JP2017029940A - Catalyst substrate composite, and electrode for treating organic waste water and organic waste water treatment system using the same - Google Patents

Catalyst substrate composite, and electrode for treating organic waste water and organic waste water treatment system using the same Download PDF

Info

Publication number
JP2017029940A
JP2017029940A JP2015153804A JP2015153804A JP2017029940A JP 2017029940 A JP2017029940 A JP 2017029940A JP 2015153804 A JP2015153804 A JP 2015153804A JP 2015153804 A JP2015153804 A JP 2015153804A JP 2017029940 A JP2017029940 A JP 2017029940A
Authority
JP
Japan
Prior art keywords
catalyst
base composite
expanded graphite
catalyst base
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015153804A
Other languages
Japanese (ja)
Inventor
大剛 小野寺
Taigo Onodera
大剛 小野寺
鈴木 修一
Shuichi Suzuki
修一 鈴木
内藤 孝
Takashi Naito
内藤  孝
奥村 壮文
Takefumi Okumura
壮文 奥村
慶紀 内山
Yoshinori Uchiyama
慶紀 内山
倫明 矢嶋
Tomoaki Yajima
倫明 矢嶋
恭子 小澤
Kyoko Ozawa
恭子 小澤
藤田 淳
Atsushi Fujita
藤田  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015153804A priority Critical patent/JP2017029940A/en
Publication of JP2017029940A publication Critical patent/JP2017029940A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an organic waste water treatment system good in oxygen reduction performance by using a catalyst substrate composite containing nitrogen in an expanded graphite for a cathode.SOLUTION: There is provided a catalyst substrate composite having a substrate 201 consisting of an expanded graphite and a catalyst 202 carried between layers of the expanded graphite, where the catalyst is carbon containing nitrogen, bulk density of the expanded graphite is 0.1 to 1.4 g/cm3 and content of the nitrogen to the content of the carbon in the catalyst is 0.005 to 0.3 atom%. There is provided a catalyst substrate composite having an R value by a Raman analysis of more than 1.1 and a half width of Grand HH00 of 14≤HHHDD≤100 cm.SELECTED DRAWING: Figure 2

Description

本発明は、触媒とカーボン基材を複合化させた触媒基材複合体に関する。   The present invention relates to a catalyst base composite in which a catalyst and a carbon base are combined.

近年、工場廃水、家庭廃水、下水等の有機廃水を分解する際にエネルギーを回収する方法として、微生物を用いた有機廃水処理システムが注目されている。一般的に、有機廃水の処理には、活性汚泥法や散水ろ床法、あるいは嫌気性消化法などが用いられる。微生物によるこれらの方法は、有機性物質を効率よく短時間にかつ経済的に処理できる一方、有機廃水を処理した後の増殖した微生物由来の発生汚泥を処理するエネルギーが大きな課題のひとつである。微生物を用いた有機廃水処理システムは、微生物が廃水中の有機物を分解する際に発電し、エネルギーを回収できるだけでなく、汚泥発生量も抑えられることから、次世代の廃水処理システムとして期待されている。   In recent years, organic wastewater treatment systems using microorganisms have attracted attention as methods for recovering energy when decomposing organic wastewater such as factory wastewater, household wastewater, and sewage. In general, an activated sludge method, a sprinkling filter method, an anaerobic digestion method, or the like is used for the treatment of organic wastewater. In these methods using microorganisms, organic substances can be treated efficiently and in a short time and economically. On the other hand, energy for treating generated sludge derived from microorganisms after treating organic wastewater is one of the major problems. Organic wastewater treatment systems using microorganisms are expected to be the next generation wastewater treatment system because they generate electricity when microorganisms decompose organic matter in wastewater and not only recover energy but also reduce sludge generation. Yes.

微生物を用いた有機廃水処理システムは、アノードと、イオン透過性膜と、カソードとが順に並べられており、かつアノードとカソードとが導線により接続されている有機廃水処理システムが開示されている。有機廃水処理システムを使用する際には、アノードの基材表面に、嫌気性の微生物を定着または流し込み、そこに有機性物質を含む液体を流す。また、カソード基材に空気を流し、カソードに空気を接触させる。アノードでは、微生物が有機性物質を分解し、プロトン(H)及び電子(e)が生成される。プロトンは、電解質であるプロトン伝導性膜を透過して、カソード側に移動して、カソード側の空気中の酸素と反応することで発電する。これにより、導線に流れる電気エネルギーを回収できる。 An organic wastewater treatment system using microorganisms discloses an organic wastewater treatment system in which an anode, an ion permeable membrane, and a cathode are arranged in order, and the anode and the cathode are connected by a conductive wire. When using an organic wastewater treatment system, anaerobic microorganisms are fixed or poured onto the surface of the anode substrate, and a liquid containing an organic substance is allowed to flow there. Further, air is allowed to flow through the cathode base material, and air is brought into contact with the cathode. At the anode, the microorganism decomposes the organic substance, and protons (H + ) and electrons (e ) are generated. Protons pass through the proton conductive membrane as an electrolyte, move to the cathode side, and generate electricity by reacting with oxygen in the air on the cathode side. Thereby, the electric energy which flows into a conducting wire is recoverable.

このような有機廃水処理システムに用いられるカソードとしては、システムの簡便性及びコストの観点から、一般的に空気中の酸素を電解質とは反対の面に流入するエアカソードと呼ばれる方式用いられる。エアカソードでは、酸素とアノードからのプロトンおよび電子とが反応し、発電し、エネルギー回収に寄与する。その際、上記反応を促進させるために、触媒が必要となる。   As a cathode used in such an organic wastewater treatment system, a method called an air cathode is generally used in which oxygen in the air flows into the surface opposite to the electrolyte from the viewpoint of simplicity and cost of the system. In the air cathode, oxygen reacts with protons and electrons from the anode to generate power and contribute to energy recovery. At that time, a catalyst is required to promote the reaction.

特許文献1には、カーボンペーパーの片面に白金触媒を塗布したカソードが開示されている。また、特許文献2にはポリテトラフルオロエチレンに塗布した白金触媒塗料をプロトン伝導性膜に圧着したカソードが開示されている。特許文献3には、炭素繊維不織布に担持されたカーボンアロイ触媒を用いた電極が開示されている。   Patent Document 1 discloses a cathode in which a platinum catalyst is applied to one side of carbon paper. Patent Document 2 discloses a cathode in which a platinum catalyst coating applied to polytetrafluoroethylene is pressure-bonded to a proton conductive membrane. Patent Document 3 discloses an electrode using a carbon alloy catalyst supported on a carbon fiber nonwoven fabric.

特開2015−41477号公報JP2015-41477A 特開2011−206627号公報JP 2011-206627 A 特開2012−33320号公報JP 2012-33320 A

微生物を用いた有機廃水処理システムでは、微生物由来の発生汚泥を低減し、発電によりエネルギーを回収する過程において、エアカソードの有機廃水による汚染や浸潤によるカソード性能の低下を根本的に解決することは困難である。   In organic wastewater treatment systems using microorganisms, in the process of reducing generated sludge from microorganisms and recovering energy by power generation, it is possible to fundamentally solve the deterioration of cathode performance due to contamination and infiltration of air cathode organic wastewater. Have difficulty.

