JP4821262B2 - Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof - Google Patents

Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP4821262B2
JP4821262B2 JP2005308119A JP2005308119A JP4821262B2 JP 4821262 B2 JP4821262 B2 JP 4821262B2 JP 2005308119 A JP2005308119 A JP 2005308119A JP 2005308119 A JP2005308119 A JP 2005308119A JP 4821262 B2 JP4821262 B2 JP 4821262B2
Authority
JP
Japan
Prior art keywords
reinforcing fiber
laminate
laminated
resin
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005308119A
Other languages
Japanese (ja)
Other versions
JP2006142819A5 (en
JP2006142819A (en
Inventor
晃之助 山本
信雄 浅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005308119A priority Critical patent/JP4821262B2/en
Publication of JP2006142819A publication Critical patent/JP2006142819A/en
Publication of JP2006142819A5 publication Critical patent/JP2006142819A5/ja
Application granted granted Critical
Publication of JP4821262B2 publication Critical patent/JP4821262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、繊維強化プラスチック(以下、FRPと言う。)を成形する際に用いるプリフォーム、それらから得られるFRP、並びにプリフォームを製造する際に用いる強化繊維積層体、さらに、該強化繊維積層体の製造方法並びに製造装置に関する。   The present invention relates to a preform used when molding a fiber reinforced plastic (hereinafter referred to as FRP), an FRP obtained from the preform, a reinforcing fiber laminate used in manufacturing the preform, and the reinforcing fiber laminate. The present invention relates to a body manufacturing method and a manufacturing apparatus.

より詳しくは、マトリックス樹脂の含浸性に優れたプリフォーム、該プリフォームを用いた力学的特性を高く発現できるFRP、さらには該プリフォームを製造する際の搬送性と賦形性に優れる、強化繊維積層体並びに該強化繊維積層体の製造方法、製造装置に関する。   More specifically, a preform excellent in the impregnation property of the matrix resin, an FRP that can express a high mechanical property using the preform, and further excellent in transportability and shapeability when manufacturing the preform. The present invention relates to a fiber laminate, a method for producing the reinforcing fiber laminate, and a production apparatus.

そこで、近年ではCFRP板を従来のプリプレグ・オートクレーブ成形より安価に成形できる方法としてRI(レジンインフュージョン成形)であるレジントランスファーモールディング(以下、RTMと略す)成形方法や真空RTM成形方法やRFI成形(レジンフィルムインフュージョン成形)が注目され、オートクレーブ等の大型設備を必要とせず、熱硬化性樹脂が含浸していない基材を用いるので保管設備が簡易であり、また、該基材はタック性がないため一括積層一括賦形などのプリプレグでは考えられなかった工程の短縮が可能であり、CFRPの適用範囲拡大が期待されている。 Therefore, in recent years, resin transfer molding (hereinafter, abbreviated as RTM), which is RI (resin infusion molding), vacuum RTM molding method, RFI molding (RFI molding) are methods that can form CFRP plates at lower cost than conventional prepreg / autoclave molding. Resin film infusion molding) has attracted attention, and does not require large equipment such as an autoclave, and uses a base material that is not impregnated with a thermosetting resin, so the storage equipment is simple, and the base material has tackiness. Therefore, it is possible to shorten processes that could not be considered in prepreg such as batch lamination batch shaping, and expansion of the application range of CFRP is expected.

そこで、近年ではCFRP板を従来のプリプレグ・オートクレーブ成形より安価に成形できる方法としてRI(レジンインフュージョン成形)であるレジントランスファーモールディング(以下、RTMと略す)成形方法や真空RTM成形方法やRFI成形(レジンフィルムインフュージョン成形)が注目され、オートクレーブ等の大型設備を必要とせず、熱硬化性樹脂が含浸していない基材を用いるので保管設備の簡易化が可能であったり、また、該基材はタック性がないため一括積層一括賦形などのプリプレグでは考えられなかった工程の短縮が可能であり、CFRPの適用範囲拡大が期待されている。   Therefore, in recent years, resin transfer molding (hereinafter, abbreviated as RTM), which is RI (resin infusion molding), vacuum RTM molding method, RFI molding (RFI molding) are methods that can form CFRP plates at lower cost than conventional prepreg / autoclave molding. Resin film infusion molding) has attracted attention, and does not require large equipment such as an autoclave, and uses a base material that is not impregnated with a thermosetting resin, so that the storage equipment can be simplified. Since there is no tackiness, it is possible to shorten the process that could not be considered by prepreg such as batch lamination batch shaping, and expansion of the application range of CFRP is expected.

RTM成形方法や真空RTM成形方法の成形手順は予め型のキャビティ形状に賦形したプリフォームを型内に配置して、マトリックス樹脂をプリフォームに含浸させた後に硬化させる。そのため、プリフォームの含浸性を向上させることが適用範囲を拡大する上でキー技術となってくる。マトリックス樹脂の含浸速度は一般的にプリフォームの空隙率に大きく依存し、強化繊維体積率(嵩密度)が高い状態(いわゆるニアネットシェイプ)では空隙が小さいため含浸速度は遅くなり、また、強化繊維基材の面内の方向よりも、板厚方向への含浸速度が極めて遅いという特徴がある。したがって、CFRPの注入成形で、特にニアネットシェイプ成形や厚肉成形を行う際には、樹脂含浸時間が極めて長くなり、生産性が悪くなったり、場合によっては含浸時間前に樹脂が硬化し、未含浸が発生する等の問題がある。また、近年ではボーイング777の尾翼(プリプレグ成形)での実績等が評価され、構造部材としてCFRPが用いられ始め、多数枚の強化繊維基材で複雑な立体形状をしたプリフォームを作ることも珍しくなく、プリフォームを製造する方法も多様化してきている。   In the molding procedure of the RTM molding method and the vacuum RTM molding method, a preform previously shaped into a mold cavity shape is placed in the mold, and the preform is impregnated with a matrix resin and then cured. Therefore, improving the impregnation property of the preform is a key technology for expanding the application range. In general, the matrix resin impregnation rate largely depends on the porosity of the preform, and when the reinforcing fiber volume fraction (bulk density) is high (so-called near net shape), the impregnation rate becomes slow because the voids are small and the reinforcement is strengthened. There is a feature that the impregnation speed in the plate thickness direction is extremely slower than the in-plane direction of the fiber base material. Therefore, in CFRP injection molding, especially when performing near net shape molding or thick wall molding, the resin impregnation time becomes extremely long, the productivity deteriorates, or in some cases the resin hardens before the impregnation time, There are problems such as non-impregnation. Also, in recent years, the results of Boeing 777's tail wing (prepreg molding) etc. have been evaluated, and CFRP has begun to be used as a structural member, and it is rare to make a preform having a complicated three-dimensional shape with a large number of reinforcing fiber base materials. There are also diversifying methods for manufacturing preforms.

プリフォームを構成する積層体及び、プリフォームを比較的簡単に製造する一つの手段として強化繊維糸条を製織した強化繊維基材を積層してなるプリフォームの層間に熱可塑性樹脂を主成分とする樹脂材料を付加することで、繊維基材同士を接着・固定する方法が開示されている(例えば、特許文献1)。   A thermoplastic resin as a main component between the layers of a preform formed by laminating a laminated body constituting a preform and a reinforcing fiber base material woven with reinforcing fiber yarns as one means for relatively easily producing the preform. A method of adhering and fixing fiber base materials by adding a resin material to be used is disclosed (for example, Patent Document 1).

また、含浸性を向上させる方法としては強化繊維積層体の厚さ方向にスティッチング糸で貫通孔を設ける方法も提案されている(例えば、特許文献2)。この方法においては貫通孔から針を引き抜くときに強化繊維積層体の層間をずらしてしまい層毎の孔がずれてしまうためにスティッチング糸を挿入なければならず、スティッチング糸周辺の繊維が局部的に屈曲したり、スティッチング時に強化繊維を破断したりまた、樹脂注入後の成形品においてスティッチング糸周辺に樹脂リッチ部ができ繰り返し荷重時の疲労破壊の起点となるなど強度を低下させる問題がある。 Moreover, as a method for improving the impregnation property, a method of providing a through hole with stitching yarn in the thickness direction of the reinforcing fiber laminate has been proposed (for example, Patent Document 2). In this method, when the needle is pulled out from the through-hole, the layers of the reinforcing fiber laminate are displaced and the holes for each layer are displaced, so the stitching yarn must be inserted, and the fibers around the stitching yarn are locally manner or bent, or broken reinforcement fibers during stitching, also reduces the strength such as stitching yarn around the molded article after the resin injection becomes a starting point of fatigue fracture during repeated can resin-rich part load There's a problem.

また、ニードルパンチにより強化繊維を起毛処理して、起毛された糸条繊維や短繊維ウェブが層間に押し込まれ、層同士がブリッジングされることにより層間せん断強度、面外強度を向上させ、さらに、起毛された繊維による毛細管現象により板厚方向の含浸性が向上させることが開示されている(例えば、特許文献3)。しかし、この手法の場合、ニードルパンチの際にあえて強化繊維の一部を切断して起毛処理するため層間強度の向上効果はあるものの、その副作用として強化繊維量に依存する一方向の引張強度や圧縮強度のような基本的な機械的特性が低下したり、針を抜いた後、貫通孔を保持するものが無いため経時変化やその後の工程で穴が目詰まりし、含浸性が安定して発揮できない等の懸念があるIn addition, the reinforcing fibers are raised by needle punching, and the raised yarn fibers and short fiber webs are pushed between the layers, and the layers are bridged to improve the interlaminar shear strength and the out-of-plane strength. It is disclosed that the impregnation property in the plate thickness direction is improved by a capillary phenomenon caused by the raised fibers (for example, Patent Document 3). However, in the case of this method, part of the reinforcing fiber is intentionally cut and raised during needle punching, so there is an effect of improving the interlaminar strength, but as a side effect, the unidirectional tensile strength that depends on the amount of reinforcing fiber Basic mechanical characteristics such as compression strength and compression strength are reduced, and after removing the needle, there is nothing to hold the through hole. There are concerns that it cannot be demonstrated.

本発明の目的はかかる問題を解決し、構造部材として使用される厚物を含浸でき、かつ、複雑形状に賦形出来るプリフォームと該プリフォームを用いて成形し優れた力学的特性を発現するFRP、該プリフォームを製造する際に取扱性や賦形性を損なうことのないプリフォーム用強化繊維積層体を提供することにある。 An object of the present invention is to solve such problems, can impregnate a thick material to be used as a structural member, and the preform that can shaping complicated shape, the formed excellent mechanical properties by using the preform expression An object of the present invention is to provide a reinforced fiber laminate for preforms that does not impair the handleability and formability when the preform is produced.

