JP2006256202A - Substrate for preform and its manufacturing method - Google Patents

Substrate for preform and its manufacturing method Download PDF

Info

Publication number
JP2006256202A
JP2006256202A JP2005078769A JP2005078769A JP2006256202A JP 2006256202 A JP2006256202 A JP 2006256202A JP 2005078769 A JP2005078769 A JP 2005078769A JP 2005078769 A JP2005078769 A JP 2005078769A JP 2006256202 A JP2006256202 A JP 2006256202A
Authority
JP
Japan
Prior art keywords
preform
sheets
sheet
substrate according
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005078769A
Other languages
Japanese (ja)
Other versions
JP4734983B2 (en
JP2006256202A5 (en
Inventor
Satoru Nagaoka
悟 長岡
Yasuo Suga
康雄 須賀
Nobuo Asahara
信雄 浅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005078769A priority Critical patent/JP4734983B2/en
Publication of JP2006256202A publication Critical patent/JP2006256202A/en
Publication of JP2006256202A5 publication Critical patent/JP2006256202A5/ja
Application granted granted Critical
Publication of JP4734983B2 publication Critical patent/JP4734983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base material for a preform which can be easily handled and shows excellent shapability into a three-dimensional shape. <P>SOLUTION: The base material for the preform is made by laminating and bonding a plurality of sheets in a thickness direction, each sheet having aligned reinforcing fibers wherein peeling strength between layers varies depending on the thickness direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は強化繊維プラスチックを樹脂注入成形法、特にレジントランスファーモールディング法(以下、RTM法という)により製造する際の中間基材であるプリフォームを作製するためのプリフォーム用基材およびその製造方法に関する。   The present invention relates to a preform substrate for producing a preform which is an intermediate substrate when a reinforced fiber plastic is produced by a resin injection molding method, particularly a resin transfer molding method (hereinafter referred to as RTM method), and a method for producing the same. About.

従来から、炭素繊維などを強化繊維とした複合材料は、優れた力学特性、軽量特性を満たすことから主に航空、宇宙、スポーツ用途に用いられてきた。これらの代表的な製造方法として、RTM法などの樹脂注入成形法が挙げられ複雑な形状を有する大型の部材を短時間で成形することができる。
かかるRTM成形法では、強化繊維からなるプリフォームを成形型の中に配置して、液状のマトリックス樹脂を注入することにより強化繊維中にマトリックス樹脂を含浸させ、その後、加熱硬化して強化繊維プラスチックを得ることができる。
RTM法などの樹脂注入成形法に適用するプリフォームは従来、平面上の強化繊維が配列したシートを一枚一枚厚み方向に配置したシート積層体を最終製品形状に準ずる形をした賦形型の上に搬送、配置して作成していた。しかしながら該シート積層体を用いてプリフォームを作成する場合、該シート積層体のシート間は接合されていないことから、型への沿い性という点では優れるものの、賦形型への搬送中に該シートの配向角がずれたり、型に配置しているときにシートがすべり落ちたりするなど、作業性が悪いこと、信頼性の高い強化繊維プラスチックが得にくいことに問題があった。
そこで予め何らかの手段でシート積層体のシート間を接合したプリフォーム用基材を製造することが考えられる。先行する特許文献に現れる技術として、シート間がステッチ糸により接合されたプリフォーム用基材が提案されている(特許文献1)。該プリフォーム用基材はシート間がステッチ糸で接合一体化されていることから、搬送性、取り扱い性などの作業性に優れる。しかしながら、該プリフォーム用基材を賦形型に沿わせて変形、固定させる場合、緩やかな形状には適用可能であるが、例えば、直角に曲げる部分に沿わせる場合、ステッチ糸の締め付けが規制となり、曲げ部分で内側と外側の周長の差が生じ、内側のシートに皺が発生し、強化繊維プラスチックにした時に本来の強度を発現できないという問題があった。
Conventionally, composite materials using carbon fibers or the like as reinforcing fibers have been mainly used for aviation, space, and sports applications because they satisfy excellent mechanical properties and light weight properties. A typical example of these production methods is a resin injection molding method such as the RTM method, and a large member having a complicated shape can be molded in a short time.
In this RTM molding method, a preform made of reinforcing fibers is placed in a mold, and a liquid matrix resin is injected to impregnate the reinforcing fibers with the matrix resin. Can be obtained.
A preform applied to a resin injection molding method such as the RTM method has conventionally been a shaping type in which a sheet laminate in which sheets of reinforcing fibers on a plane are arranged one by one in the thickness direction conforms to the shape of the final product. It was created by transporting and placing it on the top. However, when a preform is prepared using the sheet laminate, the sheets of the sheet laminate are not joined to each other. There are problems such as poor workability and difficulty in obtaining a highly reliable reinforced fiber plastic, such as misalignment of the sheet and slipping of the sheet when placed in a mold.
Therefore, it is conceivable to manufacture a preform substrate in which the sheets of the sheet laminate are joined in advance by some means. As a technique appearing in the preceding patent document, a preform base material in which sheets are joined by stitch yarns has been proposed (Patent Document 1). The preform substrate is excellent in workability such as transportability and handleability since the sheets are joined and integrated with stitch yarns. However, when the preform base material is deformed and fixed along the shaping mold, it can be applied to a gentle shape. For example, when the preform base material is bent at a right angle, the tightening of the stitch yarn is restricted. Thus, there is a problem that the inner and outer peripheral lengths are different at the bent portion, the inner sheet is wrinkled, and the original strength cannot be expressed when the fiber is made of reinforced fiber plastic.

上記以外のプリフォーム用基材として、熱可塑性樹脂を含む樹脂材料によりシート間が接合されたプリフォーム用基材が提案されている(特許文献2)。該プリフォーム用基材は、各シート間の厚み方向の剥離強さがある値以上であることから3次元形状の型に配置してもシートが滑り落ちたりすることがなく、またシート間に樹脂材料を配置していることから衝撃付与後の圧縮強度などの力学特性に優れるなど、信頼性の高い強化繊維プラスチックを得ることができる。しかしながら、該プリフォーム用基材を曲率半径の小さい部分に沿わせる場合、シート間の滑りが円滑に起こらないために、皺が発生するなどの問題があった。   As a preform substrate other than the above, a preform substrate in which sheets are joined by a resin material containing a thermoplastic resin has been proposed (Patent Document 2). Since the preform base material has a peel strength in the thickness direction between the sheets of a certain value or more, the sheet does not slide down even if it is placed in a three-dimensional shape mold. Since the resin material is arranged, it is possible to obtain a reinforced fiber plastic with high reliability such as excellent mechanical properties such as compressive strength after application of impact. However, when the preform base material is placed along a portion having a small radius of curvature, there is a problem that wrinkles occur because sliding between sheets does not occur smoothly.

また、ニードルパンチにより強化繊維を起毛処理して、シート同士がブリッジングされたものが提案されている(特許文献3)。該プリフォーム用基材においても、曲率半径の小さい部分に沿わせる場合、同様に皺が発生するなどの問題があった。   Further, there has been proposed one in which reinforcing fibers are raised by needle punching and the sheets are bridged (Patent Document 3). Even in the preform base material, there is a problem that wrinkles similarly occur when the preform base material is along a portion having a small radius of curvature.

一方、シート間の滑りが円滑に起こるプリフォーム用基材として、端部のみが熱可塑性樹脂で接合されたプリフォーム用基材が提案されている(特許文献4)。該プリフォーム用基材を3次元形状に賦形した場合、端部の接合部を基点として各シートが滑動するため、皺のないプリフォームを作製することができる。しかしながら、該プリフォーム用基材は端部以外は接合されておらず、型に搬送している際や賦形しているときにシートがめくれたり、配向角がずれるなどの問題があり、3次元形状のプリフォームを正確かつ効率よく作製するという点で不十分なものであった。
特開2004−160927号公報 特開2004−114586号公報 特開2004−60058号公報 特開平5−185539号公報
On the other hand, a preform base material in which only end portions are joined with a thermoplastic resin has been proposed as a preform base material in which slipping between sheets smoothly occurs (Patent Document 4). When the preform substrate is shaped into a three-dimensional shape, each sheet slides with the joint portion at the end as a base point, so that a preform without wrinkles can be produced. However, the preform base material is not joined except at the end, and there are problems such as the sheet turning up or the orientation angle deviating when being conveyed to a mold or shaping. It was insufficient in that a preform having a dimensional shape was accurately and efficiently produced.
JP 2004-160927 A JP 2004-114586 A JP 2004-60058 A Japanese Patent Laid-Open No. 5-185539

本発明の目的は、かかる問題点を解決し、取り扱い性に優れ、3次元形状にも皺無く賦形できるとともに、優れた力学特性を有する強化繊維プラスチックが得られるプリフォーム用基材を提供することにある。 The object of the present invention is to provide a preform base material that solves such problems, has excellent handleability, can be shaped without difficulty even in a three-dimensional shape, and obtains a reinforced fiber plastic having excellent mechanical properties. There is.

