルフェライト微細粒子相と六方晶構造のZnの酸化物微細粒子相との混合相からなる高密度、高強度および高磁束密度を有する複合軟磁性焼結材、に特徴を有するものである。
The composite sintered soft magnetic material having high density, high strength and high magnetic flux density produced by the production method according to the above (9) or (10), has a base structure surrounding the α-iron particle phase and the α-iron particle phase. The grain boundary phase is composed of a mixed phase of a Zn-containing spinel ferrite fine particle phase and a Zn oxide fine particle phase having a hexagonal structure. Therefore, the present invention
(11) The base structure is composed of an α-iron particle phase and a grain boundary phase surrounding the α-iron particle phase, wherein the grain boundary phase is a spinel ferrite fine particle phase containing Zn and a zinc oxide fine particle having a hexagonal structure. And a composite soft magnetic sintered material having a high density, a high strength, and a high magnetic flux density, which is composed of a mixed phase with a magnetic phase.

Znを含むスピネルフェライト膜被覆鉄軟磁性粉末を成形し、Znを含むスピネルフェライトが分解しない温度で焼成して得られた複合焼結軟磁性材は、Znを含むスピネルフェライトが分解しない比較的低温で焼結するところから、強度が不足することがあり、適用する軟磁性部品によっては一層の強度を必要とすることがある。かかる一層高強度を必要とする軟磁性部品を製造するには、この発明で得られたZnを含むスピネルフェライト膜被覆鉄軟磁性粉末に軟化点が600℃以下の低融点ガラス粉末を3質量%以下添加し混合して混合粉末を作製し、この混合粉末をZnを含むスピネルフェライトが分解しない温度で焼成することができる。Znを含むスピネルフェライトは酸化物であるために低融点ガラスとのなじみ性が良く、焼結時に溶融した低融点ガラスがZnを含むスピネルフェライト膜被覆鉄軟磁性粉末を結合する結合相となって一層高強度の複合焼結軟磁性材が得られるものと考えられる。   A composite sintered soft magnetic material obtained by molding an iron soft magnetic powder coated with a spinel ferrite film containing Zn and firing at a temperature at which the spinel ferrite containing Zn does not decompose is obtained at a relatively low temperature at which the spinel ferrite containing Zn does not decompose. In some cases, the strength may be insufficient due to sintering, and further strength may be required depending on the applied soft magnetic component. In order to manufacture such a soft magnetic component requiring higher strength, 3 mass% of a low melting point glass powder having a softening point of 600 ° C. or less is added to the Zn-containing spinel ferrite film-coated iron soft magnetic powder obtained in the present invention. A mixed powder is prepared by adding and mixing below, and the mixed powder can be fired at a temperature at which the spinel ferrite containing Zn does not decompose. Since spinel ferrite containing Zn is an oxide, it has good compatibility with low melting point glass, and the low melting point glass melted during sintering becomes a binding phase that binds the spinel ferrite film-coated iron soft magnetic powder containing Zn. It is considered that a composite sintered soft magnetic material with higher strength can be obtained.

したがって、この発明は、
(12)前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法により製造されたZnを含むスピネルフェライト膜被覆鉄軟磁性粉末に軟化点が600℃以下の低融点ガラス粉末を3質量%以下添加し混合して混合粉末を作製し、この混合粉末を、Znを含むスピネルフェライトが分解しない温度で焼成する複合焼結軟磁性材の製造方法、に特徴を有するものである。
前記前記Znを含むスピネルフェライトが分解しない焼成温度とは、具体的には、温度:300〜600℃(好ましくは400〜550℃)である。したがって、この発明は、
(13)前記Znを含むスピネルフェライトが分解しない焼成温度は、300〜600℃である前記(11)記載の複合焼結軟磁性材の製造方法、に特徴を有するものである。
Therefore, the present invention
(12) Production of Zn-containing spinel ferrite film-coated iron soft magnetic powder according to (1), (2), (3), (4), (5), (6), (7) or (8) above A low-melting glass powder having a softening point of 600 ° C. or less is added and mixed in an amount of 3% by mass or less to a Zn-containing spinel ferrite film-coated iron soft magnetic powder produced by the method to prepare a mixed powder. And a method for producing a composite sintered soft magnetic material which is fired at a temperature at which the spinel ferrite containing no is decomposed.
The firing temperature at which the spinel ferrite containing Zn does not decompose is, specifically, a temperature of 300 to 600 ° C (preferably 400 to 550 ° C). Therefore, the present invention
(13) The method for producing a composite sintered soft magnetic material according to (11), wherein the firing temperature at which the spinel ferrite containing Zn is not decomposed is 300 to 600 ° C.

前述のように、この発明によると、前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法により製造されたZnを含むスピネルフェライト膜被覆鉄軟磁性粉末に、平均粒径:0.01〜3μmを有する軟化点が600℃以下の低融点ガラス粉末を3質量%以下添加し混合して混合粉末を作製し、この混合粉末を温度:300〜600℃(好ましくは400〜550℃)で焼成することにより一層高強度の複合焼結軟磁性材を製造することができるのであるが、添加するガラス粉末の軟化点、平均粒径、および混合粉末の焼成温度を前記のごとく限定した理由を以下に説明する。 As described above, according to the present invention, the spinel ferrite film containing Zn described in the above (1), (2), (3), (4), (5), (6), (7) or (8) The spinel ferrite film-coated iron soft magnetic powder containing Zn produced by the method of producing the coated iron soft magnetic powder is mixed with 3 mass of a low melting point glass powder having an average particle size: 0.01 to 3 μm and a softening point of 600 ° C. or less. % Or less and mixing to produce a mixed powder, and firing the mixed powder at a temperature of 300 to 600 ° C. (preferably 400 to 550 ° C.) to produce a composite sintered soft magnetic material having higher strength. The reason why the softening point of the glass powder to be added, the average particle size, and the firing temperature of the mixed powder are limited as described above will be described below.