発明者は、上記問題を解決するために鋭意検討を行った結果、優れた搬送性、賦形性を有する積層体、該積層体を用いた含浸性に優れたプリフォームを提供し、さらに、該プリフォームを用いることで高い力学的特性を発現するFRPが得られることを見出した。
すなわち、
(1)配列した強化繊維糸条を含む強化繊維基材を複数枚積層一体化した強化繊維積層体であって、前記強化繊維基材の積層層間に熱可塑性樹脂を主成分とする樹脂材料を有し、該樹脂材料を有する前記強化繊維基材の少なくとも複数層を厚み方向に貫通する孔を複数有するとともに、貫通孔を含む0.5〜20.0mmの範囲内では前記樹脂材料が隣接する層を接合する一体化部が設けられ、隣り合う前記一体化部は強化繊維積層体層間面内方向に不連続であることを特徴とする強化繊維積層体。
(2)強化繊維積層体の全面に該貫通孔が略均一に分布している前記(1)に記載の強化繊維積層体。
(3)強化繊維積層体の各層の剥離強さが10−700N/mの範囲内である前記(1)または(2)に記載の強化繊維積層体。
(4)前記樹脂材料が、強化繊維積層体に対して、1〜20重量%の範囲内である前記(1)〜(3)のいずれかに記載の強化繊維積層体。
(5)前記一体化部と非一体化部からなり、一体化部の強化繊維体積率Vpf(後)と非一体化部の強化繊維体積率Vpf(前)の関係が、Vpf(前)+3%<Vpf(後)<Vpf(前)+20%の範囲内である前記(1)〜(5)のいずれかに記載の強化繊維積層体。
Vpf(前):一体化した後の非一体化部における強化繊維体積率(%)
Vpf(後):一体化した後の一体化部における強化繊維体積率(%)
(6)強化繊維基材が、強化繊維糸条が一方向に並行に配列された状態で形態が安定化された一方向性シートである前記(1)〜(5)のいずれかに記載の強化繊維積層体。
(7)一方向性シートの積層パターンが疑似等方積層で構成されていることを特徴とする前記(6)に記載の強化繊維積層体。
(8)前記(1)〜(7)のいずれかに記載の強化繊維積層体全体を加熱、加圧し、強化繊維体積率Vpfを45〜62%の範囲内としたプリフォーム。
(9)前記(8)に記載のプリフォームと熱硬化性樹脂を含み、強化繊維体積含有率Vfが、45〜70%の範囲内であるFRP。
(10)少なくとも次の工程(A)〜(G)を順次経て製造する強化繊維積層体の製造方法。
As a result of intensive studies to solve the above problems, the inventor provides a laminate having excellent transportability and formability, and a preform excellent in impregnation using the laminate, It has been found that an FRP that exhibits high mechanical properties can be obtained by using the preform.
That is,
(1) A reinforcing fiber laminate in which a plurality of reinforcing fiber bases including arranged reinforcing fiber yarns are laminated and integrated, wherein a resin material mainly composed of a thermoplastic resin is provided between the laminated layers of the reinforcing fiber bases. has, together with a plurality of holes at least through multiple layers in the thickness direction of the reinforcing fiber base material having the resin material, the resin material is adjacent within the 0.5~20.0Mm 2 including the through-hole layers integrated portion joining is provided a reinforcing fiber laminate is the integrated portion adjacent characterized in that it is a discontinuous reinforcing fiber laminate layers between plane direction.
(2) The reinforcing fiber laminate according to (1), wherein the through holes are distributed substantially uniformly over the entire surface of the reinforcing fiber laminate.
(3) The reinforcing fiber laminate according to (1) or (2), wherein the peel strength of each layer of the reinforcing fiber laminate is in the range of 10 to 700 N / m 2 .
(4) The reinforcing fiber laminate according to any one of (1) to (3), wherein the resin material is in the range of 1 to 20% by weight with respect to the reinforcing fiber laminate.
(5) Consists of the integrated portion and the non-integrated portion, and the relationship between the reinforcing fiber volume fraction Vpf (rear) of the integrated portion and the reinforcing fiber volume fraction Vpf (front) of the non-integrated portion is Vpf (front) +3 The reinforcing fiber laminate according to any one of (1) to (5), wherein% <Vpf (rear) <Vpf (front) + 20%.
Vpf (front): Reinforced fiber volume ratio (%) in the non-integrated part after integration
Vpf (rear): Reinforced fiber volume ratio (%) in the integrated part after integration
(6) The reinforcing fiber substrate according to any one of (1) to (5), wherein the reinforcing fiber yarn is a unidirectional sheet whose form is stabilized in a state where the reinforcing fiber yarns are arranged in parallel in one direction. Reinforced fiber laminate.
(7) The reinforcing fiber laminate according to (6), wherein the laminate pattern of the unidirectional sheet is configured by pseudo-isotropic lamination.
(8) A preform in which the entire reinforcing fiber laminate according to any one of (1) to (7) is heated and pressed to make the reinforcing fiber volume fraction Vpf within a range of 45 to 62%.
(9) FRP containing the preform and thermosetting resin according to (8), wherein the reinforcing fiber volume content Vf is in the range of 45 to 70%.
(10) A method for producing a reinforcing fiber laminate, which is produced through at least the following steps (A) to (G) sequentially.

(A)少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着した配列した強化繊維糸条を含む強化繊維基材を複数枚積層する積層工程
(B)積層した強化繊維基材を加熱する加熱工程
(C)積層した強化繊維基材の厚み方向に、ピンを貫通させ孔を形成させる貫通工程
(D)貫通孔の周辺を筒状圧子で加圧し、積層した基材を圧着する基材圧着工程
(E)積層体を冷却する冷却工程
(F)ピンを除去するピン除去工程
(G)加圧を除去する圧力除去工程
(1)少なくとも次の工程(A)〜(G)を順次経て製造する強化繊維積層体の製造方法。
(A) Laminating step of laminating a plurality of reinforcing fiber substrates including arranged reinforcing fiber yarns on which a resin material mainly composed of a thermoplastic resin is attached to at least one surface (B) Laminating reinforcing fiber substrates Heating step for heating (C) Penetration step for forming a hole by penetrating the pin in the thickness direction of the laminated reinforcing fiber base material (D) Pressurizing the periphery of the through hole with a cylindrical indenter and crimping the laminated base material Substrate crimping step (E) Cooling step for cooling the laminate (F) Pin removing step for removing pins (G) Pressure removing step for removing pressure (1 1 ) At least the following steps (A) to (G) The manufacturing method of the reinforced fiber laminated body manufactured sequentially through these.

(A)少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着し、配列した強化繊維糸条を含む強化繊維基材を複数枚積層する積層工程
(B)積層した強化繊維基材を加熱する加熱工程
(C’)筒状圧子で加圧し、積層した基材を圧着する基材圧着工程
(D’)積層した強化繊維基材の厚み方向に、筒状圧子の筒内部の領域にピンを貫通
させ孔を形成させる貫通工程
(E)積層体を冷却する冷却工程
(F)ピンを除去するピン除去工程
(G)加圧を除去する圧力除去工程
(1)少なくとも次の装置(a)〜(e)を含む強化繊維積層体の製造装置。
(A) A laminating step in which a resin material mainly composed of a thermoplastic resin adheres to at least one surface, and a plurality of reinforcing fiber substrates including arranged reinforcing fiber yarns are laminated (B) laminated reinforcing fiber substrates (C ') Pressing with a cylindrical indenter, press-bonding the laminated base material, (D') Region inside the cylindrical indenter in the thickness direction of the laminated reinforcing fiber base material (E) Cooling step for cooling the laminated body (F) Pin removing step for removing the pin (G) Pressure removing step for removing the pressure (1 2 ) At least the following apparatus The manufacturing apparatus of the reinforced fiber laminated body containing (a)-(e).

(a)積層した基材を搬送する搬送装置
(b)積層した基材を加熱する加熱装置
(c)ピンで積層した基材を厚み方向に、複数枚貫通孔を形成する積層体貫通装置
(d)筒状圧子で積層体を圧着する圧着装置
(e)積層体を冷却する冷却装置
(1)(a)搬送装置が、ベルトコンベアである前記(1)に記載の製造装置。
(1)(b)加熱装置が、熱風循環式である前記(1)または(1)のいずれかに記載の製造装置。
(1)(c)積層体貫通装置で用いるピン及び(d)圧着装置で用いる筒状圧子が加熱装置と一体化してなり、かつ、該筒状圧子がピンを内包した構造である前記(1)〜(1)のいずれかに記載の製造装置。
(A) Conveying device that conveys the laminated base material (b) Heating device that heats the laminated base material (c) Laminate penetrating device that forms a plurality of through holes in the thickness direction of the base material laminated with pins ( d) Crimping device for crimping the laminate with a cylindrical indenter (e) Cooling device for cooling the laminate (1 3 ) (a) The manufacturing apparatus according to (1 2 ), wherein the transport device is a belt conveyor.
(1 4 ) (b) The manufacturing apparatus according to any one of (1 2 ) or (1 3 ), wherein the heating device is a hot air circulation type.
(1 5 ) (c) The pin used in the laminated body penetrating device and (d) the cylindrical indenter used in the crimping device are integrated with the heating device, and the cylindrical indenter has a structure including the pin ( The production apparatus according to any one of 1 2 ) to (1 4 ).

本発明に関わる高い強度発現率を有するFRP、と該FRPを形成する含浸性が優れたプリフォーム、さらに、該プリフォームを形成する搬送性と優れた賦形性持った強化繊維積層体を提供し、さらに、該強化繊維積層体を高品質に安定して製造できる製造方法及び製造装置提供する。 Provided are an FRP having a high strength expression rate related to the present invention, a preform with excellent impregnation properties for forming the FRP, and a reinforcing fiber laminate having excellent transportability and excellent formability to form the preform. Furthermore, the present invention provides a manufacturing method and a manufacturing apparatus that can stably manufacture the reinforcing fiber laminate with high quality.

以下、本発明の最良の実施の形態を本発明の一実施例である図面を参照しながら説明する。図1は本発明の強化繊維積層体の一実施例を示す斜視図であり、図2は図1のA−A’矢視断面図である。 The best mode for carrying out the present invention will be described below with reference to the drawings, which are examples of the present invention. FIG. 1 is a perspective view showing an embodiment of the reinforcing fiber laminate of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG.