特許文献1及び2では、触媒が基材体の片面にのみ塗布されたカソードを用いるため、有機廃水による汚染や浸潤によりカソード性能が十分得られない可能性がある。さらに、高価な白金を用いていることから、エアカソードのコストメリットが得られない。   In Patent Documents 1 and 2, since the cathode in which the catalyst is applied only on one side of the base material is used, there is a possibility that the cathode performance may not be sufficiently obtained due to contamination or infiltration by organic waste water. Further, since expensive platinum is used, the cost merit of the air cathode cannot be obtained.

特許文献3では、基材に非晶質カーボンを使用しているため、カソード性能を向上させるには酸素還元性能をさらに高める必要がある。   In Patent Document 3, since amorphous carbon is used as the base material, it is necessary to further improve the oxygen reduction performance in order to improve the cathode performance.

そこで、本発明は、高い酸素還元性能を有するカソードを提供することを目的とする。   Therefore, an object of the present invention is to provide a cathode having high oxygen reduction performance.

上記課題を解決するために本発明に係る触媒基材複合体は、膨張黒鉛からなる基材と、前記膨張黒鉛の層間に担持された触媒と、を備え、触媒は窒素を含有する炭素であることを特徴とする。   In order to solve the above problems, a catalyst base composite according to the present invention comprises a base material made of expanded graphite and a catalyst supported between layers of the expanded graphite, and the catalyst is carbon containing nitrogen. It is characterized by that.

本発明によれば、高い酸素還元性能を有するカソードを提供することができる。   According to the present invention, a cathode having high oxygen reduction performance can be provided.

本実施形態に係る有機廃水処理システムの構成の模式図である。It is a schematic diagram of the structure of the organic wastewater treatment system which concerns on this embodiment. 本実施形態に係る触媒基材複合体を示す図である。It is a figure which shows the catalyst base material complex which concerns on this embodiment. 従来のカソードを示す模式図である。It is a schematic diagram which shows the conventional cathode. 本実施形態に係る触媒基材複合体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the catalyst base material complex concerning this embodiment.

以下に本発明の一実施形態に係る触媒基材複合体について説明する。   The catalyst base composite according to one embodiment of the present invention will be described below.

図1は、有機廃水処理システムの構成の一例示す模式図である。有機廃水処理システムは、カソード101と、アノード102と、有機廃水兼電解質層103とを備える。カソード101は、基材と触媒とを有する。アノード102には、微生物が配置されている。カソード101とアノード102との間には有機廃水兼電解質層103が配置されている。   FIG. 1 is a schematic diagram illustrating an example of a configuration of an organic wastewater treatment system. The organic wastewater treatment system includes a cathode 101, an anode 102, and an organic wastewater / electrolyte layer 103. The cathode 101 has a base material and a catalyst. Microorganisms are disposed on the anode 102. An organic wastewater / electrolyte layer 103 is disposed between the cathode 101 and the anode 102.

<カソード>
カソード101に用いられる触媒基材複合体について説明する。図2は、本実施形態に係る触媒基材複合体の模式的に示す断面図である。触媒基材複合体は、膨張黒鉛からなる基材201と、触媒202を有する。触媒202としては、窒素がドープされた炭素を用いる。なお、カソードは基材表面に触媒保護層を備えていても良い。
<Cathode>
The catalyst base composite used for the cathode 101 will be described. FIG. 2 is a cross-sectional view schematically showing the catalyst base composite according to the present embodiment. The catalyst base composite has a base 201 made of expanded graphite and a catalyst 202. As the catalyst 202, nitrogen-doped carbon is used. The cathode may have a catalyst protective layer on the substrate surface.

触媒202は、基材201の内部に分散している。なお、触媒は基材の内部だけでなく、基材の表面及び裏面に配置されていても良い。また、触媒は基材である膨張黒鉛の端部に配置されていても良い。   The catalyst 202 is dispersed inside the base material 201. In addition, the catalyst may be arrange | positioned not only the inside of a base material but the surface and the back surface of a base material. Moreover, the catalyst may be arrange | positioned at the edge part of the expanded graphite which is a base material.

図3に従来技術に係るカソードを模式的に示す断面図を示す。従来技術に係るカソードとしては、基材301に、担体303に担持された触媒302が塗布されたものが一般的である。このような構造では、基材表面の触媒層が有機排水による汚染や液の湿潤により不活性する虞があった。   FIG. 3 is a sectional view schematically showing a cathode according to the prior art. As a cathode according to the prior art, a cathode having a base material 301 coated with a catalyst 302 supported on a carrier 303 is generally used. In such a structure, there is a possibility that the catalyst layer on the surface of the substrate becomes inactive due to contamination by organic waste water or wetness of the liquid.

一方、図2のように基材である膨張黒鉛全体に窒素を含有する炭素からなる触媒が分散配置された触媒基材複合体は、カソードの有機廃水接触面だけでなく、基材内部および空気との接触面である裏面全体に触媒が均一に分散しているため、プロトンまたは空気中の酸素と接触面が広い。そのため、基材表面の触媒層が有機廃水による汚染や液の浸潤により不活性化しても、内部にある触媒層が空気と接触し触媒として働ける。その結果、高い酸素還元性能を維持でき、カソードの耐久性も向上させることが可能となる。   On the other hand, as shown in FIG. 2, the catalyst base composite in which the catalyst made of carbon containing nitrogen is dispersed throughout the expanded graphite, which is the base, has not only the organic waste water contact surface of the cathode but also the inside of the base and the air. Since the catalyst is uniformly dispersed on the entire back surface, which is a contact surface with the oxygen, the contact surface is wide with protons or oxygen in the air. Therefore, even if the catalyst layer on the surface of the base material is inactivated by contamination with organic waste water or infiltration of the liquid, the catalyst layer inside contacts with air and can work as a catalyst. As a result, high oxygen reduction performance can be maintained, and the durability of the cathode can be improved.

本明細書において、酸素還元とは、以下の式(1)および(2)で示される反応のいずれかを意味する。   In this specification, oxygen reduction means any of the reactions represented by the following formulas (1) and (2).