発明者は、上記問題点を解決するために鋭意検討を行い、プリフォーム用基材を曲面形状に賦形する際に生じる皺とシート間の剥離強さに密接な関係があることを見いだすとともに、以下の構成を有することにより、取り扱い性が良好で3次元形状にも優れた賦形性を有し、また成形したときに優れた力学特性を有するプリフォーム用基材が得られることを見いだすに至った。すなわち
(1)強化繊維が配列したシートを3枚以上厚み方向に配置し、シート間を接合したプリフォーム用基材であって、各シート間の剥離強さが厚み方向に変化することを特徴とするプリフォーム用基材。
(2)強化繊維が配列したシートを4枚以上厚み方向に配置し、シート間を接合したプリフォーム用基材であって、各シート間の剥離強さが、中心部から少なくとも一方の片側表面に向かって増加または減少することを特徴とする前記(1)に記載のプリフォーム用基材。
(3)前記強化繊維が配列したシートの少なくとも片面に接合機能を有する材料が配置されている前記(1)または(2)のいずれかに記載のプリフォーム用基材。
(4)各シートに配置されている接合機能を有する材料の配置量が異なる前記(1)〜(3)のいずれかに記載のプリフォーム用基材。
(5)各シート間の剥離強さが、10〜700N/mの範囲である前記(1)〜(4)のいずれかに記載のプリフォーム用基材。
(6)前記強化繊維の少なくとも一部が炭素繊維である前記(1)〜(5)のいずれかに記載のプリフォーム用基材。
(7)前記強化繊維が配列したシートの一枚当たりの目付が100〜1000g/mである前記(1)〜(6)のいずれかに記載のプリフォーム用基材。
(8)前記接合機能を有する材料が熱可塑性樹脂を含む樹脂材料である前記(1)〜(7)のいずれかに記載のプリフォーム用基材。
(9)前記接合機能を有する材料の配置量が強化繊維に対して0.5〜20重量%の範囲である前記(3)〜(8)のいずれかに記載のプリフォーム用基材。
(10)前記(1)〜(9)のいずれかに記載のプリフォーム用基材を型に沿わせて賦形したプリフォーム。
(11)少なくとも次の工程(A)〜(C)を順次経て前記(1)〜(9)のいずれかに記載のプリフォーム用基材を製造することを特徴とするプリフォーム用基材の製造方法。
(A)強化繊維が配列したシートの少なくとも片側表面に接合機能を有する材料を配置する接合機能材料配置工程。
(B)少なくとも前記(A)工程で接合機能を有する材料が配置されたシートを複数枚厚み方向に配置する配置工程。
(C)接合機能を有する材料を媒体として、シート同士を厚み方向に少なくとも部分的に接合する接合工程。
(12)前記工程(A)において、接合機能を有する材料を強化繊維が配列したシートに加熱して付着させる前記(11)に記載のプリフォーム用基材の製造方法。
(13)前記工程(B)において、接合機能を有する材料の配置量が異なるシートを厚み方向に配置する、前記(11)または(12)のいずれかに記載のプリフォーム用基材の製造方法。
(14)前記工程(C)において、加熱・加圧することにより強化繊維が配列したシート同士を厚み方向に接合する、前記(11)〜(13)のいずれかに記載のプリフォーム用基材の製造方法。
The inventor has intensively studied to solve the above problems and finds that there is a close relationship between the peel strength between the wrinkles and the sheet generated when the preform substrate is shaped into a curved shape. It is found that by having the following constitution, a preform base material having good handleability, excellent shapeability even in a three-dimensional shape, and excellent mechanical properties when molded can be obtained. It came to. That is, (1) a preform base material in which three or more sheets in which reinforcing fibers are arranged are arranged in the thickness direction and the sheets are joined to each other, and the peel strength between the sheets changes in the thickness direction. A preform base material.
(2) A preform substrate in which four or more sheets in which reinforcing fibers are arranged are arranged in the thickness direction, and the sheets are joined to each other, and the peel strength between the sheets is at least one surface from the center. The preform substrate according to (1), wherein the preform substrate increases or decreases toward the surface.
(3) The preform substrate according to any one of (1) and (2), wherein a material having a bonding function is disposed on at least one surface of the sheet on which the reinforcing fibers are arranged.
(4) The preform substrate according to any one of (1) to (3), in which the amount of the material having a bonding function disposed on each sheet is different.
(5) The preform substrate according to any one of (1) to (4), wherein the peel strength between the sheets is in the range of 10 to 700 N / m 2 .
(6) The preform substrate according to any one of (1) to (5), wherein at least a part of the reinforcing fibers is carbon fiber.
(7) The preform substrate according to any one of (1) to (6), wherein the basis weight per sheet on which the reinforcing fibers are arranged is 100 to 1000 g / m 2 .
(8) The preform substrate according to any one of (1) to (7), wherein the material having a bonding function is a resin material containing a thermoplastic resin.
(9) The preform substrate according to any one of (3) to (8), wherein an amount of the material having the bonding function is in a range of 0.5 to 20% by weight with respect to the reinforcing fiber.
(10) A preform obtained by shaping the preform substrate according to any one of (1) to (9) along a mold.
(11) A preform substrate according to any one of (1) to (9), wherein the preform substrate according to any one of (1) to (9) is manufactured through at least the following steps (A) to (C). Production method.
(A) A bonding function material arranging step of arranging a material having a bonding function on at least one surface of a sheet in which reinforcing fibers are arranged.
(B) The arrangement | positioning process which arrange | positions the sheet | seat in which the material which has a joining function at least at the said (A) process is arrange | positioned in thickness direction.
(C) A joining step of joining sheets at least partially in the thickness direction using a material having a joining function as a medium.
(12) The method for producing a preform substrate according to (11), wherein in the step (A), a material having a bonding function is heated and attached to a sheet on which reinforcing fibers are arranged.
(13) The method for producing a preform substrate according to any one of (11) and (12), wherein in the step (B), sheets having different arrangement amounts of materials having a bonding function are arranged in the thickness direction. .
(14) The preform substrate according to any one of (11) to (13), wherein in the step (C), the sheets in which the reinforcing fibers are arranged are joined in the thickness direction by heating and pressing. Production method.

本発明のプリフォーム用基材は、取り扱い性が良好で、3次元形状にも優れた賦形性を有し、かつ、本発明のプリフォーム用基材を用いた成形品は優れた力学特性を有する。   The preform substrate of the present invention has good handleability and excellent shapeability even in a three-dimensional shape, and the molded product using the preform substrate of the present invention has excellent mechanical properties. Have

以下、本発明について、望ましい実施の形態とともに具体的に説明する。図1は本発明のプリフォーム用基材の一例を概略的に示す斜視図であり、図2は図1のプリフォーム用基材のA−A矢視の断面図である。   Hereinafter, the present invention will be specifically described together with desirable embodiments. FIG. 1 is a perspective view schematically showing an example of the preform base material of the present invention, and FIG. 2 is a cross-sectional view of the preform base material of FIG.

図1において本発明のプリフォーム用基材1は強化繊維が配列したシート2が少なくとも3枚以上厚み方向に配置されており、各シート間は接合機能を有する材料3などで接合されている。該接合はピッチPの間隔で行われており、また窪み4は接合時に押圧されて形成されたものである。   In FIG. 1, the preform substrate 1 of the present invention has at least three sheets 2 in which reinforcing fibers are arranged in the thickness direction, and the sheets are joined together by a material 3 having a joining function. The joining is performed at intervals of the pitch P, and the depressions 4 are formed by being pressed at the time of joining.

該プリフォーム用基材を手または治具、あるいはフィルムやシートを用いて三次元形状に賦形する場合、各シート間の剥離強さは厚み方向に変化することが必要である。   When the preform substrate is formed into a three-dimensional shape using hands or jigs, or a film or sheet, the peel strength between the sheets needs to change in the thickness direction.

