JP2006265761A - Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell - Google Patents

Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell Download PDF

Info

Publication number
JP2006265761A
JP2006265761A JP2005083968A JP2005083968A JP2006265761A JP 2006265761 A JP2006265761 A JP 2006265761A JP 2005083968 A JP2005083968 A JP 2005083968A JP 2005083968 A JP2005083968 A JP 2005083968A JP 2006265761 A JP2006265761 A JP 2006265761A
Authority
JP
Japan
Prior art keywords
polymer
carbon fiber
fuel cell
producing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005083968A
Other languages
Japanese (ja)
Inventor
Yoshinori Iwabuchi
芳典 岩淵
Shinichiro Sugi
信一郎 杉
Shinichi Toyosawa
真一 豊澤
Masahito Yoshikawa
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005083968A priority Critical patent/JP2006265761A/en
Priority to PCT/JP2006/305571 priority patent/WO2006101084A1/en
Publication of JP2006265761A publication Critical patent/JP2006265761A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing carbon fibers able to produce the carbon fibers having three dimensionally continuous structures by baking a fibril-like polymer in a short time and excellent in productivity. <P>SOLUTION: The carbon fiber having the three dimensionally continuous structure is produced by irradiating microwave to the fibril-like polymer having the three dimensionally continuous structure and heating to carbonize the polymer. The frequency of the microwave is preferably 28 GHz. The fibril-like polymer is preferably a polymer obtained by electrolytically polymerizing a compound having an aromatic ring. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭素繊維及びその製造方法、並びに該炭素繊維を用いた触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池に関し、特に生産性の高い炭素繊維の製造方法に関するものである。   The present invention relates to a carbon fiber and a method for producing the same, and a catalyst structure using the carbon fiber, an electrode for a polymer electrolyte fuel cell, and a polymer electrolyte fuel cell, and particularly relates to a method for producing a highly productive carbon fiber. Is.

従来、炭素繊維としては、液相炭素化によるピッチ系炭素繊維、固相炭素化によるポリアクリロニトリル系及びレーヨン系炭素繊維、気相炭素化による気相成長炭素繊維、並びにレーザー法やアーク放電法によるカーボンナノチューブ類等が知られている。これらのうち、ピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維及びレーヨン系炭素繊維の製造工程においては、繊維状の前駆体を得るために紡糸工程が必要であり、製造工程が複雑となると共に、1μmより細い繊維を得ることが困難である。また、気相成長炭素繊維の製造においては、製造設備が高価で且つ収率が高くないなど量産方法が必ずしも確立されているとはいえないという問題がある。更に、カーボンナノチューブ類の製造についても製造設備が高価である上、効率的な量産技術は検討段階にあり、0.1μmを超える繊維径のものを得ることが難しいという問題がある。   Conventional carbon fibers include pitch-based carbon fibers by liquid phase carbonization, polyacrylonitrile-based and rayon-based carbon fibers by solid-phase carbonization, vapor-grown carbon fibers by gas-phase carbonization, and laser and arc discharge methods. Carbon nanotubes and the like are known. Among these, in the manufacturing process of pitch-based carbon fiber, polyacrylonitrile-based carbon fiber, and rayon-based carbon fiber, a spinning process is necessary to obtain a fibrous precursor, and the manufacturing process becomes complicated, and 1 μm It is difficult to obtain finer fibers. In addition, in the production of vapor grown carbon fiber, there is a problem that a mass production method is not necessarily established because production equipment is expensive and yield is not high. In addition, the production facilities of carbon nanotubes are expensive, and there is a problem in that efficient mass production techniques are under investigation, and it is difficult to obtain fibers having a fiber diameter exceeding 0.1 μm.

一方、特開平5−178603号公報(特許文献1)には、不融化工程を必要とせず、導電率等の電気特性を制御することが可能で、残炭率が高く且つ導電性に優れた炭素質粉末を得る方法が記載されているが、該方法ではポリアニリン粉末を原料とするため、紡糸工程を経ずに炭素繊維を得ることができない。   On the other hand, Japanese Patent Application Laid-Open No. 5-178603 (Patent Document 1) does not require an infusibilization step, can control electric characteristics such as conductivity, has a high residual carbon ratio, and is excellent in conductivity. Although a method for obtaining carbonaceous powder is described, in this method, since polyaniline powder is used as a raw material, carbon fiber cannot be obtained without passing through a spinning step.

これに対して、国際公開第2004/063438号パンフレット(特許文献2)には、紡糸工程及び不融化工程を必要とせず、残炭率が高く且つ導電性に優れ、特に30〜数百nmの繊維径の炭素繊維を効率良く得ることができ、更に得られる炭素繊維の導電率等の電気特性を制御することが可能な炭素繊維の製造方法が開示されている。該方法によれば、芳香環を有する化合物を電解重合してフィブリル状ポリマーを得、該フィブリル状ポリマーを非酸化性雰囲気中で焼成することで3次元連続状の炭素繊維を得ることができる。   On the other hand, the pamphlet of International Publication No. 2004/063438 (Patent Document 2) does not require a spinning step and an infusibilization step, has a high residual carbon ratio and is excellent in conductivity, particularly 30 to several hundred nm. A carbon fiber manufacturing method is disclosed in which carbon fibers having a fiber diameter can be efficiently obtained, and electrical properties such as conductivity of the obtained carbon fibers can be controlled. According to this method, a three-dimensional continuous carbon fiber can be obtained by electrolytic polymerization of a compound having an aromatic ring to obtain a fibril-like polymer, and firing the fibril-like polymer in a non-oxidizing atmosphere.