+ 2HO + 4e → 4OH 式(1)
+ 4H + 4e → 2HO 式(2)
基材としては、膨張黒鉛を用いる。膨張黒鉛とは、黒鉛の層間に酸等の膨張剤を挿入し、加熱することにより黒鉛のC軸が膨張成形されたものをいう。膨張黒鉛の原料黒鉛粒子としては、一般的に知られている天然黒鉛、キュシュ黒鉛、熱分解黒鉛などの人造黒鉛が使用できるが、入手の容易な点で天然鱗片状黒鉛、例えば、フレイクグラファイト、ベイングラファイトが良く、粒度は80メッシュ以上、望ましくは50メッシュ以上のもので、形状は肉厚、針状のものが膨張後の成形作業が効率良く行えて望ましい。
O 2 + 2H 2 O + 4e → 4OH Formula (1)
O 2 + 4H + + 4e → 2H 2 O Formula (2)
As the base material, expanded graphite is used. Expanded graphite refers to a graphite C-axis expanded by inserting an expansion agent such as an acid between graphite layers and heating. As the raw graphite particles of the expanded graphite, generally known artificial graphite such as natural graphite, cushy graphite, pyrolytic graphite and the like can be used, but natural scaly graphite such as flake graphite, Vane graphite is good, the particle size is 80 mesh or more, preferably 50 mesh or more, and the shape is thick and needle-shaped, which is desirable because the molding operation after expansion can be performed efficiently.

膨張黒鉛の物性としては、圧縮破壊強さ750kg/cm以上であることが望ましい。嵩密度は、0.05g/cm以上1.4g/cm以下であることが望ましい。嵩密度が0.05g/cmよりも小さいと膨張黒鉛の強度が保てず、1.4g/cmよりも大きいと触媒が内部で均一分散することが困難になる。 As physical properties of expanded graphite, it is desirable that the compression fracture strength is 750 kg / cm 2 or more. The bulk density is desirably 0.05 g / cm 3 or more 1.4 g / cm 3 or less. Low bulk density and strength of the expanded graphite can not be maintained than 0.05 g / cm 3, a large catalyst becomes difficult to uniformly disperse within than 1.4 g / cm 3.

膨張黒鉛のラマン分光分析によるGバンドの半値幅は14cm−1以上50cm−1以下であることが好ましい。また、膨張黒鉛のラマン分光分析によるR値は0以上0.5以下であることが望ましい。このようなGバンドの半値幅及びR値を満たす膨張黒鉛を用いることにより高い酸素還元性能を有する触媒基材複合体を形成することが可能となる。なお、Gバンドとは炭素材料の結晶性の高さに起因するラマンスペクトルであり約1580cm−1付近にピークを示す。また、R値はGバンドに対するDバンドのスペクトル強度の比率であり、炭素材料の結晶性を示す指標である。ここで言うDバンドとは約1350cm−1付近にピークを示し、炭素材料の非晶質性を示す指標である。 It is preferable that the half band width of G band by expanded spectroscopic analysis of expanded graphite is 14 cm −1 or more and 50 cm −1 or less. Moreover, it is desirable that the R value of the expanded graphite by Raman spectroscopic analysis is 0 or more and 0.5 or less. By using expanded graphite satisfying such a half-value width and R value of the G band, a catalyst base composite having high oxygen reduction performance can be formed. The G band is a Raman spectrum due to the high crystallinity of the carbon material, and shows a peak in the vicinity of about 1580 cm −1 . The R value is the ratio of the spectral intensity of the D band to the G band, and is an index indicating the crystallinity of the carbon material. The D band mentioned here is an index showing a peak in the vicinity of about 1350 cm −1 and indicating the amorphous nature of the carbon material.

本発明に係るカソードを有機廃水処理システムに用いる場合、有機廃水を用いるので基材である膨張黒鉛の濡れ性がカソードの酸素還元性能に影響する虞がある。基材である膨張黒鉛の親水性が高すぎると触媒が液に浸漬し、所望の性能が得られない。また、親水性が低いと基材内部でのプロトンの伝導が阻害され、所望の性能が得られない。これらを鑑みて、膨張黒鉛に親水性を付与するためにTiO、SiO、およびAlなどを添加しても良い。なお、その際の添加量は、基材である膨張黒鉛に対して0.1重量%以上10重量%以下が望ましい。0.1重量%よりも少ないとその効果が現れず、また10重量%よりも大きいと本来の触媒の反応を阻害する懸念がある。 When the cathode according to the present invention is used in an organic wastewater treatment system, the wettability of expanded graphite as a base material may affect the oxygen reduction performance of the cathode because organic wastewater is used. If the hydrophilicity of the expanded graphite as the base material is too high, the catalyst is immersed in the liquid and the desired performance cannot be obtained. On the other hand, if the hydrophilicity is low, proton conduction inside the substrate is hindered and desired performance cannot be obtained. In view of these, TiO 2 , SiO 2 , Al 2 O 3 and the like may be added to impart hydrophilicity to the expanded graphite. In addition, as for the addition amount in that case, 0.1 to 10 weight% is desirable with respect to the expanded graphite which is a base material. If the amount is less than 0.1% by weight, the effect does not appear. If the amount is more than 10% by weight, the reaction of the original catalyst may be hindered.

本発明の触媒基材複合体中の触媒は、少なくとも炭素の網目構造の中に窒素を含んでいる構造を有しており、その窒素近傍で酸素還元反応が進行すると考えられている。形状としては不定形である。   The catalyst in the catalyst base composite of the present invention has a structure containing nitrogen in at least a carbon network structure, and it is considered that the oxygen reduction reaction proceeds in the vicinity of the nitrogen. The shape is indefinite.

触媒は、不定形な非晶質炭素に担持されていても良い。   The catalyst may be supported on amorphous amorphous carbon.

触媒の窒素の含有量は、炭素に対する窒素の含有量が0.005原子%よりも大きく、0.3原子%よりも小さいことが望ましい。0.005原子%よりも小さいと、その酸素還元性能向上の効果が現れず、0.3原子%よりも大きいと、触媒の炭素網目構造を保てなくなり、酸素還元性能が低下する。   The nitrogen content of the catalyst is preferably such that the nitrogen content relative to carbon is greater than 0.005 atomic% and smaller than 0.3 atomic%. If it is less than 0.005 atomic%, the effect of improving the oxygen reduction performance does not appear, and if it exceeds 0.3 atomic%, the carbon network structure of the catalyst cannot be maintained and the oxygen reduction performance is lowered.

触媒は、任意に金属を含むことにより、その触媒性能を向上させることが可能となる。具体的には、Ni,Fe,Co,Cuなどの遷移金属、K、Na,Cs,Mg,Ca,Sr,Baなどのアルカリ金属などが挙げられる。この中でも特にFeが望ましい。これらの金属を単独で含有しても良いし、複数含有しても良い。   A catalyst can improve the catalyst performance by containing a metal arbitrarily. Specific examples include transition metals such as Ni, Fe, Co, and Cu, and alkali metals such as K, Na, Cs, Mg, Ca, Sr, and Ba. Of these, Fe is particularly desirable. These metals may be contained alone or in combination.

触媒中に含まれる金属の含有量としては、炭素に対する金属の含有量が0.005原子%よりも大きく0.3原子%よりも小さいことが望ましい。0.005原子%よりも小さいとその効果が現れず、0.3原子%よりも大きいと金属の凝集粗大化により触媒の反応表面積が低くなることにより酸素還元性能が低下する。   The metal content in the catalyst is preferably such that the metal content relative to carbon is greater than 0.005 atomic% and smaller than 0.3 atomic%. If it is less than 0.005 atomic%, the effect does not appear, and if it is more than 0.3 atomic%, the reaction surface area of the catalyst is lowered due to the coarsening of the metal, thereby reducing the oxygen reduction performance.

