JP2006269494A - Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode - Google Patents

Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode Download PDF

Info

Publication number
JP2006269494A
JP2006269494A JP2005081568A JP2005081568A JP2006269494A JP 2006269494 A JP2006269494 A JP 2006269494A JP 2005081568 A JP2005081568 A JP 2005081568A JP 2005081568 A JP2005081568 A JP 2005081568A JP 2006269494 A JP2006269494 A JP 2006269494A
Authority
JP
Japan
Prior art keywords
coke
coal
electric double
layer capacitor
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005081568A
Other languages
Japanese (ja)
Inventor
Kazuhiko Mizuuchi
和彦 水内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2005081568A priority Critical patent/JP2006269494A/en
Publication of JP2006269494A publication Critical patent/JP2006269494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonaceous material for the polarized electrode of an electric double-layer capacitor for obtaining high capacitance with a small amount of variation, and to provide a method for manufacturing the polarized electrode. <P>SOLUTION: The electric double-layer capacitor polarized electrode is manufactured by using a carbonaceous material in which a raw material is for example activated with non-baked coke originating from coal or oil, in which the thermal coefficient of expansion measured by an artificial graphite electrode testing method is adjusted within 0.8-2 as the raw material. In the case of the non-baked coke originating from coal, raw coke of coal-based pitch coke is used in which CTE is controlled manufactured by a delayed coker method by using coal-based tar having a quinolin insoluble content of 0.1% or smaller, or the raw coke of coal-based pitch coke is selected for use for satisfying a desired CTE range. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多孔質炭素材料を原料として用いる電気二重層キャパシタの分極性電極用炭素材に関する。   The present invention relates to a carbon material for a polarizable electrode of an electric double layer capacitor using a porous carbon material as a raw material.

電気二重層キャパシタは、多孔質導電材料からなる電極(分極性電極)の界面に電解質イオンを吸脱着させることで電気を充放電する蓄電デバイスである。充放電量は電極界面に吸着するイオン量に比例することから、電極材料としては高比表面積の活性炭等の多孔質炭素材料が主に使用されている。電気二重層キャパシタはこれまで、小型電子部品用永久電源として商品化されてきたが、近年、ハイブリッド自動車(HEV)用電源等の大容量蓄電デバイスとしても適用が検討されている。   An electric double layer capacitor is an electricity storage device that charges and discharges electricity by adsorbing and desorbing electrolyte ions at an interface of an electrode (polarizable electrode) made of a porous conductive material. Since the charge / discharge amount is proportional to the amount of ions adsorbed on the electrode interface, a porous carbon material such as activated carbon having a high specific surface area is mainly used as the electrode material. The electric double layer capacitor has been commercialized as a permanent power source for small electronic components so far. However, in recent years, application as a large-capacity power storage device such as a power source for a hybrid vehicle (HEV) has been studied.

HEV用途等の大容量用途では、多数のセルを積層して使用するため、高性能化以外に、セル間の静電容量均一化ならびに低コスト化が重要である。
各セルの電極の静電容量にばらつきがあると、充放電を繰り返した際に、セル間の電圧が不ぞろいになり、過電圧が掛かったセルの破損に至る場合がある。
電極製造工程での品質のつくり込みによる静電容量が完全に均一化できればこのような不具合は生じないが、実際は静電容量のばらつきが存在するため、充放電機構に電子制御回路を付加し、セル間の充電電圧のばらつきを適時平準化する方法が多く用いられている。
In large-capacity applications such as HEV applications, a large number of cells are stacked and used. Therefore, in addition to high performance, uniform capacitance between cells and cost reduction are important.
If the capacitances of the electrodes of each cell vary, the voltage between the cells becomes uneven when charging / discharging is repeated, which may result in damage to the cell that has been overvoltaged.
Such a problem will not occur if the capacitance due to the quality creation in the electrode manufacturing process can be made completely uniform, but in reality there is a variation in capacitance, so an electronic control circuit is added to the charge / discharge mechanism, Many methods are used to level the variation in charging voltage between cells in a timely manner.

そもそも、セル間の静電容量がばらつく大きな要因は、使用される多孔質炭素材料の原料の特性を含めた多孔質炭素材料の製造工程にあると考えられる。
そして、製品の品質ばらつきを抑えるには、製造プロセスのできる限り上流の工程での品質制御を確実に行うことが最も有効であることは品質管理の常識であり、多孔質炭素材料の場合においても、得られる多孔質炭素材料の品質がばらつくと、後工程である多孔質炭素材料の賦活工程での品質のつくり込みや、電気二重層キャパシタの製造工程での品質のつくり込みに最大限の努力を払っても、静電容量のばらつきの制御に限界があることはいうまでもない。
In the first place, it is thought that the major factor that the capacitance between cells varies is in the manufacturing process of the porous carbon material including the characteristics of the raw material of the porous carbon material used.
And in order to suppress product quality variation, it is common sense of quality control that it is most effective to ensure quality control in the upstream process as much as possible, even in the case of porous carbon materials If the quality of the porous carbon material obtained varies, the maximum effort will be made to build quality in the activation process of the porous carbon material, which is a subsequent process, and quality in the manufacturing process of the electric double layer capacitor. Needless to say, there is a limit to the control of variations in capacitance.

この点に関し、例えば、X線回折で測定される結晶子厚さLc(002)が特定の範囲にある合成ピッチを用いることで静電容量発現の再現性が向上するとの報告がある(特許文献1参照。)。また、同様に、平均自由体積半径が特定の範囲の合成ピッチを用いることで、静電容量発現の再現性が向上するとの報告もある(特許文献2参照。)。   With regard to this point, for example, there is a report that the reproducibility of capacitance expression is improved by using a synthetic pitch in which the crystallite thickness Lc (002) measured by X-ray diffraction is in a specific range (Patent Literature). 1). Similarly, there is a report that the reproducibility of the expression of capacitance is improved by using a synthetic pitch having an average free volume radius in a specific range (see Patent Document 2).