本発明の強化繊維積層体1は、配列した強化繊維糸条を含む強化繊維基材2(例えば、連続した炭素繊維やアラミド繊維等の強化繊維糸条を並行に引き揃えてなる強化繊維基材:詳細後述)が、複数枚厚み方向に積層されており、各層間には熱可塑樹脂を主成分とする樹脂材料3(例えば、ポリアミド、ポリスルフォンなど:詳細後述)を有している。樹脂材料が層間にあれば、入れる手段は特に限定されないが、例えば、樹脂材料を少なくとも片側表面に付着させた強化繊維基材を積層する方法や、強化繊維基材を積層する毎に強化繊維基材表面に樹脂材料を散布する方法、強化繊維積層体に針状の樹脂材料を突き刺す方法、強化繊維基材に予め繊維糸条の樹脂材料を織り込み順次積層する方法等が挙げられる。 The reinforcing fiber laminate 1 of the present invention includes a reinforcing fiber substrate 2 including aligned reinforcing fiber yarns (for example, a reinforcing fiber substrate in which reinforcing fiber yarns such as continuous carbon fibers and aramid fibers are aligned in parallel. : Described later in detail) are laminated in the thickness direction, and each layer has a resin material 3 mainly composed of a thermoplastic resin (for example, polyamide, polysulfone, etc .: described later in detail). If the resin material is between the layers, the means for inserting is not particularly limited, but for example, a method of laminating a reinforcing fiber base having a resin material attached to at least one surface or a reinforcing fiber base every time a reinforcing fiber base is laminated. Examples include a method of spraying a resin material on the surface of the material, a method of piercing a needle-shaped resin material into the reinforcing fiber laminate 1 , a method of sequentially weaving a fiber yarn resin material on a reinforcing fiber base material, and sequentially laminating.

また、本発明の強化繊維積層体1は、配列した強化繊維糸条を含む強化繊維基材を複数枚積層一体化した強化繊維積層体であって、前記強化繊維基材の積層層間に熱可塑性樹脂を主成分とする樹脂材料を有し、該樹脂材料を有する前記強化繊維基材の少なくとも複数層を厚み方向に貫通する孔を複数有するとともに、貫通孔を含む0.5〜20.0mmの範囲内では前記樹脂材料が隣接する層を接合する一体化部が設けられ、隣り合う前記一体化部は強化繊維積層体層間面内方向に不連続であることが必要である。かかる隣接層の接合により、貫通孔を含む0.5〜20.0mmの範囲内には少なくとも複数枚の強化繊維積層体1が厚さ方向に一体化した一体化部5を有する。図2では、貫通孔4は強化繊維積層体1の裏面まで貫通しているが、複数層を貫通していれば必ずしも全体を貫通する必要はない。ただし、穴の深さ、大きさを安定して製造するためには貫通させることが好ましい。貫通孔4を設けることで、強化繊維積層体1を賦形一体化した後に得られるプリフォームに注入されたマトリクス樹脂は板厚方向に十分に流動することができ、得られたFRPは所望の機械特性を達成できる。かかる効果を奏すれば、貫通孔4の大きさ、形状、ピッチとしては、特に限定するものではないが、使用する強化繊維基材2とマトリクス樹脂による含浸特性、FRPに要求される強度から以下に述べる点を考慮して設定することが好ましい。 The reinforcing fiber laminate 1 of the present invention is a reinforcing fiber laminate in which a plurality of reinforcing fiber substrates including arranged reinforcing fiber yarns are laminated and integrated, and is thermoplastic between the lamination layers of the reinforcing fiber substrates. has a resin material a resin as a main component, 0.5~20.0Mm 2 which together with having a plurality of holes at least through multiple layers in the thickness direction of the reinforcing fiber base material having the resin material, the through-holes within the scope of the integrated portion is provided the resin material to join the adjacent layers, said integrated portion adjacent is required to be discontinuous in the plane between the reinforcing fiber laminate layer direction. Due to the joining of the adjacent layers, at least a plurality of the reinforcing fiber laminates 1 are integrated in the thickness direction within the range of 0.5 to 20.0 mm 2 including the through holes. In FIG. 2, the through-hole 4 penetrates to the back surface of the reinforcing fiber laminate 1, but it does not necessarily have to penetrate the whole as long as it penetrates a plurality of layers. However, in order to stably manufacture the depth and size of the hole, it is preferable to penetrate the hole. By providing the through holes 4, the matrix resin injected into the preform obtained after shaping and integrating the reinforcing fiber laminate 1 can sufficiently flow in the plate thickness direction, and the obtained FRP can be obtained in a desired manner. Can achieve mechanical properties. If such an effect is achieved, the size, shape, and pitch of the through holes 4 are not particularly limited. However, from the impregnation characteristics of the reinforcing fiber substrate 2 and the matrix resin used, and the strength required for FRP, It is preferable to set in consideration of the following points.

次に貫通孔の形状について説明する。貫通孔4を大きく設定した場合、FRPに成形したときに該貫通孔4がレジンリッチとなり長期間該FRPが繰り返し荷重にさらされるとクラックが発生する可能性がある。また、周知の通り、FRPの強度は強化繊維の配向角に依存するため、貫通孔4の径が大きくなるにつれ強化繊維主軸に垂直な方向の屈曲が大きくなるため、強化繊維の配向角度が局所的に変化して、弾性率が低下する。そのため、該貫通孔4はマトリクス樹脂が十分に含浸する範囲で小さく設定することが好ましい。かかる観点から、貫通孔の径は、0.3〜2mmであることが好ましく、0.3〜1.5mmであればさらに好ましい。貫通孔4の形状としては、前記機能を満足していれば特に限定されるものではないが、強化繊維の屈曲を小さくし、かつ、応力集中を無くすという点から、断面形状は強化繊維の主軸方向に長径が平行な楕円や曲線で形成されていることが好ましい。 Next, the shape of the through hole 4 will be described. When the through hole 4 is set large, the through hole 4 becomes resin-rich when molded into FRP, and cracks may occur when the FRP is repeatedly exposed to a load for a long period of time. As is well known, since the strength of FRP depends on the orientation angle of the reinforcing fiber, the bending in the direction perpendicular to the main axis of the reinforcing fiber increases as the diameter of the through-hole 4 increases. Change elastically and the elastic modulus decreases . Therefore, it is preferable that the through hole 4 is set to be small as long as the matrix resin is sufficiently impregnated. From this viewpoint, the diameter of the through hole 4 is preferably 0.3 to 2 mm, and more preferably 0.3 to 1.5 mm. The shape of the through hole 4 is not particularly limited as long as the above function is satisfied, but the cross-sectional shape is the main axis of the reinforcing fiber from the viewpoint of reducing the bending of the reinforcing fiber and eliminating stress concentration. It is preferably formed by an ellipse or a curve whose major axis is parallel to the direction.

貫通孔4のピッチとしては、使用する強化繊維基材とマトリックス樹脂、貫通孔4の形状や大きさなどから含浸距離を考慮に入れた上で設定することが好ましい。しかし、高Vfの成形品を得るためにネットシェイププリフォームが必要で面内方向の含浸性があまり期待できない場合やプリフォームが厚い場合には、貫通孔4を配置するピッチは狭い方が好ましいが、狭すぎると隣り合う貫通孔4周辺の一体化部5が接触し、プリフォームの賦形性の悪化が懸念され、また、全体としての押圧が増加するため設備が大がかりとなる。そのため、10〜50mmであることが好ましく、10〜40mmであれば成形サイクルを早められるためさらに好ましい。次に、貫通孔4を含む0.5〜20.0mm の範囲内を説明すると、図1のA−A‘断面である図2に示すように強化繊維積層体1は厚さ方向に一体化されており、かつ、一体化部5は層間面内方向に不連続であることが必要であり、略均一に強化繊維積層体1の全面に分布していることが好ましい。このときの貫通孔4周辺の一体化部5の接着強さ及び一体化部5の該強化繊維積層体1の分布に関しては以下に述べる点を考慮に入れることが好ましい。
例えば、一体化部5の層間剥離強さが弱いと搬送時に剥がれ、搬送が困難になったり、該貫通孔4がズレて期待する含浸性が得られない可能性がある。また、層間全面が一体化していると、自由に変形可能な部分が存在せず、折り曲げるなどした場合に強化繊維積層体1の厚さ方向の層の周長差が緩和できずしわになることがある。そのため、一体化部5が層間で繋がらない範囲で一個当たりの貫通孔4及び一体化部5の面積の総和が0.5〜20.0mmの範囲内であることが必要である。好ましくは2.0〜10.0mmの範囲内である。
The pitch of the through holes 4 is preferably set in consideration of the impregnation distance from the reinforcing fiber base and matrix resin to be used, the shape and size of the through holes 4, and the like. However, when a net-shaped preform is required to obtain a molded product having a high Vf and the impregnation property in the in-plane direction cannot be expected so much or when the preform is thick, it is preferable that the pitch for arranging the through holes 4 is narrow. However, if it is too narrow, the integrated portions 5 around the adjacent through holes 4 come into contact with each other, and there is a concern about the deterioration of the formability of the preform, and the overall pressure increases, so that the facility becomes large. Therefore, the thickness is preferably 10 to 50 mm, and more preferably 10 to 40 mm because the molding cycle can be accelerated. Next, in the range of 0.5 to 20.0 mm 2 including the through hole 4, the reinforcing fiber laminate 1 is integrated in the thickness direction as shown in FIG. are of, and, the integrated portion 5 is required to be continued Flynn interlayer plane direction, it is preferable that the distributed substantially uniformly in the reinforcing fiber layered product 1 entirely. At this time, it is preferable to take the following points into consideration regarding the adhesive strength of the integrated portion 5 around the through-hole 4 and the distribution of the reinforcing fiber laminate 1 of the integrated portion 5.
For example, if the delamination strength of the integrated part 5 is weak, it may be peeled off during transport, making it difficult to transport, or the through-holes 4 may be displaced and the expected impregnation property may not be obtained. In addition, when the entire surface of the interlayer is integrated, there are no freely deformable portions, and when the layers are bent, the difference in the circumferential length of the layers in the thickness direction of the reinforcing fiber laminate 1 cannot be alleviated and wrinkled. There is. Therefore, it is necessary that one conjugated portion 5 is within the sum of 0.5~20.0Mm 2 of area of the through-holes 4 and the integrated portion 5 per one within a range that does not lead the layers. Good Mashiku is in the range of 2.0~10.0mm 2.

また、貫通孔の分布は、含浸性の観点から、面内で略均一に分布していることが好ましい。そのための一形態として、格子状の配列をとれば、貫通孔間の含浸すべき距離が等しくなるため均一な含浸が得られ、また、含浸する樹脂の圧力分布も略均一となることから、片面バッグのVaRTMなどに適用する場合は板厚の変化を面全体で均一になるため好ましい。 Moreover, it is preferable that distribution of the through-hole 4 is distributed substantially uniformly in the plane from the viewpoint of impregnation. As one form for that, if the lattice arrangement is taken, the distance to be impregnated between the through holes 4 is equal, so that uniform impregnation is obtained, and the pressure distribution of the resin to be impregnated is also substantially uniform. When applied to VaRTM of a single-sided bag or the like, the change in the plate thickness is uniform over the entire surface, which is preferable.