基材に対する触媒の含有量は、0.1重量%以上80重量%以下であることが好ましい。0.1重量%よりも低いとその触媒効果が得られず、80重量%よりも高いと触媒基材複合体製造時の熱処理によって基材の構造が崩壊する虞がある。また、触媒の含有量が80重量%を超えると、触媒同士の凝集により反応表面積が低下する虞がある。   The content of the catalyst with respect to the substrate is preferably 0.1% by weight or more and 80% by weight or less. If it is lower than 0.1% by weight, the catalytic effect cannot be obtained, and if it is higher than 80% by weight, the structure of the base material may be destroyed by the heat treatment during the production of the catalyst base composite. On the other hand, if the catalyst content exceeds 80% by weight, the reaction surface area may decrease due to aggregation of the catalysts.

また、触媒基材複合体のラマン分光分析によるR値は、0よりも大きく、1.1よりも小さくことが好ましい。またラマン分光分析によるGbandの半値幅は14cm−1よりも大きく100cm−1よりも小さいことが望ましい。R値が1.1よりも大きいと基材である膨張黒鉛の黒鉛構造が乱れることにより膨張黒鉛の有する基材耐久性が低下する。また、Gbandの半値幅が14cm−1よりも小さいと、触媒の酸素還元性能が低く100cm−1よりも大きいと、基材である膨張黒鉛の黒鉛構造が乱れることにより膨張黒鉛の有する基材耐久性が低下する虞がある。 Moreover, it is preferable that R value by the Raman spectroscopic analysis of a catalyst base composite body is larger than 0, and smaller than 1.1. The half-width of Gband by Raman spectroscopy is preferably smaller than the larger 100 cm -1 than 14cm -1. If the R value is larger than 1.1, the graphite structure of the expanded graphite as a base material is disturbed, so that the durability of the base material that the expanded graphite has decreases. Further, if the half width of Gband is smaller than 14 cm −1 , the oxygen reduction performance of the catalyst is low, and if it is larger than 100 cm −1 , the graphite structure of the expanded graphite which is the substrate is disturbed, so that the durability of the expanded graphite has There is a risk that the performance will be reduced.

<アノード>
アノードの基材としては、微生物を定着しやすく、有機物を分解して発電した際の電子を効率よく伝導できる媒体が望ましい。例えば、カーボンクロス(炭素織布)、カーボンペーパー、カーボンフェルト、ポーラスカーボン、金属メッシュ、及び金属メッシュにカーボンブラック又は炭素繊維をコーティングしたコーティング物などが適している。
<Anode>
As a substrate for the anode, a medium that can easily fix microorganisms and efficiently conduct electrons when power is generated by decomposing organic substances is desirable. For example, carbon cloth (carbon woven fabric), carbon paper, carbon felt, porous carbon, metal mesh, and a coated product obtained by coating a metal mesh with carbon black or carbon fiber are suitable.

本発明に係る有機廃水処理システムの電解質としては、有機廃水そのものを電解質として使用しても良いし、プロトンを伝導させるプロトン伝導性電解質膜を用いても良い。   As the electrolyte of the organic wastewater treatment system according to the present invention, the organic wastewater itself may be used as the electrolyte, or a proton conductive electrolyte membrane that conducts protons may be used.

プロトン伝導性電解質膜の材料は特に限定されない。プロトン伝導性電解質膜としては、例えば、スルホン酸基を有するフッ素樹脂系イオン交換膜が用いられるが、これ以外の膜を用いてもよい。スルホン酸基は高い親水性を有しており、高いカチオン交換能を保持している。また、一部のみをフッ素化したフッ素樹脂系イオン交換膜や、芳香族炭化水素系膜もより安価な材料として利用できる。有機廃水を電解質として用いず、プロトン伝導性電解質膜を用いた場合、コストは上がるが、アノードでの反応で発生したプロトンを効率的にカソードへ供給するため、カソードの酸素還元性能向上に効果がある。プロトン伝導性電解質膜の市販品としては、例えば、デュポン社製の「Nafion 115」、トクヤマ社製「NEOSEPTA CM−1」、および、旭硝子社製「Selemion CSV」などが挙げられる。   The material of the proton conductive electrolyte membrane is not particularly limited. As the proton conductive electrolyte membrane, for example, a fluororesin ion exchange membrane having a sulfonic acid group is used, but other membranes may be used. The sulfonic acid group has high hydrophilicity and retains high cation exchange ability. In addition, a fluororesin ion exchange membrane that is partially fluorinated and an aromatic hydrocarbon membrane can also be used as cheaper materials. When organic wastewater is not used as an electrolyte and a proton-conducting electrolyte membrane is used, the cost increases, but protons generated by the reaction at the anode are efficiently supplied to the cathode, which is effective in improving the oxygen reduction performance of the cathode. is there. Examples of commercially available proton conductive electrolyte membranes include “Nafion 115” manufactured by DuPont, “NEOSEPTA CM-1” manufactured by Tokuyama, and “Selemion CSV” manufactured by Asahi Glass.

プロトン伝導性電解質膜の厚みは、10μm以上、1mm以下が好ましい。10μmよりも薄いと、容易に破損することで短絡する危険性があり、1mmよりも厚いとプロトン伝導が阻害される虞がある。   The thickness of the proton conductive electrolyte membrane is preferably 10 μm or more and 1 mm or less. If it is thinner than 10 μm, there is a risk of short circuiting due to easy breakage, and if it is thicker than 1 mm, proton conduction may be hindered.

<触媒基材複合体の製造方法>
本実施形態に係る触媒基材複合体の製造方法は、触媒前駆体溶液を調製する触媒前駆体溶液調製工程、基材である膨張黒鉛に触媒前駆体を含浸させる触媒基材複合前駆体製造工程、触媒基材複合前駆体を熱処理する触媒基材複合体製造工程を備える。
<Method for producing catalyst base composite>
The method for producing a catalyst base composite according to this embodiment includes a catalyst precursor solution preparation step for preparing a catalyst precursor solution, and a catalyst base composite precursor production step for impregnating the expanded graphite as a base material with the catalyst precursor. And a catalyst substrate composite manufacturing step of heat-treating the catalyst substrate composite precursor.