この発明の複合焼結軟磁性材の製造方法においてZnを含むスピネルフェライト膜被覆鉄軟磁性粉末に添加するガラス粉末は軟化点が600℃以下の低融点ガラス粉末であることが好ましい理由は、Znを含むスピネルフェライト膜被覆鉄軟磁性粉末に軟化点が600℃を越えるガラス粉末を3質量%以下添加してZnを含むスピネルフェライトが分解しない温度:300〜600℃(好ましくは400〜550℃)で燒結すると、焼結が不十分となり、得られた複合焼結軟磁性材の機械的特性が低下するので好ましくないからである。
軟化点が600℃以下の低融点ガラスとしてはSnO−P25系、SnO−ZnO−P25系、Bi23−B23系、SiO2−B23−R2O(但し、RはLi,Na,Kのいずれか)系、Li2O−ZnO系、SiO2−BaO−Li2O系などの市販の低融点ガラスを使用することができる。この場合、これらの低融点ガラスを1種または2種以上添加することができる。
また、前記低融点ガラス粉末の平均粒径を0.01〜3μmに限定した理由は、0.01μmより細かい低融点ガラス粉末は製造が困難であるためコストが高くなるので好ましくなく、一方、3μmより粗いと磁気特性が低下したり機械的強度が低下したりするので好ましくないことによるものである。この発明の複合焼結軟磁性材の製造方法において使用する低融点ガラス粉末の平均粒径の一層好ましい範囲は0.01〜1μmである。
この発明の複合焼結軟磁性材の製造方法においてZnを含むスピネルフェライト膜被覆鉄軟磁性粉末に添加する低融点ガラス粉末の添加量を3質量%以下に限定したのは、3質量%を超えると磁気特性が低下するので好ましくないからである。
The reason why the glass powder to be added to the spinel ferrite film-coated iron soft magnetic powder containing Zn in the method for producing a composite sintered soft magnetic material of the present invention is preferably a low-melting glass powder having a softening point of 600 ° C. or less is Zn. Temperature: 300-600 ° C (preferably 400-550 ° C) at which the spinel ferrite containing Zn does not decompose by adding 3% by mass or less of glass powder having a softening point exceeding 600 ° C to the spinel ferrite film-coated iron soft magnetic powder containing This is not preferable because sintering becomes insufficient and the mechanical properties of the obtained composite sintered soft magnetic material decrease.
Examples of the low melting point glass having a softening point of 600 ° C. or lower include SnO—P 2 O 5 , SnO—ZnO—P 2 O 5 , Bi 2 O 3 —B 2 O 3 , and SiO 2 —B 2 O 3 —R. Commercially available low melting point glass such as 2 O (where R is any one of Li, Na and K), Li 2 O—ZnO, and SiO 2 —BaO—Li 2 O can be used. In this case, one or more of these low melting point glasses can be added.
Further, the reason why the average particle diameter of the low melting point glass powder is limited to 0.01 to 3 μm is that it is not preferable because the low melting point glass powder finer than 0.01 μm is difficult to produce and the cost is high. This is because if the roughness is too low, the magnetic properties are lowered and the mechanical strength is lowered. A more preferable range of the average particle diameter of the low melting point glass powder used in the method for producing a composite sintered soft magnetic material of the present invention is 0.01 to 1 μm.
The reason why the amount of the low melting point glass powder added to the spinel ferrite film-coated iron soft magnetic powder containing Zn in the method for producing a composite sintered soft magnetic material of the present invention is limited to 3% by mass or less is more than 3% by mass. This is not preferable because the magnetic properties are deteriorated.

この発明の複合焼結軟磁性材の製造方法においてZnを含むスピネルフェライト膜被覆鉄軟磁性粉末と低融点ガラス粉末の混合粉末を焼成する方法として、
(i)前記混合粉末を冷間圧縮成形、温間圧縮成形、CIPなどの方法により成形して成形体を作製し、得られた成形体を温度:300〜600℃(好ましくは400〜550℃)で焼成する方法、
(ii)前記混合粉末を温度:300〜600℃(好ましくは400〜550℃)でホットプレスまたはHIPすることより成形と焼結を同時に行なう方法、があるが何れの方法を採用しても良い。
焼成温度を300〜600℃に限定した理由は、300℃未満では成形時にZnを含むスピネルフェライト膜被覆鉄軟磁性粉末に導入された歪の除去が不十分となり、磁気特性が低下したり、低融点ガラス粉末による焼結が不十分となって機械的強度が低下するなどして好ましくないからであり、一方、600℃を越える温度で焼成すると、Znを含むスピネルフェライト膜が鉄粉末と反応してウスタイト(FeO)などの非磁性の低電気抵抗率物質が生成して磁気特性が低下したり、周波数特性が低下したりして好ましくないからである。
前記(i)または(ii)記載の方法で作製したこの発明の複合焼結軟磁性材は、素地組織がα鉄粒子相とこのα鉄粒子相を包囲する粒界相からなり、前記粒界相は、Znを含むスピネルフェライト微細粒子相、六方晶構造のZnの酸化物微細粒子相およびガラス相との混合相からなり、前記Znを含むスピネルフェライト微細粒子相および六方晶構造のZnの酸化物微細粒子相はα鉄粒子相表面を被覆した状態で粒界相中に分散しており、前記ガラス相は前記Znを含むスピネルフェライト微細粒子相および六方晶構造のZnの酸化物微細粒子相の間に挟まれて粒界相中に分散している。したがって、この発明は、
(14)素地組織がα鉄粒子相とこのα鉄粒子相を包囲する粒界相からなり、前記粒界相は、Znを含むスピネルフェライト微細粒子相、六方晶構造のZnの酸化物微細粒子相およびガラス相との混合相からなり、前記Znを含むスピネルフェライト微細粒子相および六方晶構造のZnの酸化物微細粒子相はα鉄粒子相表面を被覆した状態で粒界相中に分散しており、前記ガラス相は前記Znを含むスピネルフェライト微細粒子相および六方晶構造のZnの酸化物微細粒子相の間に挟まれて粒界相中に分散している高密度、高強度および高磁束密度を有する複合軟磁性焼結材、に特徴を有するものである。
As a method of firing a mixed powder of a spinel ferrite film-coated iron soft magnetic powder containing Zn and a low melting point glass powder in the method for producing a composite sintered soft magnetic material of the present invention,
(I) The mixed powder is molded by a method such as cold compression molding, warm compression molding, or CIP to prepare a molded body, and the obtained molded body is heated at a temperature of 300 to 600 ° C (preferably 400 to 550 ° C). Baking method),
(Ii) There is a method in which molding and sintering are performed simultaneously by hot pressing or HIPing the mixed powder at a temperature of 300 to 600 ° C. (preferably 400 to 550 ° C.), but any of these methods may be adopted. .
The reason for limiting the firing temperature to 300 to 600 ° C. is that if the firing temperature is lower than 300 ° C., the strain introduced into the Zn-containing spinel ferrite film-coated iron soft magnetic powder at the time of molding is insufficiently removed, and the magnetic properties are deteriorated or low. This is because sintering with the melting point glass powder becomes insufficient and the mechanical strength decreases, which is not preferable. On the other hand, when sintering is performed at a temperature exceeding 600 ° C., the spinel ferrite film containing Zn reacts with the iron powder. This is because a nonmagnetic low electric resistivity material such as wustite (FeO) is generated and magnetic characteristics are deteriorated, and frequency characteristics are deteriorated, which is not preferable.
The composite sintered soft magnetic material of the present invention produced by the method described in the above (i) or (ii) has a matrix structure of an α-iron particle phase and a grain boundary phase surrounding the α-iron particle phase. The phase comprises a mixed phase of a spinel ferrite fine particle phase containing Zn, an oxide fine particle phase of Zn having a hexagonal structure and a glass phase, and oxidation of the spinel ferrite fine particle phase containing Zn and hexagonal Zn. The material fine particle phase is dispersed in the grain boundary phase while covering the surface of the α-iron particle phase, and the glass phase is the Zn-containing spinel ferrite fine particle phase and the hexagonal structure Zn oxide fine particle phase. And is dispersed in the grain boundary phase. Therefore, the present invention
(14) The base structure is composed of an α-iron particle phase and a grain boundary phase surrounding the α-iron particle phase, wherein the grain boundary phase is a Zn-containing spinel ferrite fine particle phase and a hexagonal structure Zn oxide fine particle. The spinel ferrite fine particle phase containing Zn and the Zn oxide fine particle phase having a hexagonal structure are dispersed in the grain boundary phase while covering the α iron particle phase surface. Wherein the glass phase is sandwiched between the Zn-containing spinel ferrite fine particle phase and the Zn oxide fine particle phase having a hexagonal structure, and is dispersed in the grain boundary phase. A composite soft magnetic sintered material having a magnetic flux density.