特開平5−178603号公報JP-A-5-178603 国際公開第2004/063438号パンフレットInternational Publication No. 2004/063438 Pamphlet

上述のように、国際公開第2004/063438号パンフレットに記載の方法によれば、残炭率が高く且つ導電性に優れた3次元連続状の炭素繊維を得ることができるが、該方法では、フィブリル状ポリマーを焼成して3次元連続状の炭素繊維とするのに非常に時間がかかり、生産性の点で問題があった。より具体的には、国際公開第2004/063438号に記載の焼成プロセスでは、焼成炉中、不活性ガス(Ar、N2等)雰囲気下にて、ヒータ等の外部加熱によってフィブリル状ポリマーを加熱するが、例えば、850℃でフィブリル状ポリマーを焼成する場合、昇温に2時間、焼成に1時間、更に、冷却及び取り出しに数時間を要していた。また、ヒータ等による外部加熱では、フィブリル状ポリマーを均一に加熱することが難しく、更に、焼成によって反りが発生する等といった問題も有った。 As described above, according to the method described in the pamphlet of International Publication No. 2004/063438, a three-dimensional continuous carbon fiber having a high residual carbon ratio and excellent conductivity can be obtained. It took a very long time to fire the fibril-like polymer into a three-dimensional continuous carbon fiber, and there was a problem in terms of productivity. More specifically, in the firing process described in International Publication No. 2004/063438, the fibrillated polymer is heated by external heating such as a heater in an inert gas (Ar, N 2, etc.) atmosphere in a firing furnace. However, for example, when a fibrillated polymer is calcined at 850 ° C., it took 2 hours for temperature increase, 1 hour for calcining, and several hours for cooling and taking out. Further, in the external heating using a heater or the like, it is difficult to uniformly heat the fibril polymer, and further, there is a problem that warpage occurs due to firing.

そこで、本発明の目的は、上記従来技術の問題を解決し、短時間でフィブリル状ポリマーを焼成して3次元連続構造を有する炭素繊維を生成させることが可能な、生産性に優れた炭素繊維の製造方法を提供することにある。また、本発明の他の目的は、該炭素繊維を用いた触媒構造体、該触媒構造体を用いた固体高分子型燃料電池用電極、並びに該電極を備えた固体高分子型燃料電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to produce a carbon fiber having a three-dimensional continuous structure by firing a fibrillated polymer in a short time and having excellent productivity. It is in providing the manufacturing method of. Another object of the present invention is to provide a catalyst structure using the carbon fiber, a polymer electrolyte fuel cell electrode using the catalyst structure, and a polymer electrolyte fuel cell equipped with the electrode. There is to do.

本発明者らは、上記目的を達成するために鋭意検討した結果、フィブリル状ポリマーの焼成をマイクロ波照射で行うことで、フィブリル状ポリマーがマイクロ波を吸収し、自己発熱することで、高い効率で加熱及び炭化させられることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention have performed high-efficiency because the fibril-like polymer absorbs the microwave and self-heats by firing the fibril-like polymer by microwave irradiation. The present invention has been found to be heated and carbonized in order to complete the present invention.

即ち、本発明の炭素繊維の製造方法は、3次元連続構造を有するフィブリル状ポリマーにマイクロ波を照射して、該ポリマーを加熱し炭化させて3次元連続構造を有する炭素繊維を生成させることを特徴とする。   That is, the method for producing a carbon fiber according to the present invention comprises irradiating a fibrillated polymer having a three-dimensional continuous structure with microwaves and heating and carbonizing the polymer to produce a carbon fiber having a three-dimensional continuous structure. Features.

本発明の炭素繊維の製造方法の好適例においては、前記フィブリル状ポリマーに対するマイクロ波照射を真空中又は不活性ガス雰囲気中で行う。この場合、マイクロ波照射によるフィブリル状ポリマーの消失を抑制することができる。   In a preferred example of the method for producing carbon fiber of the present invention, the fibrillated polymer is irradiated with microwaves in a vacuum or in an inert gas atmosphere. In this case, disappearance of the fibrillated polymer due to microwave irradiation can be suppressed.

本発明の炭素繊維の製造方法の他の好適例においては、前記マイクロ波の周波数が28GHz(ミリ波)である。この場合、フィブリル状ポリマーがマイクロ波(周波数28GHzのミリ波)を十分に吸収し、また、熱暴走することがなく、均一な加熱が可能であり、更に、アーキングの発生も防止することができる。   In another preferred embodiment of the method for producing carbon fiber of the present invention, the frequency of the microwave is 28 GHz (millimeter wave). In this case, the fibrillar polymer sufficiently absorbs microwaves (millimeter wave with a frequency of 28 GHz), does not run out of heat, can be heated uniformly, and can also prevent arcing. .

本発明の炭素繊維の製造方法の他の好適例においては、前記フィブリル状ポリマーが芳香環を有する化合物を電解重合して得たポリマーである。即ち、本発明の炭素繊維の製造方法は、芳香環を有する化合物を電解重合してフィブリル状ポリマーを生成させる工程と、該フィブリル状ポリマーにマイクロ波を照射して、該ポリマーを加熱し炭化させて3次元連続構造を有する炭素繊維を生成させる工程とを含むことが好ましい。ここで、該フィブリル状ポリマーが、ポリアニリン、ポリピロール、ポリチオフェン又はそれらの誘導体からなることが更に好ましい。   In another preferred embodiment of the method for producing carbon fiber of the present invention, the fibrillated polymer is a polymer obtained by electrolytic polymerization of a compound having an aromatic ring. That is, the carbon fiber production method of the present invention includes a step of electropolymerizing a compound having an aromatic ring to produce a fibril polymer, and irradiating the fibril polymer with microwaves to heat and carbonize the polymer. And producing a carbon fiber having a three-dimensional continuous structure. Here, it is more preferable that the fibrillar polymer is composed of polyaniline, polypyrrole, polythiophene or a derivative thereof.

本発明の炭素繊維の製造方法においては、前記フィブリル状ポリマーが導電性基板上に支持されていることが好ましい。また、前記フィブリル状ポリマーが導電性基板上で芳香環を有する化合物を電解重合して得たポリマーであることが更に好ましく、即ち、本発明の炭素繊維の製造方法は、芳香環を有する化合物の電解重合を導電性基板上で行い、該導電性基板上にフィブリル状ポリマーを生成させる工程を含むことが好ましい。ここで、前記導電性基板としては、カーボンペーパーが好ましい。   In the carbon fiber production method of the present invention, the fibrillated polymer is preferably supported on a conductive substrate. Further, the fibrillated polymer is more preferably a polymer obtained by electrolytic polymerization of a compound having an aromatic ring on a conductive substrate. That is, the method for producing carbon fiber of the present invention comprises a compound having an aromatic ring. It is preferable to include a step of performing electrolytic polymerization on a conductive substrate and generating a fibrillated polymer on the conductive substrate. Here, as the conductive substrate, carbon paper is preferable.