触媒前駆体を調製する触媒前駆体溶液調製工程では、窒素源となる窒素を含有する窒素化合物と無機金属塩とを溶媒に溶解し、混合することで、触媒前駆体を調製する。窒素源となる窒素化合物は、窒素原子を含む有機化合物であれば良く、分子量の高低を問わず特に制限はない。例えば、窒素ヘテロ環化合物、窒素基を含む芳香族環化合物、アミン類、イミン類、ニトリル類、窒素を含むポリマーなどが挙げられる。具体的には、ピロール及びその誘導体、ピラゾールやイミダゾールなどのジアゾール類及びその誘導体、トリアゾール類及びその誘導体、ピリジン及びその誘導体、ピリダジンやピリミジンやピラジン等のジアジン類及びその誘導体、トリアジン類及び、メラミンやシアヌル酸等のトリアジン類誘導体、キノリン、フェナントロリン、プリン、ベンゾニトリル、アニリン、メチルアミン、エチルアミン、ジメチルアミン及びトリメチルアミン等の脂肪族アミン及びその誘導体、エチレンジアミン、エタノールアミン、ピロリジン及びエチレンイミン、アセトニトリル、ナイロン、ポリアクリロニトリル、フタロシアニン、ポルフィリン、およびリボフラビンなどが挙げられる。   In the catalyst precursor solution preparation step for preparing the catalyst precursor, the catalyst precursor is prepared by dissolving and mixing the nitrogen compound containing nitrogen as the nitrogen source and the inorganic metal salt in a solvent. The nitrogen compound used as the nitrogen source may be an organic compound containing a nitrogen atom, and is not particularly limited regardless of the molecular weight. Examples thereof include nitrogen heterocyclic compounds, aromatic ring compounds containing nitrogen groups, amines, imines, nitriles, and polymers containing nitrogen. Specifically, pyrrole and derivatives thereof, diazoles and derivatives thereof such as pyrazole and imidazole, triazoles and derivatives thereof, pyridine and derivatives thereof, diazines and derivatives thereof such as pyridazine, pyrimidine and pyrazine, triazines and melamine And triazine derivatives such as cyanuric acid, quinoline, phenanthroline, purine, benzonitrile, aniline, aliphatic amines such as methylamine, ethylamine, dimethylamine and trimethylamine and their derivatives, ethylenediamine, ethanolamine, pyrrolidine and ethyleneimine, acetonitrile, Examples include nylon, polyacrylonitrile, phthalocyanine, porphyrin, and riboflavin.

無機金属塩としては、特に限定はされないが、水酸化物、酸化物、窒化物、硫化物、炭素化物、硝化物、ハロゲン化物等とすることができる。   Although it does not specifically limit as an inorganic metal salt, It can be set as a hydroxide, an oxide, nitride, sulfide, carbonization, nitrification, a halide, etc.

窒素化合物と無機金属塩を溶解する溶媒としては特に限定はされないが、基材である膨張黒鉛へ触媒を均一分散することが目的であるため、無機金属塩と窒素化合物の両方が溶解する溶媒であることが望ましい。例えば、水、N−メチルピロリドン、N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、ジメチルスルホキシド、テトラヒドロフラン、ブタノール、トルエン、キシレン、メチルエチルケトン、アセトン等を用いることができる。
なお、窒素化合物と無機金属塩の比率に特に制限はない。
The solvent that dissolves the nitrogen compound and the inorganic metal salt is not particularly limited. However, since the purpose is to uniformly disperse the catalyst in the expanded graphite as the base material, the solvent that dissolves both the inorganic metal salt and the nitrogen compound is used. It is desirable to be. For example, use water, N-methylpyrrolidone, N-dimethylformamide, N, N-dimethylacetamide, methanol, ethanol, propanol, ethylene glycol, glycerin, dimethyl sulfoxide, tetrahydrofuran, butanol, toluene, xylene, methyl ethyl ketone, acetone, etc. Can do.
In addition, there is no restriction | limiting in particular in the ratio of a nitrogen compound and an inorganic metal salt.

触媒基材複合前駆体製造工程では、触媒前駆体溶液を基材である膨張黒鉛内部に均一に含浸させ、乾燥することにより触媒前駆体と基材が複合した触媒基材複合前駆体を製造する。膨張黒鉛に含浸させる触媒前駆体の量としては、熱処理後の窒素化合物と無機金属塩の残重量の合計が基材である膨張黒鉛に対して80重量%以下であることが望ましい。80重量%をよりも高い場合、基材である膨張黒鉛が熱処理時に構造崩壊を生じて所望の触媒基材複合体が得られない懸念がある。また、膨張黒鉛に触媒前駆体を含浸する際、均一に触媒前駆体を含浸するため、特にその方法に制限はないが、膨張黒鉛の表面および裏面の両面から触媒前駆体溶液を含浸することが望ましい。   In the catalyst base composite precursor manufacturing step, the catalyst precursor solution is uniformly impregnated inside the expanded graphite as a base material and dried to manufacture a catalyst base composite precursor in which the catalyst precursor and base material are combined. . The amount of the catalyst precursor impregnated into the expanded graphite is desirably 80% by weight or less based on the expanded graphite as the base material, with the total remaining weight of the nitrogen compound and the inorganic metal salt after the heat treatment. When the content is higher than 80% by weight, there is a concern that the expanded graphite as a base material undergoes structural collapse during heat treatment and a desired catalyst base composite cannot be obtained. In addition, when impregnating the expanded precursor with the catalyst precursor, the catalyst precursor is uniformly impregnated, so that the method is not particularly limited, but the catalyst precursor solution may be impregnated from both the front and back surfaces of the expanded graphite. desirable.

触媒基材複合体製造工程では、触媒基材複合前駆体を熱処理することにより触媒基材複合体を製造する。熱処理は、水素やアンモニアなどの活性ガス雰囲気及び窒素ガスやアルゴンガス等の不活性ガス雰囲気のいずれにおいて行ってもよい。また、使用するガス種は、1種単独であっても、2種以上の組合せであってもよい。熱処理における加熱温度は、適宜の温度とすることができるが、300℃以上1000℃以下であることが好ましく、600℃以上900℃以下であることがより好ましい。窒素化合物を熱処理して炭素化する際、炭素化して導電性とともに酸素還元能を有する反応サイトを形成するには600以上であることが望ましく、600℃よりも低いと、炭素化の進行が未熟で高い酸素還元能を有する反応サイトを形成できないこと、および炭素化による導電性向上が進まない。また、1000℃よりも高いと炭素の結晶性が向上し、炭素中に含まれる窒素が脱離することで、酸素還元能が低下する。   In the catalyst base composite manufacturing process, the catalyst base composite is manufactured by heat-treating the catalyst base composite precursor. The heat treatment may be performed in either an active gas atmosphere such as hydrogen or ammonia and an inert gas atmosphere such as nitrogen gas or argon gas. Moreover, the gas type to be used may be one type alone or a combination of two or more types. The heating temperature in the heat treatment can be set to an appropriate temperature, but is preferably 300 ° C. or higher and 1000 ° C. or lower, and more preferably 600 ° C. or higher and 900 ° C. or lower. When the nitrogen compound is carbonized by heat treatment, it is preferably 600 or more in order to carbonize and form a reaction site having conductivity and oxygen reducing ability, and if the temperature is lower than 600 ° C., the progress of carbonization is immature. Therefore, it is impossible to form a reaction site having a high oxygen reducing ability, and the conductivity is not improved by carbonization. On the other hand, when the temperature is higher than 1000 ° C., the crystallinity of carbon is improved, and nitrogen contained in the carbon is eliminated, so that the oxygen reducing ability is lowered.

