JP2006280024A - Apparatus automatic test system and apparatus automatic test method - Google Patents

Apparatus automatic test system and apparatus automatic test method Download PDF

Info

Publication number
JP2006280024A
JP2006280024A JP2005091014A JP2005091014A JP2006280024A JP 2006280024 A JP2006280024 A JP 2006280024A JP 2005091014 A JP2005091014 A JP 2005091014A JP 2005091014 A JP2005091014 A JP 2005091014A JP 2006280024 A JP2006280024 A JP 2006280024A
Authority
JP
Japan
Prior art keywords
ground fault
time
station side
relay
trip signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005091014A
Other languages
Japanese (ja)
Inventor
Satoshi Kimura
智 木村
Masami Shimizu
雅実 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2005091014A priority Critical patent/JP2006280024A/en
Publication of JP2006280024A publication Critical patent/JP2006280024A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system and a method for automatically testing an apparatus which can automatically judge whether a relay or a breaker in grounding direction has operated normally at occurrence of grounding in a wireway. <P>SOLUTION: An apparatus automatic test system 1 is provided with a zero-phase current transformer 8 arranged at a wireway 3, a zero-phase transformer 9 which is provided in a bus 2, a relay 4 in grounding direction which is connected to the zero-phase current transformer 8 and the zero-phase transformer 9 and whose operation time is set to a fixed value, a breaker 5 which breaks the wireway 3, based on a trip signal V<SB>DG</SB>outputted from the relay 4 in grounding direction after passage of the operation time of the relay 4 in grounding direction, a stepped grounding overvoltage detector 6 which is connected to the zero-phase transformer 9 and outputs an output signal S<SB>V1</SB>which shows that the zero-phase voltage value of the bus 2 is not less than a specified value, and apparatus automatic testing means 21, 23 and 24 which judge whether the relay 4 in grounding direction and the breaker 5 are good or bad, based on the trip signal V<SB>DG</SB>of the relay 4 in grounding direction and the output signal S<SB>V1</SB>of the stepped grounding overvoltage detector 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、機器自動試験システムおよび機器自動試験方法に関し、特に、配電線などの電線路において地絡が発生した時や、電線路または母線に地絡を人工的に発生させた時に地絡方向継電器や遮断器が正常に動作したか否かを遠方で確認試験するのに好適な機器自動試験システムおよび機器自動試験方法に関する。   The present invention relates to a device automatic test system and a device automatic test method, and in particular, a ground fault direction when a ground fault occurs in a power line such as a distribution line, or when a ground fault is artificially generated in a power line or bus. The present invention relates to a device automatic test system and a device automatic test method suitable for confirming whether a relay or a circuit breaker has normally operated or not from a distance.

近年、開閉器類の遠方化が進んでおり、また、これを自動的に制御する操作支援装置が開発されている。また、配電線などの電線路において地絡状態が発生したときに、地絡状態の発生した配電線および区間を認識する装置が多数提案されている。たとえば、配電線などの電線路において微小な零相電流しか流れない微地絡状態が発生したときに、微地絡状態の発生した配電線および区間を認識する装置として、以下に示すような装置などが提案されている。   In recent years, switches are becoming far away, and operation support devices that automatically control the switches have been developed. In addition, many devices have been proposed for recognizing a distribution line and a section in which a ground fault has occurred when a ground fault occurs in a power line such as a distribution line. For example, when a fine ground fault state in which only a minute zero-phase current flows in a power line such as a distribution line occurs, a device as shown below as a device for recognizing a distribution line and a section in which the fine ground fault state has occurred Etc. have been proposed.

下記の特許文献1には、微地絡区間標定装置の信頼性を向上するために、高圧配電線上に子局を分散配置し、かつ、子局に微地絡発生回路を設け、親局からの指令により微地絡を発生させることにより、各子局の動作点検を行うようした微地絡区間標定装置が開示されている。   In Patent Document 1 below, in order to improve the reliability of the micro ground fault section locating device, the slave stations are distributed on the high voltage distribution line, and the micro ground fault generating circuit is provided in the slave station. A fine ground fault section locating device is disclosed in which the operation check of each slave station is performed by generating a fine ground fault in accordance with the above command.

下記の特許文献2には、配電線において微地絡発生から微地絡発生区間の特定までを短時間で行えるようにするために、配電線の微地絡発生の有無を常時監視する微地絡検出手段と、微地絡検出用の開閉器制御手順を過去の負荷実績を考慮して事前に作成する手順事前計算手段と、微地絡検出手段により検出した微地絡発生配電線に対し手順事前計算手段で作成した手順を適宜実行し微地絡発生区間を順次絞り込む微地絡判定手段と、前記特定された微地絡区間で無停電で切替える開閉器制御手段とから構成された配電線微地絡区間探索装置が開示されている。   In Patent Document 2 below, in order to be able to perform in a short time from the occurrence of a fine ground fault in the distribution line to the specification of the fine ground fault occurrence section, a fine ground that constantly monitors the occurrence of a fine ground fault in the distribution line is disclosed. For the fault detection means, the pre-calculation means for creating the switch control procedure for detecting the fine ground fault in advance in consideration of the past load results, and the fine ground fault generating distribution line detected by the fine ground fault detection means A procedure composed of a fine ground fault determination means for appropriately narrowing down the fine ground fault occurrence section by appropriately executing the procedure created by the procedure pre-calculation means and a switch control means for switching in the specified fine ground fault section without interruption. An electric wire fine ground fault section searching device is disclosed.

下記の特許文献3には、微地絡回線を特定するにあたって、補助ブスによる電力融通時においても各配電線の試開放動作を可能とするために、各配電線毎に地絡順序開閉器を設け、これらの地絡順序開閉器が補助ブスに設けられた遮断器が導通されているか否かによって試開放動作の開始タイミングから自線の遮断器の試開放タイミングまでの時間を変更することによって、同時に2つの配電線が遮断されることはなく、したがって正確に微地絡の発生した配電線を特定することができる微地絡回線検知方法が開示されている。   In Patent Document 3 below, in order to identify a micro ground fault line, a ground fault sequence switch is provided for each distribution line in order to enable a trial opening operation of each distribution line even during power interchange by auxiliary buses. By changing the time from the start timing of the trial opening operation to the trial opening timing of the own circuit breaker depending on whether the circuit breaker provided in the auxiliary bus is conductive or not In addition, there is disclosed a method of detecting a fine ground fault line in which two power distribution lines are not interrupted at the same time.

また、本出願人は、下記の特許文献4において、残留分と1回の母線の1相地絡時の各フィーダに設けた零相変流器(ZCT)の一次電流(被測定電流)の値を高精度に算出し、かつ、各フィーダの対地零相アドミタンスと対地逆相アドミタンスを高精度に算出することにより、任意抵抗地絡時の各フィーダの零相一次電流及び対地静電容量不平衡を算出又は評価するために、接地変圧器(GPT)、零相変流器(ZCT)、地絡方向継電器(DGR)及び地絡過電圧継電器(OVGR)に端子接続した入出力回路と、この入出力回路に接続した計測・出力装置と、この計測・出力装置に接続したコンピュータ及びプリンタを配備して、母線の1相地絡操作を含み、コンピュータからの指示操作により計測・出力装置及び入出力回路切替器を介してGPT、ZCT、DGR及びOVGRに対する入出力を行い、かつ、これらの装置出力をデータ取得して演算処理及び表示・出力処理を行うように装置系を構成した配電線地絡保護リレー試験装置を提案した。
特開平5−276652号公報 特開平6−209521号公報 特開平9−103026号公報 特許3312172公報
In addition, in the following Patent Document 4, the applicant of the present invention is the primary current (measured current) of the zero-phase current transformer (ZCT) provided in each feeder at the time of one-phase grounding of the residual portion and one bus. By calculating the values with high accuracy and calculating the zero-phase admittance and anti-phase admittance of each feeder with high accuracy, the zero-phase primary current of each feeder and the earth capacitance In order to calculate or evaluate the balance, an input / output circuit connected to a grounding transformer (GPT), a zero-phase current transformer (ZCT), a ground fault direction relay (DGR), and a ground fault overvoltage relay (OVGR), and this A measurement / output device connected to the input / output circuit, a computer and a printer connected to the measurement / output device, and a one-phase ground fault operation of the bus are included. Output circuit switch Distribution line ground fault protection relay testing device that performs input / output to GPT, ZCT, DGR, and OVGR, and configures the device system to perform operation processing and display / output processing by acquiring these device outputs as data Proposed.
Japanese Patent Laid-Open No. 5-276652 JP-A-6-209521 JP-A-9-103026 Japanese Patent No. 3321172

しかしながら、非接地系である配電線は対地静電容量を地絡電流の電源としているため比較的に地絡電流が不安定であり、そのための不動作も多く発生している。このため、配電線などの電線路における地絡事故の拡大や波及を未然に防止するには、地絡発生時に配電線を確実に遮断する必要があり、地絡方向継電器および遮断器が正常に動作することが不可欠であるが、これらの機器の点検は、定期的に、人手により機器ごとに停電して行われているだけである。そこで、地絡事故の確実な切離の確実性を高めるために、これらの機器の動作確認を随時に行うことができるようにして、必要と思われるときには直ぐに遠方で試験を行うことができるようにすることが要請されている。   However, since the distribution line which is a non-grounding system uses a ground capacitance as a power source of a ground fault current, the ground fault current is relatively unstable, and many malfunctions occur. For this reason, in order to prevent the occurrence and spread of ground faults in power lines such as distribution lines, it is necessary to reliably shut off the distribution lines when a ground fault occurs. Although it is essential to operate, the inspection of these devices is only carried out periodically with a manual power outage for each device. Therefore, in order to increase the reliability of ground fault accidents, it is possible to check the operation of these devices at any time, so that tests can be carried out at a distance immediately when deemed necessary. It is requested to do.

本発明の目的は、地絡方向継電器や遮断器の動作試験を随時に遠方で行うことができる機器自動試験システムおよび機器自動試験方法を提供することにある。   The objective of this invention is providing the apparatus automatic test system and apparatus automatic test method which can perform the operation | movement test of a ground fault direction relay and a circuit breaker at any time in the distance.