また、本発明の炭素繊維は、上記の方法で製造されたことを特徴とし、3次元連続構造を有し、本発明の触媒構造体は、該炭素繊維に触媒を担持してなることを特徴とする。   In addition, the carbon fiber of the present invention is manufactured by the above method, has a three-dimensional continuous structure, and the catalyst structure of the present invention comprises a catalyst supported on the carbon fiber. And

更に、本発明の固体高分子型燃料電池用電極は、ガス拡散層と、該ガス拡散層の上に配置された触媒層とからなり、該触媒層に上記触媒構造体を用いたことを特徴とする。又更に、本発明の固体高分子型燃料電池は、上記電極を備えることを特徴とする。   Furthermore, the electrode for a polymer electrolyte fuel cell of the present invention comprises a gas diffusion layer and a catalyst layer disposed on the gas diffusion layer, and the catalyst structure is used for the catalyst layer. And Furthermore, the polymer electrolyte fuel cell of the present invention is characterized by comprising the above electrode.

本発明によれば、フィブリル状ポリマーにマイクロ波を照射して加熱し炭化させることで、短時間で3次元連続構造を有する炭素繊維を製造することができる。また、該方法で製造した炭素繊維、該炭素繊維を用いた触媒構造体、該触媒構造体を用いた固体高分子型燃料電池用電極、並びに該電極を備えた固体高分子型燃料電池を提供することができる。   According to the present invention, a carbon fiber having a three-dimensional continuous structure can be produced in a short time by irradiating a fibrillated polymer with microwaves and heating and carbonizing it. Also provided are a carbon fiber produced by the method, a catalyst structure using the carbon fiber, a polymer electrolyte fuel cell electrode using the catalyst structure, and a polymer electrolyte fuel cell including the electrode can do.

以下に、本発明を詳細に説明する。本発明の炭素繊維の製造方法は、3次元連続構造を有するフィブリル状ポリマーにマイクロ波を照射して、該ポリマーを加熱し炭化させて3次元連続構造を有する炭素繊維を生成させることを特徴とする。本発明の炭素繊維の製造方法では、フィブリル状ポリマーにマイクロ波を照射することにより、フィブリル状ポリマーがマイクロ波を吸収し自己発熱することで、高い効率でフィブリル状ポリマーを加熱し、炭化させることができる。また、本発明の炭素繊維の製造方法は、熱源からの熱伝導に頼らないために、短時間で昇温が可能であり、短時間・省エネルギープロセスでもある。更に、本発明で利用するマイクロ波加熱は、温度の制御性にも優れ、応答性が高い利点もある。また更に、マイクロ波加熱では、フィブリル状ポリマーの自己発熱で加熱されるため、均一加熱が可能であり、従来法で問題となっていた焼成によるサンプルの反りや応力発生を防止することもできる。   The present invention is described in detail below. The carbon fiber production method of the present invention is characterized in that a fibrillated polymer having a three-dimensional continuous structure is irradiated with microwaves, and the polymer is heated and carbonized to generate carbon fibers having a three-dimensional continuous structure. To do. In the carbon fiber manufacturing method of the present invention, the fibrillated polymer absorbs the microwave and self-heats by irradiating the fibrillated polymer with microwaves, thereby heating and carbonizing the fibrillated polymer with high efficiency. Can do. Moreover, since the carbon fiber manufacturing method of the present invention does not rely on heat conduction from a heat source, the temperature can be raised in a short time, and it is also a short time and energy saving process. Furthermore, the microwave heating used in the present invention has the advantages of excellent temperature controllability and high response. Furthermore, in microwave heating, since heating is performed by self-heating of the fibrillated polymer, uniform heating is possible, and it is possible to prevent sample warping and stress generation due to firing, which has been a problem in the conventional method.

本発明の炭素繊維の製造方法において、原料として用いるフィブリル状ポリマーは、3次元連続構造を有する。該フィブリル状ポリマーは、芳香環を有する化合物を重合、好ましくは、電解重合、より好ましくは、電解酸化重合させて得ることができる。ここで、芳香環を有する化合物としては、ベンゼン環を有する化合物、芳香族複素環を有する化合物を挙げることができ、ベンゼン環を有する化合物として、具体的には、アニリン及びアニリン誘導体が好まく、芳香族複素環を有する化合物として、具体的には、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香環を有する化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。また、フィブリル状ポリマーは、ポリアニリン、ポリピロール、ポリチオフェン又はそれらの誘導体からなることが好ましい。   In the carbon fiber production method of the present invention, the fibril polymer used as a raw material has a three-dimensional continuous structure. The fibrillated polymer can be obtained by polymerizing a compound having an aromatic ring, preferably electrolytic polymerization, more preferably electrolytic oxidation polymerization. Here, examples of the compound having an aromatic ring include a compound having a benzene ring and a compound having an aromatic heterocycle. Specifically, as the compound having a benzene ring, aniline and aniline derivatives are preferred, Specifically, pyrrole, thiophene and derivatives thereof are preferable as the compound having an aromatic heterocycle. These compounds having an aromatic ring may be used singly or as a mixture of two or more. The fibrillar polymer is preferably composed of polyaniline, polypyrrole, polythiophene or derivatives thereof.

上記フィブリル状ポリマーは、直径が30nm〜数百nmで、好ましくは40nm〜500nmであり、長さが0.5μm〜100mmで、好ましくは1μm〜10mmである。   The fibrillar polymer has a diameter of 30 nm to several hundred nm, preferably 40 nm to 500 nm, and a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm.

例えば、上記フィブリル状ポリマーを電解酸化重合法で製造する場合、原料の芳香環を有する化合物と共に、酸を混在させることが好ましい。この場合、酸の負イオンがドーパントとして合成されるフィブリル状ポリマー中に取り込まれ、導電性に優れたフィブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより最終的に得られる炭素繊維の導電性を向上させることができる。なお、重合の際に混在させる酸としては、特に限定されるものではなく、HBF4、H2SO4、HCl、HClO4等を例示することができ、該酸の濃度は、0.1〜3mol/Lの範囲が好ましく、0.5〜2.5mol/Lの範囲が更に好ましい。 For example, when the fibrillated polymer is produced by an electrolytic oxidation polymerization method, it is preferable to mix an acid together with a raw material compound having an aromatic ring. In this case, the negative ion of the acid is taken into the fibril polymer synthesized as a dopant to obtain a fibril polymer excellent in conductivity, and the conductivity of the carbon fiber finally obtained by using this fibril polymer is obtained. Can be improved. The acid mixed in the polymerization is not particularly limited, and examples thereof include HBF 4 , H 2 SO 4 , HCl, HClO 4 , and the concentration of the acid is 0.1 to 3 mol / The range of L is preferable, and the range of 0.5 to 2.5 mol / L is more preferable.