前記Znを含むスピネルフェライト微細粒子相とZnの酸化物微細粒子相とは、何れも平均相粒径が1〜500nmの範囲内にある。したがってこの発明は、(15)前記Znを含むスピネルフェライト微細粒子相とZnの酸化物微細粒子相とは、何れも平均相粒径が1〜500nmの範囲内にある前記(11)または(14)記載の高密度、高強度および高磁束密度を有する複合軟磁性焼結材、に特徴を有するものである。
平均相粒径が1nmよりも小さいと高強度が得られず、500nmよりも大きいと複合軟磁性焼結材中の粒界相が占める割合が多くなり、高磁束密度が得られないので好ましくない。平均相粒径の一層好ましい範囲は1〜200nmであり、さらに好ましい範囲は1〜80nmである。
The Zn-containing spinel ferrite fine particle phase and the Zn oxide fine particle phase both have an average phase diameter in the range of 1 to 500 nm. Therefore, the present invention provides (15) the spinel ferrite fine particle phase containing Zn and the oxide fine particle phase of Zn both having an average phase particle size in the range of 1 to 500 nm. The composite soft magnetic sintered material having a high density, a high strength, and a high magnetic flux density described in (1)).
If the average phase particle size is smaller than 1 nm, high strength cannot be obtained, and if it is larger than 500 nm, the proportion occupied by the grain boundary phase in the composite soft magnetic sintered material increases, and high magnetic flux density cannot be obtained. . The more preferable range of the average phase particle size is 1 to 200 nm, and the more preferable range is 1 to 80 nm.

この発明によると、簡単な乾式法により高周波の比透磁率の高い優れた軟磁性粉末を提供することができ、この軟磁性粉末を用いて強度の優れた複合焼結軟磁性材を提供することができ、電気および電子産業において優れた効果をもたらすものである。   According to the present invention, it is possible to provide an excellent soft magnetic powder having a high relative magnetic permeability at a high frequency by a simple dry method, and to provide a composite sintered soft magnetic material having an excellent strength by using this soft magnetic powder. And provide excellent effects in the electrical and electronic industries.

実施例1〜18および比較例1〜12
原料粉末として表1〜2に示される平均粒径を有する市販のアトマイズ純鉄粉末および表1〜2に示される平均粒径を有するZn粉末を用意した。
このアトマイズ純鉄粉末に対して純Zn粉末を表1〜2に示される割合となるように混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボートに装入し、表1〜2に示される条件に保持し円筒状ボートを回転しながら撹拌することにより純鉄粉末の表面にFeおよびZnからなる合金層が形成されている金属膜被覆鉄粉末を作製した。この金属膜被覆鉄粉末における純鉄粉末とZn蒸着膜の少なくとも界面にはFe4Zn9からなる組成の合金層が形成されていることがEPMAおよびXRDにより確認された。
Examples 1 to 18 and Comparative Examples 1 to 12
As the raw material powder, a commercially available atomized pure iron powder having an average particle size shown in Tables 1 and 2 and a Zn powder having an average particle size shown in Tables 1 and 2 were prepared.
The atomized pure iron powder was mixed with pure Zn powder in the proportions shown in Tables 1 and 2 to prepare a mixed powder, and the mixed powder was charged into a cylindrical boat in an electric furnace, The metal film-coated iron powder in which an alloy layer made of Fe and Zn was formed on the surface of pure iron powder by stirring while rotating the cylindrical boat while maintaining the conditions shown in Nos. 1-2. EPMA and XRD confirmed that an alloy layer having a composition of Fe 4 Zn 9 was formed at least at the interface between the pure iron powder and the Zn deposited film in the metal film-coated iron powder.

この金属膜被覆鉄粉末をさらに電気炉内の円筒状ボートに装入し、表1〜2に示される条件に保持し円筒状ボートを回転し撹拌することにより酸化・拡散処理したところ、純鉄粉末の表面に(FeZn)Fe23からなる組成のZnを含むスピネルフェライト膜被覆純鉄粉末が得られた。 The metal film-coated iron powder was further charged into a cylindrical boat in an electric furnace, and oxidized and diffused by rotating and stirring the cylindrical boat while maintaining the conditions shown in Tables 1-2. A spinel ferrite film-coated pure iron powder containing Zn having a composition of (FeZn) Fe 2 O 3 on the surface of the powder was obtained.

得られたZnを含むスピネルフェライト膜被覆純鉄粉末を金型に入れ、プレスにより600MPaの成形圧をかけることにより外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング圧粉体を作製し、これをAr雰囲気中、温度:500℃にて60分焼成することによりリング焼結体を得た。このリング焼結体に巻き線を施し、表3に示される周波数の高周波における比透磁率をインピーダンスアナライザで測定し、その結果を表3に示すことにより交流磁気特性を評価した。   The obtained spinel ferrite film-coated pure iron powder containing Zn is put into a mold, and a molding pressure of 600 MPa is applied by a press to form a ring compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. Was prepared and baked in an Ar atmosphere at a temperature of 500 ° C. for 60 minutes to obtain a ring sintered body. This ring sintered body was wound, and the relative magnetic permeability at a high frequency of the frequency shown in Table 3 was measured with an impedance analyzer. The results were shown in Table 3, and the AC magnetic characteristics were evaluated.