また、貫通孔周辺の強化繊維(周辺繊維と略す)の切断は少ない方が好ましく、切断されているものがなければさらに好ましい。強化繊維の切断により、コンポジットの剛性や強度が低下するおそれがあるためである。そのため、貫通孔を形成する際に後述するような形状のピンを用いることが好ましい。 Further, it is preferable that the reinforcing fibers around the through-holes 4 (abbreviated as peripheral fibers) be cut less, and more preferably if there is no cut. This is because the rigidity and strength of the composite may be reduced by cutting the reinforcing fibers. Therefore, when forming the through hole 4 is preferably used pin shaped to later.

また、各層の層間接着強さは10〜700N/mmの範囲内にあることが好ましく、さらに好ましくは30〜500N/mmの範囲内にあることが好ましい。 Further, interlayer adhesion strength of each layer is preferably in the range of 10~700N / mm 2, more preferably it is preferably in the range of 30~500N / mm 2.

ここでいう剥離強さとは、強化繊維基材2の層間を剥がすのに要する応力を言い、具体的には、次の手順で測定する。強化繊維積層体から150mm角の試験片を切り出す。該試験片の両面に試験片とほぼ同形状(150mm角、剥離強さを測定できる範囲であれば厚さは任意)の十分に剛性を有する鉄鋼板などを全面にわたって接着した試験体を準備する。ただし、このとき上下面の板の重心位置と強化繊維積層体の重心の位置がほぼ一直線になるように該鉄鋼板を配置する。該試験体には重りを取り付けるための取って付きのビスが試験体両面に、試験片にねじりモーメントが加わらない配慮して、取り付けられているものを使用する。次に、片側を十分な荷重を支持可能な構造体に取り付け、もう片側に重りをゆっくりと取り付け剥がれたときの重さを読みとる。これを計5回繰り返し計測し、その平均値から応力を算出する。算出式は以下の通り。また、引張試験機を用い測定した5回の平均値から算出しても良い。 The peel strength here refers to the stress required to peel the interlayer of the reinforcing fiber base 2 and specifically, it is measured by the following procedure. A 150 mm square test piece is cut out from the reinforcing fiber laminate 1 . A test body is prepared in which a steel plate and the like having sufficient rigidity (150 mm square, thickness is arbitrary as long as the peel strength can be measured) is adhered to both surfaces of the test piece over the entire surface. . However, at this time, the steel plates are arranged so that the positions of the center of gravity of the upper and lower plates and the position of the center of gravity of the reinforcing fiber laminate 1 are substantially aligned. For the test body, use are made of screws with attachments for attaching weights on both sides of the test body so that no torsional moment is applied to the test piece. Next, one side is attached to a structure capable of supporting a sufficient load, and the weight when the weight is slowly attached to the other side and peeled off is read. This is repeated 5 times in total, and the stress is calculated from the average value. The calculation formula is as follows. Moreover, you may calculate from the average value of 5 times measured using the tensile tester.

Figure 0004821262
Figure 0004821262

σ :剥離強さ
:荷重
g :重力加速度
また、本発明に於ける強化繊維積層体は疑似等方積層で構成されているかもしくは、該強化繊維積層体を組み合わせたときに疑似等方積層になることが好ましい。疑似等方積層とは、通常、基準となる方向に対し繊維配向が0°、90°、45°、−45°の配向の層を有し、前記各層の数が等しいものをいうが、本発明では繊維配向が0°、45°、−45°、90°の内の少なくとも3種以上で構成され、たとえば、(45°/0°/−45°/−45°/0°/−45°)や(45°/0°/−45°/90°/−45°/0°/45°)等のような構成の分割構成も含み、欲するFRP構造体に必要な形状に合わせた積層構成を適宜用いることもある。例えば、FRPが曲面を有する場合に疑似等方でない積層板のそりを利用し曲面形成をする場合や荷重の方向が限定されていて軽量化で積層枚数を少なくしたい場合に疑似等方以外の積層構成を用いることも可能である。また、じん性の低い樹脂系を用いる場合は隣接する層の配向角は約0°を超え約45°の間にあることが好ましい。60°を超えると、繊維方向と繊維に直角な方向は熱膨張率が大きく異なるため、成形前後の残留歪みが大きなり層間にクラックが入ることがある。しかし、じん性の高い樹脂や層間のじん性を高める基材設計がなされていればこの限りではない。
sigma: peel strength P A: Load g: gravitational acceleration also in reinforcing fiber laminate in the present invention or whether it is composed of a quasi-isotropic laminate, quasi isotropic laminate when combined with reinforcing fiber laminate It is preferable to become. The quasi-isotropic lamination usually refers to a layer having fiber orientations of 0 °, 90 °, 45 °, and −45 ° with respect to the reference direction, and the number of each layer is equal. In the invention, the fiber orientation is composed of at least three of 0 °, 45 °, −45 °, and 90 °. For example, (45 ° / 0 ° / −45 ° / −45 ° / 0 ° / −45) ) And (45 ° / 0 ° / −45 ° / 90 ° / −45 ° / 0 ° / 45 °), etc., and a layered structure that matches the shape required for the desired FRP structure. The configuration may be used as appropriate. For example, when the FRP has a curved surface, when using a sled of a laminated board that is not pseudo-isotropic, or when forming a curved surface, or when the load direction is limited and it is desired to reduce the number of laminated sheets by reducing the weight, lamination other than pseudo-isotropic It is also possible to use a configuration. In the case of using a resin system with low toughness, the orientation angle of adjacent layers is preferably more than about 0 ° and between about 45 °. If it exceeds 60 °, the coefficient of thermal expansion differs greatly between the fiber direction and the direction perpendicular to the fiber, so the residual strain before and after molding is large, and cracks may occur between the layers. However, this is not the case as long as a highly tough resin or a substrate design that enhances the toughness between layers is made.

次に積層体のサイズについて説明する。強化繊維積層体の積層枚数が少ない場合や両手に乗るようなサイズの場合は容易に搬送でき、搬送する際に繊維配向方向や積層層間のずれが生じ難いため本発明の強化繊維積層体を作成するメリットが小さくなり、両手で搬送できないサイズ、長辺の長さが300mmを超える強化繊維積層体に用いることが好ましい。積層枚数は3枚以上であることが好ましい。さらに好ましくは5枚以上である。 Next, the size of the laminate will be described. For sized lamination number of the reinforcing fiber layered product 1 ride or when both hands less easily transported, reinforcing-fiber layered 1 of the present invention for displacement of the fiber orientation and lamination layers hardly occurs when transporting It is preferable to use it for a reinforcing fiber laminate having a size that cannot be transported with both hands and a long side length exceeding 300 mm. The number of stacked layers is preferably 3 or more. More preferably, the number is 5 or more.

さらに、本発明における強化繊維積層体1は、図2に断面を示したように、一体化部5及び非一体化部6からなり、一体化部5の強化繊維体積率Vpf(後)と非一体化部6の強化繊維体積率Vpf(前)は、Vpf(前)+3%<Vpf(後)<Vpf(前)+20%の範囲内であることが好ましい。Vpf(前)+3%<Vpf(後)<Vpf(前)+15%の範囲内にあれば、さらに好ましい。というのも、強化繊維積層体を樹脂材料で一体化する場合、一体化する工程の前後で厚さが変化する。Vpf(後)がVpf(前)+3%より小さい場合は層間の剥離強さが十分でないことがあるし、搬送時に嵩張って取り扱いにくくなる。Vpf(後)がVpf(前)+20より大きい場合は局部的な厚さの差が大きすぎて該強化繊維積層体1を賦形する時にしわを生じてしまうことがある。また、プリフォームを賦形する際には変形が期待され、繊維間にある程度の空隙を有していることが好ましく、かつ、繊維束がある程度収束した状態であることが好ましいことから、該強化繊維積層体1のVpf(前)が35〜50%の範囲内にあることが好ましい。 Furthermore, the reinforcing fiber laminate 1 according to the present invention is composed of an integrated part 5 and a non-integrated part 6 as shown in a cross section in FIG. The reinforcing fiber volume fraction Vpf (front) of the integrated portion 6 is preferably in the range of Vpf (front) + 3% <Vpf (back) <Vpf (front) + 20%. It is more preferable if it is within the range of Vpf (front) + 3% <Vpf (rear) <Vpf (front) + 15%. This is because when the reinforcing fiber laminate 1 is integrated with the resin material 3 , the thickness changes before and after the integration step. When Vpf (rear) is smaller than Vpf (front) + 3%, the peel strength between layers may not be sufficient, and it becomes bulky during transport and difficult to handle. When Vpf (rear) is larger than Vpf (previous) +20, the difference in local thickness is so large that wrinkles may occur when the reinforcing fiber laminate 1 is shaped. In addition, deformation is expected when shaping the preform, and it is preferable that the fiber bundle has a certain amount of voids, and that the fiber bundle is preferably converged to some extent. It is preferable that Vpf (front) of the fiber laminate 1 is in the range of 35 to 50%.

本発明で使用する強化繊維基材2としては、炭素繊維、ガラス繊維などの無機繊維や、ポリアミド、アラミドなどの有機繊維を強化繊維とする、織物(一方向性、二方向性、多軸)、編物、組物、一方向に引き揃えられたシート(一方向性シート)、一方向性シートを2層以上重ね合わせた多軸シートが挙げられる(以下、上述した織物やシート等を総称して布帛という。)。これら布帛は、スティッチ糸、結節糸、粗布、バインダー等の樹脂等による各種接合手段により複数のものを一体化した物であっても良い。ここでいう一方向シートとは、強化繊維糸条が一方向に配列した状態で、樹脂材料又はその他の手段によって形態安定化されたものであり、一方向性織物とは、強化繊維糸条が強化布帛の長さ方向つまり縦方向に配列し、横方向には強化繊維糸条により細い補助糸が配列して交錯し、織組織を構成するものである。二方向性織物とは、強化繊維糸条が強化布帛の長さ方向と幅方向に配列して交錯し、織組織を構成するものである。 As the reinforcing fiber substrate 2 used in the present invention, a woven fabric (unidirectional, bi-directional, multiaxial) having inorganic fibers such as carbon fibers and glass fibers and organic fibers such as polyamide and aramid as reinforcing fibers. Knitted fabrics, braided sheets, unidirectional sheets (unidirectional sheets), and multiaxial sheets in which two or more unidirectional sheets are stacked (hereinafter collectively referred to as woven fabrics, sheets, etc.) And called fabric.) These fabrics may be ones in which a plurality of fabrics are integrated by various joining means such as stitch yarns, knot yarns, sackcloths, and resins such as binders. Here, the unidirectional sheet is a state in which the reinforcing fiber yarns are arranged in one direction and the form is stabilized by the resin material 3 or other means. The unidirectional woven fabric is a reinforcing fiber yarn. Are arranged in the longitudinal direction of the reinforcing fabric , that is, in the longitudinal direction, and in the lateral direction, thin auxiliary yarns are arranged and interlaced with reinforcing fiber yarns to form a woven structure. The bi-directional fabric is a fabric in which reinforcing fiber yarns are arranged in the length direction and width direction of the reinforcing fabric and intersect to form a woven structure.