上記電解酸化重合によりフィブリル状ポリマーを得る場合には、芳香環を有する化合物を含む溶液中に、作用極及び対極を浸漬し、両極間に上記芳香環を有する化合物の酸化電位以上の電圧を印加するか、または該芳香環を有する化合物が重合するのに充分な電圧が確保できるような条件の電流を通電すればよく、これにより作用極上にフィブリル状ポリマーが生成する。ここで、作用極及び対極としては、ステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質材などを用いることができる。また、電解酸化重合における電流密度は、0.1〜1000mA/cm2の範囲が好ましく、0.2〜100mA/cm2の範囲が更に好ましく、芳香環を有する化合物の電解溶液中の濃度は、0.05〜3mol/Lの範囲が好ましく、0.25〜1.5mol/Lの範囲が更に好ましい。なお、電解溶液には、上記成分に加え、pHを調製するために可溶性塩等を適宜添加してもよい。 When a fibrillated polymer is obtained by the electrolytic oxidation polymerization, the working electrode and the counter electrode are immersed in a solution containing the compound having an aromatic ring, and a voltage higher than the oxidation potential of the compound having the aromatic ring is applied between both electrodes. Or a current having such a condition that a voltage sufficient to polymerize the compound having an aromatic ring may be passed, whereby a fibril-like polymer is formed on the working electrode. Here, as the working electrode and the counter electrode, a plate made of a highly conductive material such as stainless steel, platinum, or carbon, a porous material, or the like can be used. Also, the current density in the electrolytic oxidation polymerization is preferably in the range of 0.1~1000mA / cm 2, more preferably in the range of 0.2~100mA / cm 2, the concentration of the electrolytic solution of the compound having an aromatic ring, 0.05 to 3 mol / The range of L is preferable, and the range of 0.25 to 1.5 mol / L is more preferable. In addition to the above components, a soluble salt or the like may be appropriately added to the electrolytic solution in order to adjust the pH.

上記のようにして作用極上に得られたフィブリル状ポリマーを、水や有機溶剤等の溶媒で洗浄し、乾燥させることで、本発明の製造方法に好適に用いることができるフィブリル状ポリマーを得ることができる。ここで、乾燥方法としては、特に制限されるものではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライヤー等を使用した方法を例示することができる。   The fibril polymer obtained on the working electrode as described above is washed with a solvent such as water or an organic solvent and dried to obtain a fibril polymer that can be suitably used in the production method of the present invention. Can do. Here, the drying method is not particularly limited, and examples thereof include a method using a fluidized bed drying device, an air dryer, a spray dryer, etc., in addition to air drying and vacuum drying.

本発明の炭素繊維の製造方法では、上記フィブリル状ポリマーにマイクロ波を照射する。ここで、照射するマイクロ波の波長は、通常、300MHz〜300GHzの範囲であり、28GHz(ミリ波)が特に好ましい。マイクロ波としては、電子レンジに代表される波長2.45GHzのものが広く普及しているが、2.45GHzのマイクロ波を用いた場合は、以下のような問題がある。(i)フィブリル状ポリマーが2.45GHzのマイクロ波をほとんど吸収しない。(ii)フィブリル状ポリマーが複雑な形状を有する場合に、突起部に電界が集中し、熱暴走して均一な加熱が難しい。(iii)導電性材料ではアーキングが発生する(電子レンジでアルミホイルから火花が飛ぶ現象)。これらのデメリットを解決すべく鋭意検討した結果、マイクロ波の周波数を高めることで上記問題を解決することができ、28GHzのマイクロ波(ミリ波)が特に好適に使用できることが分かった。また、28GHzのマイクロ波を用いた場合、フィブリル状ポリマー自体の加熱も可能となり、その他の特長としては、導電性材料であってもアーキングが極めて生じ難い点が挙げられる。なお、本発明の製造方法では、ポリマーが炭化して導電性グラファイト化した場合でも、28GHzのマイクロ波を用いることで、アーキングの発生を防止できる。   In the carbon fiber manufacturing method of the present invention, the fibrillated polymer is irradiated with microwaves. Here, the wavelength of the microwave to be irradiated is usually in the range of 300 MHz to 300 GHz, and 28 GHz (millimeter wave) is particularly preferable. As a microwave, one having a wavelength of 2.45 GHz represented by a microwave oven is widely used. However, when a microwave of 2.45 GHz is used, there are the following problems. (i) The fibrillar polymer hardly absorbs 2.45 GHz microwaves. (ii) When the fibrillar polymer has a complicated shape, the electric field concentrates on the protrusions, causing thermal runaway, and uniform heating is difficult. (iii) Arcing occurs in conductive materials (a phenomenon in which sparks fly from aluminum foil in a microwave oven). As a result of intensive studies to solve these disadvantages, it was found that the above problem can be solved by increasing the frequency of the microwave, and that a 28 GHz microwave (millimeter wave) can be used particularly suitably. In addition, when a microwave of 28 GHz is used, the fibril polymer itself can be heated, and another feature is that arcing is extremely difficult to occur even with a conductive material. In the production method of the present invention, even when the polymer is carbonized to become conductive graphite, arcing can be prevented by using a 28 GHz microwave.

マイクロ波照射によるフィブリル状ポリマーの加熱温度は、フィブリル状ポリマーからの放熱を断熱材等により抑制することにより、2000℃以上とすることも可能である。ここで、使用する断熱材としては、1800℃程度まではアルミナが好適に使用でき、1800℃以上では、ボロンナイトライド(BN)等が好適に使用できる。また、マイクロ波を発生させるために用いるマイクロ波発生装置としては、特に制限は無く、一般的なものを使用することができる。   The heating temperature of the fibrillated polymer by microwave irradiation can be set to 2000 ° C. or higher by suppressing heat dissipation from the fibrillated polymer with a heat insulating material or the like. Here, as the heat insulating material to be used, alumina can be preferably used up to about 1800 ° C., and boron nitride (BN) or the like can be suitably used at 1800 ° C. or higher. Moreover, there is no restriction | limiting in particular as a microwave generator used in order to generate | occur | produce a microwave, A general thing can be used.