この理由を以下に示す。プリフォーム用基材1を3次元形状に賦形する場合、特に曲率半径の小さな曲げ部分では内側と外側の周長の差が大きくなるため、該曲げ部分ではシート間が、すべりを起こさなければ、内側部分で皺が発生する。この時、プリフォーム用基材1のシート間に内側と外側の周長の差に対応するすべりが生じれば皺の発生が防止できるが、各シート間のすべり易さが一定である場合、より長い距離をすべる必要のある外側の各シート間ほどすべり難くなる。そのため、すべり易さが厚み方向に変化したプリフォーム用基材を適用することにより、より長い距離をすべる必要のある部分にはシート間がすべり易い側を設定することで、皺を発生させずに適用可能な賦形形状の幅が広くなり、用途・応用範囲が広くなる。ここでは賦形の際に直接的に働くのはシート間のすべり易さであるが、すべり易さはシート間の剥離強度と良い相関関係があるため、より評価し易い各シート間の剥離強さで表すこととした。   The reason is shown below. When the preform base material 1 is shaped into a three-dimensional shape, the difference between the inner and outer circumferences is particularly large at a bent portion having a small radius of curvature, so that no slip occurs between the sheets at the bent portion. In the inner part, wrinkles occur. At this time, the occurrence of wrinkles can be prevented if a slip corresponding to the difference between the inner and outer peripheral lengths occurs between the sheets of the preform substrate 1, but if the ease of slipping between the sheets is constant, It becomes harder to slide between the outer sheets that need to slide a longer distance. Therefore, by applying a preform base material whose slipping property has changed in the thickness direction, it is possible to prevent wrinkles by setting the side on which slipping between sheets is easy to slide in a part that needs to slide over a longer distance. The width of the shape that can be applied to is widened, and the range of uses and applications is widened. Here, it is the ease of slipping between sheets that works directly during shaping, but the ease of slipping has a good correlation with the peel strength between sheets, so the peel strength between each sheet is easier to evaluate. It was decided to express it.

各シート間の剥離強さの厚み方向の変化は、搬送中や型にセットしたときにシートが剥がれたりせず、また賦形時に曲げ部分に皺なく沿うようなすべりが発生するのであれば特に限定されるものではないが、強化繊維が配列したシートを4枚以上厚み方向に配置したプリフォーム用基材では、中心部から少なくともプリフォーム用基材の片側表面に向かって増加または減少するのが好ましい。具体例として以下の3つが挙げられる。
(1)剥離強さの変化を片側表面から厚み方向に減少または増加するようにすれば、剥離強さの強い側を内側にして図4の(a)のような賦形型9を用いてC型形状に賦形した場合、シート間の剥離強さが外側に向かって弱くなるため、外側のシート間の滑りが効率よく起こり、その結果皺のないプリフォームを得ることができる。ここでいう剥離強さの減少および増加の比率Raは、曲げ部分で皺を防止するようなすべりが発生するのであれば特に限定されるものではないが、周長の差が大きくなるほどシート間のすべりも量も大きくする必要があることから、以下の関係式を満たすことが好ましい。
The change in the thickness direction of the peel strength between each sheet is especially true if the sheet does not peel off during transportation or when set in a mold, and if slipping occurs along the bent part during shaping. Although it is not limited, in the preform base material in which four or more sheets in which reinforcing fibers are arranged are arranged in the thickness direction, it increases or decreases from the central portion toward at least one side surface of the preform base material. Is preferred. Specific examples include the following three.
(1) If the change in peel strength is reduced or increased from the surface on one side in the thickness direction, the shaping mold 9 as shown in FIG. When shaped into a C-shape, the peel strength between the sheets decreases toward the outside, so that slippage between the outer sheets occurs efficiently, and as a result, a preform without wrinkles can be obtained. The ratio Ra of the reduction and increase of the peeling strength here is not particularly limited as long as slippage that prevents wrinkles occurs at the bent portion, but the greater the difference in perimeter, the greater the difference between the sheets. Since it is necessary to increase the slip and the amount, it is preferable to satisfy the following relational expression.

Figure 2006256202
Figure 2006256202

上記例では剥離強さの強い側を内側にして賦形したが、皺が発生しないのであれば
これに限定されず、賦形の仕方や作業性に応じて、剥離強さの強い側を外側にしても良い。
(2)剥離強さの変化を両側表面からから中心部に向かって増加するようにすれば、両側とも曲げの内側になったり外側になったりする図4の(b)のようなZ型形状に好適であり、皺を防止するシート間のすべりを円滑に発生させることができる。
(3)剥離強さの変化を両側表面から中心部に向かって減少するようにすれば、外力を受けやすい両側表面のシートの剥離を予防することができ、取り扱い性に優れるプリフォーム用基材が得られる。
In the above example, the side with strong peel strength is shaped inside, but if wrinkles do not occur, it is not limited to this, and depending on the shaping method and workability, the side with strong peel strength is on the outside Anyway.
(2) If the change in peel strength is increased from the surface on both sides toward the center, both sides will be on the inside or outside of the bend, as shown in Fig. 4 (b). Therefore, it is possible to smoothly generate slippage between sheets for preventing wrinkles.
(3) If the change in peel strength is reduced from the both side surfaces toward the center, it is possible to prevent peeling of the sheets on both side surfaces that are susceptible to external force, and the base material for preforms that is excellent in handleability. Is obtained.

また各シート間の剥離強さは10〜700N/mの範囲であることが好ましく、15〜450N/mの範囲であることがより好ましく、さらに好ましくは20〜200N/mである。剥離強さが10N/m以上であると、取り扱い時にシート間の剥離が生じないこと、搬送中に繊維配向のずれが生じないことから、取り扱い性に優れ、所望の力学特性を有する成形品を得ることができる。また剥離強さが700N/m以下であると、皺を防止するすべりが発生し易く好都合である。 Further preferably peel strength between the sheets is in the range of 10~700N / m 2, more preferably in the range of 15~450N / m 2, more preferably from 20~200N / m 2. If the peel strength is 10 N / m 2 or more, there will be no separation between sheets during handling, and there will be no deviation in fiber orientation during transportation. Can be obtained. Further, when the peel strength is 700 N / m 2 or less, it is easy to cause slipping to prevent wrinkles.

ここでいう剥離強さとは、シート間を剥がすのに要する応力をいう。以下に具体的に厚み方向の剥離強さの変化を測定する方法の一例を示す。先ずプリフォーム用基材1から150mm角の大きさを切り出し、適宜シート間を剥がし、約3分割(シート枚数に応じて分割数を増やす)にする。配置枚数が6plyならば、2−3シート間と4−5シート間を剥がし(シート間を剥がすときは曲げやねじりを極力発生させないように、ゆっくりと剥がす)、試験片を3水準(水準1:1−2シート、水準2(中心部):3−4シート、水準3:5−6シート:N数5個)作成する。次に該試験片の両面に十分な剛性を有する鉄鋼板など(試験片とほぼ同形状150mm角)を全面にわたって接着させ試験体(重り取り付け用の機構が備わっている)を作成する。なお、試験片と上下面の板は、試験中にシート間より先に剥がれないようにしっかりと接着されており、また試験片と上面の板の重心位置は試験片にねじりモーメントが加わらないように、ほぼ一直線になるように配置する。
次に試験体の片側を十分な荷重を支持可能な構造体(引っ張り試験機用の治具など)にセットし、もう片側に重りをゆっくりと取り付け、シート間が剥がれたときの重さを読みとる。試験結果はシート間が剥離した時の重さ(kg)を剥離荷重とし、これを用いて以下の算出式から剥離強さを求め、各種水準の剥離強さの大小を比較・評価する。
The peel strength here refers to the stress required to peel off the sheet. An example of a method for specifically measuring the change in peel strength in the thickness direction is shown below. First, a size of 150 mm square is cut out from the preform base material 1, and the sheet is appropriately peeled to make about three divisions (increase the number of divisions according to the number of sheets). If the number of arranged sheets is 6ply, peel off between 2-3 sheets and 4-5 sheets (when peeling between sheets, peel off slowly so as not to cause bending or twisting as much as possible), and test specimens at 3 levels (level 1) : 1-2 sheet, level 2 (central part): 3-4 sheet, level 3: 5-6 sheet: N number 5). Next, a steel sheet or the like having sufficient rigidity on both sides of the test piece (substantially the same shape as the test piece, 150 mm square) is bonded over the entire surface to prepare a test body (equipped with a mechanism for attaching a weight). The test piece and the upper and lower plates are firmly bonded so that they do not peel off before the sheet during the test, and the center of gravity of the test piece and the upper plate prevents the torsional moment from being applied to the test piece. Are arranged so as to be substantially in a straight line.
Next, set one side of the test body to a structure that can support a sufficient load (such as a jig for a tensile tester), slowly attach a weight to the other side, and read the weight when the sheet is peeled off. . The test result uses the weight (kg) when the sheets are peeled as the peel load, and uses this to determine the peel strength from the following calculation formula, and compares and evaluates the level of peel strength at various levels.