本発明の機器自動試験システムは、母線(2)から分岐された電線路(3)に設けられた零相変流器(8)と、前記母線に設けられた零相変成器(9)と、前記零相変流器および前記零相変成器に接続された地絡継電器(4)と、該地絡継電器の動作時間経過後に該地絡継電器から出力されるトリップ信号(VDG)に基づいて前記電線路を遮断する遮断器(5)と、前記零相変成器に接続された、かつ、前記母線の零相電圧値が所定の値以上になったことを示す出力信号(SV1)を出力する地絡過電圧検出器(6)と、前記地絡継電器のトリップ信号と前記地絡過電圧検出器の出力信号とに基づいて、前記地絡継電器および前記遮断器の良否判定を行う機器自動試験手段(21,23,24)とを具備することを特徴とする。
ここで、前記機器自動試験手段が、所定の時間間隔で前記地絡継電器のトリップ信号を取得するとともに前記地絡過電圧検出器の出力信号を取得する子局側遠方監視制御装置(21)と、該子局側遠方監視制御装置と通信回線(22)を介して相互接続された親局側遠方監視制御装置(23)であって、前記電線路において地絡が発生すると、地絡の継続時間を含む時間範囲の前記トリップ信号および前記出力信号のデータの送信を前記子局側遠方監視制御装置に要求する要求信号を前記通信回線を介して該子局側遠方監視制御装置に送信し、該子局側遠方監視制御装置から前記トリップ信号および前記出力信号のデータを受信する親局側遠方監視制御装置(23)と、該親局側遠方監視制御装置から入力される前記トリップ信号および前記出力信号のデータに基づいて、前記地絡継電器および前記遮断器の良否判定を行う試験支援装置(24)とを備えてもよい。
前記電線路と他の電線路との間に設けられたバイパス開閉器(52)と、前記電線路に設けられた第1開閉器(53)と、前記電線路(3)に地絡を人工的に発生させる地絡発生装置(50)とをさらに具備し、前記機器自動試験手段が、所定の時間間隔で前記地絡継電器のトリップ信号を取得するとともに前記地絡過電圧検出器の出力信号を取得する子局側遠方監視制御装置(21)と、該子局側遠方監視制御装置と通信回線(22)を介して相互接続された親局側遠方監視制御装置(23)であって、前記電線路において地絡を人工的に発生させると、該人工的に発生された地絡の継続時間を含む時間範囲の前記トリップ信号および前記出力信号のデータの送信を前記子局側遠方監視制御装置に要求する要求信号を前記通信回線を介して該子局側遠方監視制御装置に送信し、該子局側遠方監視制御装置から前記トリップ信号および前記出力信号のデータを受信する親局側遠方監視制御装置(23)と、前記バイパス開閉器および前記第1開閉器を開閉させる操作と、前記地絡発生装置を用いて前記電線路に地絡を人工的に発生させる操作とを行うとともに、前記親局側遠方監視制御装置から入力される前記トリップ信号および前記出力信号のデータに基づいて前記地絡継電器および前記遮断器の良否判定を行う試験支援装置(24)とを備えてもよい。
前記地絡発生装置が、前記電線路の代わりに前記母線に地絡を人工的に発生させ、該人工的に発生させた地絡の接地線の帰路線を前記零相変流器に通してもよい。
前記地絡継電器が、動作時限が固定された地絡方向継電器であってもよい。
The apparatus automatic test system of the present invention includes a zero-phase current transformer (8) provided in the electric line (3) branched from the bus (2), and a zero-phase transformer (9) provided in the bus. , The ground fault relay (4) connected to the zero phase current transformer and the zero phase transformer, and a trip signal (V DG ) output from the ground fault relay after the operation time of the ground fault relay has elapsed. And an output signal (S V1 ) connected to the zero-phase transformer and indicating that the zero-phase voltage value of the bus is equal to or higher than a predetermined value. Automatic detection of the ground fault relay and the circuit breaker based on the trip signal of the ground fault relay and the output signal of the ground fault over voltage detector. And test means (21, 23, 24).
Here, the equipment automatic test means acquires a trip signal of the ground fault relay at a predetermined time interval and also obtains an output signal of the ground fault overvoltage detector (21), When a ground fault occurs in the main station side remote monitoring control device (23) interconnected with the slave station side remote monitoring control device via a communication line (22), the duration of the ground fault is generated. A request signal for requesting transmission of data of the trip signal and the output signal in a time range including the data to the slave station side remote monitoring and control device to the slave station side remote monitoring and control device via the communication line, A master station side remote monitoring and control device (23) that receives data of the trip signal and the output signal from the slave station side remote monitoring and control device, the trip signal input from the master station side remote monitoring and control device, and the Based on the data of the force signal, and may include a test support apparatus for performing quality determination of the locations 絡継 collector and said circuit breaker (24).
A bypass switch (52) provided between the electric line and another electric line, a first switch (53) provided in the electric line, and an artificial ground fault in the electric line (3) And a ground fault generator (50) for generating the ground fault, and the automatic equipment test means obtains a trip signal of the ground fault relay at a predetermined time interval and outputs an output signal of the ground fault overvoltage detector. A slave station side remote monitoring and control device (21) to be acquired, and a master station side remote monitoring and control device (23) interconnected with the slave station side remote monitoring and control device via a communication line (22), When the ground fault is artificially generated in the electric line, the slave station side remote monitoring and control device transmits the trip signal and the output signal data in a time range including the duration of the artificially generated ground fault. A request signal to request via the communication line Transmitting to the slave station side remote monitoring and control device and receiving data of the trip signal and the output signal from the slave station side remote monitoring and control device, the master station side remote monitoring and control device (23), the bypass switch and the The trip input from the master station side remote monitoring control device while performing an operation of opening and closing the first switch and an operation of artificially generating a ground fault in the electric line using the ground fault generation device And a test support device (24) that performs pass / fail determination of the ground fault relay and the circuit breaker based on the signal and data of the output signal.
The ground fault generator artificially generates a ground fault in the bus instead of the electric wire, and passes the return line of the ground fault ground line generated artificially through the zero-phase current transformer. Also good.
The ground fault relay may be a ground fault direction relay with a fixed operation time.

本発明の機器自動試験方法は、機器自動試験手段(21,23,24)が、母線(2)の零相電圧値が所定の値以上になったことを示す地絡過電圧検出器の出力信号(SV1)を取得する第1のステップ(S11;S22)と、前記機器自動試験手段が、前記母線から分岐された電線路(3)に地絡が発生すると所定の動作時間経過後に地絡継電器(4)から遮断器(5)に出力されるトリップ信号(VDG)を取得する第2のステップ(S12;S23)と、前記機器自動試験手段が、前記トリップ信号により前記遮断器が前記電線路を遮断することで、前記地絡過電圧検出器の出力信号が出力されなくなったことを検出する第3のステップ(S13;S24)と、前記機器自動試験手段が、前記地絡継電器のトリップ信号と前記地絡過電圧検出器の出力信号とに基づいて前記地絡継電器および前記遮断器の良否判定を行う第4のステップ(S15,S16;S26,S27)とを具備することを特徴とする。
ここで、前記第1,第2および第3のステップにおいて、子局側遠方監視制御装置(21)が、所定の時間間隔で、前記地絡過電圧検出器の出力信号およびトリップ信号(VDG)を取得し、前記第4のステップの前に、前記子局側遠方監視制御装置と通信回線(22)を介して相互接続された親局側遠方監視制御装置(23)から、前記電線路において地絡(事故による接地)が発生すると、地絡の継続時間を含む時間範囲の前記地絡継電器のトリップ信号および前記地絡過電圧検出器の出力信号のデータの送信を前記子局側遠方監視制御装置に要求する要求信号を前記通信回線を介して該子局側遠方監視制御装置に送信する第5のステップをさらに備え、該第5のステップ後に、前記親局側遠方監視制御装置に接続された試験支援装置(24)が、前記地絡過電圧検出器の出力信号に基づいて、前記母線に零相電圧が発生した時刻である零相電圧発生時刻と、前記母線の地絡電圧が回復して零相電圧が復帰した時刻である零相電圧復帰時刻とを求め、前記試験支援装置が、前記求めた零相電圧復帰時刻から前記求めた零相電圧発生時刻を引いて地絡継続時間(x)を求め、前記試験支援装置が、前記地絡継電器のトリップ信号に基づいて、該トリップ信号が入力されてきた時刻であるトリップ信号入力時刻を求め、前記試験支援装置が、前記求めた地絡継続時間から、前記求めたトリップ信号入力時刻から前記求めた零相電圧復帰時刻までの時間を引くことにより、前記地絡継電器が動作を開始してから前記トリップ信号を出力するまでの動作時間(y)を求め、前記試験支援装置が、前記求めた地絡継電器の動作時間と前記地絡継電器の動作時限とを比較して、該地絡継電器の良否を判定し、前記試験支援装置が、前記求めたトリップ信号入力時刻から前記求めた零相電圧復帰時刻までの時間を算出することにより、前記遮断器の動作時間(z)を求め、前記試験支援装置が、前記求めた遮断器の動作時間(z)に基づいて前記遮断器の良否を判定してもよい。
前記第1のステップの前に、前記遮断器の試開放ができるように、前記電線路の負荷に他の電線路から電気を供給したのちに、該電線路に地絡を人工的に発生する第6のステップ(S21)をさらに具備し、前記第1,第2および第3のステップにおいて、子局側遠方監視制御装置(21)が、所定の時間間隔で、前記地絡過電圧検出器の出力信号およびトリップ信号(VDG)を取得し、前記第4のステップの前に、前記子局側遠方監視制御装置と通信回線(22)を介して相互接続された親局側遠方監視制御装置(23)から、前記電線路に地絡を人工的に発生させると、該人工的に発生された地絡の継続時間を含む時間範囲の前記地絡継電器のトリップ信号と前記地絡過電圧検出器の出力信号のデータの送信を前記子局側遠方監視制御装置に要求する要求信号を前記通信回線を介して該親局側遠方監視制御装置に送信する第7のステップをさらに備え、該第7のステップ後に、前記親局側遠方監視制御装置に接続された試験支援装置(24)が、前記地絡過電圧検出器の出力信号に基づいて、前記母線に零相電圧が発生した時刻である零相電圧発生時刻と、前記母線の地絡電圧が回復して零相電圧が復帰した時刻である零相電圧復帰時刻とを求め、
前記試験支援装置が、前記求めた零相電圧復帰時刻から前記求めた零相電圧発生時刻を引いて人工地絡継続時間(x)を求め、前記試験支援装置が、前記地絡継電器のトリップ信号に基づいて、該トリップ信号が入力されてきた時刻であるトリップ信号入力時刻を求め、前記試験支援装置が、前記求めた人工地絡継続時間から、前記求めたトリップ信号入力時刻から前記求めた零相電圧復帰時刻までの時間を引くことにより、前記地絡継電器が動作を開始してから前記トリップ信号を出力するまでの動作時間(y)を求め、前記試験支援装置が、前記求めた地絡継電器の動作時間と前記地絡継電器の動作時限とを比較して、該地絡継電器の良否を判定し、前記試験支援装置が、前記求めたトリップ信号入力時刻から前記求めた零相電圧復帰時刻までの時間を算出することにより、前記遮断器の動作時間(z)を求め、前記試験支援装置が、前記求めた遮断器の動作時間(z)に基づいて前記遮断器の良否を判定してもよい。
In the device automatic test method of the present invention, the device automatic test means (21, 23, 24) outputs an output signal of a ground fault overvoltage detector indicating that the zero-phase voltage value of the bus (2) has become a predetermined value or more. The first step (S11; S22) for acquiring (S V1 ), and when the equipment automatic test means generates a ground fault in the electrical line (3) branched from the bus, a ground fault occurs after a predetermined operating time has elapsed. A second step (S12; S23) of acquiring a trip signal (V DG ) output from the relay (4) to the circuit breaker (5), and the device automatic test means, the trip signal causes the circuit breaker to A third step (S13; S24) for detecting that the output signal of the ground fault overvoltage detector is not output by cutting off the electric line, and the device automatic test means is configured to trip the ground fault relay. Signal and ground fault overvoltage A fourth step of performing a quality determination of the locations 絡継 collector and said circuit breaker based on the output signal of the output unit (S15, S16; S26, S27) and characterized by including the.
Here, in the first, second and third steps, the remote monitoring device (21) on the slave station side outputs the output signal and trip signal (V DG ) of the ground fault overvoltage detector at predetermined time intervals. Before the fourth step, the master station side remote monitoring control device (23) interconnected with the slave station side remote monitoring control device (22) via the communication line (22) When a ground fault (grounding due to an accident) occurs, the slave station side remote monitoring control transmits data of the trip signal of the ground fault relay and the output signal of the ground fault overvoltage detector in a time range including the duration of the ground fault A fifth step of transmitting a request signal for requesting a device to the remote monitoring device on the slave station side via the communication line, and connected to the remote monitoring control device on the master station side after the fifth step. Test support device (2 4), based on the output signal of the ground fault overvoltage detector, the zero phase voltage generation time, which is the time when the zero phase voltage is generated on the bus, and the ground fault voltage of the bus is recovered and the zero phase voltage is A zero phase voltage return time that is a return time is obtained, and the test support device obtains a ground fault continuation time (x) by subtracting the obtained zero phase voltage generation time from the obtained zero phase voltage return time, Based on the trip signal of the ground fault relay, the test support device obtains a trip signal input time that is a time when the trip signal has been inputted, and the test support device determines from the obtained ground fault duration time, By subtracting the time from the obtained trip signal input time to the obtained zero-phase voltage recovery time, the operation time (y) from when the ground fault relay starts operating until the trip signal is output is obtained. , The test support equipment Is compared with the operation time of the obtained ground fault relay and the operation time limit of the ground fault relay to determine the quality of the ground fault relay, the test support device from the trip signal input time determined The operation time (z) of the circuit breaker is obtained by calculating the time until the obtained zero-phase voltage return time, and the test support device determines the circuit breaker based on the obtained operation time (z) of the circuit breaker. The quality of the vessel may be determined.
Before the first step, after supplying electricity from the other electric line to the load of the electric line, a ground fault is artificially generated in the electric line so that the circuit breaker can be opened. And further comprising a sixth step (S21), wherein in the first, second and third steps, the slave station side remote monitoring control device (21) performs the ground fault overvoltage detector at a predetermined time interval. An output signal and a trip signal (V DG ) are obtained, and before the fourth step, the master station side remote monitoring and control device interconnected with the slave station side monitoring and control device via a communication line (22) From (23), when a ground fault is artificially generated in the electric line, the trip signal of the ground fault relay in the time range including the duration of the artificially generated ground fault and the ground fault overvoltage detector The transmission of the output signal data of the slave station side remote monitoring control device A seventh step of transmitting a request signal to the master station side remote monitoring and control device via the communication line, and connected to the master station side remote monitoring and control device after the seventh step. The test support device (24) recovers the zero-phase voltage generation time, which is the time when the zero-phase voltage is generated on the bus, and the ground-fault voltage on the bus based on the output signal of the ground-fault overvoltage detector. And the zero-phase voltage return time, which is the time when the zero-phase voltage returns,
The test support device subtracts the obtained zero phase voltage generation time from the obtained zero phase voltage return time to obtain an artificial ground fault duration (x), and the test support device sends a trip signal for the ground fault relay. On the basis of the trip signal input time, which is the time when the trip signal has been input, and the test support device determines the zero calculated from the calculated trip signal input time from the calculated artificial ground fault continuation time. By subtracting the time until the phase voltage return time, the operation time (y) from the start of the operation of the ground fault relay until the output of the trip signal is obtained, and the test support device determines the ground fault obtained. The operation time of the relay is compared with the operation time limit of the ground fault relay to determine whether the ground fault relay is good or not, and the test support device is configured to return the calculated zero-phase voltage from the calculated trip signal input time. The operation time (z) of the circuit breaker is obtained by calculating the time until the test support device determines the quality of the circuit breaker based on the obtained operation time (z) of the circuit breaker. Also good.