本発明の製造方法においては、上記フィブリル状ポリマーに対するマイクロ波照射を真空中又は不活性ガス雰囲気中で行うことが好ましい。この場合、ポリマーの燃焼による消失を抑制することができる。なお、ここで、真空中でマイクロ波照射を行う場合、系を3×102Pa以下とすることが好ましく、また、不活性ガス雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができる。 In the production method of the present invention, it is preferable to perform microwave irradiation on the fibrillated polymer in a vacuum or in an inert gas atmosphere. In this case, disappearance due to combustion of the polymer can be suppressed. Here, when performing microwave irradiation in vacuum, the system is preferably 3 × 10 2 Pa or less, and examples of the inert gas atmosphere include a nitrogen atmosphere, an argon atmosphere, a helium atmosphere, and the like. Can do.

本発明の炭素繊維の製造方法においては、上記フィブリル状ポリマーが導電性基板上に支持されていることが好ましい。導電性基板上に支持されたフィブリル状ポリマーをマイクロ波加熱する場合、導電性基板が効率よくマイクロ波を吸収し発熱するため、フィブリルポリマーの自己発熱以外に、導電性基板から伝導してくる熱が加わり、いわばハイブリッド加熱となり、更に効率的な焼成が可能となる。ここで、導電性基板としては、カーボンペーパー、カーボン不織布、カーボンクロス、カーボンネット及びメッシュ状カーボン等が挙げられ、これらの中でも、カーボンペーパーが好ましい。   In the carbon fiber manufacturing method of the present invention, the fibrillated polymer is preferably supported on a conductive substrate. When the fibrillated polymer supported on the conductive substrate is heated by microwave, the conductive substrate efficiently absorbs the microwave and generates heat. Therefore, in addition to the self-heating of the fibril polymer, the heat conducted from the conductive substrate. In other words, it becomes hybrid heating, so that more efficient firing is possible. Here, examples of the conductive substrate include carbon paper, carbon non-woven fabric, carbon cloth, carbon net, and mesh-like carbon. Among these, carbon paper is preferable.

例えば、カーボンペーパー上で電解重合したフィブリル状ポリアニリンをマイクロ波照射により焼成した場合、数分で容易に850℃まで昇温でき、10分程度の保持時間で従来法と同等の残炭率の炭素繊維が得られ、短時間で炭化プロセスを完了できることが確認された。また、焼成後の冷却時間についても、従来法では炉全体が高温で、冷却に長時間を要していたのに対し、本発明の方法ではサンプルおよび周辺断熱材の限られた部分のみが加熱されるため、冷却時間の短縮も可能となる。そのため、本発明の炭素繊維の製造方法は、従来法に対して非常に短時間で炭素繊維を製造することができ、また、省エネルギーなプロセスであり、生産性に非常に優れる利点を有している。   For example, when fibrillated polyaniline electropolymerized on carbon paper is baked by microwave irradiation, the temperature can be easily raised to 850 ° C in a few minutes, and carbon with a residual carbon ratio equivalent to the conventional method with a retention time of about 10 minutes. It was confirmed that fibers were obtained and the carbonization process could be completed in a short time. Also, with regard to the cooling time after firing, in the conventional method, the entire furnace was high temperature and required a long time for cooling, whereas in the method of the present invention, only a limited portion of the sample and the peripheral heat insulating material was heated. Therefore, the cooling time can be shortened. Therefore, the carbon fiber production method of the present invention can produce carbon fiber in a very short time compared to the conventional method, and is an energy-saving process, and has the advantage of excellent productivity. Yes.

本発明の方法で製造される炭素繊維は、直径が30nm〜数百nm、好ましくは40nm〜500nmであり、長さが0.5μm〜100mm、好ましくは1μm〜10mmであり、表面抵抗が106〜10-2Ω、好ましくは104〜10-2Ωである。また、該炭素繊維は、残炭率が95〜30%、好ましくは90〜40%である。ここで、残炭率は、下記式:
残炭率=(焼成後の炭素繊維の質量)/(焼成前のポリマーの質量)×100
から算出される。なお、上記のようにして得られる炭素繊維は、カーボン全体が3次元に連続した構造を有するため、粒状カーボンよりも導電性が高い。
The carbon fiber produced by the method of the present invention has a diameter of 30 nm to several hundred nm, preferably 40 nm to 500 nm, a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm, and a surface resistance of 10 6 to 10 −2 Ω, preferably 10 4 to 10 −2 Ω. The carbon fiber has a residual carbon ratio of 95 to 30%, preferably 90 to 40%. Here, the remaining charcoal rate is the following formula:
Residual carbon ratio = (mass of carbon fiber after firing) / (mass of polymer before firing) × 100
Is calculated from The carbon fiber obtained as described above has higher conductivity than granular carbon because the entire carbon has a three-dimensional continuous structure.

本発明の触媒構造体は、上述した3次元連続構造を有する炭素繊維に金属、好ましくは貴金属を担持してなる。該触媒構造体は、固体高分子型燃料電池の触媒層の他、水素化反応等の種々の化学反応の触媒として用いることができる。ここで、炭素繊維に担持される貴金属としては、Ptが特に好ましい。なお、本発明においては、Ptを単独で用いることも好ましいし、Ru等の他の金属との合金として用いることも好ましい。貴金属としてPtを用い、本発明の触媒構造体を固体高分子型燃料電池の触媒層として用いることで、100℃以下の低温でも水素を高効率で酸化することができる。また、PtとRu等の合金を用いることで、COによるPtの被毒を防止して、触媒の活性低下を防止することができる。なお、炭素繊維上に担持される金属は、微粒子状であることが好ましく、該微粒子の粒径は、0.5〜100nmの範囲が好ましく、1〜50nmの範囲がより好ましい。また、該金属の担持率は、炭素繊維1gに対して0.05〜5gの範囲が好ましい。ここで、上記金属の炭素繊維上への担持法としては、特に限定されるものではなく、例えば、含浸法、電気メッキ法(電解還元法)、無電解メッキ法、スパッタ法等が挙げられる。   The catalyst structure of the present invention is formed by supporting a metal, preferably a noble metal, on the carbon fiber having the above-described three-dimensional continuous structure. The catalyst structure can be used as a catalyst for various chemical reactions such as a hydrogenation reaction in addition to a catalyst layer of a polymer electrolyte fuel cell. Here, Pt is particularly preferable as the noble metal supported on the carbon fiber. In the present invention, it is also preferable to use Pt alone or as an alloy with another metal such as Ru. By using Pt as the noble metal and using the catalyst structure of the present invention as the catalyst layer of the polymer electrolyte fuel cell, hydrogen can be oxidized with high efficiency even at a low temperature of 100 ° C. or lower. Further, by using an alloy such as Pt and Ru, it is possible to prevent poisoning of Pt by CO and prevent a decrease in the activity of the catalyst. The metal supported on the carbon fiber is preferably in the form of fine particles, and the particle size of the fine particles is preferably in the range of 0.5 to 100 nm, and more preferably in the range of 1 to 50 nm. The metal loading is preferably in the range of 0.05 to 5 g with respect to 1 g of carbon fiber. Here, the method for supporting the metal on the carbon fiber is not particularly limited, and examples thereof include an impregnation method, an electroplating method (electrolytic reduction method), an electroless plating method, and a sputtering method.