Figure 2006256202
Figure 2006256202

本発明に使用する強化繊維が配列したシート2の強化繊維としては、マルチフィラメントであり、特にその種類に制限はないが、例えば、ガラス繊維、アルミナ繊維、炭化ケイ素繊維、金属繊維、有機(ポリアラミド、PBO、液晶ポリマー繊維、PVA、PEポリフェニレンサルファイド繊維など)繊維または炭素繊維などが好ましく使用できる。これらの中でも、とくに炭素繊維は比強度および比弾性率に優れ、耐吸水性に優れるので、航空機や自動車などの構造材の強化繊維として好ましく用いられる。中でも、高靱性炭素繊維であると、成形される強化繊維プラスチックの衝撃吸収エネルギーが大きくなるので、各種産業用途はもとより航空機1次構造材としても適用が可能となる。   The reinforcing fiber of the sheet 2 on which the reinforcing fibers used in the present invention are arranged is a multifilament, and there is no particular limitation on the type thereof. For example, glass fiber, alumina fiber, silicon carbide fiber, metal fiber, organic (polyaramid) PBO, liquid crystal polymer fiber, PVA, PE polyphenylene sulfide fiber, etc.) fiber or carbon fiber can be preferably used. Among these, carbon fibers are particularly preferred as reinforcing fibers for structural materials such as aircraft and automobiles because carbon fibers are excellent in specific strength and specific elastic modulus and excellent in water absorption resistance. Among them, when the tough carbon fiber is used, the impact-absorbing energy of the reinforced fiber plastic to be molded becomes large, so that it can be applied not only to various industrial uses but also as an aircraft primary structural material.

強化繊維が配列したシート2の形態としては、織物(一方向、多軸)、編物が挙げられる。中でも高い力学特性の成形品が得られることから一方向または2〜4軸の織物が好ましい。ここでいう一方向織物とは例えば図3に概略斜視図を示すように、応力が集中するような屈曲を有しない強化繊維6を一方向にお互いに並行にシート上に配列し、このシート面の両側に強化繊維を一方向に互いに並行にシート状に配列し、このシート面の両側に強化繊維と交差する、細い横糸7が位置し、これら横糸7と、強化繊維と並行する縦糸方向補助糸8とが織組織をなして強化繊維を一体に保持してなる、いわゆる一方向ノンクリンプ織物のことをいう。また多軸の織物としては、2軸の平織りを使用すると意匠面の要望が強い自動車用途を始め、各種産業用途に使用することできることから好ましい。   Examples of the form of the sheet 2 in which the reinforcing fibers are arranged include a woven fabric (unidirectional, multiaxial) and a knitted fabric. Among them, a unidirectional or 2- to 4-axis woven fabric is preferable because a molded product having high mechanical properties can be obtained. For example, as shown in a schematic perspective view in FIG. 3, the unidirectional woven fabric referred to here is a sheet surface in which reinforcing fibers 6 that are not bent so that stress is concentrated are arranged in parallel in one direction on a sheet. Reinforcing fibers are arranged in a sheet form parallel to each other in one direction on both sides of the sheet, and thin wefts 7 that intersect with the reinforcing fibers are located on both sides of the sheet surface. This refers to a so-called unidirectional non-crimp woven fabric in which the yarn 8 forms a woven structure and integrally holds the reinforcing fibers. In addition, it is preferable to use a biaxial plain weave as a multiaxial woven fabric because it can be used for various industrial applications including automotive applications where design demands are strong.

プリフォーム用基材を構成するシート2の目付は、取り扱い性が良く、シートを製造するコストが安くできることから、100〜1000g/m未満であることが好ましい。また該プリフォーム用基材で作成した成形品の所望の力学特性が得られる範囲ならば、適宜目付の異なるシートを組み合わせた構成にしても良い。 The basis weight of the sheet 2 constituting the preform base material is preferably 100 to less than 1000 g / m 2 because the handleability is good and the cost for producing the sheet can be reduced. Moreover, as long as the desired mechanical properties of the molded article made from the preform substrate can be obtained, a configuration in which sheets having different basis weights are appropriately combined may be used.

また、シート2を接合する手段として、レーザーによる溶着接合、超音波による溶着接合、熱プレスによる溶着接合などが挙げられるが、なかでも加熱、加圧をしてシート間を接合する熱プレスによる接合方法が、作成した成形品が高い力学特性を発現できるので好ましく用いられる。接合ピッチPの間隔は、設備が簡略化できること、所望の剥離強さが得やすいことから5〜300mmが好ましく、より好ましくは15〜100mmである。   Examples of means for joining the sheets 2 include laser welding, ultrasonic welding, and hot press welding, among others, heating press to join between sheets by heating and pressurizing. The method is preferably used because the formed article can exhibit high mechanical properties. The interval of the joining pitch P is preferably 5 to 300 mm, more preferably 15 to 100 mm because the equipment can be simplified and the desired peel strength can be easily obtained.

接合機能を有する材料の形態としては、例えば粒子状、繊維状、フィルム状のものが挙げられる。中でも、プリフォームにおける強化繊維体積率を高くすることができる点から粒子の形態が好ましい。該粒子は、平均直径(楕円形の場合は平均短径)が小さければ、小さいほど均一にシート2の表面に分散させることが可能となるため、1mm以下が好ましく、250μm以下であればより好ましく、50μm以下がさらに好ましい。シート2の表面に配置した粒子の径が大きいほど表面の凹凸が大きくなり、強化繊維が屈曲する可能性があるので、強化繊維が配列したシート2表面における粒子の平均厚さは、5〜250μmの範囲であることが好ましい。   Examples of the form of the material having a bonding function include particles, fibers, and films. Especially, the form of particle | grains is preferable from the point which can make the reinforcement fiber volume ratio in a preform high. If the average diameter (average short diameter in the case of an ellipse) is small, the particles can be uniformly dispersed on the surface of the sheet 2. Therefore, the diameter is preferably 1 mm or less, and more preferably 250 μm or less. 50 μm or less is more preferable. The larger the diameter of the particles arranged on the surface of the sheet 2, the larger the surface unevenness and the possibility of bending of the reinforcing fibers. Therefore, the average thickness of the particles on the surface of the sheet 2 on which the reinforcing fibers are arranged is 5 to 250 μm. It is preferable that it is the range of these.

接合機能を有する材料3の配置量は、前記したような力学特性の向上効果が得られ、かつマトリックス樹脂の含浸性を阻害しない点からプリフォーム用基材1の強化繊維に対して0.5〜20重量%の範囲であることが好ましい。また厚み方向に剥離強さの異なるプリフォーム用基材が得やすいことから、各シートに配置する接合機能を有する材料3の配置量を上記範囲で厚み方向に変化させてもよい。なお、該接合機能を有する材料3の配置面は含浸性や成形品の力学特性を阻害しなければ、片面、両面のいずれかに特定するものではない。   The arrangement amount of the material 3 having a bonding function is 0.5 with respect to the reinforcing fibers of the preform base material 1 in that the effect of improving the mechanical properties as described above is obtained and the impregnation property of the matrix resin is not hindered. It is preferably in the range of ˜20% by weight. In addition, since preforms having different peel strengths in the thickness direction can be easily obtained, the amount of the material 3 having a bonding function to be arranged on each sheet may be changed in the thickness direction within the above range. In addition, the arrangement | positioning surface of the material 3 which has this joining function does not specify any one side or both sides, unless impregnation property and the dynamic characteristic of a molded article are inhibited.

接合機能を有する材料3として、シート間を接合できるものならば特に限定されるものではないが、接合機能以外に各種力学特性を向上させることができることから樹脂材料が好ましく使用される。具体的な樹脂材料としては、熱可塑性樹脂、熱硬化性樹脂が挙げられ、これらを単独で使用しても組み合わせて使用しても良い。   The material 3 having a bonding function is not particularly limited as long as it can bond sheets, but a resin material is preferably used because various mechanical properties can be improved in addition to the bonding function. Specific resin materials include thermoplastic resins and thermosetting resins, and these may be used alone or in combination.

熱可塑性樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニレンエーテル、ポリエーテルニトリル、ポリエーテルエーテルケトン、及びポリエーテルケトンケトン、これらの変性樹脂、共重合樹脂などを使用するのが好ましく、その中でもポリアミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルホンを使用するのがシート間の強度を増加させることができる点でより好ましい。   Examples of thermoplastic resins include polyamide, polyimide, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyphenylene ether, polyethernitrile, polyetheretherketone, and polyetherketoneketone, their modified resins, copolymer resins, etc. It is preferable to use polyamide, among which polyamide, polyetherimide, polyphenylene ether, and polyethersulfone are more preferable because the strength between sheets can be increased.

熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂などが好ましく使用することができる。   As the thermosetting resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin and the like can be preferably used.

また熱可塑性樹脂と熱硬化性樹脂を組み合わせて使用することは、両者の優れた点を両立でき好ましい。例えば、熱可塑性樹脂を熱硬化性樹脂で改質することにより、熱可塑性樹脂の耐溶剤性を熱硬化性樹脂により改善しかつ、熱可塑性樹脂の特有の高い靭性向上効果を得ることが可能となる。このような目的において、熱可塑性樹脂の配合量は耐衝撃性に優れた強化繊維プラスチックが得られる点から30〜100重量%であることが好ましい。   Moreover, it is preferable to use a combination of a thermoplastic resin and a thermosetting resin because both excellent points can be achieved. For example, by modifying a thermoplastic resin with a thermosetting resin, it is possible to improve the solvent resistance of the thermoplastic resin with the thermosetting resin, and to obtain a characteristic high toughness improvement effect of the thermoplastic resin. Become. For such a purpose, the blending amount of the thermoplastic resin is preferably 30 to 100% by weight from the viewpoint of obtaining a reinforced fiber plastic excellent in impact resistance.