樹脂材料3の形態については、強化繊維の層間強度を高める機能、強化繊維基材間の接着を実現できるものであれば特に限定されるものではない。樹脂材料の形態としては、例えば、粒子、有機繊維布帛、またはフィルムの形態を有するものを使用することができるが、プリフォームにおける強化繊維体積率を高くできること、使用できる熱可塑性樹脂の種類が多様である点から、粒子の形態であることが好ましく、平均粒子直径としては1〜500μmの範囲内であることが好ましい。 About the form of the resin material 3, if the function which raises the interlayer strength of a reinforced fiber and the adhesion | attachment between the reinforced fiber base materials 2 are realizable, it will not specifically limit. As the form of the resin material 3 , for example, those having the form of particles, organic fiber fabrics, or films can be used. However, the volume ratio of reinforcing fibers in the preform can be increased, and the types of thermoplastic resins that can be used. From various points, it is preferably in the form of particles, and the average particle diameter is preferably in the range of 1 to 500 μm.

樹脂材料3は熱可塑性樹脂を主成分とするものである。ここでいう主成分とは、成分中に熱可塑性樹脂が70%以上含まれていることと定義する。樹脂材料3を使った強化繊維積層体1の一体化部5のVpfの制御は、強化繊維積層体1を加熱・加圧して樹脂材料3による強化繊維層拘束を解放して板厚を変化させ、所望の板厚で冷却・除圧することにより強化繊維基材2樹脂材料3を融着させることにより行うことができるThe resin material 3 is mainly composed of a thermoplastic resin. The main component here is defined as a component containing 70% or more of a thermoplastic resin. The control of Vpf of the integrated portion 5 of the reinforcing fiber laminate 1 using the resin material 3 is performed by heating and pressurizing the reinforcing fiber laminate 1 to release the reinforcing fiber layer restraint by the resin material 3 and changing the plate thickness. it can be done more in fusing the reinforcing fiber substrate 2 and the resin material 3 by pressure cooling and divided by the desired thickness.

このような熱可塑性樹脂としては、マトリックス樹脂と相溶性あるいは接着性がよいものを選択することが好ましい。例えば、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンエーテル、ポリエーテルニトリル、ポリエーテルエーテルケトン、及びポリエーテルケトンケトン、これらの変性樹脂、共重合樹脂などを使用することが好ましい。また、かかる樹脂材料3は、強化繊維積層体1形態の時には低いガラス転移点で、FRPに形成された後は高いガラス転移点になっていることが強化繊維積層体1を作成するのに好適である。例えば、熱硬化性樹脂などの熱可塑性樹脂以外の副成分を有することが好ましい。   As such a thermoplastic resin, it is preferable to select a resin having good compatibility or adhesiveness with the matrix resin. For example, polyamide, polyimide, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyphenylene ether, polyethernitrile, polyetheretherketone, and polyetherketoneketone, their modified resin, copolymer resin, etc. are used. It is preferable. Further, the resin material 3 has a low glass transition point when the reinforcing fiber laminate 1 is in the form, and a high glass transition point after being formed on the FRP is suitable for producing the reinforcing fiber laminate 1. It is. For example, it is preferable to have subcomponents other than a thermoplastic resin such as a thermosetting resin.

前記強化繊維積層体1の強化繊維含有率を制御する視点から、樹脂材料3を強化繊維積層体1に対して1〜20重量%の範囲内で有していることが好ましい。樹脂材料3が1重量%未満の場合には、層間強度の向上効果が小さく、また、強化繊維積層体1及び強化繊維積層体を賦形することで形成されるプリフォームの強化繊維体積率の制御幅が小さいという問題点がある。また、樹脂材料3が20重量%を超える場合は、樹脂材料3の体積が大きくなり、強化繊維体積率を高くし難くなる。なお、本発明で用いる強化繊維体積率Vpfとは、次式で求めた値を言う。ここで、測定に供するプリフォームは、1気圧の荷重下で静置し、厚みが平衡に達した状態のものを言い、金属プレート等で挟み込んだ状態でランダムに抽出した10カ所の測定データから平均値を求める操作を5回行って、さらに平均化した値を言う。   From the viewpoint of controlling the reinforcing fiber content of the reinforcing fiber laminate 1, it is preferable to have the resin material 3 in the range of 1 to 20% by weight with respect to the reinforcing fiber laminate 1. When the resin material 3 is less than 1% by weight, the effect of improving the interlayer strength is small, and the reinforcing fiber volume ratio of the preform formed by shaping the reinforcing fiber laminate 1 and the reinforcing fiber laminate is low. There is a problem that the control width is small. Moreover, when the resin material 3 exceeds 20 weight%, the volume of the resin material 3 becomes large and it becomes difficult to make a reinforcement fiber volume ratio high. The reinforcing fiber volume fraction Vpf used in the present invention refers to a value obtained by the following equation. Here, the preform used for the measurement is a state in which the thickness has reached equilibrium under a load of 1 atm, and is measured from 10 measurement data randomly extracted while sandwiched between metal plates or the like. The average value is obtained by performing the operation for obtaining the average value five times.

Vpf=(F×X)/(a×T1)/10 (%)
ここでW1:プリフォームの1m辺りの強化繊維の重量(g/m
X:積層枚数(ply)
a:強化繊維の密度 (g/cm
T1:1気圧の荷重下で測定したプリフォームの板厚(cm)
次に、本発明における強化繊維積層体より賦形されたプリフォームの強化繊維体積率Vpfは45〜62%の範囲内であることが好ましい。一般に、マトリックス樹脂の強化繊維への含浸性は、プリフォーム内の空隙率、ひいては強化繊維の体積含有率に依存するため、本発明の効果は、強化繊維体積率が高い領域において特に有効である。強化繊維体積率Vpfが45%未満の場合は、プリフォーム内の空隙率が充分に大きいため、貫通孔4の効果が小さくなり、該貫通孔4を設ける工程が無い方が安価に製造できるメリットがある。また、強化繊維体積率Vpfが62%を超えると製造が困難であり、圧力をかけ過ぎると繊維を損傷することになる。
Vpf = (F × X) / (a × T1) / 10 (%)
Here, W1: Weight of reinforcing fiber around 1 m 2 of preform (g / m 2 )
X: Number of stacked layers (ply)
a: Density of reinforcing fiber (g / cm 3 )
T1: Thickness (cm) of preform measured under a load of 1 atm
Next, the reinforcing fiber volume fraction Vpf of the preform formed from the reinforcing fiber laminate in the present invention is preferably in the range of 45 to 62%. In general, since the impregnation property of the matrix resin into the reinforcing fibers depends on the porosity in the preform, and thus the volume content of the reinforcing fibers, the effect of the present invention is particularly effective in a region where the reinforcing fiber volume ratio is high. . When the reinforcing fiber volume fraction Vpf is less than 45%, since the porosity in the preform is sufficiently large, the effect of the through hole 4 is reduced, and there is no merit that it can be manufactured at a lower cost without the step of providing the through hole 4 There is. Further, if the reinforcing fiber volume fraction Vpf exceeds 62%, the production is difficult, and if too much pressure is applied, the fiber is damaged.

本発明のFRPは、上述のプリフォームに、マトリックス樹脂が含浸され、硬化したものである。かかるマトリックス樹脂の好ましい例としては、例えば、熱硬化性樹脂、RIM用熱可塑性樹脂等が挙げられるが、中でも注入成形に好適であるエポキシ、フェノール、ビニルエステル、不飽和ポリエステル、シアネートエステル、ビスマレイミドおよびベンゾオキサジンから選ばれる少なくとも1種であることが好ましい。   The FRP of the present invention is obtained by impregnating the above-described preform with a matrix resin and curing. Preferable examples of such matrix resins include, for example, thermosetting resins, RIM thermoplastic resins and the like, among which epoxy, phenol, vinyl ester, unsaturated polyester, cyanate ester, bismaleimide are suitable for injection molding. And at least one selected from benzoxazine.

上述のプリフォーム(樹脂含浸前のいわゆるドライ基材)に、マトリックス樹脂を含浸・硬化し、本発明のFRPを得る方法としては、レジンインフュージョン成形法を適用すると、複雑な形状の成形体であってもボイドの混入等がなく物性に優れた成形体が得られるため好ましい。いわゆるレジンインフュージョン成形法の例としては、RTM成形、真空RTM成形、RFI成形等が挙げられる。   As a method of obtaining the FRP of the present invention by impregnating and curing the above-described preform (a so-called dry base material before resin impregnation) with a matrix resin, a resin infusion molding method is applied. Even if it exists, since there is no mixing of a void etc. and the molded object excellent in the physical property is obtained, it is preferable. Examples of so-called resin infusion molding methods include RTM molding, vacuum RTM molding, and RFI molding.

なお、プリフォームにあけた貫通孔は成形後のFRP中では、プリフォームでの孔径に対して、その径が小さくなる傾向にある。これは、成形時の樹脂含浸により孔が閉口するためと考えられ、FRPはプリフォームと比較して約1/2〜1/3に減少する。前記貫通孔に由来する痕跡を有するFRPと前記貫通孔に由来する痕跡の無いFRPのNHC(無孔圧縮試験)、NHT(無孔引張試験)、CAI(衝撃後圧縮強度)を比較したところ、表1の結果が得られた。ただし、該孔の無いFRP強度の値を100%として比で表す。結果、両者はほぼ等しく孔の影響は見られなかった。 In addition, the diameter of the through hole opened in the preform tends to be smaller than the hole diameter in the preform in the FRP after molding. This is considered to be because the holes are closed by resin impregnation during molding, and FRP is reduced to about 1/2 to 1/3 as compared with the preform. When comparing FRP having a trace derived from the through hole and NHC (non-hole compression test), NHT (non-hole tensile test), CAI (compression strength after impact) of the FRP having no trace derived from the through-hole, The results in Table 1 were obtained. However, the value of FRP strength without the hole is expressed as a ratio with 100%. As a result, both were almost equal and the influence of the hole was not seen.