このようにして製造される触媒基材複合体は、窒素化合物や無機金属塩、および熱処理雰囲気や温度を適宜選択することにより、有機廃水処理システムのカソードや、燃料電池のカソード、種々の有機反応、無機反応に有効な触媒とすることができる。また、触媒基材複合体の組成や構造は、X線光電子分光法や、誘導結合プラズマ発光分光分析や、蛍光X線分析や、X線回折分析、走査型電子顕微鏡などによって容易に確認することができる。   The catalyst base composite produced in this way can be selected from a nitrogen compound, an inorganic metal salt, and a heat treatment atmosphere and temperature as appropriate, whereby the cathode of an organic wastewater treatment system, the cathode of a fuel cell, and various organic reactions. Thus, the catalyst can be effective for inorganic reactions. The composition and structure of the catalyst substrate composite should be easily confirmed by X-ray photoelectron spectroscopy, inductively coupled plasma emission spectroscopy, fluorescent X-ray analysis, X-ray diffraction analysis, scanning electron microscope, etc. Can do.

次に、本発明の実施例を示して具体的に説明するが、本発明の技術的範囲はこれらに限定されるものではない。   Next, examples of the present invention will be described in detail, but the technical scope of the present invention is not limited thereto.

触媒基材複合体を以下の実施例に基づき製造し、電解液中で、触媒基材複合体を含む作用極の電位を走査した際の触媒の酸素還元性能に起因する電流値を評価した。   A catalyst base composite was manufactured based on the following examples, and the current value resulting from the oxygen reduction performance of the catalyst when the potential of the working electrode including the catalyst base composite was scanned in the electrolyte was evaluated.

厚さ1.2mm、50mm角の膨張黒鉛に触媒前駆体を含浸し、熱処理することにより窒素ドープカーボン触媒を含む触媒基材複合体を製造した。   A catalyst base composite containing a nitrogen-doped carbon catalyst was manufactured by impregnating expanded graphite having a thickness of 1.2 mm and a square of 50 mm with a catalyst precursor, followed by heat treatment.

はじめに、0.1081gの1,10−フェナントロリン、0.035gの酢酸鉄を4mlのエタノールに溶解し、触媒前駆体溶液を調製した。次いで、得られた触媒前駆体溶液を、120℃のホットプレート上で熱した膨張黒鉛の表面に、均一に0.5ml滴下し、ホットプレート上で乾燥した。次に、膨張黒鉛を裏返し、その表面に触媒前駆体溶液を0.5ml滴下し、乾燥し、触媒基材複合前駆体を得た。次に触媒基材複合前駆体を石英ボートに入れ、管状型電気炉で熱処理した。なお、この熱処理は、窒素雰囲気において、10℃/分の昇温速度で800℃まで昇温させた後、800℃で1時間保持する処理とした。そして、熱処理の後、炉内を100℃まで冷却し、触媒基材複合体を得た。   First, 0.1081 g of 1,10-phenanthroline and 0.035 g of iron acetate were dissolved in 4 ml of ethanol to prepare a catalyst precursor solution. Next, 0.5 ml of the obtained catalyst precursor solution was uniformly dropped on the surface of expanded graphite heated on a hot plate at 120 ° C., and dried on the hot plate. Next, the expanded graphite was turned over, and 0.5 ml of the catalyst precursor solution was dropped on the surface and dried to obtain a catalyst base composite precursor. Next, the catalyst base composite precursor was placed in a quartz boat and heat-treated in a tubular electric furnace. In addition, this heat processing was set as the process hold | maintained at 800 degreeC for 1 hour, after heating up to 800 degreeC by the temperature increase rate of 10 degree-C / min in nitrogen atmosphere. And after heat processing, the inside of a furnace was cooled to 100 degreeC and the catalyst base-material composite_body | complex was obtained.

図4は、作製した触媒基材複合体の走査型電子顕微鏡写真である。図4から膨張黒鉛に触媒が担持されていることが確認できる。   FIG. 4 is a scanning electron micrograph of the produced catalyst base composite. From FIG. 4, it can be confirmed that the expanded graphite has a catalyst supported thereon.

実施例1の膨張黒鉛シートの厚さを1.6mmに変えたことを除いて実施例1と同様の手順で触媒基材複合体を製造した。   A catalyst base composite was produced in the same procedure as in Example 1 except that the thickness of the expanded graphite sheet in Example 1 was changed to 1.6 mm.

実施例1の膨張黒鉛シートの厚さを2.6mmに変えたことを除いて実施例1と同様の手順で触媒基材複合体を製造した。   A catalyst base composite was produced in the same manner as in Example 1 except that the thickness of the expanded graphite sheet of Example 1 was changed to 2.6 mm.

実施例1の膨張黒鉛シートの厚さを4.1mmに変えたことを除いて実施例1と同様の手順で触媒基材複合体を製造した。   A catalyst base composite was produced in the same procedure as in Example 1 except that the thickness of the expanded graphite sheet in Example 1 was changed to 4.1 mm.

1,10−フェナントロリンの添加量を3.240g、酢酸鉄の量を1.05に変えたことを除いて実施例1と同様の手順で触媒基材複合体を製造した。   A catalyst base composite was produced in the same procedure as in Example 1 except that the amount of 1,10-phenanthroline added was changed to 3.240 g and the amount of iron acetate was changed to 1.05.

[比較例1]
実施例1の膨張黒鉛シートを、厚み約200μmのカーボンペーパーに変えたことを除いて実施例1と同様の手順で触媒基材複合体を製造した。
[Comparative Example 1]
A catalyst base composite was produced in the same procedure as in Example 1 except that the expanded graphite sheet of Example 1 was changed to carbon paper having a thickness of about 200 μm.

[比較例2]
実施例1の膨張黒鉛シートを、厚み約500μmのカーボンクロスに変えたことを除いて実施例1と同様の手順で触媒基材複合体を製造した。
[Comparative Example 2]
A catalyst base composite was produced in the same procedure as in Example 1 except that the expanded graphite sheet of Example 1 was changed to a carbon cloth having a thickness of about 500 μm.

[比較例3]
カーボン担体に触媒前駆体を含浸し、熱処理することにより得た触媒粉末を、膨張黒鉛表面に塗布することにより触媒塗布基材を製造した。
[Comparative Example 3]
A catalyst-coated substrate was produced by impregnating a carbon carrier with a catalyst precursor and applying the catalyst powder obtained by heat treatment to the surface of expanded graphite.