本発明のプリフォーム用基材1のシート枚数は3枚以上であるが、シート間の剥離強さを変化させることができるのであればこれに限定されず、多いほど本発明の効果をより一層発揮することができる。またシート2の配置構成は、所望の力学特性と樹脂の含浸性が得られるのであれば特に限定されるものではないが、(45°/0°/−45°/90°)、(45°/90°/−45°/0°)などの45°ずれや(0°/90°)、(45°/−45°)などの90°ずれや(0°/0°)、(90°/90°)などの同配向の配置構成を少なくとも1種以上含むものが好ましい。中でも方向による力学特性の差が少ない、(45°/0°/−45°/90°)などの45°ずれの配置構成を含むことが好ましい。なお、ここでいう0°とは連続したプリフォーム用基材の長手方向のことであり、強化繊維が配列したシートが一方向に配列したトウシートや一方向織物においては、強化繊維配列方向のことであり、二軸織物においては、たて糸の配列方向のことである。   The number of sheets of the preform substrate 1 of the present invention is 3 or more, but is not limited to this as long as the peel strength between the sheets can be changed. It can be demonstrated. The arrangement of the sheet 2 is not particularly limited as long as desired mechanical properties and resin impregnation properties can be obtained, but (45 ° / 0 ° / −45 ° / 90 °), (45 ° / 90 ° / −45 ° / 0 °) and other 45 ° deviations, (0 ° / 90 °), (45 ° / −45 °) and other 90 ° deviations (0 ° / 0 °), (90 ° It is preferable to include at least one arrangement configuration having the same orientation such as / 90 °). In particular, it is preferable to include a 45 ° misalignment arrangement such as (45 ° / 0 ° / −45 ° / 90 °), which has a small difference in mechanical properties depending on directions. In addition, 0 degree here is a longitudinal direction of the base material for preforms, and in a tow sheet or a unidirectional woven fabric in which a sheet in which reinforcing fibers are arranged is arranged in one direction, it is a reinforcing fiber arrangement direction. In a biaxial woven fabric, this is the direction of warp arrangement.

本発明のプリフォームは前記プリフォーム用基材を用いて作成したものであり、例えば次のように作製することができる。雄型のプリフォーム型に複数枚のプリフォーム用基材を、基材間に接合機能を有する材料3が位置するようにセットし、この上から雌型の賦形型を載せ、賦形型を接合機能を有する材料のTg以上に加熱し、若干加圧した状態で基材同士を接合させた後、温度を下げて脱型することによって得られる。   The preform of the present invention is prepared using the preform substrate, and can be prepared, for example, as follows. A plurality of preform base materials are set on a male preform mold so that the material 3 having a bonding function is positioned between the base materials, and a female shaping mold is placed on the preform base. Is heated to Tg or more of the material having a bonding function, and the base materials are bonded together in a slightly pressurized state, and then the temperature is lowered to remove the mold.

次に本発明のプリフォーム用基材の製造方法について図を用いて説明する。図5は本発明の製造方法の実施に用いる製造装置の一態様例を示した概略断面図である。図において、積層体11は接合機能を有する材料3が配置したシート2を所定枚数配置したものであり、シート間を接合する手段としてツール板10、圧子12、圧着用治具13、プレス機14から構成される。本発明の製造方法は、例えば、該製造装置を用いて以下に述べる工程を経て行われる。
(A)接合機能材料配置工程
強化繊維が配列したシート2上に少なくとも片面に、樹脂材料などの接合機能を有する材料3を配置する。適宜加熱して、接合機能を有する材料3をシート2に付着させれば、取り扱い性に優れるシートを得ることができる。
(B)配置工程
ツール板10上に接合機能を有する材料3が配置されたシート2を所定枚数配置し、積層体11を作る。剥離強さを厚み方向に変化させるために、所望の力学特性が得られる範囲で接合機能を有する材料3の配置量が異なるシート2を配置することができる。また、該配置工程でシートの間に接合機能を有する材料3を配置しても良く、例えば熱可塑性樹脂から糸状体で構成される網状体を配置すれば、マトリックス樹脂の含浸特性や力学特性を向上させることができる。また、ツール板は熱伝導率が高いこと、剛性が高く変形しにくいことから、鉄やアルミなどの金属性のものが好ましいが、FRP性のものでも良い。
(C)接合工程
前記(B)工程で作成した積層体のシート2同士を接合機能を有する材料3を媒体として少なくとも部分的に接合する。接合する手段として、レーザーによる溶着、超音波による溶着、ステッチ糸による接合、熱プレスによる溶着などが挙げられるが、なかでも加熱、加圧をしてシート間を接合する熱プレスによる方法が、作成した成形品が高い力学特性を発現できるので好ましく用いられる。以下に、シート間を熱プレスで接合する例を示す。
Next, the manufacturing method of the preform substrate of the present invention will be described with reference to the drawings. FIG. 5 is a schematic cross-sectional view showing an example of a manufacturing apparatus used for carrying out the manufacturing method of the present invention. In the figure, a laminated body 11 is formed by arranging a predetermined number of sheets 2 on which a material 3 having a bonding function is disposed. As a means for bonding sheets, a tool plate 10, an indenter 12, a crimping jig 13, and a press 14 are used. Consists of The production method of the present invention is performed, for example, through the steps described below using the production apparatus.
(A) Bonding functional material arrangement | positioning process The material 3 which has bonding functions, such as a resin material, is arrange | positioned at least on one side on the sheet | seat 2 in which the reinforced fiber was arranged. If the material 3 having a bonding function is attached to the sheet 2 by heating appropriately, a sheet having excellent handleability can be obtained.
(B) Arrangement Step A predetermined number of sheets 2 on which the material 3 having a bonding function is arranged on the tool plate 10 are arranged to make a laminate 11. In order to change the peel strength in the thickness direction, sheets 2 having different amounts of the material 3 having a bonding function can be arranged within a range where desired mechanical characteristics can be obtained. Further, the material 3 having a bonding function may be arranged between the sheets in the arranging step. For example, if a net-like body made of a thread from a thermoplastic resin is arranged, the impregnation characteristics and mechanical characteristics of the matrix resin can be improved. Can be improved. The tool plate is preferably made of a metal such as iron or aluminum because of its high thermal conductivity and high rigidity and is difficult to be deformed.
(C) Joining Step The sheets 2 of the laminate produced in the step (B) are joined at least partially using the material 3 having a joining function as a medium. Examples of means for joining include laser welding, ultrasonic welding, stitch yarn welding, hot press welding, etc. Among them, a method using hot press that joins sheets by heating and pressurization is created. The molded product is preferably used because it can exhibit high mechanical properties. Below, the example which joins between sheets by hot press is shown.

まず、積層体11、ツール板10、圧子12、圧着用冶具13、プレス機14を所定の温度まで加熱する。ここでいう圧着用冶具13とは各シート間を接合するためのものであり、積層体11を直接押圧する圧子12が取り付けられている。またプレス機14は、圧着用冶具13に所望の力を掛けられるものであるならば特に限定されず、プレス機14の代わりに重りなどを用いても良い。   First, the laminate 11, the tool plate 10, the indenter 12, the crimping jig 13, and the press 14 are heated to a predetermined temperature. The crimping jig 13 here is for joining the sheets, and an indenter 12 that directly presses the laminate 11 is attached. The press machine 14 is not particularly limited as long as a desired force can be applied to the crimping jig 13, and a weight or the like may be used instead of the press machine 14.

加熱の手段は、所望の温度に加熱できるのであれば、特に限定されるものではないが、オーブンを用いた熱風加熱方式で積層体11を加熱する方法や圧子12とツール板10で挟み込んで直接加熱する方法が、効率の良い加熱手段として挙げられる。加熱温度は、接合機能を有する材料3を媒体としてシート間を接合できる範囲ならば特に限定されないが、効率良くシート間を接合できることから、Tg(ここでいうTgとはシートに配置している接合機能を有する材料3のガラス転移温度)より高い温度であることが好ましい。また積層体11を温度の異なる熱媒体で上下から加熱し、厚み方向に温度勾配を持たせて、接合機能を有する材料3の軟化具合を調整すれば、効率良く剥離強さが厚み方向に変化するプリフォーム用基材を得ることができる。   The heating means is not particularly limited as long as it can be heated to a desired temperature. However, a method of heating the laminated body 11 by a hot air heating method using an oven or a method of directly sandwiching between the indenter 12 and the tool plate 10 is used. A method of heating is mentioned as an efficient heating means. The heating temperature is not particularly limited as long as the sheet 3 can be bonded using the material 3 having a bonding function as a medium. However, since the sheets can be bonded efficiently, Tg (here, Tg is the bonding disposed on the sheet). The temperature is preferably higher than the glass transition temperature of the functional material 3. Moreover, if the laminated body 11 is heated from above and below with a heat medium having a different temperature, a temperature gradient is provided in the thickness direction, and the softening degree of the material 3 having a bonding function is adjusted, the peel strength is efficiently changed in the thickness direction. A preform substrate can be obtained.