本発明の機器自動試験システムおよび機器自動試験方法は、以下に示す効果を奏する。
(1)微地絡を含めた地絡の発生時の地絡方向継電器および遮断器の動作時間を地絡方向継電器のトリップ信号と母線の零相電圧が所定の値以上になったことを示す段階式地絡過電圧検出器の出力信号とに基づいて求めることができるので、地絡発生時に、または、必要と思われるときに電線路または母線に地絡を人工的に発生させれば地絡方向継電器および遮断器が正常に動作したか否かを遠方で頻繁に試験することができる。
(2)母線の零相電圧が所定の値以上になったことを示す段階式地絡過電圧検出器の出力信号に基づいて地絡継続時間も自動的に求めることができる。
The device automatic test system and device automatic test method of the present invention have the following effects.
(1) The operating time of the ground fault direction relay and the circuit breaker at the time of occurrence of the ground fault including the micro ground fault indicates that the trip signal of the ground fault direction relay and the zero-phase voltage of the bus have exceeded the predetermined value. Since it can be calculated based on the output signal of the stepped ground fault overvoltage detector, if a ground fault is artificially generated when a ground fault occurs or when it is deemed necessary, a ground fault will occur. It can be frequently tested in the distance whether the directional relay and circuit breaker have worked normally.
(2) The ground fault duration can also be automatically determined based on the output signal of the stepped ground fault overvoltage detector indicating that the zero-phase voltage of the bus has reached a predetermined value or more.

地絡方向継電器や遮断器の動作試験を随時に遠方で行うという目的を、地絡方向継電器のトリップ信号と母線の零相電圧が所定の値以上になったことを示す段階式地絡過電圧検出器の出力信号とに基づいて地絡方向継電器および遮断器の良否判定を行うことにより実現した。   Step-by-step ground fault overvoltage detection that indicates that the trip signal of the ground fault direction relay and the zero-phase voltage of the bus have exceeded the specified value for the purpose of performing the operation test of the ground fault direction relay and circuit breaker at any time. It was realized by judging the quality of the ground fault direction relay and circuit breaker based on the output signal of the device.

以下、本発明の機器自動試験システムおよび機器自動試験方法の実施例について図面を参照して説明する。
本発明の第1の実施例による機器自動試験システム1は、配電線などの電線路において地絡が発生した時に地絡方向継電器や遮断器が正常に動作したか否かを遠方で試験するためのものであり、図1に示すように、分岐点において母線2から分岐された配電線(電線路)3に設けられた地絡方向継電器(DG+OVG)4と、配電線3に設けられたかつ地絡方向継電器4のトリップ信号VDGに基づいて配電線3を遮断する遮断器(CB)5と、母線2に設けられた段階式地絡過電圧検出器6と、子局側遠方監視制御装置(以下、「子局側テレコン」と称する。)21と、子局側テレコン21と通信回線22を介して接続された親局側遠方監視制御装置(以下、「親局側テレコン」と称する。)23と、親局側テレコン23に接続された試験支援装置24とを備えている。
Embodiments of an automatic device test system and an automatic device test method of the present invention will be described below with reference to the drawings.
The automatic equipment test system 1 according to the first embodiment of the present invention is for testing remotely whether or not a ground fault direction relay or a circuit breaker has normally operated when a ground fault occurs in a power line such as a distribution line. As shown in FIG. 1, a ground fault direction relay (DG + OVG) 4 provided on a distribution line (electric line) 3 branched from the bus 2 at a branch point, and provided on the distribution line 3 and A circuit breaker (CB) 5 for cutting off the distribution line 3 based on a trip signal VDG of the ground fault direction relay 4, a stepped ground fault overvoltage detector 6 provided on the bus 2, and a slave station side remote monitoring and control device (Hereinafter referred to as “slave station side telecon”) 21 and the master station side remote monitoring and control device (hereinafter referred to as “master station side telecon”) connected to the slave station side telecon 21 via the communication line 22. ) 23 and the test support connected to the parent station side telecon 23 And a device 24.

ここで、配電線3には零相変流器(ZCT)8が設けられており、当該配電線3(1次側)において地絡が生じると零相変流器8により地絡方向継電器4に零相電流(以下、「I0電流」と称する。)を供給するようにしている。また、母線2には零相変成器(GPT)9が設けられており、母線2の零相電圧(以下、「V0電圧」と称する。)を零相変成器(GPT)9により低電圧に変換して地絡方向継電器4および段階式地絡過電圧検出器6(2次側)に出力するようにしている。 Here, the distribution line 3 is provided with a zero-phase current transformer (ZCT) 8. When a ground fault occurs in the distribution line 3 (primary side), the zero-phase current transformer 8 causes a ground fault direction relay 4. Is supplied with a zero-phase current (hereinafter referred to as “I 0 current”). The bus 2 is provided with a zero-phase transformer (GPT) 9, and the zero-phase voltage (hereinafter referred to as “V 0 voltage”) of the bus 2 is reduced by the zero-phase transformer (GPT) 9. And output to the ground fault direction relay 4 and the stepped ground fault overvoltage detector 6 (secondary side).

地絡方向継電器4は、地絡事故が発生すると動作を開始するが、0.5秒以上の地絡事故に対応するために動作時限は0.5秒に固定されている。
また、地絡方向継電器4は、2つの要素のV0電圧およびI0電流の大きさおよび位相により動作し、V0電圧が約8VかつI0電流が約3mAで位相が90度といったような整定は、実際に6,000Ωの地絡を基準に地絡させてそれぞれの特性により整定が行われている。
The ground fault direction relay 4 starts operation when a ground fault occurs, but the operation time limit is fixed to 0.5 seconds in order to cope with a ground fault of 0.5 seconds or more.
In addition, the ground fault direction relay 4 operates according to the magnitude and phase of the V 0 voltage and I 0 current of the two elements, such that the V 0 voltage is about 8 V, the I 0 current is about 3 mA, and the phase is 90 degrees. The settling is actually carried out according to the respective characteristics by making a ground fault on the basis of a ground fault of 6,000Ω.

段階式地絡過電圧検出器6は、V0電圧(オープンデルタ)で動作し、たとえば、V0電圧が8V以上であることを示すV1出力信号SV1と、V0電圧が50V以上であることを示すV2出力信号と、V0電圧が150V以上であることを示すV3出力信号とを出力する。なお、機器自動試験システム1では、V0電圧が8V以上であることを示すV1出力信号SV1を用いて地絡方向継電器4および遮断器5の動作試験を行うため、段階式地絡過電圧検出器6はV1出力信号SV1のみを子局側テレコン21に出力する。 The staged ground fault overvoltage detector 6 operates with a V 0 voltage (open delta). For example, the V 1 output signal S V1 indicating that the V 0 voltage is 8 V or more and the V 0 voltage is 50 V or more. And a V3 output signal indicating that the V 0 voltage is 150V or higher. In the automatic equipment test system 1, since the operation test of the ground fault relay 4 and the circuit breaker 5 is performed using the V1 output signal S V1 indicating that the V 0 voltage is 8V or more, the step-type ground fault overvoltage detection is performed. The unit 6 outputs only the V1 output signal S V1 to the slave station side telecon 21.