はじめにエタノール中に、酢酸鉄0.35g、1,10フェナントロリンを1.081g添加し溶解した。この触媒前駆体溶液を担体であるKetjen Black EC300J:2.0gを加え、減圧乾燥し、乳鉢中で均一に混合した。この混合物を均一に石英ボートに入れ、管状電気炉へ投入した。この管状電気炉内に窒素ガスを100ml/min.の速度で流入させ、不活性雰囲気にした状態で、熱処理温度800℃、1時間で熱処理を行い、所望の触媒粉末を得た。次いで、触媒粉末10mgを5ml純水中に分散させ、その溶液をマイクロピペットで0.25ml取り、実施例1の膨張黒鉛シートの中心約0.196cm2に、滴下、乾燥し、触媒塗布基材を製造した。   First, 0.35 g of iron acetate and 1.081 g of 1,10 phenanthroline were added and dissolved in ethanol. To this catalyst precursor solution, 2.0 g of Ketjen Black EC300J as a carrier was added, dried under reduced pressure, and uniformly mixed in a mortar. This mixture was uniformly placed in a quartz boat and put into a tubular electric furnace. In this tubular electric furnace, nitrogen gas was supplied at 100 ml / min. The desired catalyst powder was obtained by performing a heat treatment at a heat treatment temperature of 800 ° C. for 1 hour in an inert atmosphere. Next, 10 mg of the catalyst powder is dispersed in 5 ml of pure water, and 0.25 ml of the solution is taken with a micropipette, and is dropped and dried on the center of the expanded graphite sheet of Example 1 at about 0.196 cm 2. Manufactured.

<酸素還元活性の評価>
実施例1、2、3、4および比較例1,2、3で得られた触媒基材複合体および触媒塗布基材について標準的な3電極セルを組み、それらの酸素還元活性を回転ディスク電極法により評価した。
<Evaluation of oxygen reduction activity>
A standard three-electrode cell was assembled for the catalyst base composite and the catalyst-coated base obtained in Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, and their oxygen reduction activity was determined as a rotating disk electrode. It was evaluated by the law.

まず、各触媒基材複合体および触媒塗布基材を回転ディスク電極のグラッシーカーボン表面に接着し、この上にイオン伝導性ポリマー分散液(Aldrich社製「Nafion(登録商標)」)を5μl塗布し乾燥したものを作用極とした。また、対極には白金線、参照極には、可逆水素電極(RHE)電極を使用し、3電極セルを構成した。   First, each catalyst substrate composite and a catalyst-coated substrate were bonded to the glassy carbon surface of the rotating disk electrode, and 5 μl of an ion conductive polymer dispersion (“Nafion (registered trademark)” manufactured by Aldrich) was applied thereon. The dried product was used as the working electrode. Also, a platinum wire was used as the counter electrode, and a reversible hydrogen electrode (RHE) electrode was used as the reference electrode, thereby constituting a three-electrode cell.

各触媒基材複合体および触媒塗布基材の酸素還元活性を評価するため、3電極セルを窒素飽和下の0.5mmol/l硫酸水溶液中で0Vから1.2Vの電位サイクルを10サイクル行い、触媒表面を洗浄した。次に、作用極を電極回転数400rpmで回転させつつ、0Vから1.1Vの電位サイクルを1サイクル行い、バックグランド電流を測定した。その後、飽和ガスを窒素から酸素に変え、酸素を飽和させた状態で、作用極を電極回転数400rpmで回転させつつ、0Vから1.1Vの電位サイクルを1サイクル行い、各触媒基材複合体および触媒塗布基材の酸素還元電流を測定した。測定した酸素還元電流からバックグランド電流を除し、0.7V時の電流値を比較することで、酸素還元性能を評価した。表1に実施例1、2、3、4および比較例1,2、3の酸素還元性能評価結果を示す。
In order to evaluate the oxygen reduction activity of each catalyst base composite and the catalyst-coated base, 10 potential cycles from 0 V to 1.2 V were performed in a 3-electrode cell in a 0.5 mmol / l sulfuric acid aqueous solution under nitrogen saturation. The catalyst surface was washed. Next, while rotating the working electrode at an electrode rotation speed of 400 rpm, one cycle of potential from 0 V to 1.1 V was performed, and the background current was measured. Thereafter, in a state where the saturated gas is changed from nitrogen to oxygen and the oxygen is saturated, the potential electrode from 0 V to 1.1 V is performed one cycle while rotating the working electrode at an electrode rotation speed of 400 rpm, and each catalyst base composite The oxygen reduction current of the catalyst-coated substrate was measured. The background current was removed from the measured oxygen reduction current, and the current value at 0.7 V was compared to evaluate the oxygen reduction performance. Table 1 shows the oxygen reduction performance evaluation results of Examples 1, 2, 3, and 4 and Comparative Examples 1, 2, and 3.

Figure 2017029940
Figure 2017029940

実施例1〜4の触媒基材複合体は、基材表面に触媒を塗布した比較例3に比べて高い電流値が得られた。この結果より、触媒を基材内部に分散させることにより、カソードの酸素還元性能を向上できることが分かった。   In the catalyst base composites of Examples 1 to 4, higher current values were obtained as compared with Comparative Example 3 in which the catalyst was applied to the base surface. From this result, it was found that the oxygen reduction performance of the cathode can be improved by dispersing the catalyst inside the substrate.

また、実施例1〜4と比較例1,2より、基材として膨張黒鉛を用いることにより酸素還元性能を向上できることが分かった。   Further, from Examples 1 to 4 and Comparative Examples 1 and 2, it was found that oxygen reduction performance can be improved by using expanded graphite as a base material.

以上の結果より、膨張黒鉛に窒素を含む触媒を担持した触媒基材複合体によりカソードの酸素還元性能が向上することが分かった。   From the above results, it was found that the oxygen reduction performance of the cathode was improved by the catalyst base composite having the expanded graphite carrying a catalyst containing nitrogen.

101…カソード、102…アノード、103…有機廃水兼電解質層、201…基材、202…触媒、301…基材、302…触媒、303…担体、401…基材、402…触媒 DESCRIPTION OF SYMBOLS 101 ... Cathode, 102 ... Anode, 103 ... Organic waste water and electrolyte layer, 201 ... Base material, 202 ... Catalyst, 301 ... Base material, 302 ... Catalyst, 303 ... Carrier, 401 ... Base material, 402 ... Catalyst

Claims (12)