本発明の固体高分子型燃料電池用電極は、ガス拡散層と、該ガス拡散層の上に配置された触媒層とからなり、該触媒層に上述した触媒構造体を用いたことを特徴とする。   The electrode for a polymer electrolyte fuel cell of the present invention comprises a gas diffusion layer and a catalyst layer disposed on the gas diffusion layer, and the catalyst structure described above is used for the catalyst layer. To do.

上記触媒層には、高分子電解質を含浸させるのが好ましく、該高分子電解質としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、スルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸等のイオン交換基を有するポリマーを挙げることができ、該ポリマーはフッ素を含んでも、含まなくてもよい。該イオン伝導性のポリマーとして、具体的には、ナフィオン(登録商標)等のパーフルオロカーボンスルホン酸系ポリマー等が好ましい。該高分子電解質の含浸量は、触媒層の炭素繊維100質量部に対して10〜500質量部の範囲が好ましい。なお、触媒層の厚さは、特に限定されるものではないが、0.1〜100μmの範囲が好ましい。また、触媒層の金属担持量は、前記担持率と触媒層の厚さにより定まり、0.001〜0.8mg/cm2の範囲が好ましい。 The catalyst layer is preferably impregnated with a polymer electrolyte. As the polymer electrolyte, an ion conductive polymer can be used. Examples of the ion conductive polymer include sulfonic acid, carboxylic acid, The polymer which has ion exchange groups, such as phosphonic acid and phosphonous acid, can be mentioned, This polymer may or may not contain fluorine. Specifically, the ion conductive polymer is preferably a perfluorocarbon sulfonic acid polymer such as Nafion (registered trademark). The amount of the polymer electrolyte impregnated is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass of the carbon fibers in the catalyst layer. The thickness of the catalyst layer is not particularly limited, but is preferably in the range of 0.1 to 100 μm. Further, the metal loading amount of the catalyst layer is determined by the loading ratio and the thickness of the catalyst layer, and is preferably in the range of 0.001 to 0.8 mg / cm 2 .

上記ガス拡散層は、上記触媒層へ水素ガス或いは、酸素や空気等の酸化剤ガスを供給し、発生した電子の授受を行うための層であり、ガスの拡散層としての機能と集電体としての機能を担う。ガス拡散層に用いる材質としては、上述した導電性基板が好ましく、カーボンペーパーが特に好ましい。なお、導電性基板上で芳香環を有する化合物を電解重合してフィブリル状ポリマーを生成させ、該フィブリル状ポリマーにマイクロ波を照射して、導電性基板上に3次元連続構造を有する炭素繊維を生成させ、更に、その炭素繊維部分に、金属、好ましくは、Pt等の貴金属を担持することで、固体高分子型燃料電池用電極を作製することができる。   The gas diffusion layer is a layer for supplying hydrogen gas or an oxidant gas such as oxygen or air to the catalyst layer to exchange generated electrons, and functions as a gas diffusion layer and a current collector As a function. As a material used for the gas diffusion layer, the above-described conductive substrate is preferable, and carbon paper is particularly preferable. A compound having an aromatic ring is electropolymerized on a conductive substrate to form a fibril polymer, and the fibril polymer is irradiated with microwaves to form a carbon fiber having a three-dimensional continuous structure on the conductive substrate. Further, a metal, preferably a noble metal such as Pt, is supported on the carbon fiber portion of the carbon fiber portion, whereby a polymer electrolyte fuel cell electrode can be produced.

本発明の固体高分子型燃料電池は、上記固体高分子型燃料電池用電極を備えることを特徴とする。以下に、本発明の固体高分子型燃料電池を図を参照しながら詳細に説明する。図示例の固体高分子型燃料電池は、膜電極接合体(MEA)1とその両側にそれぞれ位置するセパレータ2とを備える。膜電極接合体(MEA)1は、固体高分子電解質膜3とその両側に位置する燃料極4A及び空気極4Bとからなる。燃料極4Aでは、2H2→4H++4e-で表される反応が起こり、発生したH+は固体高分子電解質膜3を経て空気極4Bに至り、また、発生したe-は外部に取り出されて電流となる。一方、空気極4Bでは、O2+4H++4e-→2H2Oで表される反応が起こり、水が発生する。燃料極4A及び空気極4Bの少なくとも一方は、上述した本発明の固体高分子型燃料電池用電極である。また、燃料極4A及び空気極4Bは、それぞれ触媒層5及びガス拡散層6からなり、触媒層5が固体高分子電解質膜3に接触するように配置されている。 The polymer electrolyte fuel cell of the present invention comprises the above-mentioned electrode for a polymer electrolyte fuel cell. Hereinafter, the polymer electrolyte fuel cell of the present invention will be described in detail with reference to the drawings. The illustrated polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 1 and separators 2 positioned on both sides thereof. The membrane electrode assembly (MEA) 1 includes a solid polymer electrolyte membrane 3 and fuel electrodes 4A and air electrodes 4B located on both sides thereof. In the fuel electrode 4A, a reaction represented by 2H 2 → 4H + + 4e occurs, the generated H + passes through the solid polymer electrolyte membrane 3 to the air electrode 4B, and the generated e is taken out to the outside. Current. On the other hand, in the air electrode 4B, a reaction represented by O 2 + 4H + + 4e → 2H 2 O occurs, and water is generated. At least one of the fuel electrode 4A and the air electrode 4B is the above-described electrode for a solid polymer fuel cell of the present invention. The fuel electrode 4 </ b> A and the air electrode 4 </ b> B include a catalyst layer 5 and a gas diffusion layer 6, respectively, and are arranged so that the catalyst layer 5 is in contact with the solid polymer electrolyte membrane 3.