従来例
平均粒径0.1μmのNi−Znフェライト粉末:5質量%をメカノフュージョンにより平均粒径65μmのアトマイズ純鉄粉末表面に被覆したフェライト膜被覆純鉄粉末を作製し、この粉末を金型に入れ、プレスにより600MPaの成形圧をかけることにより外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング圧粉体を作製し、これをAr雰囲気中、温度:500℃にて60分焼成することによりリング焼結体を得た。このリング焼結体に巻き線を施し、表3に示される周波数の高周波における比透磁率をインピーダンスアナライザで測定し、その結果を表3に示すことにより交流磁気特性を評価した。
さらに、この従来例で得られたリング焼結体の組織を電子顕微鏡により観察し、結晶粒界付近の素地組織の模式図を図3に示した。図3から、従来の複合焼結軟磁性材の素地組織は、Fe粉末とほぼ同じ大きさのα鉄粒子相1とこのα鉄粒子相1を包囲する粒界相2からなり、α鉄粒子相1はα−Fe相の結晶粒の集合体からなり、前記粒界相2は、(NiZn)FeからなるZnを含むスピネルフェライト微細粒子相からなることが分かる。そして、(NiZn)FeからなるZnを含むスピネルフェライト微細粒子相は多くの個所で途切れており、α鉄粒子相1とα鉄粒子相1とが直接接触している個所が多いため、スピネルフェライト相の持つ特性が十分に発揮されないことが分かった。
Conventional example Ni-Zn ferrite powder having an average particle size of 0.1 μm: A ferrite film-coated pure iron powder in which 5% by mass of atomized pure iron powder having an average particle size of 65 μm was coated by mechanofusion, and this powder was used as a mold. , And a molding pressure of 600 MPa is applied by a press to produce a ring compact having dimensions of an outer diameter: 35 mm, an inner diameter: 25 mm, and a height: 5 mm, and this is placed in an Ar atmosphere at a temperature of 500 ° C. By firing for 60 minutes, a ring sintered body was obtained. This ring sintered body was wound, and the relative magnetic permeability at a high frequency of the frequency shown in Table 3 was measured with an impedance analyzer. The results were shown in Table 3, and the AC magnetic characteristics were evaluated.
Further, the structure of the ring sintered body obtained in this conventional example was observed with an electron microscope, and FIG. 3 shows a schematic diagram of the base structure near the crystal grain boundaries. From FIG. 3, the matrix structure of the conventional composite sintered soft magnetic material is composed of an α-iron particle phase 1 having almost the same size as the Fe powder and a grain boundary phase 2 surrounding the α-iron particle phase 1. It can be seen that the phase 1 is composed of an aggregate of α-Fe phase crystal grains, and the grain boundary phase 2 is composed of a spinel ferrite fine particle phase containing Zn composed of (NiZn) Fe 2 O 4 . Then, the fine particle phase of spinel ferrite containing Zn composed of (NiZn) Fe 2 O 4 is interrupted in many places, and there are many places where the α iron particle phase 1 and the α iron particle phase 1 are in direct contact with each other. It was found that the properties of the spinel ferrite phase were not sufficiently exhibited.

Figure 2004297036
Figure 2004297036

Figure 2004297036
Figure 2004297036

Figure 2004297036
Figure 2004297036

表1〜3に示される結果から、実施例1〜18で作製したZnを含むスピネルフェライト膜被覆鉄軟磁性粉末は、従来例で用意したメカノフュージョンによりNi−Znフェライト膜を形成したフェライト膜被覆鉄軟磁性粉末よりも優れた特性を示すことが分かる。しかし、比較例1〜12で作製したZnを含むスピネルフェライト膜被覆鉄軟磁性粉末は比透磁率が劣るので好ましくないことが分かる。   From the results shown in Tables 1 to 3, the spinel ferrite film-coated iron soft magnetic powder containing Zn prepared in Examples 1 to 18 was coated with a ferrite film formed by forming a Ni-Zn ferrite film by mechanofusion prepared in the conventional example. It turns out that it shows the characteristic superior to iron soft magnetic powder. However, it can be seen that the Zn-containing spinel ferrite film-coated iron soft magnetic powder produced in Comparative Examples 1 to 12 is not preferable because the relative magnetic permeability is inferior.

実施例19〜36および比較例13〜22
実施例1〜18および比較例1〜12で用意したアトマイズ純鉄粉末を電気炉内の円筒状ボートに装入し、電気炉内を二酸化炭素雰囲気、温度:500℃に0.5時間保持しながら円筒状ボートを回転し撹拌することにより純鉄粉末の表面を酸化して表4〜5に示される平均粒径を有する鉄酸化膜被覆鉄粉末を作製した。
この鉄酸化膜被覆鉄粉末に対してZn粉末を表4〜5に示される割合となるように混合して混合粉末を作製し、この混合粉末を再び電気炉内の円筒状ボートに装入し、電気炉内を表4〜5に示される条件に保持しながら円筒状ボートを回転し撹拌する加熱撹拌処理を施すことにより実質的に純鉄粉末の表面が(FeZn)Fe23からなる組成のZnを含むスピネルフェライト膜被覆鉄粉末を作製した。実施例19〜24においてはこれらをさらに電気炉内の円筒状ボートに装入し、表4〜5に示される条件に保持しながら円筒状ボートを回転し撹拌することによりZnを含むスピネルフェライト膜被覆鉄粉末を表4〜5に示される条件で拡散処理または酸化・拡散処理することにより純鉄粉末の表面に(FeZn)Fe23からなる組成のZnを含むスピネルフェライト膜被覆純鉄粉末を作製した。
Examples 19 to 36 and Comparative Examples 13 to 22
The atomized pure iron powder prepared in Examples 1 to 18 and Comparative Examples 1 to 12 was charged into a cylindrical boat in an electric furnace, and the electric furnace was kept in a carbon dioxide atmosphere at a temperature of 500 ° C. for 0.5 hour. The surface of the pure iron powder was oxidized by rotating and stirring the cylindrical boat while producing an iron oxide-coated iron powder having an average particle diameter shown in Tables 4 and 5.
Zn powder was mixed with the iron oxide film-coated iron powder in a ratio shown in Tables 4 and 5 to prepare a mixed powder, and the mixed powder was again charged into a cylindrical boat in an electric furnace. By subjecting the electric furnace to the heating and stirring process of rotating and stirring the cylindrical boat while maintaining the conditions shown in Tables 4 and 5, the surface of the pure iron powder is substantially made of (FeZn) Fe 2 O 3. A spinel ferrite film-coated iron powder containing Zn having a composition was prepared. In Examples 19 to 24, these were further charged into a cylindrical boat in an electric furnace, and the cylindrical boat was rotated and agitated while maintaining the conditions shown in Tables 4 to 5, thereby obtaining a spinel ferrite film containing Zn. spinel ferrite film-coated pure iron powder coated iron powder containing Zn composition consisting of (FeZn) Fe 2 O 3 on the surface of the pure iron powder by diffusion process or an oxidation-diffusion process under the conditions shown in Table 4-5 Was prepared.

得られたZnを含むスピネルフェライト膜被覆純鉄粉末を金型に入れ、プレスにより600MPaの成形圧をかけることにより外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング圧粉体を作製し、これをAr雰囲気中、温度:500℃にて60分焼成することによりリング焼結体を得た。このリング焼結体に巻き線を施し、表6に示される周波数の高周波における比透磁率をインピーダンスアナライザで測定し、その結果を表6に示すことにより交流磁気特性を評価した。   The obtained spinel ferrite film-coated pure iron powder containing Zn is put into a mold, and a molding pressure of 600 MPa is applied by a press to form a ring compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. Was prepared and baked in an Ar atmosphere at a temperature of 500 ° C. for 60 minutes to obtain a ring sintered body. This ring sintered body was wound, and the relative magnetic permeability at high frequencies of the frequencies shown in Table 6 was measured with an impedance analyzer. The results were shown in Table 6, and the AC magnetic characteristics were evaluated.