子局側テレコン21は、所定の時間間隔(たとえば、10ms)で、地絡方向継電器4からトリップ信号VDGを取り込むとともに段階式地絡過電圧検出器6からV1出力信号SV1を取り込んで、取り込んだトリップ信号VDGおよびV1出力信号SV1のデータを格納する。また、子局側テレコン21は、SOE(Sequence of Events)機能を備えており、親局側テレコン23のSOE要求に応じて、トリップ信号VDGおよびV1出力信号SV1のデータのうちの要求された時間範囲のものを親局側テレコン23に通信回線22を介して伝送(たとえば、パケット伝送)する。 The slave station side telecon 21 captures the trip signal V DG from the ground fault direction relay 4 and the V1 output signal S V1 from the stepped ground fault overvoltage detector 6 at a predetermined time interval (for example, 10 ms). The data of the trip signal V DG and the V1 output signal S V1 is stored. Further, the slave station side telecon 21 has an SOE (Sequence of Events) function, and in response to the SOE request of the master station side telecon 23, the data of the trip signal V DG and the V1 output signal S V1 is requested. The data in the specified time range is transmitted (for example, packet transmission) via the communication line 22 to the base station side tele-computer 23.

親局側テレコン23は、監視制御所に設置されており、トリップ信号VDGおよびV1出力信号SV1のデータの送信を子局側テレコン21に要求するSOE要求信号を子局側テレコン21に送信することによって、子局側テレコン21からトリップ信号VDGおよびV1出力信号SV1のデータを取得する。
試験支援装置24は、親局側テレコン23から入力されるトリップ信号VDGおよびV1出力信号SV1のデータに基づいて、地絡方向継電器4および遮断器5の良否を判定する。
The master station side telecon 23 is installed in the monitoring control station, and transmits to the slave station side telecon 21 an SOE request signal requesting the slave station side telecon 21 to transmit data of the trip signal V DG and the V1 output signal S V1. As a result, the data of the trip signal V DG and the V1 output signal S V1 is acquired from the telecom 21 on the slave station side.
The test support device 24 determines pass / fail of the ground fault direction relay 4 and the circuit breaker 5 based on the data of the trip signal V DG and the V1 output signal S V1 input from the master station side telecon 23.

次に、本実施例による機器自動試験システム1の動作(本発明の第1の実施例による機器自動試験方法)について、図2に示すフローチャートおよび図3に示すタイミングチャートを参照して説明する。
図3に示す時刻t1に配電線3において地絡が発生すると、地絡が発生した配電線3においては他の回線からのI0電流が流れ込むとともに、母線2にはV0電圧が発生する。その結果、地絡の発生とほぼ同時に、地絡方向継電器4が零相変流器(ZCT)からのI0電流と零相変成器9からのV0電圧とにより動作を開始するとともに、段階式地絡過電圧検出器6がV1出力信号SV1を子局側テレコン21に出力する(ステップS11)。
Next, the operation of the device automatic test system 1 according to this embodiment (device automatic test method according to the first embodiment of the present invention) will be described with reference to the flowchart shown in FIG. 2 and the timing chart shown in FIG.
When a ground fault occurs in the distribution line 3 at time t1 shown in FIG. 3, an I 0 current from another line flows into the distribution line 3 in which the ground fault has occurred, and a V 0 voltage is generated in the bus 2. As a result, almost simultaneously with the occurrence of the ground fault, the ground fault direction relay 4 starts to operate with the I 0 current from the zero phase current transformer (ZCT) and the V 0 voltage from the zero phase transformer 9, and The ground fault overvoltage detector 6 outputs the V1 output signal S V1 to the slave station side telecon 21 (step S11).

地絡方向継電器4が動作を開始すると、遮断器5に配電線3を遮断させるトリップ信号VDGが地絡方向継電器4から遮断器5および子局側テレコン21に出力される。このとき、トリップ信号VDGは、地絡が発生した時刻t1から地絡方向継電器4の動作時間y(地絡方向継電器4が正常動作している場合には、地絡方向継電器4の動作時限である0.5秒)経過後の時刻t2に、遮断器5および子局側テレコン21に出力される(ステップS12)。 When the ground fault direction relay 4 starts to operate, a trip signal V DG that causes the circuit breaker 5 to shut off the distribution line 3 is output from the ground fault direction relay 4 to the circuit breaker 5 and the slave station side telecon 21. At this time, the trip signal V DG is generated from the time t1 when the ground fault occurs, the operation time y of the ground fault direction relay 4 (if the ground fault direction relay 4 is operating normally, the operation time limit of the ground fault direction relay 4 is Is output to the circuit breaker 5 and the slave station side telecon 21 at time t2 after elapse (step S12).

遮断器5は、地絡方向継電器4からトリップ信号VDGが入力されると、配電線3を遮断する動作を開始するが、遮断機5に固有の一定の動作時間z(たとえば、50ms)が経過した時刻t3に、配電線3の遮断を完了する(ステップS13)。 When the trip signal V DG is input from the ground fault direction relay 4, the circuit breaker 5 starts the operation of interrupting the distribution line 3, but has a certain operation time z (for example, 50 ms) inherent to the circuit breaker 5. At the elapsed time t3, the disconnection of the distribution line 3 is completed (step S13).

遮断器5により配電線3が遮断されると、配電線3を流れる電流が遮断されると同時に母線2のV0電圧が、残留電圧がないとすると0ボルト(以下、説明の簡単のため、残留電圧はないものとする。)に回復する。その結果、段階式地絡過電圧検出器6から子局側テレコン21にV1出力信号SV1が出力されなくなる(ステップS13)。 When the distribution line 3 is cut off by the circuit breaker 5, the current flowing through the distribution line 3 is cut off, and at the same time the V 0 voltage of the bus 2 is 0 volts (hereinafter, for the sake of simplicity, if there is no residual voltage). It is assumed that there is no residual voltage.) As a result, the V1 output signal S V1 is not output from the stepped ground fault overvoltage detector 6 to the slave station side telecon 21 (step S13).

子局側テレコン21は、トリップ信号VDGおよびV1出力信号SV1を所定の時間間隔で常時取り込んで、取り込んだトリップ信号VDGおよびV1出力信号SV1のデータを格納する。また、配電線3において地絡が発生すると、親局側テレコン23は、トリップ信号VDGおよびV1出力信号SV1のデータの送信を子局側テレコン21に要求するSOE要求信号を、通信回線22を介して子局側テレコン21に送信する。子局側テレコン21は、このSOE要求信号を受信すると、保管されている要求された時間範囲のトリップ信号VDGおよびV1出力信号SV1のデータを親局側テレコン23に通信回線22を介してパケット伝送する。親局側テレコン23は、このトリップ信号VDGおよびV1出力信号SV1のデータを受信すると、試験支援装置24に出力する(ステップS14)。 The slave station side telecon 21 always captures the trip signal V DG and the V1 output signal S V1 at a predetermined time interval, and stores the data of the captured trip signal V DG and V1 output signal S V1 . When a ground fault occurs in the distribution line 3, the master station side telecon 23 sends an SOE request signal for requesting the slave station side telecon 21 to transmit data of the trip signal V DG and the V1 output signal S V1 to the communication line 22. Then, the data is transmitted to the slave station side telecon 21. When the slave station side telecon 21 receives this SOE request signal, the data of the trip signal V DG and V1 output signal S V1 stored in the requested time range is stored via the communication line 22 to the master station side telecon 23. Transmit the packet. When receiving the data of the trip signal V DG and the V1 output signal S V1 , the master station side tele-computer 23 outputs the data to the test support device 24 (step S14).

試験支援装置24は、このトリップ信号VDGおよびV1出力信号SV1のデータに基づいて、以下のようにして地絡方向継電器4および遮断器5が正常に動作したか否かを判定する。 Based on the data of the trip signal V DG and the V1 output signal S V1 , the test support device 24 determines whether or not the ground fault direction relay 4 and the circuit breaker 5 are normally operated as follows.

試験支援装置24は、段階式地絡過電圧検出器6のV1出力信号SV1に基づいて、母線2にV0電圧が発生した時刻であるV0発生時刻(=t1)と、母線2の地絡電圧が0ボルトに回復してV0電圧が復帰した時刻であるV0復帰時刻(=t3)とを求める(ステップS15)。すなわち、試験支援装置24は、V1出力信号SV1が段階式地絡過電圧検出器6から子局側テレコン21に入力された時刻(すなわち、図3に示すように、V1出力信号SV1がロウレベルからハイレベルになった時刻)において配電線3に地絡が発生したと判断して、V0発生時刻(=t1)を求める。また、試験支援装置24は、V1出力信号SV1が段階式地絡過電圧検出器6から子局側テレコン21に入力されなくなった時刻(すなわち、図3に示すように、V1出力信号SV1がハイレベルからロウレベルになった時刻)において母線2のV0電圧が復帰したと判断して、V0復帰時刻(=t3)を求める。 Based on the V1 output signal S V1 of the stepped ground fault overvoltage detector 6, the test support device 24 detects the V 0 generation time (= t 1), which is the time when the V 0 voltage is generated on the bus 2, and the ground of the bus 2. A V 0 return time (= t3), which is a time when the voltage V0 is restored to 0 volts and the V 0 voltage is restored, is obtained (step S15). That is, the test support apparatus 24 determines that the time when the V1 output signal S V1 is input from the stepped ground fault overvoltage detector 6 to the slave station side telecon 21 (that is, as shown in FIG. 3, the V1 output signal S V1 is low level). It is determined that a ground fault has occurred in the distribution line 3 at the time when the high level has been reached), and the V 0 occurrence time (= t1) is obtained. Further, the test support device 24 determines that the V1 output signal S V1 is not input from the stepped ground fault overvoltage detector 6 to the slave station side telecon 21 (that is, as shown in FIG. 3, the V1 output signal S V1 is It is determined that the V 0 voltage of the bus 2 has returned at the time when the high level has changed to the low level), and the V 0 return time (= t3) is obtained.

また、試験支援装置24は、V0復帰時刻(=t3)からV0発生時刻(=t1)を引いて、地絡継続時間x(=t3−t1)を求める(ステップS15)。
ただし、厳密に言えば、地絡発生から段階式地絡過電圧検出器6がV1出力信号SV1を出力するまでには過渡時間があり、また、母線2の地絡電圧の回復から段階式地絡過電圧検出器6がV1出力信号SV1を出力しなくなるまでには過渡時間があるため、段階式地絡過電圧検出器6のV1出力信号SV1の出力発生時刻(V0発生時刻)と地絡発生時刻とは一致せず、また、段階式地絡過電圧検出器6のV1出力信号SV1の出力停止時刻とV0復帰時刻とは一致しない。しかしながら、一般には、これらの過渡時間がほぼ同じであるため、また、地絡継続時間xに比べて段階式地絡過電圧検出器の過渡時間は非常に短いため、段階式地絡過電圧検出器6がV1出力信号SV1を出力している時間(図3のV1出力信号SV1がハイレベルである時間)と地絡継続時間xとは等しいと言える。
なお、これらの過渡時間が予め分かっている場合には、過渡時間を考慮して地絡継続時間xを算出するようにしてもよい。
Further, the test support device 24 subtracts the V 0 occurrence time (= t1) from the V 0 return time (= t3) to obtain the ground fault duration x (= t3−t1) (step S15).
Strictly speaking, however, there is a transition time from when the ground fault occurs until the stepped ground fault overvoltage detector 6 outputs the V1 output signal S V1, and from the recovery of the ground fault voltage of the bus 2, the stepped ground fault is detected. since the fault over-voltage detector 6 is transient time for until no outputs V1 output signal S V1, the output generation time (V 0 generation time) of the V1 output signal S V1 of staged locations fault over-voltage detector 6 and the earth It does not coincide with the occurrence time of the fault, and the output stop time of the V1 output signal S V1 of the stepped ground fault overvoltage detector 6 does not coincide with the V 0 return time. However, in general, since these transient times are substantially the same, and because the transient time of the staged ground fault overvoltage detector is very short compared to the ground fault duration x, the staged ground fault overvoltage detector 6. There it can be said that the time that output V1 output signal S V1 equal to the (V1 output signal S V1 of FIG. 3 is time at a high level) and ground fault duration x.
If these transition times are known in advance, the ground fault duration x may be calculated in consideration of the transition time.