ここで、本発明の固体高分子型燃料電池においては、燃料極4A及び空気極4Bの少なくとも一方に、上述の固体高分子型燃料電池用電極を用いることを特徴とする。上記電極は、電子伝導性が高いため、燃料電池の内部抵抗を増大させることがなく、電気エネルギーを有効に取り出すことができる。   Here, the polymer electrolyte fuel cell of the present invention is characterized in that the above-described polymer electrolyte fuel cell electrode is used for at least one of the fuel electrode 4A and the air electrode 4B. Since the electrode has high electronic conductivity, it is possible to effectively extract electric energy without increasing the internal resistance of the fuel cell.

なお、固体高分子電解質膜3としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、上記触媒層に含浸させることが可能な高分子電解質として例示したものを用いることができる。また、セパレータ2としては、表面に燃料、空気及び生成した水等の流路(図示せず)が形成された通常のセパレータを用いることができる。   In addition, as the solid polymer electrolyte membrane 3, an ion conductive polymer can be used. As the ion conductive polymer, those exemplified as the polymer electrolyte that can be impregnated in the catalyst layer are used. Can be used. Moreover, as the separator 2, the normal separator with which flow paths (not shown), such as fuel, air, and produced | generated water, were formed in the surface can be used.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(比較例1)
アニリンモノマー 0.5mol/LとHBF4 1.0mol/Lとを含む酸性水溶液中にカーボンペーパー[東レ製]からなる作用極を設置し、対極として白金板を使用し、室温にて15mA/cm2の定電流で3分間電解重合を行い、ポリアニリンを作用極上に電析させた。得られたポリアニリンをイオン交換水で洗浄後、24時間真空乾燥した後、焼成炉中にセットしAr雰囲気中7℃/分の昇温速度で2時間で850℃まで昇温し、その後850℃で1時間保持して焼成処理した。3時間の冷却時間を経て、得られた焼成物を取り出しSEMで観察したところ、直径が40〜100nmの炭素繊維が、カーボンペーパー上に得られていることを確認した。この炭素繊維の残炭率を計測したところ43.7%であった。また、サンプルにはポリアニリンの加熱工程での収縮・炭化プロセスに起因すると考えられる反りが発生していた。
(Comparative Example 1)
A working electrode made of carbon paper [manufactured by Toray] was installed in an acidic aqueous solution containing aniline monomer 0.5 mol / L and HBF 4 1.0 mol / L, and a platinum plate was used as the counter electrode, and 15 mA / cm 2 at room temperature. Electropolymerization was carried out at a constant current for 3 minutes to deposit polyaniline on the working electrode. The obtained polyaniline was washed with ion-exchanged water, vacuum-dried for 24 hours, set in a firing furnace, heated to 850 ° C. in 2 hours at a rate of 7 ° C./min in an Ar atmosphere, and then 850 ° C. And firing for 1 hour. After the cooling time of 3 hours, the obtained fired product was taken out and observed with an SEM, and it was confirmed that carbon fibers having a diameter of 40 to 100 nm were obtained on carbon paper. The residual carbon ratio of this carbon fiber was measured and found to be 43.7%. Further, the sample was warped due to the shrinkage / carbonization process in the polyaniline heating step.

(実施例1)
比較例1と同様の手法にてポリアニリンをカーボンペーパー上に電析、洗浄、乾燥させた。次に、28GHzのジャイラトロン発振機が導波管でつながったマイクロ波焼成炉中に、厚さ50mmのアルミナ断熱材で周囲を囲んで、ポリアニリン/カーボンペーパーからなるサンプルをセットし、真空ポンプにて約10Paまで排気した。その後、サンプルにマイクロ波を照射して85℃/分の昇温速度で10分で850℃まで昇温し、その後850℃で10分間保持して焼成処理した。30分の冷却時間を経て、得られた焼成物を取り出し、SEMで観察したところ、従来の焼成法と同様に直径が40〜100nmの炭素繊維が、カーボンペーパー上に得られていることを確認した。この炭素繊維の残炭率を計測したところ40.5%であった。また、サンプルに反り等は発生しておらず、フラットな形状を保っていた。
Example 1
In the same manner as in Comparative Example 1, polyaniline was electrodeposited on carbon paper, washed and dried. Next, a sample made of polyaniline / carbon paper was set in a microwave firing furnace with a 28 GHz gyrotron oscillator connected by a waveguide, surrounded by 50 mm thick alumina insulation, and placed in a vacuum pump. And exhausted to about 10Pa. Thereafter, the sample was irradiated with microwaves, heated to 850 ° C. in 10 minutes at a heating rate of 85 ° C./min, and then held at 850 ° C. for 10 minutes for firing treatment. After the cooling time of 30 minutes, the obtained fired product was taken out and observed by SEM, and it was confirmed that carbon fibers with a diameter of 40 to 100 nm were obtained on carbon paper as in the conventional firing method. did. The carbon residue of this carbon fiber was measured and found to be 40.5%. Further, no warp or the like occurred in the sample, and the flat shape was maintained.

以上の結果から、28GHzのマイクロ波(ミリ波)加熱により、アーキングを発生させることなく、非常に短時間で、効率的に(省エネルギーで)フィブリル状ポリマーを焼成して炭化させられ、プロセスの生産性を大幅に改善できることが分かる。また、焼成後のサンプルの内部応力も緩和することができた。   Based on the above results, 28GHz microwave (millimeter wave) heating allows fibrillated polymer to be burned and carbonized efficiently (energy saving) in a very short time without arcing. It can be seen that the sex can be greatly improved. Moreover, the internal stress of the sample after baking could also be relieved.

本発明の固体高分子型燃料電池の一例の断面図である。It is sectional drawing of an example of the polymer electrolyte fuel cell of this invention.