Figure 0004821262
Figure 0004821262

本発明のFRPとしては、強化繊維体積含有率Vfが、45〜70%の範囲内であることが、構造部材としての特性を高く発現できることから好ましい。より好ましくは45〜62%、さらに好ましくは50〜60%の範囲内である。45%以下となると折角高比弾性率繊維を用いても、その高弾性率を生かしきれず、また、70%以上になると繊維同士が接触したり、樹脂が不足して層間が剥がれやすくなるため、内部に欠陥が観察されることがある。なお、FRPの強化繊維体積含有率Vfとは、次式で求めた値をいう(単位は%)。なお、ここで用いた記号は下記のとおりである。測定方法は100μm程度の分解能のあるマイクロメータを用いて、試験片を挟んで測定する。測定値はランダムに抽出した10カ所の厚さを測定し、平均値を求める操作を5回繰り返して、さらにそれらを平均化した値を用いる。   The FRP of the present invention preferably has a reinforcing fiber volume content Vf in the range of 45 to 70% because the characteristics as a structural member can be highly expressed. More preferably, it is 45 to 62%, and further preferably 50 to 60%. If it is 45% or less, even if a fiber with a high specific modulus is used, the high modulus cannot be fully utilized, and if it is 70% or more, the fibers come into contact with each other or the resin is insufficient and the layers are easily peeled off. , Defects may be observed inside. In addition, the reinforcing fiber volume content Vf of FRP means the value calculated | required by following Formula (a unit is%). The symbols used here are as follows. The measurement method uses a micrometer with a resolution of about 100 μm and measures with the test piece sandwiched. The measurement values are obtained by measuring 10 thicknesses extracted at random, repeating the operation of obtaining the average value five times, and further averaging the values.

Vf=(F×X)/(ρ×T2)/10 (%)
ここで、F:FRP1cm当たりの強化繊維の重量(g/cmX:積層枚数(ply)ρ:強化繊維の密度(g/cmT2:FRPの厚さ(cm)
次に、本発明にかかる強化繊維積層体の製造方法及び装置の最良の形態について述べる。
図3は、本発明の強化繊維積層体の製造方法及び装置の第1の実施態様にかかる全体の斜視図であり、図4は図3の強化繊維積層体の製造工程及び装置における筒状圧子14を部分的に拡大した図である。
(A)積層工程
図3に示すように、まず移送手段を有する装置に、少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料3が付着した配列した強化繊維糸条を含む強化繊維基材2を複数枚積層する。積層装置としては予めパターンカットした基材を吸着し所定位置に積層する方法でも良いし、前記積層装置の0°方向のみをカットせずにロールから巻き出して積層しても良い。ここでの工程間の移送手段としてはベルトコンベア、ワゴン、エアで該強化繊維積層体を浮かせて移動させる装置、強化繊維積層体を帯電させ磁力を用いて積層体を浮かせて運ぶ、磁力で引張り搬送する装置で等が挙げられる。該強化繊維積層体の層間がずれたり、繊維の配向を乱す移送手段でなければこれに限るものではない。また、積層体の表面を保護する手段を講じれば、粘着剤で表面保護層ごと持ち上げて搬送する等の方法も用いることが出来る。
Vf = (F × X) / (ρ × T2) / 10 (%)
Here, F: weight of reinforcing fibers per FRP1cm 2 (g / cm 2) , X: the number of laminated sheets (ply), ρ: density of reinforcing fibers (g / cm 3), T2 : the FRP thickness (cm)
Next, the best mode of the manufacturing method and apparatus of the reinforcing fiber laminate 1 according to the present invention will be described.
FIG. 3 is an overall perspective view according to the first embodiment of the manufacturing method and apparatus of the reinforcing fiber laminate 1 of the present invention, and FIG. 4 is the cylinder in the manufacturing process and apparatus of the reinforcing fiber laminate 1 of FIG. It is the figure which expanded the indenter 14 partially.
(A) Laminating step As shown in FIG. 3, first, a reinforcing fiber base comprising reinforcing fiber yarns arranged in an apparatus having a transfer means and having a resin material 3 having a thermoplastic resin as a main component attached to at least one surface. A plurality of materials 2 are laminated. The laminating apparatus may be a method of adsorbing a substrate that has been pattern-cut in advance and laminating it at a predetermined position, or unwinding and laminating only the 0 ° direction of the laminating apparatus without cutting. Wherein the conveyor belt as a transfer means between processes, wagon, apparatus for moving floated reinforcing fiber laminate 1 by the air carries float a laminate with a magnetic charges the reinforcing fiber layered product 1, the magnetic force And the like in an apparatus for pulling and conveying. It is not limited to this as long as it is not a transfer means that deviates the layers of the reinforcing fiber laminate 1 or disturbs the fiber orientation. Moreover, if a means for protecting the surface of the laminate is taken, a method of lifting and transporting the entire surface protective layer with an adhesive can be used.

(B)加熱工程
次に、上記の移送手段で加熱工程に移送する。図3に一例を示すように加熱装置11はヒーター12とモーター13を使い熱風を発生させ強化繊維積層体1の全体を加熱することにより、主に熱可塑性樹脂からなる樹脂材料3を軟化させる。加熱装置11としては上記のようなヒーター12とモーター13を使用して熱風を発生させても良いし、(D)圧着工程で用いる筒状圧子14や(C)で用いるピン15を加熱して固体同士の熱伝導を利用しても良い。ピン15や筒状圧子14の素材としては耐熱性があり、熱膨張率が比較的小さい金属製が好ましいが、加熱温度よりガラス転移温度が高いプラスチック素材も用いることも可能である。加熱温度は実質的には用いる樹脂材料のTg以上と言えるが、一般的樹脂材料を可塑化し、強化繊維がフリーな状態になり、所望の繊維体積含有率に制御出来る点から50〜180℃の範囲内であることが好ましい。
(B) Heating process Next, it transfers to a heating process with said transfer means. By the heating device 11 as an example of heating the entire heater 12 and the motor 13 to use the reinforcing fiber layered product 1 hot air is generated in FIG. 3, it causes mainly soften the resin material 3 made of thermoplastic resin. As the heating device 11 , the heater 12 and the motor 13 as described above may be used to generate hot air, or (D) the cylindrical indenter 14 used in the crimping process or the pin 15 used in (C) is heated. You may utilize the heat conduction between solids. As a material for the pin 15 and the cylindrical indenter 14 has heat resistance and thermal expansion coefficient relatively small Ikin genus made Preferably, plastic materials having a high glass transition temperature than the heating temperature can be used. The heating temperature can be said to be substantially equal to or higher than the Tg of the resin material 3 to be used, but it is 50 to 180 ° C. from the point that the general resin material is plasticized and the reinforcing fiber becomes free and can be controlled to a desired fiber volume content It is preferable to be within the range.

(C)貫通工程
図3に示すように加熱工程で加熱され樹脂材料3が軟化した強化繊維基材2を複数枚貫通するようにピン15を刺す。ピン15を刺す角度は強化繊維基材2の面方向の法線方向にほぼ等しく刺すことが好ましい。ピン15の形状としては、特に限定するものではないが、FRPの機械強度と言う観点からは、繊維を切断しにくく、繊維の隙間を貫通し易い形状が好適である。例えば、繊維を切断しないように先端をR加工したものや強化繊維積層体に速やかに挿入するために尖頭加工したものを使用することができる。
(C) Penetration process As shown in Drawing 3, pin 15 is stabbed so that a plurality of reinforced fiber base materials 2 heated by the heating process and softened resin material 3 may be penetrated. It is preferable that the angle at which the pin 15 is pierced is substantially equal to the normal direction of the surface direction of the reinforcing fiber base 2. Although it does not specifically limit as a shape of the pin 15 , From the viewpoint of the mechanical strength of FRP, the shape which is hard to cut | disconnect a fiber and easily penetrates the clearance gap of a fiber is suitable. For example, it is possible to use a material whose tip is R-processed so as not to cut the fiber or a material which has been pointed to be quickly inserted into the reinforcing fiber laminate 1 .

加えてピン15の径は貫通孔を穿つ際の摩擦抵抗により強化繊維を切断しないために、0.3mmから2mmの範囲であることが好ましく、さらに好ましくは0.5mmから1.5mmの範囲にあることが好ましい。 In addition, the diameter of the pin 15 is preferably in the range of 0.3 mm to 2 mm, and more preferably in the range of 0.5 mm to 1.5 mm in order not to cut the reinforcing fiber due to frictional resistance when the through hole is made. Preferably there is.

ピンピッチは10mmから50mmの範囲であることが好まく、10mmから40mmの範囲であればさらに好ましい。この範囲であれば、基材圧着工程で用いる圧子同士が干渉せず、十分な剥離強さが得られるような装置設計が容易となる。   The pin pitch is preferably in the range of 10 mm to 50 mm, more preferably in the range of 10 mm to 40 mm. If it is this range, the indenter used at a base-material crimping | compression-bonding process does not interfere, but the apparatus design that sufficient peel strength is obtained becomes easy.

また、ピンの断面形状としては貫通孔を穿つ際に強化繊維を損傷しないために、曲線であることが好ましい。さらにこのましくは断面形状が次式を満たす曲線であることが好ましい。   The cross-sectional shape of the pin is preferably a curved line so that the reinforcing fiber is not damaged when the through-hole is formed. Furthermore, it is preferable that the cross-sectional shape is a curve satisfying the following formula.

ax+by=R
ここでa,b:媒介変数(正の実数)x,yR:変数(実数)
次に、台上に乗せた該強化繊維積層体をピン15で貫通させた時にピン先端が台で変形することが考えられる。ピン15の変形を保護するために移送手段の上に保護板を設ける。たとえば発泡体やゴム材料でもよく、予め移送手段にピン15に相対応した孔を空けておくことも効果がある。保護板を設けるときに注意すべき点は耐熱性や擦過性に十分な耐性があること、耐擦過性が不充分な場合はピン15を繰り返し挿入すると保護材が削れて強化繊維積層体内に入ってしまうことがあるし、耐熱性が不充分な場合は加熱途中に該保護板が変形し強化繊維積層体に必要な形状の貫通孔を設けられないこともある。用いるピン15の構造としては移送手段、例えばベルトコンベアに内包されている構造であっても良い。ただし、ピン15で強化繊維積層体を貫通する際は貫通時の抵抗力以上の力で押さえる必要がある。例えば、強化繊維積層移送手段に吸引機能がある、強化繊維積層体を挟み込むように移送手段の対面から押さえる、強化繊維積層体を帯電させ移送手段上に貼り付かせる等が挙げられるが、ピン15が貫通する際の抵抗力以上の力を加えることができれば、それらに限定されるものではない。
ax 2 + by 2 = R 2
Here, a, b: parametric (positive real number), x, y, R: variables (real)
Next, it is considered that the tip of the pin is deformed by the table when the reinforcing fiber laminate 1 placed on the table is penetrated by the pin 15 . In order to protect the deformation of the pin 15 , a protective plate is provided on the transfer means. For example, a foam or a rubber material may be used, and it is also effective to previously make a hole corresponding to the pin 15 in the transfer means. The point to be noted when providing the protective plate is that it has sufficient resistance to heat resistance and scratching. If the scratch resistance is insufficient, the protective material is scraped by repeatedly inserting the pin 15 and the reinforcing fiber laminate 1 is broken. If the heat resistance is insufficient, the protective plate may be deformed during heating, and the reinforcing fiber laminate 1 may not be provided with the necessary through-holes 3 . The structure of the pin 15 to be used may be a structure included in a transfer means, for example, a belt conveyor. However, when penetrating the reinforcing fiber laminate 1 with the pin 15 , it is necessary to hold it with a force greater than the resistance force at the time of penetration. For example, there is a suction function reinforcing fiber layered transfer means, presses the face of the transfer means so as to sandwich the reinforcing fiber layered product 1, but such that stick onto transport means charges the reinforcing fiber laminate 1 can be mentioned, If the force more than the resistance force at the time of the pin 15 penetrating can be applied, it will not be limited to them.