さらに、試験支援装置24は、地絡方向継電器4のトリップ信号VDGに基づいて、トリップ信号VDGが入力されてきた時刻(図3で、トリップ信号VDGがロウレベルからハイレベルになる時刻)であるトリップ信号入力時刻(=t2)を求める(ステップS15)。 Furthermore, the test support apparatus 24 based on the trip signal V DG ground fault directional relay 4, a time of trip signal V DG has been inputted (in FIG. 3, the time the trip signal V DG is changed from the low level to the high level) The trip signal input time (= t2) is obtained (step S15).

(1)地絡方向継電器4の良否判定
続いて、試験支援装置24は、地絡継続時間x(=t3−t1)から、トリップ信号入力時刻(=t2)からV0復帰時刻(=t3)までの時間(=t3−t2)を引くことにより、地絡方向継電器4が動作を開始してからトリップ信号VDGを出力するまでの動作時間y(=(t3−t1)−(t3−t2)=t2−t1)を求める。、試験支援装置24は、求めた地絡方向継電器4の動作時間y(=t2−t1)と地絡方向継電器4の動作時限(0.5秒)とを比較して両者が等しければ、地絡方向継電器4は正常に動作していると判定する(ステップS16)。
(1) Pass / Fail Judgment of Ground Fault Direction Relay 4 Subsequently, the test support device 24 starts from the ground fault continuation time x (= t3−t1), from the trip signal input time (= t2) to the V 0 return time (= t3). By subtracting the time until (= t3-t2), the operation time y (= (t3-t1)-(t3-t2) from when the ground fault direction relay 4 starts operating until the trip signal V DG is output. ) = T2-t1). The test support device 24 compares the obtained operation time y (= t2−t1) of the ground fault direction relay 4 with the operation time limit (0.5 seconds) of the ground fault direction relay 4 and if both are equal, It is determined that the tangential relay 4 is operating normally (step S16).

(2)遮断器5の良否判定
試験支援装置24は、トリップ信号入力時刻(=t2)からV0復帰時刻(=t3)までの時間を算出することにより、遮断器5の動作時間z(=t3−t2)を求める。子局側テレコン21は、求めた遮断器5の動作時間z(=t3−t2)が50msであれば、遮断器5は正常に動作していると判定する(ステップS16)。
(2) Pass / fail judgment of circuit breaker 5 The test support device 24 calculates the operation time z (=) of the circuit breaker 5 by calculating the time from the trip signal input time (= t2) to the V 0 return time (= t3). t3-t2) is obtained. If the determined operation time z (= t3−t2) of the circuit breaker 5 is 50 ms, the slave station side telecon 21 determines that the circuit breaker 5 is operating normally (step S16).

次に、本発明の第2の実施例による機器自動試験システムおよび機器自動試験方法について説明する。
本実施例による機器自動試験システム30は、配電線などの電線路に地絡を人工的に発生させた時に地絡方向継電器や遮断器が正常に動作したか否かを遠方で試験するためのものであり、図4に示すように、配電線(電線路)3に地絡を人工的に発生させるための地絡発生装置50と、配電線(電線路)3に設けられた第1開閉器(第1AS)53と、配電線3と隣回線との間に設けられたバイパス開閉器52とをさらに備えている点で、図1に示した第1の実施例による機器自動試験システム1と異なる。
Next, a device automatic test system and a device automatic test method according to a second embodiment of the present invention will be described.
The equipment automatic test system 30 according to the present embodiment is used to test remotely whether or not the ground fault direction relay or the circuit breaker has normally operated when a ground fault is artificially generated in a power line such as a distribution line. As shown in FIG. 4, a ground fault generator 50 for artificially generating a ground fault in the distribution line (electric line) 3 and a first opening / closing provided in the distribution line (electric line) 3 Device automatic test system 1 according to the first embodiment shown in FIG. 1 in that it further comprises a device (first AS) 53 and a bypass switch 52 provided between the distribution line 3 and the adjacent line. And different.

ここで、地絡発生装置50は、地絡検出感度がたとえば6,000Ωとされている。また、地絡発生装置50を用いて配電線3に地絡を人工的に発生させる場合には、試験支援装置24から地絡発生装置50に接地指令を送信することにより地絡発生装置50の接地棒51を配電線3に所定の期間だけ接触させて配電線3を接地させる操作が行われる。   Here, the ground fault generator 50 has a ground fault detection sensitivity of, for example, 6,000Ω. Further, when a ground fault is artificially generated in the distribution line 3 using the ground fault generating device 50, a grounding command is transmitted from the test support device 24 to the ground fault generating device 50. An operation is performed in which the grounding rod 51 is brought into contact with the distribution line 3 for a predetermined period to ground the distribution line 3.

また、配電線3に地絡を人工的に発生させるときには、遮断器5を試開放しても配電線3の負荷に隣回線(隣の配電線)から電気を供給するために、試験支援装置24からバイパス開閉器52および第1開閉器53に開閉制御指令を送信することにより所定の期間だけバイパス開閉器52を閉じるとともに第1開閉器53を開く操作が行われる。   In addition, when a ground fault is artificially generated in the distribution line 3, a test support device is used to supply electricity from the adjacent line (adjacent distribution line) to the load of the distribution line 3 even if the circuit breaker 5 is opened. By transmitting an opening / closing control command from the switch 24 to the bypass switch 52 and the first switch 53, the operation of closing the bypass switch 52 and opening the first switch 53 for a predetermined period is performed.

次に、本実施例による機器自動試験システム30の動作(本発明の第2の実施例による機器自動試験方法)について、図5に示すフローチャートおよび図6に示すタイミングチャートを参照して説明する。
配電線3に地絡を人工的に発生させて地絡方向継電器4および遮断器5の動作試験を行うときには、遮断器5の試開放ができるようにするために、開閉制御指令が試験支援装置24からバイパス開閉器52および第1開閉器53に送信されて、バイパス開閉器52が閉じられるとともに、第1開閉器53が開かれる(ステップS21)。その後、接地指令が試験支援装置24から地絡発生装置50に送信されて、地絡発生装置50の接地棒51を配電線3に接触させて配電線3を接地させることにより、配電線3に地絡が人工的に発生される(ステップS21)。
Next, the operation of the device automatic test system 30 according to this embodiment (device automatic test method according to the second embodiment of the present invention) will be described with reference to the flowchart shown in FIG. 5 and the timing chart shown in FIG.
When performing an operation test of the ground fault direction relay 4 and the circuit breaker 5 by artificially generating a ground fault in the distribution line 3, an open / close control command is sent to the test support device so that the circuit breaker 5 can be opened. 24 is transmitted to the bypass switch 52 and the first switch 53, and the bypass switch 52 is closed and the first switch 53 is opened (step S21). Thereafter, a grounding command is transmitted from the test support device 24 to the ground fault generating device 50, and the distribution line 3 is grounded by bringing the grounding rod 51 of the ground fault generating device 50 into contact with the power distribution line 3 to ground the power distribution line 3. A ground fault is artificially generated (step S21).

このようにして、図6に示す時刻t1において配電線3に地絡を人工的に発生させたときの地絡方向検出器4,段階式地絡過電圧検出器5,子局側テレコン21および親局側テレコン23は、上述した第1の実施例による機器自動試験システム1におけるステップS11〜S14(図2参照)と同様な動作を行う(ステップS22〜S25)。これにより、子局側テレコン21に保管されているかつ親局側テレコン23から要求された時間範囲のトリップ信号VDGおよびV1出力信号SV1のデータが、試験支援装置24に取り込まれる。 In this way, the ground fault direction detector 4, the stepped ground fault overvoltage detector 5, the slave station side telecon 21 and the parent when the ground fault is artificially generated in the distribution line 3 at time t1 shown in FIG. The station-side telecon 23 performs the same operations as steps S11 to S14 (see FIG. 2) in the automatic device test system 1 according to the first embodiment described above (steps S22 to S25). Thereby, the data of the trip signal V DG and the V1 output signal S V1 stored in the slave station side telecon 21 and requested by the master station side telecon 23 are taken into the test support device 24.

試験支援装置24は、段階式地絡過電圧検出器6のV1出力信号SV1に基づいて、母線2にV0電圧が発生した時刻であるV0発生時刻(=t1)と、母線2の地絡電圧が0ボルトに回復してV0電圧が復帰した時刻であるV0復帰時刻(=t3)とを求める(ステップS26)。すなわち、試験支援装置24は、V1出力信号SV1が段階式地絡過電圧検出器6から子局側テレコン21に入力された時刻(すなわち、図6に示すように、V1出力信号SV1がロウレベルからハイレベルになった時刻)において配電線3に人工地絡(人工的に発生された地絡)が発生したと判断して、V0発生時刻(=t1)を求める。また、試験支援装置24は、V1出力信号SV1が段階式地絡過電圧検出器6から子局側テレコン21に入力されなくなった時刻(すなわち、図6に示すように、V1出力信号SV1がハイレベルからロウレベルになった時刻)において母線2のV0電圧が復帰したと判断して、V0復帰時刻(=t3)を求める。 Based on the V1 output signal S V1 of the stepped ground fault overvoltage detector 6, the test support device 24 detects the V 0 generation time (= t 1), which is the time when the V 0 voltage is generated on the bus 2, and the ground of the bus 2. A V 0 return time (= t3), which is a time when the voltage V0 recovers to 0 volts and the V 0 voltage returns (step S26). That is, the test support device 24 determines that the time when the V1 output signal S V1 is input from the stepped ground fault overvoltage detector 6 to the slave station side telecon 21 (that is, as shown in FIG. 6, the V1 output signal S V1 is low level). It is determined that an artificial ground fault (an artificially generated ground fault) has occurred in the distribution line 3 at the time when the level has changed to a high level, and a V 0 occurrence time (= t1) is obtained. Further, the test support device 24 determines that the V1 output signal S V1 is not input from the stepped ground fault overvoltage detector 6 to the slave station side telecon 21 (that is, as shown in FIG. 6, the V1 output signal S V1 is It is determined that the V 0 voltage of the bus 2 has returned at the time when the high level has changed to the low level), and the V 0 return time (= t3) is obtained.