さらに、実施例24で得られたリング焼結体の組織を電子顕微鏡により観察し、結晶粒界付近の素地組織の模式図を図1に示した。図1から、この発明の複合焼結軟磁性材の素地組織は、Fe粉末とほぼ同じ大きさのα鉄粒子相1とこのα鉄粒子相1を包囲する粒界相2からなり、α鉄粒子相1はα−Fe相の結晶粒の集合体からなり、前記粒界相2は、(ZnFe)FeからなるZnを含むスピネルフェライト微細粒子相と、ZnOからなる六方晶構造のZnの酸化物微細粒子相との混合相からなることが分かる。そして、(ZnFe)FeからなるZnを含むスピネルフェライト微細粒子相およびZnOからなる六方晶構造のZnの酸化物微細粒子相の平均相粒径を測定した結果、10nmであることが分かった。 Further, the structure of the ring sintered body obtained in Example 24 was observed with an electron microscope, and FIG. 1 shows a schematic view of the base structure near the crystal grain boundaries. As shown in FIG. 1, the base structure of the composite sintered soft magnetic material of the present invention is composed of an α-iron particle phase 1 having almost the same size as Fe powder and a grain boundary phase 2 surrounding the α-iron particle phase 1. The grain phase 1 is composed of an aggregate of crystal grains of an α-Fe phase, and the grain boundary phase 2 is a fine grain phase of spinel ferrite containing Zn made of (ZnFe) Fe 2 O 4 and a hexagonal structure made of ZnO. It can be seen that it is composed of a mixed phase with the Zn oxide fine particle phase. The average phase diameter of the Zn-containing spinel ferrite fine particle phase made of (ZnFe) Fe 2 O 4 and the hexagonal structure Zn oxide fine particle phase made of ZnO was measured and found to be 10 nm. Was.

Figure 2004297036
Figure 2004297036

Figure 2004297036
Figure 2004297036

Figure 2004297036
Figure 2004297036

表4〜6に示される結果から、実施例19〜36で作製したZnを含むスピネルフェライト膜被覆鉄軟磁性粉末は、表2〜3に示される従来例で用意したZnを含むスピネルフェライト膜被覆鉄軟磁性粉末よりも優れた特性を示すことが分かる。しかし、比較例13〜22で作製したZnを含むスピネルフェライト膜被覆鉄軟磁性粉末は比透磁率が劣るので好ましくないことが分かる。   From the results shown in Tables 4 to 6, the Zn-containing spinel ferrite film-coated iron soft magnetic powders prepared in Examples 19 to 36 were coated with the Zn-containing spinel ferrite film prepared in the conventional examples shown in Tables 2 and 3. It turns out that it shows the characteristic superior to iron soft magnetic powder. However, it can be seen that the Zn-containing spinel ferrite film-coated iron soft magnetic powders produced in Comparative Examples 13 to 22 are not preferable because the relative magnetic permeability is inferior.

実施例37〜48および比較例23〜27
表7に示す軟化点および平均粒径を有する低融点ガラス粉末を用意し、これら低融点ガラス粉末を実施例6で作製したZnを含むスピネルフェライト膜被覆鉄軟磁性粉末(以下、A粉末という)および実施例21で作製したZnを含むスピネルフェライト膜被覆鉄軟磁性粉末(以下、B粉末という)に表8に示される割合で添加し、混合し、得られた混合粉末を金型に入れ、プレスにより600MPaの成形圧をかけることにより外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング圧粉体および長さ:40mm、幅:10mm、高さ:5mmの寸法を有する棒状圧粉体を作製し、表8に示される温度において窒素雰囲気中で燒結することにより複合焼結軟磁性材からなるリング焼結体および棒状焼結体を作製した。
リング焼結体には巻き線を施し、表9に示される周波数の高周波における比透磁率をインピーダンスアナライザで測定し、棒状焼結体は抗折強度をスパン距離:30mmの3点曲げ試験により測定し、それぞれの結果を表9に示すことにより交流磁気特性、機械的強度を評価した。
Examples 37 to 48 and Comparative Examples 23 to 27
Low melting point glass powders having a softening point and an average particle size shown in Table 7 were prepared, and these low melting point glass powders were coated with a Zn-containing spinel ferrite film-coated iron soft magnetic powder (hereinafter referred to as A powder) prepared in Example 6. And to the spinel ferrite film-coated iron soft magnetic powder containing Zn (hereinafter referred to as B powder) produced in Example 21 at a ratio shown in Table 8, mixed, and the obtained mixed powder was put into a mold; A ring compact having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm and a rod having dimensions of length: 40 mm, width: 10 mm, height: 5 mm by applying a molding pressure of 600 MPa by a press. A green compact was produced and sintered in a nitrogen atmosphere at the temperatures shown in Table 8 to produce a ring sintered body and a rod-shaped sintered body made of a composite sintered soft magnetic material.
The ring sintered body was wound, and the relative magnetic permeability at a high frequency of the frequency shown in Table 9 was measured with an impedance analyzer, and the bending strength of the rod-shaped sintered body was measured by a three-point bending test with a span distance of 30 mm. The results were shown in Table 9 to evaluate the AC magnetic characteristics and mechanical strength.

さらに、実施例44で得られたリング焼結体の組織を電子顕微鏡により観察し、結晶粒界付近の素地組織の模式図を図2に示した。図2から、この発明の複合焼結軟磁性材の素地組織は、Fe粉末とほぼ同じ大きさのα鉄粒子相1とこのα鉄粒子相1を包囲する粒界相2からなり、α鉄粒子相1はα−Fe相の結晶粒の集合体からなり、前記粒界相2は、(ZnFe)FeからなるZnを含むスピネルフェライト微細粒子相、ZnOからなる六方晶構造のZnの酸化物微細粒子相およびガラス相との混合相からなり、前記(ZnFe)FeからなるZnを含むスピネルフェライト微細粒子相およびZnOからなる六方晶構造のZnの酸化物微細粒子相はα鉄粒子相1表面を被覆した状態で粒界相2中に分散しており、前記ガラス相は前記(ZnFe)FeからなるZnを含むスピネルフェライト微細粒子相およびZnOからなる六方晶構造のZnの酸化物微細粒子相の間に挟まれて粒界相2中に分散しており、さらに前記Znを含むスピネルフェライト微細粒子相とZnの酸化物微細粒子相とは、平均相粒径が30nmであることが分かった。 Further, the structure of the ring sintered body obtained in Example 44 was observed with an electron microscope, and FIG. 2 shows a schematic view of the base structure near the crystal grain boundaries. As shown in FIG. 2, the matrix structure of the composite sintered soft magnetic material of the present invention is composed of an α-iron particle phase 1 having almost the same size as Fe powder and a grain boundary phase 2 surrounding the α-iron particle phase 1. The particle phase 1 is composed of an aggregate of α-Fe crystal grains, and the grain boundary phase 2 is a fine spinel ferrite particle phase containing Zn composed of (ZnFe) Fe 2 O 4 and a hexagonal structure Zn composed of ZnO. And a mixed phase of an oxide fine particle phase and a glass phase of the above, wherein the Zn-containing spinel ferrite fine particle phase composed of (ZnFe) Fe 2 O 4 and the hexagonal structure Zn oxide fine particle phase composed of ZnO are The α-iron particle phase 1 is dispersed in the grain boundary phase 2 so as to cover the surface thereof, and the glass phase is a Zn-containing spinel ferrite fine particle phase composed of (ZnFe) Fe 2 O 4 and a hexagonal crystal composed of ZnO. Structure Zn Acid And the Zn-containing spinel ferrite fine particle phase and the Zn oxide fine particle phase have an average phase particle size of 30 nm. I found out.