次にプレス機14を用いて圧着用冶具13で積層体11を押圧し、各シート間を接合機能を有する材料3で接合する。プレート状のもので積層体11の全面を押圧しても良いが、ピン状の圧子12を用いて行えば、設備を簡略化できることからより好ましい。   Next, the laminated body 11 is pressed with the press-fitting jig 13 using the press machine 14, and the sheets 3 are joined with the material 3 having a joining function. The entire surface of the laminate 11 may be pressed with a plate-like material, but it is more preferable to use the pin-shaped indenter 12 because the equipment can be simplified.

圧子12の押圧部の形状はシート2を傷つけないものが好ましく、球状もしくは角を面取りした矩形状のものが好ましい。押圧部の面積は、あまり大きくし過ぎるとシート間の自由度が小さくなり皺を防止するようなシート間のすべりが生じにくくなり、また圧着部の面積を小さくし過ぎると所望の剥離強さを得るために圧子の数を増やす必要があることから、1〜100mmが好ましく、5〜50mmであればより好ましい。 The shape of the pressing portion of the indenter 12 is preferably one that does not damage the sheet 2, and is preferably spherical or rectangular with chamfered corners. If the area of the pressing part is too large, the degree of freedom between the sheets will be reduced and slippage between sheets will be difficult to prevent wrinkles, and if the area of the crimping part is too small, the desired peel strength will be obtained. Since it is necessary to increase the number of indenters in order to obtain, 1-100 mm < 2 > is preferable and 5-50 mm < 2 > is more preferable.

圧子12で押圧する時間は、シート間を接合できる範囲ならば特に限定されないが、厚み方向に剥離強さが変化するプリフォーム用基材1が得やすいことから、10分以内が好ましく、より好ましくは5分以内であり、さらに好ましくは3分以内である。 また押圧時間を短くして、シート間を接合するための押圧力を多方向に分散させれば、厚み方向に剥離強さが変化するプリフォーム用基材を効率良く作成することができる。   The time for pressing with the indenter 12 is not particularly limited as long as the sheets can be joined together, but is preferably within 10 minutes, more preferably because the preform substrate 1 whose peel strength changes in the thickness direction can be easily obtained. Is within 5 minutes, more preferably within 3 minutes. Moreover, if the pressing time is shortened and the pressing force for joining sheets is dispersed in multiple directions, a preform base material whose peel strength changes in the thickness direction can be efficiently produced.

また本プリフォーム用基材1は圧子12で片面から押圧されているために、押圧側表面に窪み4を有しているのも特徴の一つである。   In addition, since the preform substrate 1 is pressed from one side by the indenter 12, it is one of the features that the press-side surface has a recess 4.

以下にプリフォームを作成する場合の実施例を図面を参照して説明する。まず、強化繊維が配列したシート2としては、引張り強さが5800Mpa、引張弾性率が290GPaのフィラメント数が24000本の炭素繊維を用いて、炭素繊維重量200g/mのシートを製織した。
(A)接合機能を有する材料を配置する工程では、ポリエーテルスルホンとエポキシ樹脂の配合割合が70:30の混合樹脂を粉砕した樹脂材料(Tg:70℃)の粉体を、シート2(長1000mm*幅300mm、厚み1mm)の表面に散布した後、過熱して付着させた。配置量は適宜調整し、樹脂の配置量が異なるシートを各種水準(水準1:5g/m、水準2:10g/m、水準3:15g/m)準備した。
(B)配置工程において、ツール板10上に合計6枚(水準1の2枚から水準2の2枚、水準3の2枚の順)厚み方向に配置した。配置構成は90°ずれで、(0/90°/0°/90°/0°/90°)の構成となるように配置し、積層体11を作成した。
(C)接合工程において、まず、積層体11、圧子12、圧着用治具13、プレス機14を80℃の雰囲気下で40分間静置した。次に該積層体11に圧着用治具13を載せ、プレス機14により各圧子12の押圧が0.1MPa、接合ピッチが15mmとなるようにして熱プレスを5分間行い、プリフォーム用基材1を作成した。
Hereinafter, an embodiment in the case of creating a preform will be described with reference to the drawings. First, as the sheet 2 in which the reinforcing fibers are arranged, a sheet having a carbon fiber weight of 200 g / m 2 is woven using carbon fibers having a tensile strength of 5800 Mpa and a tensile elastic modulus of 290 GPa and 24,000 filaments.
(A) In the step of disposing a material having a bonding function, a powder of a resin material (Tg: 70 ° C.) obtained by pulverizing a mixed resin having a blending ratio of polyethersulfone and epoxy resin of 70:30 is used as a sheet 2 (long After spraying on the surface of 1000 mm * width 300 mm, thickness 1 mm, it was heated and adhered. The amount of arrangement was adjusted as appropriate, and various levels (level 1: 5 g / m 2 , level 2: 10 g / m 2 , level 3: 15 g / m 2 ) of sheets with different resin arrangement amounts were prepared.
(B) In the placement step, a total of 6 pieces (in order of 2 pieces of level 1 to 2 pieces of level 2 and 2 pieces of level 3) were arranged on the tool plate 10 in the thickness direction. The arrangement structure was shifted by 90 ° and was arranged so as to have a structure of (0/90 ° / 0 ° / 90 ° / 0 ° / 90 °), and the laminate 11 was created.
(C) In the joining step, first, the laminate 11, the indenter 12, the crimping jig 13, and the pressing machine 14 were allowed to stand for 40 minutes in an atmosphere at 80 ° C. Next, a pressure-bonding jig 13 is placed on the laminate 11, and a press machine 14 is pressed for 5 minutes so that the pressure of each indenter 12 is 0.1 MPa and the joining pitch is 15 mm. 1 was created.

該プリフォーム用基材からシート間の剥離強さ測定をするために、ツール板側から2−3シート間と4−5シート間を剥がし、シート間の剥離強さ測定用の試験体を作成し、評価・比較したところ、σ(ツール側)=150N/m、σ(中心部)=170N/m、σ(押圧側)=195N/mであった。また該プリフォーム用基材から150mm角の大きさを切り出し、剥離強さの強い側(ツール側)を内側にして、賦形型9(両端はR=5mmの曲面)に配置・賦形してC型のプリフォームを作成したところ、皺のないプリフォームが得られた。また上記比率の関係式から増加比率RaとRlを求めたところ、いずれも上記条件{(σとσ:Ra=13.3%、Rl=4.2%、Ra>Rl)、(σとσ:Ra=30.0%、Rl=8.4%、Ra>Rl)}を満たしていた。 In order to measure the peel strength between sheets from the preform base material, the 2-3 sheets and 4-5 sheets are peeled from the tool plate side, and a test specimen for measuring the peel strength between the sheets is prepared. and was evaluated and compare, the sigma (tool side) = 150N / m 2, in sigma (center) = 170N / m 2, was sigma outside (pressing side) = 195N / m 2. In addition, a 150 mm square size is cut out from the preform base material, and placed and shaped on a shaping die 9 (both ends are R = 5 mm curved surfaces) with the strong peel strength side (tool side) on the inside. When a C-shaped preform was prepared, a preform free of wrinkles was obtained. Also it was determined to increase the ratio Ra and Rl a relationship of the ratio, both the condition {(sigma in and sigma Medium: Ra = 13.3%, Rl = 4.2%, Ra> Rl), (σ Inside and outside σ: Ra = 30.0%, Rl = 8.4%, Ra> Rl)}.