また、試験支援装置24は、V0復帰時刻(=t3)からV0発生時刻(=t1)を引いて、人工地絡継続時間x(=t3−t1)を求める(ステップS26)。
ただし、厳密に言えば、地絡の人工的発生から段階式地絡過電圧検出器6がV1出力信号SV1を出力するまでには過渡時間があり、また、母線2の地絡電圧の回復から段階式地絡過電圧検出器6がV1出力信号SV1を出力しなくなるまでには過渡時間があるため、段階式地絡過電圧検出器6のV1出力信号SV1の出力発生時刻(V0発生時刻)と人工地絡発生時刻とは一致せず、また、段階式地絡過電圧検出器6のV1出力信号SV1の出力停止時刻とV0復帰時刻とは一致しない。しかしながら、一般には、これらの過渡時間がほぼ同じであるため、また、人工地絡継続時間xに比べて段階式地絡過電圧検出器の過渡時間は非常に短いため、段階式地絡過電圧検出器6がV1出力信号SV1を出力している時間(図3のV1出力信号SV1がハイレベルである時間)と人工地絡継続時間xとは等しいと言える。
なお、これらの過渡時間が予め分かっている場合には、過渡時間を考慮して人工地絡継続時間xを算出するようにしてもよい。
Further, the test support device 24 subtracts the V 0 occurrence time (= t1) from the V 0 return time (= t3) to obtain the artificial ground fault continuation time x (= t3−t1) (step S26).
Strictly speaking, however, there is a transient time from the artificial occurrence of the ground fault until the stepped ground fault overvoltage detector 6 outputs the V1 output signal S V1, and from the recovery of the ground fault voltage of the bus 2. for staged locations fault over-voltage detector 6 is transient time for until no outputs V1 output signal S V1, the output time of occurrence of V1 output signal S V1 of staged locations fault over-voltage detector 6 (V 0 generation time ) Does not match the artificial ground fault occurrence time, and the output stop time of the V1 output signal S V1 of the stepped ground fault overvoltage detector 6 does not match the V 0 return time. However, in general, since these transient times are substantially the same, and because the transient time of the staged ground fault overvoltage detector is very short compared to the artificial ground fault duration x, the staged ground fault overvoltage detector. 6 can be said to be equal to the V1 output signal S V1 output to that time (time V1 output signal S V1 of FIG. 3 is a high level) and artificial grounding duration x.
If these transition times are known in advance, the artificial ground fault duration x may be calculated in consideration of the transition time.

さらに、試験支援装置24は、地絡方向継電器4からのトリップ信号VDGに基づいて、トリップ信号VDGが入力されてきた時刻(図3で、トリップ信号VDGがロウレベルからハイレベルになる時刻)であるトリップ信号入力時刻(=t2)を求める(ステップS26)。 Further, the test support device 24 determines the time when the trip signal V DG is input based on the trip signal V DG from the ground fault direction relay 4 (the time when the trip signal V DG changes from low level to high level in FIG. 3). The trip signal input time (= t2) is obtained (step S26).

(1)地絡方向継電器4の良否判定
続いて、試験支援装置24は、人工地絡継続時間x(=t3−t1)から、トリップ信号入力時刻(=t2)からV0復帰時刻(=t3)までの時間(=t3−t2)を引くことにより、地絡方向継電器4が動作を開始してからトリップ信号VDGを出力するまでの動作時間y(=(t3−t1)−(t3−t2)=t2−t1)を求める。試験支援装置24は、求めた地絡方向継電器4の動作時間y(=t2−t1)と地絡方向継電器4の動作時限(0.5秒)とを比較して両者が等しければ、地絡方向継電器4は正常に動作したと判定する(ステップS15)。
(1) Pass / Fail Judgment of Ground Fault Direction Relay 4 Subsequently, the test support device 24 determines the V 0 return time (= t3) from the trip signal input time (= t2) from the artificial ground fault duration x (= t3−t1). ), The operation time y (= (t3-t1) − (t3−3) from when the ground fault direction relay 4 starts to operate until the trip signal V DG is output. t2) = t2−t1) is obtained. The test support device 24 compares the obtained operation time y (= t2−t1) of the ground fault direction relay 4 with the operation time limit (0.5 seconds) of the ground fault direction relay 4 and if both are equal, It is determined that the direction relay 4 has operated normally (step S15).

(2)遮断器5の良否判定
試験支援装置24は、トリップ信号入力時刻(=t2)からV0復帰時刻(=t3)までの時間を算出することにより、遮断器5の動作時間z(=t3−t2)を求める。試験支援装置24は、求めた遮断器5の動作時間z(=t3−t2)が50msであれば、遮断器5は正常に動作したと判定する。
(2) Pass / fail judgment of circuit breaker 5 The test support device 24 calculates the operation time z (=) of the circuit breaker 5 by calculating the time from the trip signal input time (= t2) to the V 0 return time (= t3). t3-t2) is obtained. If the obtained operation time z (= t3−t2) of the circuit breaker 5 is 50 ms, the test support device 24 determines that the circuit breaker 5 has operated normally.

なお、各配電線3に地絡を人工的に発生させるために、各配電線3と地絡発生装置50との間にスイッチを設けて、スイッチ制御装置からのスイッチ開閉制御信号に従ってこのスイッチを開閉させて地絡発生装置50を介して各配電線3を順次接地させるようにしてもよい。
この場合には、スイッチ制御装置から試験支援装置24にスイッチ開閉制御信号を出力することにより、試験支援装置24は、スイッチ開閉制御信号に基づいて試験回線であるか否かを確認しながら地絡方向継電器4および遮断器5の動作試験を行うことができる。また、試験支援装置24にスイッチ制御装置を設けて、スイッチ制御装置から子局側テレコン21にスイッチ開閉制御信号を出力することにより、同様にして、親局側テレコン23および試験支援装置24は、スイッチ開閉制御信号に基づいて該試験回線であるか否かを確認しながら地絡方向継電器4および遮断器5の動作試験を行うことができる。
また、スイッチ制御装置を子局側テレコン21側に接続して、遠隔制御することにより、多回線の一連の機器動作試験を全自動化することができる。
In order to artificially generate a ground fault in each distribution line 3, a switch is provided between each distribution line 3 and the ground fault generation device 50, and this switch is set according to a switch opening / closing control signal from the switch control apparatus. The distribution lines 3 may be sequentially grounded via the ground fault generator 50 by opening and closing.
In this case, by outputting a switch open / close control signal from the switch control device to the test support device 24, the test support device 24 confirms whether the test line is a ground fault based on the switch open / close control signal. An operation test of the direction relay 4 and the circuit breaker 5 can be performed. Further, by providing a switch control device in the test support device 24 and outputting a switch opening / closing control signal from the switch control device to the slave station side telecon 21, the master station side telecon 23 and the test support device 24 are similarly An operation test of the ground fault direction relay 4 and the circuit breaker 5 can be performed while confirming whether or not the test line is based on the switch open / close control signal.
In addition, a series of device operation tests for multiple lines can be fully automated by connecting the switch control device to the slave station side telecon 21 side and performing remote control.

さらに、地絡発生装置50を用いて配電線3に地絡を人工的に発生させたが、地絡発生装置50を母線2に設けて、地絡発生装置50の接地棒51を母線2に接触させて、母線2に地絡を人工的に発生させてもよい。この場合には、試験回線となる配電線3の地絡となるように、母線2に接触させた接地棒51から接地点に帰る帰路線を、試験回線となる配電線3の零相変流器(ZCT)8に通す必要がある。   Further, although a ground fault is artificially generated in the distribution line 3 using the ground fault generating device 50, the ground fault generating device 50 is provided on the bus 2 and the grounding rod 51 of the ground fault generating device 50 is connected to the bus 2. A ground fault may be artificially generated in the bus 2 by making contact. In this case, the return line that returns to the grounding point from the grounding rod 51 that is in contact with the bus 2 is the zero-phase current transformation of the distribution line 3 that becomes the test line so as to be the ground fault of the distribution line 3 that becomes the test line. It is necessary to pass through the container (ZCT) 8.

以上説明したように、本発明による機器自動試験システムおよび機器自動試験方法では、遠隔地の監視制御所に設けられた親局側テレコンおよび試験支援装置において地絡方向継電器および遮断器の動作試験を行うことができるとともに、地絡方向継電器および遮断器に関する情報を一括管理することもできる。   As described above, in the device automatic test system and the device automatic test method according to the present invention, the operation test of the ground fault direction relay and the circuit breaker is performed in the master station side telecon and the test support device provided in the remote monitoring control station. While being able to carry out, the information regarding a ground fault direction relay and a circuit breaker can also be managed collectively.

また、本発明の機器自動試験システムおよび機器自動試験方法は、6.6kVおよび22kVなどの配電線に限らず、22kV以上の送電線にも適用することができる。
さらに、配電線で現在用いられているDM遠方制御装置(配電自動化装置)を組み合わせることもできる。
Moreover, the apparatus automatic test system and the apparatus automatic test method of the present invention can be applied not only to distribution lines such as 6.6 kV and 22 kV but also to transmission lines of 22 kV or more.
Furthermore, it is possible to combine a DM remote control device (distribution automation device) currently used in distribution lines.

なお、子局側テレコン21および親局側テレコン23を用いて地絡方向継電器4および遮断器5の動作試験を遠隔地の監視制御所で行ったが、子局側テレコン21および試験支援装置24の機能を備えた装置を現地に設置して、現地でこれらの機器の動作試験を行ってもよい。   In addition, although the operation test of the ground fault direction relay 4 and the circuit breaker 5 was conducted at the remote monitoring control station using the slave station side telecon 21 and the master station side telecon 23, the slave station side telecon 21 and the test support device 24 A device having the above function may be installed in the field and the operation test of these devices may be performed in the field.

以上説明したように、本発明の機器自動試験システムおよび機器自動試験方法は、配電線などの電線路において地絡が発生した時や、電線路または母線に地絡を人工的に発生させた時に地絡方向継電器や遮断器が正常に動作したか否かを遠方で試験するのに利用することができる。   As described above, the equipment automatic test system and the equipment automatic test method according to the present invention are used when a ground fault occurs in a power line such as a distribution line, or when a ground fault is artificially generated in a power line or bus. It can be used to test whether a ground fault direction relay or circuit breaker has worked normally.