しかしながら、これらの方法は、いずれも、特定の成分(原料)を熱重合し、あるいは特定の成分を通常の成分(天然由来の原料)と混合して熱処理して合成ピッチを得るものであるため、原料コストを含めた多孔質炭素材料の製造コストが高くなることを避けることができない。   However, both of these methods are those in which a specific component (raw material) is thermally polymerized, or a specific component is mixed with a normal component (naturally-derived raw material) and heat treated to obtain a synthetic pitch. The production cost of the porous carbon material including the raw material cost cannot be avoided.

上記の従来技術のなかには静電容量発現の再現性を向上させるという目的が明記されているものもあるが、いずれも、再現性の向上がばらつきの低減を意図するものと理解した場合、それを示す具体的なデータは示されておらず、示されているデータを見る限り、むしろ、上記の原料品質の改善により、静電容量の品質レベルを従来のものより嵩あげさせることによって、静電容量のばらつきがあっても高い静電容量を確保することを目的としたもののように考えられる
特開2004−182504号公報 特開2004−182507号公報
Some of the above-mentioned prior arts clearly specify the purpose of improving the reproducibility of capacitance expression, but if any of them understands that the improvement of reproducibility is intended to reduce variation, The specific data shown is not shown, and as far as the data shown is concerned, rather, by improving the raw material quality as described above, the capacitance quality level is increased more than the conventional one. It seems to be intended to secure a high capacitance even if there is a variation in capacitance
JP 2004-182504 A JP 2004-182507 A

上記のように、電極原料として用いられる多孔質炭素材料の品質のばらつきを改善することによって電気二重層キャパシタの静電容量のばらつきを改善する積極的なアプローチは、従来は行われていないように思われる。
この理由として、端的に想定されるのは、現在求められているものが、上記のように、静電容量のばらつきとともに静電容量の向上を中心とした特性向上であるため、静電容量の大幅な向上を実現することによって、静電容量のばらつきに起因する問題をカバーする方向を志向しているためではないかと考えられる。ただし、このアプローチ法では、上記したセルの破損を招く原因となっている静電容量のばらつきは本質的には改善されておらず、従来技術がこの課題に対する抜本的対策となっていないことは明らかである。
また、他の大きな理由として、一般に多孔質炭素材料は管理すべき複雑で多くの品質特性を持っており、静電容量のばらつき改善に顕著に結びつく多孔質炭素材料の有効な品質特性とその品質制御手法を見出すことが難しいことが挙げられる。
As described above, there has been no positive approach in the past to improve the variation in the capacitance of the electric double layer capacitor by improving the variation in the quality of the porous carbon material used as the electrode raw material. Seem.
As a reason for this, what is currently required is the improvement in characteristics centered on the improvement in capacitance as well as the variation in capacitance as described above. It is thought that this is because it aims to cover the problems caused by variations in capacitance by realizing a significant improvement. However, with this approach method, the variation in capacitance that causes the above-mentioned cell damage is not essentially improved, and the conventional technology is not a drastic measure against this problem. it is obvious.
Another major reason is that porous carbon materials generally have many quality characteristics that must be managed, and effective quality characteristics and quality of porous carbon materials that significantly contribute to improvement in capacitance variation. It is difficult to find a control method.

本発明は、上記の課題に鑑みてなされたものであり、ばらつきが少なくかつ高い静電容量を得ることができる電気二重層キャパシタの分極性電極用炭素材および分極性電極の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a carbon material for a polarizable electrode of an electric double layer capacitor and a method for producing the polarizable electrode that can obtain a high capacitance with little variation. For the purpose.

本発明者らは、ピッチ等の炭素原料を、炭化して炭素材料を調製する工程、ついで賦活して多孔質炭素材料を調製する工程において、本来、電炉用人造黒鉛電極材料の評価指標である炭素材料の熱膨張係数(CTE:Coefficient of Thermal Expansion。)値が特定の範囲内にある炭素材料を使用することで、賦活して得られる多孔質炭素材を原料に用いた分極性電極を備えた電気二重層キャパシタの静電容量が安定して発現することを見出し、本発明に想達した。   The present inventors are essentially an evaluation index of an artificial graphite electrode material for an electric furnace in a step of carbonizing a carbon raw material such as pitch to prepare a carbon material, and then a step of preparing a porous carbon material by activation. A polarizable electrode using a porous carbon material obtained by activation as a raw material by using a carbon material having a coefficient of thermal expansion (CTE) value within a specific range. Further, the inventors have found that the electrostatic capacitance of the electric double layer capacitor is stably expressed, and have arrived at the present invention.

上記目的を達成するために、本発明に係る電気二重層キャパシタの分極性電極用炭素材は、人造黒鉛電極試験法によって測定される熱膨張係数が0.8〜2の範囲内にある石炭または石油由来原料を熱処理してなる未か焼コークスを原料として用いて製造されることを特徴とする。   In order to achieve the above object, the polarizable electrode carbon material of the electric double layer capacitor according to the present invention has a coefficient of thermal expansion measured by an artificial graphite electrode test method in the range of 0.8 to 2 or It is produced using uncalcined coke obtained by heat-treating a petroleum-derived raw material as a raw material.