実施例1において(A)接合機能を有する材料を配置する工程において、樹脂材料の配置量が10g/mのシートを6枚準備した。
(B)配置工程でツール板10上に合計6枚のシートを厚み方向に配置した。配置構成は90°ずれで、(0°/90°/0°/90°/0°/90°)の構成となるように配置し、積層体11を作成した。
(C)接合工程において、積層体11のツール面側を90℃、押圧側を70℃の熱媒体を用いて、積層体の厚み方向に温度勾配がでるように加熱し、圧着用治具13で熱プレスを5分間行い、プリフォーム用基材を作成した。該プリフォーム用基材からツール板側から2−3シート間と4−5シート間を剥がし、シート間の剥離強さ測定用の試験体を作成し、評価・比較したところ、σ(ツール側)=100N/m、σ(中心部)=110N/m、σ(押圧側)=120N/mであった。また該プリフォーム用基材から150mm角の大きさを切り出し、剥離強さの強い側(ツール側)を内側にして、賦形型9に配置・賦形してC型のプリフォームを作成したところ、皺のないプリフォームが得られた。また上記比率の関係式から増加比率RaとRlを求めたところ、いずれも上記条件{(σとσ:Ra=10.0%、Rl=4.2%、Ra>Rl)、(σとσ:Ra=20.0%、Rl=8.4%、Ra>Rl)}を満たしていた。
In Example 1, (A) in the step of arranging a material having a bonding function, six sheets of resin material having an arrangement amount of 10 g / m 2 were prepared.
(B) A total of six sheets were arrange | positioned in the thickness direction on the tool board 10 at the arrangement | positioning process. The arrangement structure was shifted by 90 °, and was arranged so as to have a structure of (0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 90 °), and the laminate 11 was created.
(C) In the joining step, a heating tool is used on the tool surface side of the laminated body 11 at 90 ° C. and the pressing side is heated at 70 ° C. so that a temperature gradient is generated in the thickness direction of the laminated body. Was subjected to hot pressing for 5 minutes to prepare a preform substrate. Peeled between between 2-3 sheets from the tool plate side and 4-5 sheets from the preform for the substrate, to prepare a test body for peel strength measurements between the sheets, were evaluated and compared, in sigma (tool Side) = 100 N / m 2 , σ medium (center portion) = 110 N / m 2 , σ outside (pressing side) = 120 N / m 2 . Further, a 150 mm square size was cut out from the preform base material, and a C-shaped preform was prepared by placing and shaping on the shaping mold 9 with the side having the strong peel strength (tool side) inside. However, a preform without wrinkles was obtained. Also it was determined to increase the ratio Ra and Rl a relationship of the ratio, both the condition {(sigma in and sigma Medium: Ra = 10.0%, Rl = 4.2%, Ra> Rl), (σ Inside and outside σ: Ra = 20.0%, Rl = 8.4%, Ra> Rl)}.

本発明の一実施態様に係るプリフォーム用基材の斜視図である。It is a perspective view of the base material for preforms concerning one embodiment of the present invention. 図1のプリフォーム用基材のA−A線矢視の断面図である。It is sectional drawing of the AA arrow of the preform base material of FIG. 一方向織物基材の一実施態様に係わる斜視図である。It is a perspective view concerning one embodiment of a unidirectional textile base material. プリフォーム用基材を賦形型に沿わせた状態を示す概略図である。It is the schematic which shows the state which put the base material for preforms along the shaping type | mold. 本発明のプリフォーム用基材の製造時の断面図である。It is sectional drawing at the time of manufacture of the base material for preforms of this invention.

符号の説明Explanation of symbols

1 プリフォーム用基材
2 強化繊維が配列したシート
3 接合機能を有する材料
4 窪み
5 一方向織物基材
6 強化繊維
7 横糸
8 縦糸方向補助糸
9 賦形型
10 ツール板
11 積層体
12 圧子
13 圧着用治具
14 プレス機
DESCRIPTION OF SYMBOLS 1 Base material for preform 2 Sheet | seat with which reinforced fiber was arranged 3 Material which has joining function 4 Indentation 5 Unidirectional textile base material 6 Reinforcement fiber 7 Weft 8 Warp direction auxiliary yarn 9 Shaped type
DESCRIPTION OF SYMBOLS 10 Tool board 11 Laminated body 12 Indenter 13 Crimping jig 14 Press machine

Claims (14)

強化繊維が配列したシートを3枚以上厚み方向に配置し、シート間を接合したプリフォーム用基材であって、各シート間の剥離強さが厚み方向に変化することを特徴とするプリフォーム用基材。 A preform base material in which three or more sheets in which reinforcing fibers are arranged are arranged in the thickness direction and the sheets are joined to each other, wherein the peel strength between the sheets changes in the thickness direction. Substrate for use. 強化繊維が配列したシートを4枚以上厚み方向に配置し、シート間を接合したプリフォーム用基材であって、各シート間の剥離強さが、中心部から少なくとも一方の片側表面に向かって増加または減少することを特徴とするプリフォーム用基材。 Four or more sheets in which reinforcing fibers are arranged are arranged in the thickness direction, and the preform base material is joined between the sheets, and the peel strength between the sheets is from the center toward at least one surface of one side. A preform substrate characterized by increasing or decreasing. 前記強化繊維が配列したシートの少なくとも片面に接合機能を有する材料が配置されている請求項1または2のいずれかに記載のプリフォーム用基材。 The preform substrate according to claim 1, wherein a material having a bonding function is disposed on at least one side of the sheet in which the reinforcing fibers are arranged. 各シートに配置されている接合機能を有する材料の配置量が異なる請求項1〜3のいずれかに記載のプリフォーム用基材。 The preform substrate according to any one of claims 1 to 3, wherein the arrangement amount of the material having a bonding function arranged on each sheet is different. 各シート間の剥離強さが、10〜700N/mの範囲である請求項1〜4のいずれかに記載のプリフォーム用基材。 Peel strength between each sheet, preform substrate according to claim 1 in the range of 10~700N / m 2. 前記強化繊維の少なくとも一部が炭素繊維である請求項1〜5のいずれかに記載のプリフォーム用基材。 The preform substrate according to any one of claims 1 to 5, wherein at least a part of the reinforcing fibers is carbon fiber. 前記強化繊維が配列したシートの一枚当たりの目付が100〜1000g/mである請求項1〜6のいずれかに記載のプリフォーム用基材。 Preform substrate according to claim 1 having a basis weight per sheet of the reinforcing fibers are arranged is 100 to 1000 g / m 2. 前記接合機能を有する材料が熱可塑性樹脂を含む樹脂材料である請求項1〜7のいずれかに記載のプリフォーム用基材。 The preform substrate according to any one of claims 1 to 7, wherein the material having the bonding function is a resin material containing a thermoplastic resin. 前記接合機能を有する材料の配置量が強化繊維に対して0.5〜20重量%の範囲である請求項3〜8のいずれかに記載のプリフォーム用基材。 The preform substrate according to any one of claims 3 to 8, wherein the amount of the material having the bonding function is in the range of 0.5 to 20% by weight with respect to the reinforcing fiber. 請求項1〜9のいずれかに記載のプリフォーム用基材を型に沿わせて賦形したプリフォーム。 A preform obtained by shaping the preform substrate according to any one of claims 1 to 9 along a mold. 少なくとも次の工程(A)〜(C)を順次経て請求項1〜9のいずれかに記載のプリフォーム用基材を製造することを特徴とするプリフォーム用基材の製造方法。
(A)強化繊維が配列したシートの少なくとも片側表面に接合機能を有する材料を配置する接合機能材料配置工程。
(B)少なくとも前記(A)工程で接合機能を有する材料が配置されたシートを複数枚厚み方向に配置する配置工程。
(C)接合機能を有する材料を媒体として、シート同士を厚み方向に少なくとも部分的に接合する接合工程。
A method for producing a preform substrate, wherein the preform substrate according to any one of claims 1 to 9 is produced through at least the following steps (A) to (C).
(A) A bonding function material arranging step of arranging a material having a bonding function on at least one surface of a sheet in which reinforcing fibers are arranged.
(B) The arrangement | positioning process which arrange | positions the sheet | seat in which the material which has a joining function at least at the said (A) process is arrange | positioned in thickness direction.
(C) A joining step of joining sheets at least partially in the thickness direction using a material having a joining function as a medium.
前記工程(A)において、接合機能を有する材料を強化繊維が配列したシートに加熱して付着させる請求項11に記載のプリフォーム用基材の製造方法。 The method for producing a preform substrate according to claim 11, wherein in the step (A), a material having a bonding function is heated and attached to a sheet on which reinforcing fibers are arranged. 前記工程(B)において、接合機能を有する材料の配置量が異なるシートを厚み方向に配置する、請求項11または12のいずれかに記載のプリフォーム用基材の製造方法。 The method for producing a preform substrate according to any one of claims 11 and 12, wherein in the step (B), sheets having different arrangement amounts of materials having a bonding function are arranged in the thickness direction. 前記工程(C)において、加熱・加圧することにより強化繊維が配列したシート同士を厚み方向に接合する、請求項11〜13のいずれかに記載のプリフォーム用基材の製造方法。 The method for producing a preform base material according to any one of claims 11 to 13, wherein in the step (C), sheets in which reinforcing fibers are arranged are joined in the thickness direction by heating and pressurizing.
JP2005078769A 2005-03-18 2005-03-18 Preform substrate and method for producing the same Active JP4734983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078769A JP4734983B2 (en) 2005-03-18 2005-03-18 Preform substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078769A JP4734983B2 (en) 2005-03-18 2005-03-18 Preform substrate and method for producing the same

Publications (3)