本発明の第1の実施例による機器自動試験システムの構成を示す図である。(実施例1)It is a figure which shows the structure of the apparatus automatic test system by the 1st Example of this invention. Example 1 図1に示した機器自動試験システム1の動作を説明するためのフローチャートである。(実施例1)3 is a flowchart for explaining the operation of the equipment automatic test system 1 shown in FIG. 1. Example 1 図1に示した機器自動試験システム1の動作を説明するためのタイミングチャートである。(実施例1)2 is a timing chart for explaining the operation of the equipment automatic test system 1 shown in FIG. 1. Example 1 本発明の第2の実施例による機器自動試験システムの構成を示す図である。(実施例2)It is a figure which shows the structure of the apparatus automatic test system by the 2nd Example of this invention. (Example 2) 図4に示した機器自動試験システム30の動作を説明するためのフローチャートである。(実施例2)5 is a flowchart for explaining the operation of the equipment automatic test system 30 shown in FIG. 4. (Example 2) 図4に示した機器自動試験システム30の動作を説明するためのタイミングチャートである。(実施例2)5 is a timing chart for explaining the operation of the equipment automatic test system 30 shown in FIG. 4. (Example 2)

符号の説明Explanation of symbols

1,30 機器自動試験システム
2 母線
3 配電線
4 地絡方向継電器
5 遮断器
6 段階式地絡過電圧検出器
8 零相変流器(ZCT)
9 零相変成器(GPT)
21 子局側テレコン
22 通信回線
23 親局側テレコン
24 試験支援装置
50 地絡発生装置
51 接地棒
52 第1開閉器
53 バイパス開閉器
S11〜S16,S21〜S27 ステップ
1,30 Equipment automatic test system 2 Busbar 3 Distribution line 4 Ground fault relay 5 Circuit breaker 6 Stage ground fault overvoltage detector 8 Zero phase current transformer (ZCT)
9 Zero phase transformer (GPT)
21 slave station side telecon 22 communication line 23 master station side telecon 24 test support device 50 ground fault generator 51 grounding rod 52 first switch 53 bypass switches S11 to S16, S21 to S27 Steps

Claims (8)

母線(2)から分岐された電線路(3)に設けられた零相変流器(8)と、
前記母線に設けられた零相変成器(9)と、
前記零相変流器および前記零相変成器に接続された地絡継電器(4)と、
該地絡継電器の動作時間経過後に該地絡継電器から出力されるトリップ信号(VDG)に基づいて前記電線路を遮断する遮断器(5)と、
前記零相変成器に接続された、かつ、前記母線の零相電圧値が所定の値以上になったことを示す出力信号(SV1)を出力する地絡過電圧検出器(6)と、
前記地絡継電器のトリップ信号と前記地絡過電圧検出器の出力信号とに基づいて、前記地絡継電器および前記遮断器の良否判定を行う機器自動試験手段(21,23,24)と、
を具備することを特徴とする、機器自動試験システム。
A zero-phase current transformer (8) provided in the electric line (3) branched from the bus (2);
A zero-phase transformer (9) provided on the bus;
A ground fault relay (4) connected to the zero phase current transformer and the zero phase transformer;
A circuit breaker (5) for interrupting the electric line based on a trip signal (V DG ) output from the ground fault relay after the operating time of the ground fault relay has elapsed;
A ground fault overvoltage detector (6) connected to the zero-phase transformer and outputting an output signal (S V1 ) indicating that the zero-phase voltage value of the bus is equal to or higher than a predetermined value;
Based on the trip signal of the ground fault relay and the output signal of the ground fault overvoltage detector, automatic equipment test means (21, 23, 24) for performing pass / fail judgment of the ground fault relay and the circuit breaker,
A device automatic test system comprising:
前記機器自動試験手段が、
所定の時間間隔で前記地絡継電器のトリップ信号を取得するとともに前記地絡過電圧検出器の出力信号を取得する子局側遠方監視制御装置(21)と、
該子局側遠方監視制御装置と通信回線(22)を介して相互接続された親局側遠方監視制御装置(23)であって、前記電線路において地絡が発生すると、地絡の継続時間を含む時間範囲の前記トリップ信号および前記出力信号のデータの送信を前記子局側遠方監視制御装置に要求する要求信号を前記通信回線を介して該子局側遠方監視制御装置に送信し、該子局側遠方監視制御装置から前記トリップ信号および前記出力信号のデータを受信する親局側遠方監視制御装置(23)と、
該親局側遠方監視制御装置から入力される前記トリップ信号および前記出力信号のデータに基づいて、前記地絡継電器および前記遮断器の良否判定を行う試験支援装置(24)と、
を備える、請求項1記載の機器自動試験システム。
The device automatic test means is
A slave station side remote control device (21) for acquiring a trip signal of the ground fault relay at a predetermined time interval and acquiring an output signal of the ground fault overvoltage detector;
When a ground fault occurs in the main station side remote monitoring control device (23) interconnected with the slave station side remote monitoring control device via a communication line (22), the duration of the ground fault is generated. A request signal for requesting transmission of data of the trip signal and the output signal in a time range including the data to the slave station side remote monitoring and control device to the slave station side remote monitoring and control device via the communication line, A master station side remote monitoring and control device (23) that receives data of the trip signal and the output signal from a slave station side remote monitoring and control device;
A test support device (24) for performing pass / fail judgment of the ground fault relay and the circuit breaker based on data of the trip signal and the output signal input from the master station side remote monitoring and control device;
The apparatus automatic test system according to claim 1, comprising:
前記電線路と他の電線路との間に設けられたバイパス開閉器(52)と、
前記電線路に設けられた第1開閉器(53)と、
前記電線路(3)に地絡を人工的に発生させる地絡発生装置(50)と、
をさらに具備し、
前記機器自動試験手段が、
所定の時間間隔で前記地絡継電器のトリップ信号を取得するとともに前記地絡過電圧検出器の出力信号を取得する子局側遠方監視制御装置(21)と、
該子局側遠方監視制御装置と通信回線(22)を介して相互接続された親局側遠方監視制御装置(23)であって、前記電線路において地絡を人工的に発生させると、該人工的に発生された地絡の継続時間を含む時間範囲の前記トリップ信号および前記出力信号のデータの送信を前記子局側遠方監視制御装置に要求する要求信号を前記通信回線を介して該子局側遠方監視制御装置に送信し、該子局側遠方監視制御装置から前記トリップ信号および前記出力信号のデータを受信する親局側遠方監視制御装置(23)と、
前記バイパス開閉器および前記第1開閉器を開閉させる操作と、前記地絡発生装置を用いて前記電線路に地絡を人工的に発生させる操作とを行うとともに、前記親局側遠方監視制御装置から入力される前記トリップ信号および前記出力信号のデータに基づいて前記地絡継電器および前記遮断器の良否判定を行う試験支援装置(24)と、
を備える、請求項1記載の機器自動試験システム。
A bypass switch (52) provided between the electric line and another electric line;
A first switch (53) provided in the electrical line;
A ground fault generator (50) for artificially generating a ground fault in the electric line (3);
Further comprising
The device automatic test means is
A slave station side remote control device (21) for acquiring a trip signal of the ground fault relay at a predetermined time interval and acquiring an output signal of the ground fault overvoltage detector;
The master station side remote monitoring and control device (23) interconnected with the slave station side remote monitoring and control device via a communication line (22), and when a ground fault is artificially generated in the electric line, A request signal for requesting transmission of the data of the trip signal and the output signal in the time range including the duration of the artificially generated ground fault to the slave station side remote monitoring and control device is transmitted via the communication line. A master station side remote monitoring and control device (23) for transmitting to the station side remote monitoring and control device and receiving data of the trip signal and the output signal from the slave station side remote monitoring and control device;
An operation for opening and closing the bypass switch and the first switch, and an operation for artificially generating a ground fault in the electric line using the ground fault generating device, and the master station side remote monitoring control device A test support device (24) for performing pass / fail judgment of the ground fault relay and the circuit breaker based on data of the trip signal and the output signal input from
The apparatus automatic test system according to claim 1, comprising:
前記地絡発生装置が、前記電線路の代わりに前記母線に地絡を人工的に発生させ、
該人工的に発生させた地絡の接地線の帰路線を前記零相変流器に通す、
ことを特徴とする、請求項3記載の機器試験システム。
The ground fault generator artificially generates a ground fault in the busbar instead of the electric line,
Passing the artificially generated ground fault return line through the zero-phase current transformer,
The apparatus test system according to claim 3, wherein:
前記地絡継電器が、動作時限が固定された地絡方向継電器であることを特徴とする、請求項1乃至4いずれかに記載の機器自動試験システム。   The equipment automatic test system according to any one of claims 1 to 4, wherein the ground fault relay is a ground fault direction relay having a fixed operation time limit. 機器自動試験手段(21,23,24)が、母線(2)の零相電圧値が所定の値以上になったことを示す地絡過電圧検出器の出力信号(SV1)を取得する第1のステップ(S11;S22)と、
前記機器自動試験手段が、前記母線から分岐された電線路(3)に地絡が発生すると所定の動作時間経過後に地絡継電器(4)から遮断器(5)に出力されるトリップ信号(VDG)を取得する第2のステップ(S12;S23)と、
前記機器自動試験手段が、前記トリップ信号により前記遮断器が前記電線路を遮断することで、前記地絡過電圧検出器の出力信号が出力されなくなったことを検出する第3のステップ(S13;S24)と、
前記機器自動試験手段が、前記地絡継電器のトリップ信号と前記地絡過電圧検出器の出力信号とに基づいて前記地絡継電器および前記遮断器の良否判定を行う第4のステップ(S15,S16;S26,S27)と、
を具備することを特徴とする、機器自動試験方法。
A device automatic test means (21, 23, 24) obtains an output signal (S V1 ) of a ground fault overvoltage detector indicating that the zero-phase voltage value of the bus (2) has become a predetermined value or more. Step (S11; S22),
The equipment automatic test means outputs a trip signal (V) output from the ground fault relay (4) to the circuit breaker (5) after a predetermined operating time when a ground fault occurs in the electric line (3) branched from the bus. DG )) in a second step (S12; S23);
A third step (S13; S24) in which the device automatic test means detects that the output signal of the ground fault overvoltage detector is not output because the circuit breaker interrupts the electric line by the trip signal. )When,
A fourth step (S15, S16) in which the equipment automatic test means determines the quality of the ground fault relay and the circuit breaker based on a trip signal of the ground fault relay and an output signal of the ground fault overvoltage detector; S26, S27),
The apparatus automatic test method characterized by comprising.
前記第1,第2および第3のステップにおいて、子局側遠方監視制御装置(21)が、所定の時間間隔で、前記地絡過電圧検出器の出力信号およびトリップ信号(VDG)を取得し、
前記第4のステップの前に、前記子局側遠方監視制御装置と通信回線(22)を介して相互接続された親局側遠方監視制御装置(23)から、前記電線路において地絡(事故による接地)が発生すると、地絡の継続時間を含む時間範囲の前記地絡継電器のトリップ信号および前記地絡過電圧検出器の出力信号のデータの送信を前記子局側遠方監視制御装置に要求する要求信号を前記通信回線を介して該子局側遠方監視制御装置に送信する第5のステップをさらに備え、
該第5のステップ後に、
前記親局側遠方監視制御装置に接続された試験支援装置(24)が、前記地絡過電圧検出器の出力信号に基づいて、前記母線に零相電圧が発生した時刻である零相電圧発生時刻と、前記母線の地絡電圧が回復して零相電圧が復帰した時刻である零相電圧復帰時刻とを求め、
前記試験支援装置が、前記求めた零相電圧復帰時刻から前記求めた零相電圧発生時刻を引いて地絡継続時間(x)を求め、
前記試験支援装置が、前記地絡継電器のトリップ信号に基づいて、該トリップ信号が入力されてきた時刻であるトリップ信号入力時刻を求め、
前記試験支援装置が、前記求めた地絡継続時間から、前記求めたトリップ信号入力時刻から前記求めた零相電圧復帰時刻までの時間を引くことにより、前記地絡継電器が動作を開始してから前記トリップ信号を出力するまでの動作時間(y)を求め、
前記試験支援装置が、前記求めた地絡継電器の動作時間と前記地絡継電器の動作時限とを比較して、該地絡継電器の良否を判定し、
前記試験支援装置が、前記求めたトリップ信号入力時刻から前記求めた零相電圧復帰時刻までの時間を算出することにより、前記遮断器の動作時間(z)を求め、
前記試験支援装置が、前記求めた遮断器の動作時間(z)に基づいて前記遮断器の良否を判定する、
ことを特徴とする、請求項6記載の機器自動試験方法。
In the first, second and third steps, the remote monitoring device (21) on the slave station side acquires the output signal and trip signal (V DG ) of the ground fault overvoltage detector at predetermined time intervals. ,
Before the fourth step, a ground fault (accident) occurs in the electric line from the remote monitoring / control device (23) connected to the remote monitoring / control device via the communication line (22). If a ground fault due to ground fault occurs, the remote station side remote monitoring and control device is requested to transmit data of the trip signal of the ground fault relay and the output signal of the ground fault overvoltage detector in the time range including the duration of the ground fault. A fifth step of transmitting a request signal to the remote monitoring device on the slave station side via the communication line,
After the fifth step,
The zero phase voltage generation time which is the time when the test support device (24) connected to the master station side remote monitoring control device generates the zero phase voltage on the bus based on the output signal of the ground fault overvoltage detector. And a zero phase voltage return time which is a time when the ground fault voltage of the bus is recovered and the zero phase voltage is restored,
The test support device obtains the ground fault duration (x) by subtracting the obtained zero phase voltage generation time from the obtained zero phase voltage return time,
Based on the trip signal of the ground fault relay, the test support device obtains a trip signal input time that is a time when the trip signal has been input,
Since the test support device subtracts the time from the obtained trip signal input time to the obtained zero-phase voltage return time from the obtained ground fault continuation time, the ground fault relay starts operating. The operation time (y) until the trip signal is output is obtained,
The test support device compares the operation time of the obtained ground fault relay and the operation time limit of the ground fault relay to determine the quality of the ground fault relay,
The test support device calculates the operation time (z) of the circuit breaker by calculating the time from the determined trip signal input time to the determined zero-phase voltage return time,
The test support device determines the quality of the circuit breaker based on the obtained operation time (z) of the circuit breaker.
The apparatus automatic test method according to claim 6, wherein:
前記第1のステップの前に、
前記遮断器の試開放ができるように、前記電線路の負荷に他の電線路から電気を供給したのちに、該電線路に地絡を人工的に発生する第6のステップ(S21)をさらに具備し、
前記第1,第2および第3のステップにおいて、子局側遠方監視制御装置(21)が、所定の時間間隔で、前記地絡過電圧検出器の出力信号およびトリップ信号(VDG)を取得し、
前記第4のステップの前に、前記子局側遠方監視制御装置と通信回線(22)を介して相互接続された親局側遠方監視制御装置(23)から、前記電線路に地絡を人工的に発生させると、該人工的に発生された地絡の継続時間を含む時間範囲の前記地絡継電器のトリップ信号と前記地絡過電圧検出器の出力信号のデータの送信を前記子局側遠方監視制御装置に要求する要求信号を前記通信回線を介して該親局側遠方監視制御装置に送信する第7のステップをさらに備え、
該第7のステップ後に、
前記親局側遠方監視制御装置に接続された試験支援装置(24)が、前記地絡過電圧検出器の出力信号に基づいて、前記母線に零相電圧が発生した時刻である零相電圧発生時刻と、前記母線の地絡電圧が回復して零相電圧が復帰した時刻である零相電圧復帰時刻とを求め、
前記試験支援装置が、前記求めた零相電圧復帰時刻から前記求めた零相電圧発生時刻を引いて人工地絡継続時間(x)を求め、
前記試験支援装置が、前記地絡継電器のトリップ信号に基づいて、該トリップ信号が入力されてきた時刻であるトリップ信号入力時刻を求め、
前記試験支援装置が、前記求めた人工地絡継続時間から、前記求めたトリップ信号入力時刻から前記求めた零相電圧復帰時刻までの時間を引くことにより、前記地絡継電器が動作を開始してから前記トリップ信号を出力するまでの動作時間(y)を求め、
前記試験支援装置が、前記求めた地絡継電器の動作時間と前記地絡継電器の動作時限とを比較して、該地絡継電器の良否を判定し、
前記試験支援装置が、前記求めたトリップ信号入力時刻から前記求めた零相電圧復帰時刻までの時間を算出することにより、前記遮断器の動作時間(z)を求め、
前記試験支援装置が、前記求めた遮断器の動作時間(z)に基づいて前記遮断器の良否を判定する、
ことを特徴とする、請求項6記載の機器自動試験方法。
Before the first step,
A sixth step (S21) of artificially generating a ground fault in the electric line after supplying electricity from the other electric line to the load of the electric line so that the circuit breaker can be opened. Equipped,
In the first, second and third steps, the remote monitoring device (21) on the slave station side acquires the output signal and trip signal (V DG ) of the ground fault overvoltage detector at predetermined time intervals. ,
Prior to the fourth step, a ground fault is artificially generated in the electric line from the remote monitoring and control device (23) connected to the remote monitoring and control device via the communication line (22). If generated, the transmission of the data of the trip signal of the ground fault relay and the output signal of the ground fault overvoltage detector in the time range including the duration of the artificially generated ground fault is transmitted to the remote side on the slave station side. A seventh step of transmitting a request signal for requesting the supervisory control device to the remote supervisory control device on the master station side via the communication line,
After the seventh step,
The zero phase voltage generation time which is the time when the test support device (24) connected to the master station side remote monitoring control device generates the zero phase voltage on the bus based on the output signal of the ground fault overvoltage detector. And a zero phase voltage return time which is a time when the ground fault voltage of the bus is recovered and the zero phase voltage is restored,
The test support device calculates the artificial ground fault duration (x) by subtracting the obtained zero-phase voltage generation time from the obtained zero-phase voltage return time,
Based on the trip signal of the ground fault relay, the test support device obtains a trip signal input time that is a time when the trip signal has been input,
The test support device starts operation of the ground fault relay by subtracting the time from the calculated trip signal input time to the calculated zero phase voltage return time from the calculated artificial ground fault continuation time. The operation time (y) from when the trip signal is output to
The test support device compares the operation time of the obtained ground fault relay and the operation time limit of the ground fault relay to determine the quality of the ground fault relay,
The test support device calculates the operation time (z) of the circuit breaker by calculating the time from the determined trip signal input time to the determined zero-phase voltage return time,
The test support device determines the quality of the circuit breaker based on the obtained operation time (z) of the circuit breaker.
The apparatus automatic test method according to claim 6, wherein:
JP2005091014A 2005-03-28 2005-03-28 Apparatus automatic test system and apparatus automatic test method Withdrawn JP2006280024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091014A JP2006280024A (en) 2005-03-28 2005-03-28 Apparatus automatic test system and apparatus automatic test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091014A JP2006280024A (en) 2005-03-28 2005-03-28 Apparatus automatic test system and apparatus automatic test method