(D)基材圧着工程
(C)貫通工程で刺したピン15の周辺部を図4に示す筒状圧子14で複数枚圧着する。筒状圧子10はピン15を内蔵できる構造になっており、ピン15の穿った孔の近傍を圧着するためにピン15の外形と筒状圧子14の内径はほぼ等しいことが好ましいが、画鋲のような構造でピン15筒状圧子14が一体化されたようなものでも良い。層間を一体化する手法としては強化繊維積層体層間にある樹脂材料が加圧、加熱されることで溶融、軟化し層間を一体化することが好ましい。圧着装置としてはプレス機に円筒状の圧子が多数本一体化した装置、さらに、尺取り虫のようにプレス機にスライド可能な機能を付加させた装置、プレスロールに筒状圧子10が多数本一体化し、プレスロールの回転と移送手段の速度を連動する装置、プレス機能を持ったベルトコンベアに圧子が多数本一体化した装置で圧着することなども挙げられるが、圧着機能を有する装置であればこれに限るものではない。
(D) Substrate crimping step (C) A plurality of peripheral portions of the pin 15 pierced in the penetration step are crimped by the cylindrical indenter 14 shown in FIG. Cylindrical indenter 10 has a structure capable of incorporating the pin 15, it is preferable inside diameter substantially equal to the outer cylindrical indenter 14 of the pin 15 in order to crimp the vicinity of holes drilled with pin 15, thumbtack The pin 15 and the cylindrical indenter 14 may be integrated in such a structure. As a method for integrating the layers, it is preferable that the resin material 3 between the reinforcing fiber laminates 1 is melted and softened by pressurization and heating to integrate the layers. As a crimping device, a device in which a large number of cylindrical indenters are integrated in a press machine, a device in which a function capable of sliding on the press machine is added like a scale insect, and a number of cylindrical indenters 10 are integrated in a press roll. Also, there are devices that link the rotation of the press roll and the speed of the transfer means, and crimping with a device that integrates a large number of indenters on a belt conveyor that has a pressing function. It is not limited to.

また、前記(C),(D)の工程に代えて次の(C’),(D’)の工程を適用しても良い。   Further, instead of the steps (C) and (D), the following steps (C ′) and (D ′) may be applied.

(C’)基材圧着工程
(B)加熱工程で加熱され樹脂材料3が軟化した強化繊維基材2を図5に示す筒状圧子14で複数枚圧着する。筒状圧子14はピン15を内蔵できる構造になっており、後述するように圧着した筒状の内部にピン15で孔を穿つものであり、そのためにピン15の外形と筒状圧子14の内径はほぼ等しいことが好ましい。層間を一体化する手法としては強化繊維積層体層間にある樹脂材料が加圧、加熱されることで溶融、軟化し層間を一体化することが好ましい。圧着装置としてはプレス機に円筒状の圧子が多数本一体化した装置、さらに、尺取り虫のようにプレス機にスライド可能な機能を付加させた装置、プレスロールに筒状圧子14が多数本一体化し、プレスロールの回転と移送手段の速度を連動する装置、プレス機能を持ったベルトコンベアに圧子が多数本一体化した装置で圧着することなども挙げられるが、圧着機能を有する装置であればこれに限るものではない。
(C ′) Substrate crimping step (B) A plurality of reinforcing fiber substrates 2 heated in the heating step and softened by the resin material 3 are crimped by a cylindrical indenter 14 shown in FIG. Cylindrical indenter 14 has a structure capable of incorporating a pin 15, which drilling the hole in pin 15 therein crimped tubular as will be described later, the inner diameter of the outer cylindrical indenter 14 of pin 15 in order that Are preferably approximately equal. As a method of integrating the layers, it is preferable that the resin material 3 between the reinforcing fiber laminates is melted and softened by pressing and heating to integrate the layers. As a crimping device, a device in which a large number of cylindrical indenters are integrated in a press machine, a device in which a function capable of sliding on the press machine is added like a scale insect, and a number of cylindrical indenters 14 are integrated in a press roll. Also, there are devices that link the rotation of the press roll and the speed of the transfer means, and crimping with a device that integrates a large number of indenters on a belt conveyor that has a pressing function. It is not limited to.

(D’)貫通工程
図5に示すように圧着工程で筒状圧子14により複数枚圧着された強化繊維基材2を複数枚貫通するようにピン15を刺す。ピン15を刺す角度は強化繊維基材2の面方向の法線方向にほぼ等しく刺すことが好ましい。ピン15の形状としては、特に限定するものではないが、FRPの機械強度と言う視点においては、繊維を切断しにくく、繊維の隙間を貫通し易い形状が好適である。例えば、繊維を切断しないように先端をR加工したものや強化繊維積層体に速やかに挿入するために尖頭加工したものを使用することができる。
(D ′) Penetration Step As shown in FIG. 5, the pins 15 are pierced so as to penetrate a plurality of reinforcing fiber bases 2 that have been crimped by the cylindrical indenter 14 in the crimping step. It is preferable that the angle at which the pin 15 is pierced is substantially equal to the normal direction of the surface direction of the reinforcing fiber base 2. Although it does not specifically limit as a shape of the pin 15, From the viewpoint called the mechanical strength of FRP, the shape which is hard to cut | disconnect a fiber and easily penetrates the clearance gap between fibers is suitable. For example, it is possible to use a material whose tip is R-processed so as not to cut the fiber or a material which has been pointed to be quickly inserted into the reinforcing fiber laminate 1 .

加えてピン15の径は貫通孔を穿つ際の摩擦抵抗により強化繊維を切断しないために、0.3mmから2mmの範囲であることが好ましく、さらに好ましくは0.5mmから1.5mmの範囲にあることが好ましい。 In addition, the diameter of the pin 15 is preferably in the range of 0.3 mm to 2 mm, more preferably in the range of 0.5 mm to 1.5 mm in order not to cut the reinforcing fiber due to frictional resistance when the through-hole 3 is made. It is preferable that it exists in.

ピンピッチは10mmから50mmの範囲であることが好まく、10mmから40mmの範囲であればさらに好ましい。この範囲であれば、基材圧着工程で用いる圧子同士が干渉せず、十分な剥離強さが得られるような装置設計が容易となる。   The pin pitch is preferably in the range of 10 mm to 50 mm, more preferably in the range of 10 mm to 40 mm. If it is this range, the indenter used at a base-material crimping | compression-bonding process does not interfere, but the apparatus design that sufficient peel strength is obtained becomes easy.

また、ピン15の断面形状としては貫通孔を穿つ際に強化繊維を損傷しないために、曲線であることが好ましい。さらにこのましくは断面形状が次式を満たす曲線であることが好ましい。
ax+by=R
ここでa,b:媒介変数(正の実数)x,yR:変数(実数)
なお(C)工程と同様、台上に乗せた該強化繊維積層体をピン15で貫通させた時にピン先端が台で変形することが考えられる。ピン15の変形を保護するために移送手段の上に保護板を設ける。たとえば発泡体やゴム材料でもよく、予め移送手段にピン15に相対応した孔を空けておくことも効果がある。保護板を設けるときに注意すべき点は耐熱性や擦過性に十分な耐性があること、耐擦過性が不充分な場合はピン15を繰り返し挿入すると保護材が削れて強化繊維積層体内に入ってしまうことがあるし、耐熱性が不充分な場合は加熱途中に該保護板が変形し強化繊維積層体に必要な形状の貫通孔を設けられないこともある。用いるピン15の構造としては移送手段、例えばベルトコンベアに内包されている構造であっても良い。ただし、ピン15で強化繊維積層体を貫通する際は貫通時の抵抗力以上の力で押さえる必要がある。例えば、移送手段に強化繊維積層移送手段に吸引機能がある、強化繊維積層体を挟み込むように移送手段の対面から押さえる、強化繊維積層体を帯電させ移送手段上に貼り付かせる等が挙げられるが、ピン15が貫通する際の抵抗力以上の力を加えることができれば、それらに限定されるものではない。
Further, the cross-sectional shape of the pin 15 is preferably a curved line so that the reinforcing fiber is not damaged when the through hole is formed. Furthermore, it is preferable that the cross-sectional shape is a curve satisfying the following formula.
ax 2 + by 2 = R 2
Here, a, b: parametric (positive real number), x, y, R: variables (real)
As in the step (C), it is considered that the tip of the pin is deformed by the table when the reinforcing fiber laminate 1 placed on the table is penetrated by the pin 15 . In order to protect the deformation of the pin 15 , a protective plate is provided on the transfer means. For example, a foam or a rubber material may be used, and it is also effective to previously make a hole corresponding to the pin 15 in the transfer means. The point to be noted when providing the protective plate is that it has sufficient resistance to heat resistance and scratching. If the scratch resistance is insufficient, the protective material is scraped by repeatedly inserting the pin 15 and the reinforcing fiber laminate 1 is broken. If the heat resistance is insufficient, the protective plate may be deformed during heating, and the reinforcing fiber laminate 1 may not be provided with the necessary through-holes 3 . The structure of the pin 15 to be used may be a structure included in a transfer means, for example, a belt conveyor. However, when penetrating the reinforcing fiber laminate 1 with the pin 15 , it is necessary to hold it with a force greater than the resistance force at the time of penetration. For example, there is a suction function reinforcing fiber layered transfer means to transfer means, presses the face of the transfer means so as to sandwich the reinforcing fiber layered product 1, include the like to stick on the transport means charges the reinforcing fiber layered 1 However, the present invention is not limited to these as long as a force greater than the resistance force when the pin 15 penetrates can be applied.