Figure 2004297036
Figure 2004297036

Figure 2004297036
Figure 2004297036

Figure 2004297036
Figure 2004297036

表7〜9に示される結果から、実施例37〜48で作製した複合焼結軟磁性材は比透磁率、抗折強度が共に優れていることが分かる。しかし、この発明の条件から外れた比較例23〜27で作製した複合焼結軟磁性材は比透磁率または抗折強度が劣ることが分かる。   From the results shown in Tables 7 to 9, it can be seen that the composite sintered soft magnetic materials produced in Examples 37 to 48 have excellent relative magnetic permeability and bending strength. However, it can be seen that the composite sintered soft magnetic materials produced in Comparative Examples 23 to 27 out of the conditions of the present invention are inferior in relative permeability or bending strength.

この発明の複合焼結軟磁性材の素地組織を電子顕微鏡により観察した組織の模式図である。FIG. 2 is a schematic diagram of a structure obtained by observing a base structure of the composite sintered soft magnetic material of the present invention with an electron microscope. この発明の複合焼結軟磁性材の素地組織を電子顕微鏡により観察した組織の模式図である。FIG. 2 is a schematic diagram of a structure obtained by observing a base structure of the composite sintered soft magnetic material of the present invention with an electron microscope. 従来の複合焼結軟磁性材の素地組織を電子顕微鏡により観察した組織の模式図である。It is the schematic diagram of the structure | tissue which observed the base structure of the conventional composite sintered soft magnetic material with the electron microscope.

符号の説明Explanation of reference numerals

1 α鉄粒子相
2 粒界相
1 α iron particle phase 2 grain boundary phase

Claims (15)

鉄粉末にZn粉末を添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄粉末の表面にFeおよびZnからなる合金膜を形成して金属膜被覆鉄粉末を作製し、この金属膜被覆鉄粉末を酸化性雰囲気中で加熱することにより酸化・拡散処理することを特徴とするZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。 By heating a mixed powder obtained by adding Zn powder to iron powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas, an alloy film composed of Fe and Zn is formed on the surface of the iron powder to form a metal film-coated iron. A method for producing an iron soft magnetic powder coated with a spinel ferrite film containing Zn, comprising preparing a powder, and subjecting the iron powder coated with a metal film to an oxidation / diffusion treatment by heating the powder in an oxidizing atmosphere. 前記金属膜被覆鉄粉末は、鉄粉末にZn粉末を0.01〜15質量%添加した混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより形成することを特徴とする請求項1記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。 The metal film-coated iron powder is formed by heating a mixed powder obtained by adding 0.01 to 15% by mass of Zn powder to iron powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas. 2. The method for producing a Zn-containing spinel ferrite film-coated iron soft magnetic powder according to item 1. 鉄粉末を酸化性雰囲気中で加熱することにより鉄粉末の表面に鉄酸化膜を形成して鉄酸化膜被覆鉄粉末を作製し、この鉄酸化膜被覆鉄粉末にZn粉末を添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面にZnを蒸着し拡散する拡散処理を施すことを特徴とするZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。 By heating the iron powder in an oxidizing atmosphere, an iron oxide film is formed on the surface of the iron powder to produce an iron oxide-coated iron powder, and obtained by adding Zn powder to the iron oxide-coated iron powder. Coating a spinel ferrite film containing Zn by heating the mixed powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas to perform a diffusion treatment of depositing and diffusing Zn on the surface of the iron powder. Method for producing iron soft magnetic powder. 鉄粉末を酸化性雰囲気中で加熱することにより鉄粉末の表面に鉄酸化膜を形成して鉄酸化膜被覆鉄粉末を作製し、この鉄酸化膜被覆鉄粉末にZn粉末を添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面にZnを蒸着し拡散する拡散処理を施し、引き続いてさらに真空または非酸化性ガス雰囲気中で加熱することにより拡散処理するかまたは酸化性雰囲気中で加熱することにより酸化、拡散処理することを特徴とするZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。 By heating the iron powder in an oxidizing atmosphere, an iron oxide film is formed on the surface of the iron powder to produce an iron oxide-coated iron powder, and obtained by adding Zn powder to the iron oxide-coated iron powder. The mixed powder is heated in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas to perform a diffusion process of depositing and diffusing Zn on the surface of the iron oxide film-coated iron powder, and then further performing a vacuum or non-oxidizing gas atmosphere. A method for producing a spinel ferrite film-coated iron soft magnetic powder containing Zn, characterized in that a diffusion treatment is carried out by heating in an oxidizing atmosphere, or an oxidation and diffusion treatment is carried out by heating in an oxidizing atmosphere. 前記鉄酸化膜被覆鉄粉末にZn粉末を0.01〜15質量%添加した混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面にZnを蒸着し拡散する拡散処理を施すことを特徴とする請求項3または4記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。 Zn is deposited on the surface of the iron oxide-coated iron powder by heating a mixed powder obtained by adding 0.01 to 15% by mass of Zn powder to the iron oxide-coated iron powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas. 5. The method for producing a Zn-containing spinel ferrite film-coated iron soft magnetic powder according to claim 3 or 4, wherein a diffusion treatment for performing diffusion is performed. 鉄粉末を酸化性雰囲気中で加熱することにより鉄粉末の表面に鉄酸化膜を形成して鉄酸化膜被覆鉄粉末を作製し、この鉄酸化膜被覆鉄粉末にZn粉末を添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面に酸化Zn膜を形成した積層酸化物膜被覆鉄粉末を作製し、この積層酸化物膜被覆鉄粉末を真空または非酸化性ガス雰囲気中で加熱することにより拡散処理するかまたは酸化性雰囲気中で加熱することにより酸化・拡散処理することを特徴とするZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。 By heating the iron powder in an oxidizing atmosphere, an iron oxide film is formed on the surface of the iron powder to produce an iron oxide-coated iron powder, and obtained by adding Zn powder to the iron oxide-coated iron powder. By heating the mixed powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas, a laminated oxide film-coated iron powder having a Zn oxide film formed on the surface of the iron oxide film-coated iron powder is produced. Diffusion treatment by heating the coated iron powder in a vacuum or non-oxidizing gas atmosphere or oxidation and diffusion treatment by heating in an oxidizing atmosphere Manufacturing method of magnetic powder. 前記鉄酸化膜被覆鉄粉末にZn粉末を0.01〜15質量%添加して得られた混合粉末を真空または非酸化性ガスの減圧雰囲気中で加熱することにより鉄酸化膜被覆鉄粉末の表面に酸化Zn膜を形成して積層酸化物膜被覆鉄粉末を形成することを特徴とする請求項6記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。 The surface of the iron oxide-coated iron powder is heated by heating a mixed powder obtained by adding 0.01 to 15% by mass of Zn powder to the iron oxide-coated iron powder in a vacuum or a reduced-pressure atmosphere of a non-oxidizing gas. 7. The method for producing a Zn-containing spinel ferrite film-coated iron soft magnetic powder according to claim 6, wherein a Zn oxide film is formed on the substrate to form a laminated oxide film-coated iron powder. 前記酸化性雰囲気は、大気雰囲気、二酸化炭素雰囲気、酸素と不活性ガスの混合ガス雰囲気または二酸化炭素と不活性ガスの混合ガス雰囲気であることを特徴とする請求項1、2、3、4、5、6または7記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法。 The oxidizing atmosphere is an air atmosphere, a carbon dioxide atmosphere, a mixed gas atmosphere of oxygen and an inert gas, or a mixed gas atmosphere of carbon dioxide and an inert gas. 5. The method for producing an iron soft magnetic powder coated with a spinel ferrite film containing Zn according to 5, 6, or 7. 請求項1、2、3、4、5、6、7または8記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法により製造されたZnを含むスピネルフェライト膜被覆鉄軟磁性粉末を、Znを含むスピネルフェライトが分解しない温度で焼成することを特徴とする複合焼結軟磁性材の製造方法。 The Zn-containing spinel ferrite film-coated iron soft magnetic powder produced by the method for producing a Zn-containing spinel ferrite film-coated iron soft magnetic powder according to claim 1, 2, 3, 4, 5, 6, 7, or 8, A method for producing a composite sintered soft magnetic material, characterized by firing at a temperature at which spinel ferrite containing Zn does not decompose. 前記Znを含むスピネルフェライトが分解しない焼成温度は、300〜600℃であることを特徴とする請求項9記載の複合焼結軟磁性材の製造方法。 The method for producing a composite sintered soft magnetic material according to claim 9, wherein a firing temperature at which the Zn-containing spinel ferrite is not decomposed is 300 to 600 ° C. 素地組織がα鉄粒子相とこのα鉄粒子相を包囲する粒界相からなり、前記粒界相は、Znを含むスピネルフェライト微細粒子相と六方晶構造のZnの酸化物微細粒子相との混合相からなることを特徴とする複合軟磁性焼結材。 The base structure is composed of an α-iron particle phase and a grain boundary phase surrounding the α-iron particle phase, and the grain boundary phase is composed of a Zn-containing spinel ferrite fine particle phase and a hexagonal structure Zn oxide fine particle phase. A composite soft magnetic sintered material comprising a mixed phase. 請求項1、2、3、4、5、6、7または8記載のZnを含むスピネルフェライト膜被覆鉄軟磁性粉末の製造方法により製造されたZnを含むスピネルフェライト膜被覆鉄軟磁性粉末に軟化点が600℃以下の低融点ガラス粉末を3質量%以下添加し混合して混合粉末を作製し、この混合粉末を焼成することを特徴とする複合焼結軟磁性材の製造方法。 Softening to a Zn-containing spinel ferrite film-coated iron soft magnetic powder produced by the method for producing a Zn-containing spinel ferrite film-coated iron soft magnetic powder according to claim 1, 2, 3, 4, 5, 6, 7, or 8. A method for producing a composite sintered soft magnetic material, comprising adding and mixing 3% by mass or less of a low melting point glass powder having a temperature of 600 ° C. or less to produce a mixed powder, and firing the mixed powder. 前記Znを含むスピネルフェライトが分解しない焼成温度は、300〜600℃であることを特徴とする請求項12記載の複合焼結軟磁性材の製造方法。 The method for producing a composite sintered soft magnetic material according to claim 12, wherein a firing temperature at which the Zn-containing spinel ferrite is not decomposed is 300 to 600 ° C. 素地組織がα鉄粒子相とこのα鉄粒子相を包囲する粒界相からなり、前記粒界相は、Znを含むスピネルフェライト微細粒子相、六方晶構造のZnの酸化物微細粒子相およびガラス相との混合相からなり、前記Znを含むスピネルフェライト微細粒子相および六方晶構造のZnの酸化物微細粒子相はα鉄粒子相表面を被覆した状態で粒界相中に分散しており、前記ガラス相は前記Znを含むスピネルフェライト微細粒子相および六方晶構造のZnの酸化物微細粒子相の間に挟まれて粒界相中に分散していることを特徴とする複合軟磁性焼結材。 The base structure is composed of an α-iron particle phase and a grain boundary phase surrounding the α-iron particle phase, and the grain boundary phase includes a Zn-containing spinel ferrite fine particle phase, a hexagonal structure Zn oxide fine particle phase, and a glass. A spinel ferrite fine particle phase containing Zn and a hexagonal structure Zn oxide fine particle phase are dispersed in the grain boundary phase while covering the α-iron particle phase surface, The composite soft magnetic sintering is characterized in that the glass phase is sandwiched between the Zn-containing spinel ferrite fine particle phase and the Zn oxide fine particle phase having a hexagonal structure and dispersed in a grain boundary phase. Wood. 前記Znを含むスピネルフェライト微細粒子相とZnの酸化物微細粒子相とは、何れも平均相粒径が1〜500nmの範囲内にあることを特徴とする請求項11または14記載の複合軟磁性焼結材。 The composite soft magnetism according to claim 11, wherein each of the Zn-containing spinel ferrite fine particle phase and the Zn oxide fine particle phase has an average phase diameter in a range of 1 to 500 nm. Sintered material.
JP2003405303A 2002-12-04 2003-12-04 Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method Withdrawn JP2004297036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405303A JP2004297036A (en) 2002-12-04 2003-12-04 Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002352275 2002-12-04
JP2003062983 2003-03-10
JP2003405303A JP2004297036A (en) 2002-12-04 2003-12-04 Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Publications (1)