符号の説明Explanation of symbols

1 膜電極接合体(MEA)
2 セパレータ
3 固体高分子電解質膜
4A 燃料極
4B 空気極
5 触媒層
6 ガス拡散層
1 Membrane electrode assembly (MEA)
2 Separator 3 Solid polymer electrolyte membrane 4A Fuel electrode 4B Air electrode 5 Catalyst layer 6 Gas diffusion layer

Claims (12)

3次元連続構造を有するフィブリル状ポリマーにマイクロ波を照射して、該ポリマーを加熱し炭化させて3次元連続構造を有する炭素繊維を生成させることを特徴とする炭素繊維の製造方法。   A method for producing a carbon fiber, which comprises irradiating a fibrillated polymer having a three-dimensional continuous structure with microwaves and heating and carbonizing the polymer to produce carbon fibers having a three-dimensional continuous structure. 前記フィブリル状ポリマーに対するマイクロ波照射を真空中又は不活性ガス雰囲気中で行うことを特徴とする請求項1に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 1, wherein the microwave irradiation to the fibrillated polymer is performed in a vacuum or in an inert gas atmosphere. 前記マイクロ波の周波数が28GHzであることを特徴とする請求項1に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 1, wherein the frequency of the microwave is 28 GHz. 前記フィブリル状ポリマーが芳香環を有する化合物を電解重合して得たポリマーであることを特徴とする請求項1に記載の炭素繊維の製造方法。   The method for producing a carbon fiber according to claim 1, wherein the fibrillar polymer is a polymer obtained by electrolytic polymerization of a compound having an aromatic ring. 前記フィブリル状ポリマーが、ポリアニリン、ポリピロール、ポリチオフェン又はそれらの誘導体からなることを特徴とする請求項4に記載の炭素繊維の製造方法。   The method for producing a carbon fiber according to claim 4, wherein the fibrillar polymer comprises polyaniline, polypyrrole, polythiophene, or a derivative thereof. 前記フィブリル状ポリマーが導電性基板上に支持されていることを特徴とする請求項1に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 1, wherein the fibrillar polymer is supported on a conductive substrate. 前記フィブリル状ポリマーが導電性基板上で芳香環を有する化合物を電解重合して得たポリマーであることを特徴とする請求項4又は6に記載の炭素繊維の製造方法。   The method for producing a carbon fiber according to claim 4 or 6, wherein the fibrillated polymer is a polymer obtained by electrolytic polymerization of a compound having an aromatic ring on a conductive substrate. 前記導電性基板がカーボンペーパーであることを特徴とする請求項6又は7に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 6 or 7, wherein the conductive substrate is carbon paper. 請求項1〜8のいずれかに記載の方法で製造された3次元連続構造を有する炭素繊維。   A carbon fiber having a three-dimensional continuous structure produced by the method according to claim 1. 請求項9に記載の炭素繊維に触媒を担持してなる触媒構造体。   A catalyst structure comprising a catalyst supported on the carbon fiber according to claim 9. ガス拡散層と、該ガス拡散層の上に配置された触媒層とからなる固体高分子型燃料電池用電極において、
前記触媒層に請求項10に記載の触媒構造体を用いたことを特徴とする固体高分子型燃料電池用電極。
In a polymer electrolyte fuel cell electrode comprising a gas diffusion layer and a catalyst layer disposed on the gas diffusion layer,
An electrode for a polymer electrolyte fuel cell, wherein the catalyst structure according to claim 10 is used for the catalyst layer.
請求項11に記載の電極を備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the electrode according to claim 11.
JP2005083968A 2005-03-23 2005-03-23 Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell Withdrawn JP2006265761A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005083968A JP2006265761A (en) 2005-03-23 2005-03-23 Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell
PCT/JP2006/305571 WO2006101084A1 (en) 2005-03-23 2006-03-20 Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083968A JP2006265761A (en) 2005-03-23 2005-03-23 Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2006265761A true JP2006265761A (en) 2006-10-05

Family

ID=37202011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083968A Withdrawn JP2006265761A (en) 2005-03-23 2005-03-23 Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2006265761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096669A1 (en) * 2007-02-05 2008-08-14 Sony Corporation Fuel cell and electronic equipment comprising the fuel cell
WO2011152487A1 (en) * 2010-06-04 2011-12-08 住友化学株式会社 Modified aromatic amine, redox catalyst, electrode catalyst for fuel cell, and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096669A1 (en) * 2007-02-05 2008-08-14 Sony Corporation Fuel cell and electronic equipment comprising the fuel cell
JP2008192461A (en) * 2007-02-05 2008-08-21 Sony Corp Fuel cell and electronic equipment equipped with the same
WO2011152487A1 (en) * 2010-06-04 2011-12-08 住友化学株式会社 Modified aromatic amine, redox catalyst, electrode catalyst for fuel cell, and fuel cell

Similar Documents

Publication Publication Date Title
WO2006101084A1 (en) Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
Liu et al. Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction
US20090142647A1 (en) Carbon fiber, porous support-carbon fiber composite and method for producing the same as well as catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell
US20030091891A1 (en) Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
KR100512221B1 (en) Electrode Catalyst for Fuel Cell and Fuel Cell Using the Same
CN105148892A (en) Graphene/carbon nano tube/carbon nanofiber electrocatalyst and preparation method thereof
JP2007137754A (en) Mesoporous carbon, its production method, supported catalyst using it, and fuel cell
JP2006156029A (en) Carbon electrode material for vanadium redox flow battery
KR20180076957A (en) Cathode for fuel cell, and method for preparing membrane electrode assembly comprising the same
JP2007099551A (en) Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
KR20090055299A (en) Carbonaceous material and method of preparing same
JP4393459B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006273645A (en) Apparatus and method for continuously firing organic substance, carbon material, catalyst structure using the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
KR101995830B1 (en) Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same
JP2006265761A (en) Carbon fiber, method for producing the same, catalyst structure using the same, electrode for solid high polymer fuel cell and solid high polymer fuel cell
CA2434086A1 (en) Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
JP2007227064A (en) Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2007227088A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2008069494A (en) Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2017029940A (en) Catalyst substrate composite, and electrode for treating organic waste water and organic waste water treatment system using the same
JP2008204877A (en) Electrode for solid polymer fuel cell, its manufacturing method and solid polymer fuel cell provided with the same
JP2007186828A (en) Method for producing carbon fiber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603