また、本発明に係る電気二重層キャパシタの分極性電極用炭素材は、前記未か焼コークスが、キノリン不溶分が0.1%以下の石炭系タールまたは石油系重質油を用い、ディレードコーカー法で製造したピッチコークスの生コークスであることを特徴とする。   Further, the carbon material for a polarizable electrode of the electric double layer capacitor according to the present invention is a delayed coker, wherein the uncalcined coke uses coal-based tar or petroleum heavy oil having a quinoline insoluble content of 0.1% or less. It is characterized by being a raw coke of pitch coke produced by the method.

また、本発明に係る電気二重層キャパシタ分極性電極の製造方法は、人造黒鉛電極試験法によって測定される熱膨張係数を所定の範囲内に調整した石炭由来未の未か焼コークスおよび石油由来の未か焼コークスのいずれか一方または双方の混合品原料として製造することを特徴とする。   In addition, the method for producing an electric double layer capacitor polarizable electrode according to the present invention includes a coal-derived uncalcined coke and a petroleum-derived coke adjusted to have a thermal expansion coefficient measured by an artificial graphite electrode test method within a predetermined range. It is characterized in that it is produced as a raw material for one or both of uncalcined coke.

また、本発明に係る電気二重層キャパシタ分極性電極の製造方法は、前記熱膨張係数の所定の範囲が、0.8〜2であることを特徴とする。   Moreover, the manufacturing method of the electric double layer capacitor polarizable electrode according to the present invention is characterized in that the predetermined range of the thermal expansion coefficient is 0.8-2.

また、本発明に係る電気二重層キャパシタ分極性電極の製造方法は、前記未か焼コークスが、キノリン不溶分が0.1%以下の石炭系タールまたは石油系重質油を用い、ディレードコーカー法で製造した石炭系または石油系ピッチコークスの生コークスであることを特徴とする。   In addition, the method for producing an electric double layer capacitor polarizable electrode according to the present invention is a delayed coker method in which the uncalcined coke uses coal-based tar or petroleum heavy oil having a quinoline insoluble content of 0.1% or less. It is characterized in that it is a raw coke of coal-based or petroleum-based pitch coke produced in 1.

本発明に係る電気二重層キャパシタの分極性電極用炭素材および分極性電極の製造方法は、人造黒鉛電極試験法によって測定される熱膨張係数が0.8〜2の範囲内にある石炭または石油由来の未か焼コークスを原料として用いるため、ばらつきが少なくかつ高い静電容量を有する電気二重層キャパシタを得ることができる。   A carbon material for a polarizable electrode of an electric double layer capacitor and a method for producing a polarizable electrode according to the present invention include coal or petroleum having a thermal expansion coefficient measured by an artificial graphite electrode test method in a range of 0.8 to 2. Since the uncalcined coke derived from the raw material is used as a raw material, an electric double layer capacitor with little variation and high capacitance can be obtained.

本発明に係る電気二重層キャパシタの分極性電極用炭素材の好適な実施の形態について、以下に説明する。   A preferred embodiment of a carbon material for a polarizable electrode of an electric double layer capacitor according to the present invention will be described below.

本発明に係る電気二重層キャパシタの分極性電極用炭素材は、人造黒鉛電極試験法によって測定される熱膨張係数が0.8〜2の範囲内にある石炭または石油由来の未か焼コークスを原料として用いるものである。
また、本発明に係る電気二重層キャパシタ分極性電極の製造方法は、上記の未か焼コークスを原料として製造するものである。
The carbon material for a polarizable electrode of the electric double layer capacitor according to the present invention is a calcined coke derived from coal or petroleum having a coefficient of thermal expansion measured by an artificial graphite electrode test method in the range of 0.8-2. Used as a raw material.
Moreover, the manufacturing method of the electric double layer capacitor polarizable electrode which concerns on this invention manufactures said uncalcined coke as a raw material.

本発明では、石炭または石油由来の未か焼コークスを分極性電極(以下、単に電極という)の原料として用いる。
石炭または石油由来の炭素材は、一般に、石炭系の場合はコールタールピッチをまた石油系の場合は蒸留残渣油をそれぞれ出発原料とし、これらの出発原料を例えば500℃程度の温度で熱処理することで生コークスを得る。ついで、この生コークスを例えば1300℃程度の温度でか焼して、か焼コークスを得る。か焼コークスは、人造黒鉛電極の原料に好適に使用される。
本発明でいう未か焼コークスは、上記のか焼が行われる前の炭素材であるコークスを広く含む意である。そして、より好適には、上記の生コークスをいう。未か焼コークスの製造方法等については、さらにその詳細を後述する。
In the present invention, uncalcined coke derived from coal or petroleum is used as a raw material for a polarizable electrode (hereinafter simply referred to as an electrode).
Coal or petroleum-derived carbon materials generally use coal tar pitch in the case of coal-based materials and distillation residue oil in the case of petroleum-based materials as starting materials, and these starting materials are heat-treated at a temperature of about 500 ° C., for example. Get raw coke. Next, this raw coke is calcined at a temperature of, for example, about 1300 ° C. to obtain calcined coke. The calcined coke is suitably used as a raw material for artificial graphite electrodes.
The uncalcined coke as used in the present invention is intended to widely include coke which is a carbon material before the above-mentioned calcination is performed. And more preferably, said raw coke is said. About the manufacturing method of uncalcined coke, the detail is mentioned later.