Publication Number Publication Date
JP2004297036A true JP2004297036A (en) 2004-10-21

Family

ID=33424731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405303A Withdrawn JP2004297036A (en) 2002-12-04 2003-12-04 Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Country Status (1)

Country Link
JP (1) JP2004297036A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028100A1 (en) * 2004-09-06 2006-03-16 Mitsubishi Materials Pmg Corporation METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP2006077294A (en) * 2004-09-09 2006-03-23 Fuji Electric Holdings Co Ltd Composite magnetic material and magnetic part
WO2006080121A1 (en) * 2005-01-25 2006-08-03 Mitsubishi Materials Pmg Corporation Mg-CONTAINING OXIDE COATED IRON POWDER
JP2006237548A (en) * 2005-01-25 2006-09-07 Mitsubishi Materials Pmg Corp Mg-CONTAINING OXIDE FILM COATED IRON POWDER
JP2006233325A (en) * 2005-01-25 2006-09-07 Mitsubishi Materials Pmg Corp IRON POWDER COATED WITH OXIDE FILM CONTAINING Mg
JP2006307312A (en) * 2005-03-28 2006-11-09 Mitsubishi Materials Pmg Corp Deposition film coated iron powder
JP2006319244A (en) * 2005-05-16 2006-11-24 Mitsubishi Materials Pmg Corp Oxide film coating iron powder and its production method
JP2006332525A (en) * 2005-05-30 2006-12-07 Mitsubishi Materials Pmg Corp High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP2006332524A (en) * 2005-05-30 2006-12-07 Mitsubishi Materials Pmg Corp High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP2007013069A (en) * 2005-05-31 2007-01-18 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
WO2007052772A1 (en) * 2005-11-02 2007-05-10 Mitsubishi Materials Pmg Corporation Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
JP2007123703A (en) * 2005-10-31 2007-05-17 Mitsubishi Materials Pmg Corp SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP2007273725A (en) * 2006-03-31 2007-10-18 Murata Mfg Co Ltd Magnetic substance, method of manufacturing magnetic substance, winding coil, and method of manufacturing winding coil
JP2009096703A (en) * 2006-12-25 2009-05-07 Kyocera Corp Composite sintered body of magnetic substance and dielectric substance and lc composite electronic component
WO2009060895A1 (en) 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
AT511919A1 (en) * 2011-09-01 2013-03-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING AN SINTER COMPONENT
WO2013054700A1 (en) * 2011-10-14 2013-04-18 株式会社村田製作所 Metal powder and electronic component
KR101460037B1 (en) 2011-12-15 2014-11-11 다이요 유덴 가부시키가이샤 Coil type electronic component
JP2015005686A (en) * 2013-06-24 2015-01-08 住友電工焼結合金株式会社 Magnetic material, method for manufacturing magnetic material, and reactor
CN107680769A (en) * 2017-10-17 2018-02-09 苏州南尔材料科技有限公司 A kind of preparation method of the soft magnetic bodies with ceramic coating
CN115073157A (en) * 2022-06-16 2022-09-20 安徽锦华氧化锌有限公司 Preparation method of ferrite powder containing zinc oxide, magnesium and zinc