Publications (1)

Publication Number Publication Date
JP2006280024A true JP2006280024A (en) 2006-10-12

Family

ID=37214174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091014A Withdrawn JP2006280024A (en) 2005-03-28 2005-03-28 Apparatus automatic test system and apparatus automatic test method

Country Status (1)

Country Link
JP (1) JP2006280024A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005552A (en) * 2007-06-25 2009-01-08 Chugoku Electric Power Co Inc:The System and method for predicting ground fault accident
JP2011176919A (en) * 2010-02-23 2011-09-08 Chugoku Electric Power Co Inc:The Equipment monitoring device and equipment monitoring system
CN103698621A (en) * 2013-09-05 2014-04-02 国家电网公司 Vehicle-mounted transformer comprehensive test system
CN103728532A (en) * 2013-12-26 2014-04-16 长园深瑞继保自动化有限公司 Power distribution network single-phase grounding fault judging and locating method
US9368955B2 (en) 2013-02-14 2016-06-14 General Electric Company System and method to derive power and trip a circuit breaker from an external device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005552A (en) * 2007-06-25 2009-01-08 Chugoku Electric Power Co Inc:The System and method for predicting ground fault accident
JP2011176919A (en) * 2010-02-23 2011-09-08 Chugoku Electric Power Co Inc:The Equipment monitoring device and equipment monitoring system
US9368955B2 (en) 2013-02-14 2016-06-14 General Electric Company System and method to derive power and trip a circuit breaker from an external device
CN103698621A (en) * 2013-09-05 2014-04-02 国家电网公司 Vehicle-mounted transformer comprehensive test system
CN103698621B (en) * 2013-09-05 2016-08-17 国家电网公司 A kind of transformer vehicular integrated test system
CN103728532A (en) * 2013-12-26 2014-04-16 长园深瑞继保自动化有限公司 Power distribution network single-phase grounding fault judging and locating method
CN103728532B (en) * 2013-12-26 2016-05-25 长园深瑞继保自动化有限公司 One-phase earthing failure in electric distribution network judgement and localization method

Similar Documents

Publication Publication Date Title
US9140756B2 (en) Measuring device for checking an electrical circuit breaker
CN103688434B (en) Fault identification and location in a power supply line which is fed from one side
US9632147B2 (en) Method for testing multiple spatially distributed protective devices of an energy supply network, and corresponding testing system
US20080211511A1 (en) Method of Generating Fault Indication in Feeder Remote Terminal Unit for Power Distribution Automation System
CN102901896B (en) The presetting system feeder test method of distribution network
KR101943468B1 (en) MICROGRID SYSTEM and TROUBLE PROCESSING METHOD thereof
JP2007116893A (en) Device and method for detecting fault section by comparison of phase difference, and magnitude of zero-phase current in non-grounded distribution system
CN110854924B (en) One-time voltage-on synchronous phase-checking linkage switching inspection system and inspection method for electrical system
JP2019527025A (en) Line short-circuit fault section switching system and switching method in inverter-based independent microgrid
JP2006280024A (en) Apparatus automatic test system and apparatus automatic test method
JP2008263744A (en) Equipment management system and equipment management method
CN108287295B (en) Power line ground fault position finding method and system
CN103683228A (en) Control method of breaker failure protection and automatic reclosing device
CN110703029B (en) Fault detection system and method for primary and secondary systems of intelligent substation
JP5518926B2 (en) Distribution automation system
KR100920946B1 (en) Apparatus and method for fault detection and fault location decision on a distribution line using load current
Wang et al. Multi-vendor interoperability tests of IEDs for HVDC grid protection
KR101980866B1 (en) System and operation method for error restoration of distribution line
JP2020101496A (en) Inspection method and testing device
JP5191403B2 (en) Micro ground fault section locating system
JP2006280025A (en) Apparatus quality judging system and apparatus quality judging method
KR20110043512A (en) System and method for deciding a fault type of power transmission line
Apostolov et al. Maintenance testing of multifunctional distance protection ieds
CN104965154A (en) Wire fault positioning method and system
JP4667002B2 (en) Accident point location system and accident location method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603