本発明でいう人造黒鉛電極試験法によって測定される未か焼コークスの熱膨張係数(以下、必要に応じてCTEと表示することがある。)の測定法の概要を以下に示す。
測定対象である未か焼コークス(生コークス)を1300℃で炭化後、粉砕し、粒度調整(1.000〜2.380mm:40%、0.074〜0.297mm:35%、0.074mm以下:25%)する。このもの100質量部に、バインダーピッチを30質量部加え、160℃で20分間混合する。ついで20mmφ×100mmの大きさに押し出し成型する。成型したテストピースは焼成炉を用いて900℃まで焼成し、含浸ピッチを含浸した後再び900℃で二次焼成を行う。このテストピースを昇温速度10℃/minで2500℃まで昇温して黒鉛化を行う。二次焼成したテストピースが黒鉛化する際の室温から500℃までの間の、テストピースの押し出し方向の熱膨張係数の平均値を人造黒鉛電極試験法によって測定される熱膨張係数(CTE)と定義する。
バインダーピッチは、新日鐵化学株式会社製のBP−96相当品、含浸ピッチは新日鐵化学株式会社製のIP−78相当品等が使用できる。
An outline of a method for measuring the coefficient of thermal expansion of uncalcined coke (hereinafter, sometimes referred to as CTE as necessary) measured by the artificial graphite electrode test method referred to in the present invention is shown below.
Uncalcined coke (raw coke) to be measured is carbonized at 1300 ° C. and then pulverized to adjust the particle size (1.000 to 2.380 mm: 40%, 0.074 to 0.297 mm: 35%, 0.074 mm). (25% below). 30 parts by mass of binder pitch is added to 100 parts by mass of this product and mixed at 160 ° C. for 20 minutes. Next, extrusion molding is performed to a size of 20 mmφ × 100 mm. The molded test piece is fired to 900 ° C. using a firing furnace, impregnated with impregnation pitch, and then subjected to secondary firing at 900 ° C. again. The test piece is heated to 2500 ° C. at a rate of temperature increase of 10 ° C./min for graphitization. The coefficient of thermal expansion (CTE) measured by the artificial graphite electrode test method is the average value of the coefficient of thermal expansion in the direction of extrusion of the test piece between room temperature and 500 ° C. when the second-fired test piece is graphitized. Define.
As the binder pitch, BP-96 equivalent manufactured by Nippon Steel Chemical Co., Ltd., and as the impregnation pitch, IP-78 equivalent manufactured by Nippon Steel Chemical Co., Ltd. can be used.

CTE値は、本来、電炉用人造黒鉛電極材料の指標であり、キャパシタ特性との相関はこれまで提案されていなかった。
両者の相関は定かではないが、本発明者は、CTE値が代表する炭素材料の構造因子が、賦活時の反応性・得られる細孔構造と相関があるものと想定している。
電気二重層キャパシタの要求仕様により、炭素材料の好適な細孔構造は異なるので、CTE値の具体的な範囲は可変な指標である。すなわち、通常、電気二重層キャパシタ分極性電極の製造方法において、未か焼コークスのCTEの範囲を特に限定するものではない。
The CTE value is originally an index of an artificial graphite electrode material for an electric furnace, and no correlation with capacitor characteristics has been proposed so far.
Although the correlation between the two is not clear, the present inventor assumes that the structure factor of the carbon material represented by the CTE value is correlated with the reactivity at the time of activation and the pore structure obtained.
Since the preferred pore structure of the carbon material varies depending on the required specifications of the electric double layer capacitor, the specific range of the CTE value is a variable index. That is, usually, in the method for producing an electric double layer capacitor polarizable electrode, the CTE range of uncalcined coke is not particularly limited.

ばらつきの少なく、且つ高い静電容量を発現する電気二重層キャパシタを得るためには、未か焼コークスのCTEは0.8〜2の範囲を採用することが好ましい。さらに、CTEの範囲を±0.2程度に抑えることは、電気二重層キャパシタの静電容量のばらつきを抑制する上で好ましい方法のひとつである。   In order to obtain an electric double layer capacitor with little variation and high capacitance, the CTE of uncalcined coke is preferably in the range of 0.8-2. Furthermore, suppressing the CTE range to about ± 0.2 is one of the preferable methods for suppressing variation in capacitance of the electric double layer capacitor.

未か焼コークスの製造方法について、以下に説明する。   A method for producing uncalcined coke will be described below.

本発明の未か焼コークスの原料としては、前記のように、コールタール系重質油および/または石油系重質油が使用できる。   As a raw material of the uncalcined coke of the present invention, coal tar heavy oil and / or petroleum heavy oil can be used as described above.

コールタール系重質油としては、石炭を乾留する際に生成するコールタールから分離される高沸点タール油およびタールピッチ(コールタールピッチ)等を挙げることができ、好ましくはタールピッチである。タールピッチは、軟化点70℃以下の軟ピッチ、軟化点70〜85℃程度の中ピッチおよび軟化点85℃以上の高ピッチがあり、いずれも使用可能であるが、取り扱いの点で軟ピッチを使用することが有利である。また、タールピッチ、コールタールまたは高沸点タール油の2または3種類を混合したものでもよい。脱QI(キノリン不溶分除去)された石炭系タールを用いることが、生コークス中の不純物が少なくなり好ましく、特にQI 成分を0.1%(質量%)以下に除去したものを用いることが好ましい。   Examples of the coal tar heavy oil include high boiling point tar oil and tar pitch (coal tar pitch) separated from coal tar produced when coal is carbonized, and tar pitch is preferable. Tar pitches include soft pitches with a softening point of 70 ° C. or lower, medium pitches with a softening point of about 70 to 85 ° C., and high pitches with a softening point of 85 ° C. or higher, both of which can be used. It is advantageous to use. Moreover, what mixed 2 or 3 types, tar pitch, coal tar, or high boiling point tar oil may be used. It is preferable to use coal-based tar that has been de-QI (quinoline insoluble content removal) because impurities in the raw coke are reduced, and it is particularly preferable to use a product obtained by removing the QI component to 0.1% (mass%) or less. .