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028100A1 (en) * 2004-09-06 2006-03-16 Mitsubishi Materials Pmg Corporation METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
US8409371B2 (en) 2004-09-06 2013-04-02 Diamet Corporation Method for producing soft magnetic metal powder coated with Mg-containing oxide film
JP2006077294A (en) * 2004-09-09 2006-03-23 Fuji Electric Holdings Co Ltd Composite magnetic material and magnetic part
JP4507176B2 (en) * 2004-09-09 2010-07-21 富士電機システムズ株式会社 Composite magnetic materials and magnetic components
JP2006237548A (en) * 2005-01-25 2006-09-07 Mitsubishi Materials Pmg Corp Mg-CONTAINING OXIDE FILM COATED IRON POWDER
JP2006233325A (en) * 2005-01-25 2006-09-07 Mitsubishi Materials Pmg Corp IRON POWDER COATED WITH OXIDE FILM CONTAINING Mg
US9269481B2 (en) 2005-01-25 2016-02-23 Diamet Corporation Iron powder coated with Mg-containing oxide film
US8481178B2 (en) 2005-01-25 2013-07-09 Diamet Corporation Iron powder coated with Mg-containing oxide film
WO2006080121A1 (en) * 2005-01-25 2006-08-03 Mitsubishi Materials Pmg Corporation Mg-CONTAINING OXIDE COATED IRON POWDER
EP2502689A2 (en) 2005-01-25 2012-09-26 Diamet Corporation Iron powder coated with Mg-containing oxide film
EP2248617A2 (en) 2005-01-25 2010-11-10 Diamet Corporation Iron powder coated with Mg-containing oxide film
JP2006307312A (en) * 2005-03-28 2006-11-09 Mitsubishi Materials Pmg Corp Deposition film coated iron powder
JP2006319244A (en) * 2005-05-16 2006-11-24 Mitsubishi Materials Pmg Corp Oxide film coating iron powder and its production method
JP2006332525A (en) * 2005-05-30 2006-12-07 Mitsubishi Materials Pmg Corp High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP2006332524A (en) * 2005-05-30 2006-12-07 Mitsubishi Materials Pmg Corp High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP2007013069A (en) * 2005-05-31 2007-01-18 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2007123703A (en) * 2005-10-31 2007-05-17 Mitsubishi Materials Pmg Corp SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
WO2007052772A1 (en) * 2005-11-02 2007-05-10 Mitsubishi Materials Pmg Corporation Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
JP4687536B2 (en) * 2006-03-31 2011-05-25 株式会社村田製作所 Magnetic body and method for manufacturing the same, and winding coil and method for manufacturing the same
JP2007273725A (en) * 2006-03-31 2007-10-18 Murata Mfg Co Ltd Magnetic substance, method of manufacturing magnetic substance, winding coil, and method of manufacturing winding coil
JP2009096703A (en) * 2006-12-25 2009-05-07 Kyocera Corp Composite sintered body of magnetic substance and dielectric substance and lc composite electronic component
WO2009060895A1 (en) 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
AT511919A1 (en) * 2011-09-01 2013-03-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING AN SINTER COMPONENT
AT511919B1 (en) * 2011-09-01 2013-09-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING AN SINTER COMPONENT
US9257216B2 (en) 2011-10-14 2016-02-09 Murata Manufacturing Co., Ltd. Metal powder and electronic component
US20140070916A1 (en) * 2011-10-14 2014-03-13 Murata Manufacturing Co., Ltd. Metal powder and electronic component
TWI467598B (en) * 2011-10-14 2015-01-01 Murata Manufacturing Co Metal powder and electronic parts
JPWO2013054700A1 (en) * 2011-10-14 2015-03-30 株式会社村田製作所 Metal powder and electronic parts
KR101538877B1 (en) * 2011-10-14 2015-07-22 가부시키가이샤 무라타 세이사쿠쇼 Metal powder and electronic component
CN103563016A (en) * 2011-10-14 2014-02-05 株式会社村田制作所 Metal powder and electronic component
WO2013054700A1 (en) * 2011-10-14 2013-04-18 株式会社村田製作所 Metal powder and electronic component
CN103563016B (en) * 2011-10-14 2016-08-17 株式会社村田制作所 Metal dust and electronic unit
KR101460037B1 (en) 2011-12-15 2014-11-11 다이요 유덴 가부시키가이샤 Coil type electronic component
JP2015005686A (en) * 2013-06-24 2015-01-08 住友電工焼結合金株式会社 Magnetic material, method for manufacturing magnetic material, and reactor
CN107680769A (en) * 2017-10-17 2018-02-09 苏州南尔材料科技有限公司 A kind of preparation method of the soft magnetic bodies with ceramic coating
CN115073157A (en) * 2022-06-16 2022-09-20 安徽锦华氧化锌有限公司 Preparation method of ferrite powder containing zinc oxide, magnesium and zinc

Similar Documents

Publication Publication Date Title
JP2004297036A (en) Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
US5348800A (en) Composite soft magnetic material
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP5049845B2 (en) High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
JP2019178402A (en) Soft magnetic powder
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP2006278833A (en) Manufacturing method of composite soft-magnetic sintered material having high strength, high magnetic-flux density, and high resistance
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP2006245183A (en) Iron powder covered with laminated oxide film
JP2001085211A (en) Soft magnetic particle, soft magnetic molded body, and their manufacture
JP5016513B2 (en) Insulating film-forming metal powder using peelable double hydroxide and method for producing the same
JP2006332524A (en) High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP2006332525A (en) High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP4480627B2 (en) Composite soft magnetic powder and method for producing the same
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP4480628B2 (en) Composite soft magnetic powder and method for producing the same
EP0541887A1 (en) Method of making a composite soft magnetic material and composite soft magnetic material
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
JP3946150B2 (en) Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density
WO2007052772A1 (en) Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206