Publication Number Publication Date
JP2006256202A true JP2006256202A (en) 2006-09-28
JP2006256202A5 JP2006256202A5 (en) 2008-02-14
JP4734983B2 JP4734983B2 (en) 2011-07-27

Family

ID=37095927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078769A Active JP4734983B2 (en) 2005-03-18 2005-03-18 Preform substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4734983B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276453A (en) * 2006-03-15 2007-10-25 Toray Ind Inc Reinforcing fiber substrate laminate and manufacturing method thereof
WO2008096605A1 (en) * 2007-02-05 2008-08-14 Toray Industries, Inc. Apparatus and method for manufacturing laminate
JP2009127169A (en) * 2007-11-28 2009-06-11 Toray Ind Inc Reinforcing fiber base material, laminate and fiber-reinforced resin
JP2011529405A (en) * 2008-07-29 2011-12-08 エアバス オペレーションズ リミテッド Manufacturing method of composite material
WO2012066805A1 (en) * 2010-11-19 2012-05-24 三菱電機株式会社 Method for producing molded fiber-reinforced plastic, preform, method for producing same, and adhesive film
JP2013523488A (en) * 2010-03-26 2013-06-17 メシエ−ブガッティ−ドウティ Method for manufacturing mechanical member made of composite material with improved mechanical strength of tension and compression and bending
CN103958142A (en) * 2011-12-06 2014-07-30 三菱电机株式会社 Preform manufacturing method and fiber-reinforced plastic molding manufacturing method
WO2017042921A1 (en) * 2015-09-09 2017-03-16 日産自動車株式会社 Composite material production method, composite material production device, and preform for composite material
WO2017208458A1 (en) * 2016-06-03 2017-12-07 日産自動車株式会社 Method and apparatus for manufacturing composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185539A (en) * 1992-01-10 1993-07-27 Honda Motor Co Ltd Preform body of thermoplastic composite material and manufacture thereof
JPH09141654A (en) * 1995-11-21 1997-06-03 Jushi Kako Kk Manufacture of glass fiber preform
JP2003082117A (en) * 2001-07-04 2003-03-19 Toray Ind Inc Carbon fiber reinforcement, and preform and composite material prepared therefrom
JP2003136550A (en) * 2001-08-20 2003-05-14 Toray Ind Inc Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
JP2004114586A (en) * 2002-09-27 2004-04-15 Toray Ind Inc Reinforcing fiber base-material, preform, fiber-reinforced plastic molding formed therefrom, and production method for the plastic molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185539A (en) * 1992-01-10 1993-07-27 Honda Motor Co Ltd Preform body of thermoplastic composite material and manufacture thereof
JPH09141654A (en) * 1995-11-21 1997-06-03 Jushi Kako Kk Manufacture of glass fiber preform
JP2003082117A (en) * 2001-07-04 2003-03-19 Toray Ind Inc Carbon fiber reinforcement, and preform and composite material prepared therefrom
JP2003136550A (en) * 2001-08-20 2003-05-14 Toray Ind Inc Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
JP2004114586A (en) * 2002-09-27 2004-04-15 Toray Ind Inc Reinforcing fiber base-material, preform, fiber-reinforced plastic molding formed therefrom, and production method for the plastic molding

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276453A (en) * 2006-03-15 2007-10-25 Toray Ind Inc Reinforcing fiber substrate laminate and manufacturing method thereof
US8257537B2 (en) 2007-02-05 2012-09-04 Toray Industries, Inc. Manufacturing device and manufacturing method of laminate
WO2008096605A1 (en) * 2007-02-05 2008-08-14 Toray Industries, Inc. Apparatus and method for manufacturing laminate
CN101568419B (en) * 2007-02-05 2012-02-01 东丽株式会社 Apparatus and method for manufacturing laminate
JP5029601B2 (en) * 2007-02-05 2012-09-19 東レ株式会社 Laminate manufacturing apparatus and method
JP2009127169A (en) * 2007-11-28 2009-06-11 Toray Ind Inc Reinforcing fiber base material, laminate and fiber-reinforced resin
US8911650B2 (en) 2008-07-29 2014-12-16 Airbus Operations Limited Method of manufacturing a composite element
JP2011529405A (en) * 2008-07-29 2011-12-08 エアバス オペレーションズ リミテッド Manufacturing method of composite material
US9573298B2 (en) 2008-07-29 2017-02-21 Airbus Operations Limited Apparatus for manufacturing a composite element
JP2013523488A (en) * 2010-03-26 2013-06-17 メシエ−ブガッティ−ドウティ Method for manufacturing mechanical member made of composite material with improved mechanical strength of tension and compression and bending
CN103189188A (en) * 2010-11-19 2013-07-03 三菱电机株式会社 Method for producing molded fiber-reinforced plastic, preform, method for producing same, and adhesive film
JP5611365B2 (en) * 2010-11-19 2014-10-22 三菱電機株式会社 Method for producing fiber-reinforced plastic molded body, preform and method for producing the same, and adhesive film
US9144942B2 (en) 2010-11-19 2015-09-29 Mitsubishi Electric Corporation Method for producing fiber-reinforced plastic molding, preform and method for producing same, and adhesive film
WO2012066805A1 (en) * 2010-11-19 2012-05-24 三菱電機株式会社 Method for producing molded fiber-reinforced plastic, preform, method for producing same, and adhesive film
US10099460B2 (en) 2011-12-06 2018-10-16 Mitsubishi Electric Corporation Method for producing preform and method for producing fiber-reinforced plastic molding
CN103958142A (en) * 2011-12-06 2014-07-30 三菱电机株式会社 Preform manufacturing method and fiber-reinforced plastic molding manufacturing method
WO2017042921A1 (en) * 2015-09-09 2017-03-16 日産自動車株式会社 Composite material production method, composite material production device, and preform for composite material
JPWO2017042921A1 (en) * 2015-09-09 2018-04-05 日産自動車株式会社 Composite material manufacturing method and composite material manufacturing apparatus
RU2671346C1 (en) * 2015-09-09 2018-10-30 Ниссан Мотор Ко., Лтд. Method for production composite material and composite material producing device
US10836123B2 (en) 2015-09-09 2020-11-17 Nissan Motor Co., Ltd. Manufacturing method for composite material and manufacturing apparatus for composite material
WO2017208458A1 (en) * 2016-06-03 2017-12-07 日産自動車株式会社 Method and apparatus for manufacturing composite material
JPWO2017208458A1 (en) * 2016-06-03 2019-03-22 日産自動車株式会社 Method and apparatus for manufacturing composite material
US20190134854A1 (en) * 2016-06-03 2019-05-09 Nissan Motor Co., Ltd. Method and apparatus for manufacturing composite material
US10792839B2 (en) * 2016-06-03 2020-10-06 Nissan Motor Co., Ltd. Method and apparatus for manufacturing composite material

Also Published As

Publication number Publication date
JP4734983B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4734983B2 (en) Preform substrate and method for producing the same
JP6222370B2 (en) Manufacturing method of fiber reinforced composite material
US20160214328A1 (en) Bonding of composite materials
KR102069926B1 (en) Composite structure having a stabilizing element
JP5029072B2 (en) Reinforced fiber substrate laminate and method for producing the same
JP4821262B2 (en) Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof
WO2015037570A1 (en) Thermoplastic prepreg and laminate
WO2020071417A1 (en) Composite component for aircraft and manufacturing method therefor
JP5251004B2 (en) Preform manufacturing method, preform, and fiber reinforced plastic girder
JP2007056441A (en) Reinforcing woven fabric and method for producing the same
CN111886119A (en) Method for producing fiber-reinforced resin
JP2006103305A (en) Substrate for preform
RU2735685C2 (en) Multilayer sheet of reinforcing fibers, a reinforced polymer molded article and a method of producing a multilayer sheet of reinforcing fibers
JP4992236B2 (en) Method for evaluating substrate formability and method for producing FRP
JP2009161886A (en) Reinforced fiber substrate, preform, composite material and method for producing the same
Asi Effect of different woven linear densities on the bearing strength behaviour of glass fiber reinforced epoxy composites pinned joints
JPWO2019031478A1 (en) Fiber-reinforced plastic and method for producing fiber-reinforced plastic
JP7156513B2 (en) METHOD FOR MANUFACTURING FIBER REINFORCED COMPOSITE MOLDED PRODUCT AND PREPREG
CN110997268A (en) Method for producing composite material and composite material
JP2016179647A (en) Method for producing fiber-reinforced plastic
US20230071796A1 (en) Composite material structure body production method, layered body production method, layered body, and layered form
JP2005161852A (en) Metal/fiber-reinforced plastic composite material, and its production method
JP6806248B2 (en) Composite material molded product and its manufacturing method
JP7240559B2 (en) Manufacturing method for intermediate products of aircraft parts and aircraft parts
JP2021528275A (en) Ultra-thin prepreg sheet and its composite material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R151 Written notification of patent or utility model registration

Ref document number: 4734983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3