一方、石油系重質油としては、石油の流動接触分解重質成分であるデカント油(FCC−DO)、石油系ナフサのような軽質成分を800℃またはそれ以下の温度で熱分解してエチレンなどの不飽和炭化水素を製造する際に副生する残渣物であるエチレンタール、低硫黄原油の減圧蒸留残油などを挙げることができる。これらの重質油は、炭化収率の面からあらかじめ軽質成分を蒸留により除去するか、または熱処理して熱重合により重質化してもよい。   On the other hand, as petroleum heavy oil, light components such as decant oil (FCC-DO) and petroleum naphtha, which are heavy components of fluid catalytic cracking of petroleum, are thermally decomposed at a temperature of 800 ° C. or lower to produce ethylene. Examples thereof include ethylene tar, which is a residue produced as a by-product in the production of unsaturated hydrocarbons such as low-sulfur crude oil. From the aspect of carbonization yield, these heavy oils may be lightened by removing light components in advance, or heat treated and heat-polymerized to be heavy.

未か焼コークスの製造方法としては、例えば公知のディレードコーキング装置による連続装入による処理方式が適用できるが、特にこれに限定されるものではない。ディレードコーキング装置は、公知の通り、加熱炉、コークドラムおよびコーカー精留塔から構成されるディレードコーカーとロータリーキルン等のカルサイナー装置からなる。
上記の原料(コールタール系重質油または石油系重質油)を加熱炉で約400〜550℃の範囲で加熱処理してから、コークドラムの底部から連続装入しつつ、コークドラム内で長時間(20〜40時間)かけて熱分解重縮合によるコーキング反応を行わせて、生コークスを生成し堆積させる。分解留出油等はコークドラムの塔頂から気液混合物となって排出し、コーカー精留塔に導入されて、各種の留出油および水素、メタンを多く含む燃料ガス等に分離され、塔底油の一部は再度原料とともに加熱炉から再循環させる。
コークドラム内に堆積した生コークスは高圧水で切り出され、ピッチコークスの生コークス(未か焼コークス)が得られる。
As a method for producing the uncalcined coke, for example, a processing method by continuous charging using a known delayed coking device can be applied, but the method is not particularly limited thereto. As is well known, the delayed coking apparatus includes a delayed coker composed of a heating furnace, a coke drum, and a coker rectification column, and a calsiner apparatus such as a rotary kiln.
The raw material (coal tar heavy oil or petroleum heavy oil) is heated in a heating furnace in the range of about 400 to 550 ° C., and continuously charged from the bottom of the coke drum, A coking reaction by thermal decomposition polycondensation is performed for a long time (20 to 40 hours) to produce and deposit raw coke. Cracked distillate oil and the like are discharged as a gas-liquid mixture from the top of the coke drum, introduced into the coker rectification tower, and separated into various distillate oil and fuel gas containing a lot of hydrogen and methane. A part of the bottom oil is recycled again from the heating furnace together with the raw materials.
The raw coke deposited in the coke drum is cut out with high-pressure water, and raw coke of pitch coke (uncalcined coke) is obtained.

生コークスは、必要なら、分級、粉砕、粒度調整を行う。
このものをさらに電気二重層キャパシタの要求特性に適合する方法で賦活処理することで、電気二重層キャパシタの分極性電極の材料としての炭素材が得られる。なお、必要なら、賦活前に生コークスを熱処理してもよい。
賦活方法は、公知の方法が適用でき、再現性のある賦活方法であれば、方式は制限されない。アルカリ賦活法、電界賦活法は好ましい実施形態のひとつである。また、ガス賦活等の賦活方法を適宜組み合わせてもよい。
また、賦活時に、粉砕・分級を行い、粒度を調整してもよい。賦活後、水素雰囲気下、熱処理を行い、表面官能基の除去を行ってもよい。また、酸またはアルカリで不純物を除去してもよい。例えば、アルカリ賦活では、炭素原料と、水酸化カリもしくは水酸化ナトリウムまたはそれらの混合物とを1:1〜1:5の範囲で混合し、500℃〜900℃で0.5時間〜5時間、不活性雰囲気下で反応させればよい。
Raw coke is classified, pulverized and adjusted in particle size, if necessary.
This is further activated by a method suitable for the required characteristics of the electric double layer capacitor to obtain a carbon material as a material for the polarizable electrode of the electric double layer capacitor. If necessary, the raw coke may be heat-treated before activation.
As the activation method, a known method can be applied, and the method is not limited as long as it is a reproducible activation method. The alkali activation method and the electric field activation method are one of preferred embodiments. Moreover, you may combine suitably activation methods, such as gas activation.
Further, at the time of activation, pulverization and classification may be performed to adjust the particle size. After activation, surface functional groups may be removed by performing heat treatment in a hydrogen atmosphere. Moreover, you may remove an impurity with an acid or an alkali. For example, in alkali activation, a carbon raw material and potassium hydroxide or sodium hydroxide or a mixture thereof are mixed in a range of 1: 1 to 1: 5, and a temperature of 500 ° C. to 900 ° C. is 0.5 hours to 5 hours. What is necessary is just to make it react in inert atmosphere.

得られる炭素材(多孔質炭素材料)を用いて、電気二重層キャパシタを製造する際は、公知の製造法が採用でき、特に限定されない。電解液についても、水系、有機溶剤系いずれも採用でき、特に限定されない。   When manufacturing an electric double layer capacitor using the carbon material (porous carbon material) obtained, a well-known manufacturing method can be employ | adopted and it does not specifically limit. As for the electrolytic solution, both aqueous and organic solvent systems can be adopted, and there is no particular limitation.