膨張黒鉛からなる基材と、前記膨張黒鉛の層間に担持された触媒と、を備え、
前記触媒は窒素が含有された炭素であることを特徴とする触媒基材複合体。
A base material made of expanded graphite, and a catalyst supported between layers of the expanded graphite,
The catalyst base composite, wherein the catalyst is carbon containing nitrogen.
請求項1に記載の触媒基材複合体であって、
前記触媒は、さらに鉄を含むことを特徴とする触媒基材複合体。
The catalyst base composite according to claim 1,
The catalyst base composite, wherein the catalyst further contains iron.
請求項1に記載の触媒基材複合体であって、
前記触媒は前記基材内部に分散していることを特徴とする触媒基材複合体。
The catalyst base composite according to claim 1,
The catalyst base composite, wherein the catalyst is dispersed inside the base.
請求項1に記載の触媒基材複合体であって、
前記触媒は前記基材の表面及び裏面に存在することを特徴とする触媒基材複合体。
The catalyst base composite according to claim 1,
The catalyst base composite, wherein the catalyst is present on the front and back surfaces of the base.
請求項1乃至4のいずれかに記載の触媒基材複合体であって、
ラマン分析によるR値が0よりも大きく1.1よりも小さいことを特徴とする触媒基材複合体。
The catalyst base composite according to any one of claims 1 to 4,
A catalyst base composite having an R value by Raman analysis of greater than 0 and less than 1.1.
請求項1乃至4のいずれかに記載の触媒基材複合体であって、
ラマン分析によるGbandの半値幅が14cm−1よりも大きく100cm−1よりも小さいことを特徴とする触媒基材複合体。
The catalyst base composite according to any one of claims 1 to 4,
Catalyst substrate composite half-width of Gband by Raman analysis being less than large 100 cm -1 than 14cm -1.
請求項1乃至4のいずれかに記載の触媒基材複合体であって、
前記触媒中の炭素の含有量に対する前記窒素の含有量は0.005原子%よりも大きく0.3原子%よりも小さいことを特徴とする触媒基材複合体。
The catalyst base composite according to any one of claims 1 to 4,
The catalyst base composite according to claim 1, wherein the nitrogen content relative to the carbon content in the catalyst is greater than 0.005 atomic% and smaller than 0.3 atomic%.
請求項1乃至7のいずれかに記載の触媒基材複合体であって、
前記膨張黒鉛の嵩密度は0.1g/cmよりも大きく1.4g/cmよりも小さいことを特徴とする触媒基材複合体。
The catalyst base composite according to any one of claims 1 to 7,
A catalyst base composite, wherein the expanded graphite has a bulk density of greater than 0.1 g / cm 3 and less than 1.4 g / cm 3 .
請求項1乃至7のいずれかに記載の触媒基材複合体であって、
前記膨張黒鉛は、TiO,SiO,Alのいずれかを含むことを特徴とする触媒基材複合体。
The catalyst base composite according to any one of claims 1 to 7,
The expanded graphite includes a catalyst base composite comprising TiO 2 , SiO 2 , or Al 2 O 3 .
請求項1に記載の触媒基材複合体であって、
前記触媒は非晶質炭素に担持されていることを特徴とする触媒基材複合体。
The catalyst base composite according to claim 1,
A catalyst base composite, wherein the catalyst is supported on amorphous carbon.
請求項1乃至10のいずれかに記載の触媒基材複合体を用いた有機排水処理用電極。   The electrode for organic waste water treatment using the catalyst base material complex in any one of Claims 1 thru | or 10. 請求項1乃至10のいずれかに記載の触媒基材複合体を用いた有機排水処理システム。   The organic waste water treatment system using the catalyst base material complex in any one of Claims 1 thru | or 10.
JP2015153804A 2015-08-04 2015-08-04 Catalyst substrate composite, and electrode for treating organic waste water and organic waste water treatment system using the same Pending JP2017029940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015153804A JP2017029940A (en) 2015-08-04 2015-08-04 Catalyst substrate composite, and electrode for treating organic waste water and organic waste water treatment system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015153804A JP2017029940A (en) 2015-08-04 2015-08-04 Catalyst substrate composite, and electrode for treating organic waste water and organic waste water treatment system using the same

Publications (1)

Publication Number Publication Date
JP2017029940A true JP2017029940A (en) 2017-02-09

Family

ID=57985774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015153804A Pending JP2017029940A (en) 2015-08-04 2015-08-04 Catalyst substrate composite, and electrode for treating organic waste water and organic waste water treatment system using the same

Country Status (1)

Country Link
JP (1) JP2017029940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112371134A (en) * 2020-12-04 2021-02-19 上海交通大学 Preparation method of expanded graphite-based carrier-loaded low-temperature denitration catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112371134A (en) * 2020-12-04 2021-02-19 上海交通大学 Preparation method of expanded graphite-based carrier-loaded low-temperature denitration catalyst
CN112371134B (en) * 2020-12-04 2022-04-08 上海交通大学 Preparation method of expanded graphite-based carrier-loaded low-temperature denitration catalyst

Similar Documents

Publication Publication Date Title
JP4912044B2 (en) Mesoporous carbon and production method thereof, supported catalyst for fuel cell electrode and fuel cell using the same
Li et al. Metal–organic framework‐derived bamboo‐like nitrogen‐doped graphene tubes as an active matrix for hybrid oxygen‐reduction electrocatalysts
Liu et al. Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction
Liu et al. CO 2 electoreduction reaction on heteroatom-doped carbon cathode materials
JP6211687B2 (en) Methods for making nanoporous graphene and graphene quantum dots
US7670582B2 (en) Mesoporous carbon and method of producing the same
JP4979276B2 (en) Method for producing mesoporous carbon containing heteroatoms
Chao et al. Varying N content and N/C ratio of the nitrogen precursor to synthesize highly active Co-Nx/C non-precious metal catalyst
JP2009208061A (en) Carbon catalyst, slurry containing the carbon catalyst, manufacturing method of carbon catalyst, fuel cell using carbon catalyst, electric storage device and environmental catalyst
Yi et al. Carbon-supported Fe/Co-N electrocatalysts synthesized through heat treatment of Fe/Co-doped polypyrrole-polyaniline composites for oxygen reduction reaction
JP2009291706A (en) Carbon catalyst, method for manufacturing the same, fuel cell, electric storage apparatus and method for using the catalyst
KR20070055119A (en) Catalyst for fuel cell electrode and method of preparing the same
Zhan et al. The influence of nitrogen source and doping sequence on the electrocatalytic activity for oxygen reduction reaction of nitrogen doped carbon materials
JP6198930B2 (en) Nitrogen-containing carbon material, production method thereof, slurry, ink, and fuel cell electrode
Zhou et al. A nitrogen and boron co-doped metal-free carbon electrocatalyst for an efficient oxygen reduction reaction
Cao et al. Enhanced electrocatalytic activity of platinum nanoparticles supported on nitrogen-modified mesoporous carbons for methanol electrooxidation
WO2016027123A1 (en) A method for producing non-precious metal catalysts from nitrogen-rich biomass
CN105024086A (en) Palladium/nitrogen-doped graphene composite electrode catalyst and preparation method thereof
Mei et al. Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells
Wang et al. MOF-templated nitrogen-doped porous carbon materials as efficient electrocatalysts for oxygen reduction reactions
JP2018012626A (en) Porous carbon material, catalyst for solid polymer shaped fuel cell, solid polymer shaped fuel cell and manufacturing method of porous carbon material
JP6728776B2 (en) Catalyst composition, electrode for organic wastewater treatment device, and organic wastewater treatment device
KR20090055299A (en) Carbonaceous material and method of preparing same
JP2017091736A (en) Laminate and method for producing the same, membrane-electrode assembly for fuel cell, polymer electrolyte fuel cell, and direct methanol fuel cell
Hung et al. Advances in Carbon‐Incorporated Non‐Noble Transition Metal Catalysts for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125