本発明に係る電気二重層キャパシタ分極性電極の製造方法において、CTEを所定の範囲内、好ましくは0.8〜2に調整した石炭または石油由来の未か焼コークスを得る方法は、好ましくは、未か焼コークスを製造する工程で、このような品質を持つ未か焼コークスをつくり込むことである。   In the method for producing an electric double layer capacitor polarizable electrode according to the present invention, a method for obtaining coal or petroleum-derived uncalcined coke having a CTE adjusted to within a predetermined range, preferably 0.8 to 2, preferably, In the process of producing uncalcined coke, the uncalcined coke having such quality is produced.

このような未か焼コークスのCTEを所定の範囲内に制御する方法として、例えば、特開昭52−78201号公報に開示されるように、原料中のキノリン不溶成分(QI)を制御する周知の方法を挙げることができる。ただし、これに限らず、その他の公知の手法を用いることができる。   As a method for controlling the CTE of such uncalcined coke within a predetermined range, for example, as disclosed in JP-A-52-78201, a well-known method for controlling a quinoline insoluble component (QI) in a raw material is known. Can be mentioned. However, the present invention is not limited to this, and other known methods can be used.

また、上記の方法に変えて、通常の製造方法で得られる未か焼コークスのなかから、上記所定の範囲内のCTEを持つものを選択して、電極原料に供してもよい。
この方法によれば、異なる製法や原料、異なる製造ロットで得られた生コークスがあっても、所定の範囲内のCTEを持つ生コークスを選択して電極原料に供することで、静電容量が揃った電気二重層キャパシタが得られる。
Further, instead of the above method, an uncalcined coke obtained by a normal manufacturing method may be selected from those having a CTE within the above predetermined range and used for the electrode raw material.
According to this method, even when there are different production methods and raw materials, and raw coke obtained in different production lots, capacitance is reduced by selecting raw coke having a CTE within a predetermined range and supplying it to the electrode raw material. A uniform electric double layer capacitor is obtained.

以下、本発明の電気二重層キャパシタの分極性電極用炭素材および分極性電極の製造方法の実施例および比較例を説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   Examples of the carbon material for a polarizable electrode of the electric double layer capacitor of the present invention and a method for producing the polarizable electrode and comparative examples will be described below. In addition, this invention is not limited to the Example demonstrated below.

実施例1−1〜1−3
(生コークスの調製)
特開昭52−78201号報に開示の方法に準じて、実質的にQIを含まない石炭系タールを加熱炉で約450℃で加熱処理した後、ディレードコーカーで、コークドラムの底部から連続装入しつつ、コークドラム内で30時間かけて熱分解重縮合によるコーキング反応を行わせて、生コークスを調製した。この操作を3回繰り返し、生コークスを3ロット(実施例1−1〜実施例1−3)製造した。これらのもののCTE値は1.07〜1.15の範囲であった。
Examples 1-1 to 1-3
(Preparation of raw coke)
According to the method disclosed in Japanese Patent Laid-Open No. 52-78201, coal-based tar substantially free of QI is heat-treated at about 450 ° C. in a heating furnace, and then continuously loaded from the bottom of the coke drum with a delayed coker. Then, a coking reaction by pyrolysis polycondensation was performed in a coke drum for 30 hours to prepare raw coke. This operation was repeated three times to produce 3 lots of raw coke (Example 1-1 to Example 1-3). The CTE values for these were in the range of 1.07 to 1.15.

(電極原料用炭素材の調製)
上記生コークスを平均径150μmに粉砕したうちもの2g、および水酸化カリウム8gをニッケル製坩堝に充填し、窒素雰囲気下、600℃で1時間熱処理を行なった後、650℃1時間アルカリ賦活した。反応生成物には、過剰のイソプロパノールを加え、副生アルカリ金属を失活させた後、塩酸洗浄し、ついで十分な純水で洗浄し、乾燥し、電極原料用炭素材(多孔質炭素材料)を得た。
(Preparation of carbon material for electrode material)
2 g of the raw coke crushed to an average diameter of 150 μm and 8 g of potassium hydroxide were charged in a nickel crucible, heat-treated at 600 ° C. for 1 hour in a nitrogen atmosphere, and then alkali-activated at 650 ° C. for 1 hour. To the reaction product, excess isopropanol is added to deactivate the by-product alkali metal, followed by washing with hydrochloric acid, followed by washing with sufficient pure water, drying, and a carbon material for electrode raw materials (porous carbon material) Got.

(シート電極、テストセルの調製)
電極原料用炭素材は、微粉砕機を用い、平均径50μmになるよう粉砕、分級した。
分級した電極原料用炭素材、テフロン(テフロンは登録商標)樹脂(デュポン社製PTFE 6−J)、導電性フィラー(ケッチェン・ブラック・インターナショナル株式会社製 ケッチェンブラックEC600JD)を、質量比 8:1:1で混合し、ついでニ本ロールでロール混練し、100μm厚のシートを調製した。
シートは直径16mmの大きさの円形に打ち抜いた後、120℃で8時間減圧乾燥した。ついで、このものを室温まで冷却して得られたシート電極で、宝泉株式会社製2極セル(HSセル)を用いてテストセルを組み、電解質液を減圧下3時間含浸させた。セパレータには、ガラス繊維性フィルターを用いた。電解質液は、富山薬品工業株式会社製の1モル/kgのテトラエチルアンモニウムテトラフルオロブロマイド(EtNBF)を含有するプロピレンカーボネート溶液を用いた。
(Preparation of sheet electrode and test cell)
The carbon material for electrode raw material was pulverized and classified to an average diameter of 50 μm using a fine pulverizer.
The classified carbon material for electrode raw material, Teflon (Teflon is a registered trademark) resin (PTFE 6-J manufactured by DuPont), and conductive filler (Ketjen Black EC600JD manufactured by Ketjen Black International Co., Ltd.) are used in a mass ratio of 8: 1. : 1 and then roll kneaded with two rolls to prepare a 100 μm thick sheet.
The sheet was punched into a circle having a diameter of 16 mm and then dried under reduced pressure at 120 ° C. for 8 hours. Subsequently, a test cell was assembled with a sheet electrode obtained by cooling this to room temperature using a bipolar electrode (HS cell) manufactured by Hosen Co., Ltd., and impregnated with an electrolyte solution under reduced pressure for 3 hours. A glass fiber filter was used as the separator. As the electrolyte solution, a propylene carbonate solution containing 1 mol / kg tetraethylammonium tetrafluorobromide (Et 4 NBF 4 ) manufactured by Toyama Pharmaceutical Co., Ltd. was used.

(静電容量の測定)
上記のテストセルを2.7Vまで充電した後、100mA/gで0Vまで放電した。
充放電装置としてTOYO SYSTEM製TOSCAT−3000K装置を用い、次式の最大電圧の80%と40%の放電勾配よりシート電極の静電容量C(単位:F)を求めた。
C=I(T2−T1)/(V1−V2)
V1:充電電圧の80%となる値(単位:V)
V2:充電電圧の40%となる値(単位:V)
T1:V1における時間(単位:秒)
T2:V2における時間(単位:秒)
I:放電電流量(単位:A)
単位体積当たり静電容量(単位:F/cc)は、得られた静電容量Cを、仕込み時のシート電極体積(正極と負極の和)で割って算出した。
これらの測定結果を表1に示した。また、表1中、内部抵抗(ΔV:ボルト)は、放電開始時の電圧低下幅で代表した。これらの点は、以下の他の実施例および比較例についても同じである。
(Measurement of capacitance)
The test cell was charged to 2.7 V and then discharged to 0 V at 100 mA / g.
The TOSCAT-3000K device manufactured by TOYO SYSTEM was used as the charge / discharge device, and the electrostatic capacity C (unit: F) of the sheet electrode was determined from the discharge gradient of 80% and 40% of the maximum voltage of the following formula.
C = I (T2-T1) / (V1-V2)
V1: A value that is 80% of the charging voltage (unit: V)
V2: Value that is 40% of the charging voltage (unit: V)
T1: Time in V1 (unit: second)
T2: Time in V2 (unit: seconds)
I: Discharge current amount (unit: A)
The capacitance per unit volume (unit: F / cc) was calculated by dividing the obtained capacitance C by the sheet electrode volume at the time of preparation (sum of positive electrode and negative electrode).
These measurement results are shown in Table 1. In Table 1, the internal resistance (ΔV: volt) is represented by the voltage drop width at the start of discharge. These points are the same for the following other examples and comparative examples.

Figure 2006269494
Figure 2006269494

実施例2
石炭系ピッチの代りに石油系重質油を用いた以外は実施例1と同様の条件でディレードコーキング処理し、CTE値1.1の生コークスを得た。この生コークスを実施例1と同一条件で賦活し、静電容量を測定した。
実施例3
実施例1−3と、実施例2で得られた未か焼コークスを重量比で1:1で混合したものを用いた以外は実施例1と同様の条件で賦活し、静電容量を測定した。
このものは、CTE値が1.13であった。
Example 2
A delayed coking process was performed under the same conditions as in Example 1 except that heavy petroleum oil was used instead of the coal-based pitch to obtain raw coke having a CTE value of 1.1. This raw coke was activated under the same conditions as in Example 1, and the capacitance was measured.
Example 3
Activation was performed under the same conditions as in Example 1 except that the uncalcined coke obtained in Example 1-3 and the uncalcined coke obtained in Example 2 were mixed at a weight ratio of 1: 1, and the capacitance was measured. did.
This had a CTE value of 1.13.

比較例1
QI濃度を制御しない原料油を含む石炭系タールを用いた以外、実施例1と同様の条件で繰り返しディレードコーキング処理し、CTE値1.0〜6.0の範囲の生コークス(比較例1−1〜比較例1−3)を得た。この生コークスを実施例1と同一条件で賦活し、静電容量を測定した結果を表1に示す。
Comparative Example 1
A raw coke having a CTE value in the range of 1.0 to 6.0 (Comparative Example 1-) 1 to Comparative Example 1-3) were obtained. Table 1 shows the results obtained by activating the raw coke under the same conditions as in Example 1 and measuring the capacitance.

Claims (5)

人造黒鉛電極試験法によって測定される熱膨張係数が0.8〜2の範囲内にある石炭または石油由来原料を熱処理してなる未か焼コークスを原料として用いて製造されることを特徴とする電気二重層キャパシタの分極性電極用炭素材。   It is produced using uncalcined coke obtained by heat-treating coal or petroleum-derived raw material having a thermal expansion coefficient within a range of 0.8 to 2 as measured by an artificial graphite electrode test method as a raw material. Carbon material for polarizable electrodes of electric double layer capacitors. 前記未か焼コークスが、キノリン不溶分が0.1%以下の石炭系タールまたは石油系重質油を用い、ディレードコーカー法で製造したピッチコークスの生コークスであることを特徴とする請求項1記載の電気二重層キャパシタの分極性電極用炭素材。   The uncalcined coke is a raw coke of pitch coke produced by a delayed coker method using coal-based tar or petroleum-based heavy oil having a quinoline insoluble content of 0.1% or less. The carbon material for polarizable electrodes of the electric double layer capacitor described. 人造黒鉛電極試験法によって測定される熱膨張係数を所定の範囲内に調整した石炭由来の未か焼コークスおよび石油由来の未か焼コークスのいずれか一方または双方の混合品を原料として製造することを特徴とする電気二重層キャパシタ分極性電極の製造方法。   Manufacture using either coal-derived uncalcined coke and petroleum-derived uncalcined coke, or a mixture of both, as a raw material, with the coefficient of thermal expansion measured by the artificial graphite electrode test method adjusted within the specified range A method for producing an electric double layer capacitor polarizable electrode. 前記熱膨張係数の所定の範囲が、0.8〜2であることを特徴とする請求項3記載の電気二重層キャパシタ分極性電極の製造方法。   The method for producing an electric double layer capacitor polarizable electrode according to claim 3, wherein the predetermined range of the thermal expansion coefficient is 0.8-2. 前記未か焼コークスが、キノリン不溶分が0.1%以下の石炭系タールまたは石油系重質油を用い、ディレードコーカー法で製造した石炭系または石油系ピッチコークスの生コークスであることを特徴とする請求項3記載の電気二重層キャパシタ分極性電極の製造方法。
The uncalcined coke is a raw coke of coal-based or petroleum-based pitch coke produced by a delayed coker method using coal-based tar or petroleum-based heavy oil having a quinoline insoluble content of 0.1% or less. The method for producing an electric double layer capacitor polarizable electrode according to claim 3.
JP2005081568A 2005-03-22 2005-03-22 Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode Pending JP2006269494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081568A JP2006269494A (en) 2005-03-22 2005-03-22 Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081568A JP2006269494A (en) 2005-03-22 2005-03-22 Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode

Publications (1)

Publication Number Publication Date
JP2006269494A true JP2006269494A (en) 2006-10-05

Family

ID=37205178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081568A Pending JP2006269494A (en) 2005-03-22 2005-03-22 Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode

Country Status (1)

Country Link
JP (1) JP2006269494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294467A (en) * 2019-06-24 2019-10-01 鞍钢股份有限公司 A method of control carbon microspheres partial size
JP2022081372A (en) * 2020-11-19 2022-05-31 台灣中油股▲ふん▼有限公司 Method for preparing artificial graphite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197589A (en) * 1989-12-26 1991-08-28 Mitsubishi Kasei Corp Manufacture of needle coke
JPH05163491A (en) * 1991-12-12 1993-06-29 Nippon Steel Chem Co Ltd Production of needle coke
JP2003171105A (en) * 2001-12-04 2003-06-17 Nippon Steel Chem Co Ltd Method for manufacturing porous carbon fine powder and electrical double layer capacitor
JP2005001969A (en) * 2003-06-13 2005-01-06 Nippon Steel Chem Co Ltd Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP2005286178A (en) * 2004-03-30 2005-10-13 Power System:Kk Carbonaceous electrode for electric double-layer capacitor and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197589A (en) * 1989-12-26 1991-08-28 Mitsubishi Kasei Corp Manufacture of needle coke
JPH05163491A (en) * 1991-12-12 1993-06-29 Nippon Steel Chem Co Ltd Production of needle coke
JP2003171105A (en) * 2001-12-04 2003-06-17 Nippon Steel Chem Co Ltd Method for manufacturing porous carbon fine powder and electrical double layer capacitor
JP2005001969A (en) * 2003-06-13 2005-01-06 Nippon Steel Chem Co Ltd Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP2005286178A (en) * 2004-03-30 2005-10-13 Power System:Kk Carbonaceous electrode for electric double-layer capacitor and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294467A (en) * 2019-06-24 2019-10-01 鞍钢股份有限公司 A method of control carbon microspheres partial size
JP2022081372A (en) * 2020-11-19 2022-05-31 台灣中油股▲ふん▼有限公司 Method for preparing artificial graphite
JP7106699B2 (en) 2020-11-19 2022-07-26 台灣中油股▲ふん▼有限公司 Method for preparing artificial graphite

Similar Documents

Publication Publication Date Title
US7964173B2 (en) Feedstock composition and raw coke for electricity storage carbon material and needle coke
KR101470050B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
US7959888B2 (en) Raw coke for electricity storage carbon material and needle coke
US20060035785A1 (en) Active carbon, production method thereof and polarizable electrode
CN101124646A (en) Raw material coal composition for carbon material for electrode in electric double layer capacitor
KR102159201B1 (en) Activated carbon for electric double layer capacitor electrode and production method for same
JP4092344B2 (en) Raw material composition of carbon material for electric double layer capacitor electrode
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
KR20120126118A (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2006295144A (en) Porous carbon material for electric double layer capacitor polarizing electrode
JP2006269494A (en) Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode
JP2008021833A (en) Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor
JP5242216B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP2005142439A (en) Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2008021876A (en) Porous carbon material for non-aqueous electric double layer capacitor, manufacturing method thereof and non-aqueous electric double layer capacitor
JP2008288466A (en) Method of manufacturing non-porous carbon material for electric dipole layer capacitor
JP2007153640A (en) Low-temperature calcined carbon powder for production of activated carbon
JPWO2007074938A1 (en) Raw material oil composition for carbon material for electric storage and raw material coal
JPWO2007074939A1 (en) Coking coal for power storage carbon materials
JP2006024826A (en) Carbon material for electric double-layer capacitor electrode and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110302