(E)冷却工程
(D)工程または、(D’)工程の次に、積層体の圧着部が所望の厚みになる、または、所定の熱、圧履歴を受けたところで、冷却工程にてプリフォーム1の全体を冷却して、樹脂材料3が固化して、強化繊維基材の圧着部である層間及び貫通孔を固定する。冷却装置としては空冷式であることが好ましいが、強化繊維積層体1表面繊維を乱さない範囲の風量、風圧を設定することが好ましいが、強化繊維積層体1の表面を保護するようにフィルム等を配置すれば風量、風圧や冷却媒体も限定するものではない。また、炭素繊維は熱伝導率が優れており、さらに、表面積が大きいため加熱装置から取り出し、特別な冷却手段を設けず大気開放を行えば、十分な冷却効果が得られる場合もある。
(E) Cooling step After the step (D) or step (D ′), when the pressure-bonding portion of the laminate has a desired thickness or receives a predetermined heat and pressure history, the cooling step is performed. The entire reform 1 is cooled, the resin material 3 is solidified, and the interlayer and the through-holes 3 that are the crimping portions of the reinforcing fiber base 2 are fixed. The cooling device is preferably an air-cooling type, but it is preferable to set the air volume and air pressure in a range that does not disturb the surface fibers of the reinforcing fiber laminate 1, but a film or the like so as to protect the surface of the reinforcing fiber laminate 1 If it arrange | positions, an air volume, a wind pressure, and a cooling medium will not also be limited. In addition, since carbon fiber has excellent thermal conductivity and has a large surface area, a sufficient cooling effect may be obtained if it is taken out of the heating device and opened to the atmosphere without providing any special cooling means.

(F)除去工程
次に、圧子が強化繊維積層体を抑えた状態でピン15を除去し、圧子内に収納する。ピン15は樹脂材料3が付着しているため該樹脂材料3に強化繊維基材2の一部が付着し、繊維がずれて貫通孔を潰してしまうことがあるため、ピン15外形とほぼ等しい内径の筒状圧子14でピン15の周囲を抑えることが好ましい。また、筒状圧子14とピン15のクリアランスの設定によっては基材圧着時にピン周辺部の強化繊維基材がしっかりと固定され動かないため圧着工程後にピン15除去工程が採用され、その後すみやかに冷却工程を経て、本発明の効果が得られることもある。
(F) Removal Step Next, the pin 15 is removed in a state where the indenter suppresses the reinforcing fiber laminate 1, and is accommodated in the indenter. Pin 15 attached part of the reinforcing fiber substrate 2 to the resin material 3 for the resin material 3 adheres, because there is that the fibers would crush the through-hole 3 deviates substantially pin 15 outline It is preferable to suppress the periphery of the pin 15 with a cylindrical indenter 14 having an equal inner diameter. Further, depending on the setting of the clearance between the cylindrical indenter 14 and the pin 15, the reinforcing fiber base material 2 around the pin is firmly fixed and does not move when the base material is crimped. Therefore, the pin 15 removing process is adopted after the crimping process, and then promptly. Through the cooling process, the effect of the present invention may be obtained.

(G)圧力除去工程
次に、抑えていた筒状圧子14の圧力を徐々に除荷し、強化繊維積層体1の表面から離す。
(G) Pressure Removal Step Next, the pressure of the cylindrical indenter 14 that has been suppressed is gradually unloaded and separated from the surface of the reinforcing fiber laminate 1.

一連の(A)〜(G)の工程は連続的に行っても良いし、(C)〜(G)の工程中のいずれかの工程中はバッチ式で移送手段を静止していても良いが、設備設計の簡略化や投資コストの観点から、搬送装置(例えば、移動式の台、車の付いた台、ベルトコンベア、磁石可動型のリニアモータ内蔵したテーブルを備えた台、エア駆動式でエアベアリングを内蔵したテーブルを備えた台等)を用いて、(A)〜(G)の工程を一貫して流す装置であることが好ましい。具体的に重要な部分を説明すると、搬送すべき強化繊維積層体を形成する繊維のストランド幅よりも小さな孔を有するテーブル上に乗せて搬送するとストランドが屈曲し難く好ましい。また、強化繊維積層体の表面が擦過により毛羽立つ場合はテーブルからエアを吐出し、浮かせて搬送しても良い。 The series of steps (A) to (G) may be performed continuously, or the transfer means may be stationary in a batch manner during any of the steps (C) to (G). However, from the viewpoint of simplification of equipment design and investment cost, a transport device (for example, a mobile table, a table with a car, a belt conveyor, a table with a table with a built-in magnet-movable linear motor, an air-driven type It is preferable that the apparatus is configured to flow the steps (A) to (G) consistently using a table having a table with a built-in air bearing. Specifically, the important part will be described. It is preferable that the strands are hardly bent when transported on a table having holes smaller than the strand width of the fibers forming the reinforcing fiber laminate 1 to be transported. Moreover, when the surface of the reinforcing fiber laminate 1 becomes fuzzy due to rubbing, air may be discharged from the table and floated.

次に、本発明の圧着装置について説明する。強化繊維積層体は樹脂材料を軟化させて一体化するため、加熱が必要で、図4のように加熱装置内に筒状圧子14、ピン15を配置し、加熱、貫通、圧着を行えるが、工程の簡略化を考えると圧子やピン自体を温水や伝熱ヒーター等の加熱手段で加熱して、強化繊維積層体筒状圧子14やピン15との伝熱のみで加熱、貫通、圧着を行うことが好ましい。ただし、伝熱だけでは十分な昇温速度が得られない場合は併用や加熱装置内に入れても良い。 Next, the crimping apparatus of the present invention will be described. Since the reinforcing fiber laminate 1 is integrated by softening the resin material 3 , heating is required, and the cylindrical indenter 14 and the pin 15 are arranged in the heating device as shown in FIG. However, considering the simplification of the process, the indenter and the pin itself are heated by heating means such as hot water and a heat transfer heater, and only the heat transfer between the reinforcing fiber laminate 1 and the cylindrical indenter 14 and the pin 15 is heated and penetrated. It is preferable to perform pressure bonding. However, if a sufficient temperature increase rate cannot be obtained by heat transfer alone, it may be used in combination or in a heating device.


以下、本発明の一実施例いついて、上記図面を参照しながら説明する。
実施例1
まず、強化繊維基材2として一方向性炭素繊維織物(東レ株式会社製、品名:CZ8431DP、経糸:PAN系炭素繊維、24,000フィラメント、繊度1,030tex、引張強度5,900MPa、引張弾性率295GPa、破断伸度2.0%、破壊歪エネルギー59MJ/m、緯糸:ポリアミド66繊維、7フィラメント、繊度1.7tex。)をサイズ:150mmx150mmに切り出した強化繊維基材2を28枚x5セットを用意した。該織物は強化繊維糸条として炭素繊維T800S(東レ株式会社製、密度:1.8g/m)を使用した炭素繊維目付190g/mの一方向性織物であり、表面には熱可塑性樹脂を主成分とする粒子状樹脂材料3が27g/mの目付で予め付着させてある。

Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Example 1
First, the unidirectional carbon fiber fabric (made by Toray Industries, Inc., product name: CZ8431DP, warp: PAN-based carbon fiber, 24,000 filament, fineness 1,030 tex, tensile strength 5,900 MPa, tensile elastic modulus as the reinforcing fiber base 2 295 GPa, breaking elongation 2.0%, breaking strain energy 59 MJ / m 3 , weft: polyamide 66 fiber, 7 filaments, fineness 1.7 tex.) Size: 150 mm × 150 mm Reinforced fiber substrate 2 28 sheets × 5 sets Prepared. The woven fabric is a unidirectional woven fabric having a carbon fiber basis weight of 190 g / m 2 using carbon fibers T800S (made by Toray Industries, Inc., density: 1.8 g / m 3 ) as reinforcing fiber yarns, and a thermoplastic resin is provided on the surface. The particulate resin material 3 containing as a main component is attached in advance with a basis weight of 27 g / m 2 .

これを用いて以下の要領で強化繊維積層体を作成した。 Using this, the reinforcing fiber laminate 3 was prepared in the following manner.

板状の発泡材(Rohm、“ロハセル(登録商標)”IG−51、t=10mm)にナイロンフィルムでカバー(リッチモンド製、HS−800、ナイロン製)を取り付けた上に〔45°/0°/−45°/90°/−45°/0°/45°〕2sの積層構成で上記織物を熱可塑樹脂の付着した面を上にして積層した強化繊維積層体を準備し、該発泡剤+強化繊維積層体を試験片とした。この状態での強化繊維体積含有率を測定するとVpfは43.5%であった。 After attaching a cover (Richmond, HS-800, made of nylon) to a plate-like foam material (Rohm, “Rohacell (registered trademark)” IG-51, t = 10 mm) with a nylon film [45 ° / 0 ° / −45 ° / 90 ° / −45 ° / 0 ° / 45 °] A reinforced fiber laminate 1 is prepared by laminating the woven fabric with the thermoplastic resin adhering side up in a 2 s laminated structure, and the foaming The agent + reinforced fiber laminate 1 was used as a test piece. When the volume content of the reinforcing fiber in this state was measured, Vpf was 43.5%.

最初の加熱工程ではまず、試験片をバギングフィルム(リッチモンド製、HS−800、ナイロン製)で覆い停止状態のベルトコンベア上に配置し、ベルトコンベアを稼働させ、試験片を予め80℃の炉温に設定したオーブン内に導き、試験片全体が炉内に入った時点で停止させて、試験片の温度が80±5℃内に入るまでK熱電対で測定しながら待った。該オーブン内のコンベア上にはプレス機が配置されており、該プレス機にはプレス面に筒状圧子14が取り付けてあり、該筒状圧子14には真鍮製のピン15を内包しており、エア式のピストンでピン15が円筒状内を上下、別のエアでプレス面自体(筒状圧子14)が昇降できるような構造のものを用いた。 In the first heating step, first, the test piece is covered with a bagging film (made by Richmond, HS-800, made of nylon), placed on the belt conveyor in a stopped state, the belt conveyor is operated, and the test piece is preliminarily heated at a furnace temperature of 80 ° C. Then, the test piece was stopped when the entire specimen entered the furnace, and waited while measuring with a K thermocouple until the temperature of the specimen entered 80 ± 5 ° C. The on the conveyor of the oven are arranged press, in the press machine is attached a cylindrical indenter 14 to the press surface, the said cylindrical indenter 14 and encloses the pin 15 made of brass An air type piston having a structure in which the pin 15 moves up and down in the cylindrical shape and the press surface itself ( cylindrical indenter 14 ) can be moved up and down by another air is used.

次に貫通工程では該プレス機の間に配置された試験片における該ピン15を上下させて貫通孔を設けた。ピン15の径ピッチは以下の通りである。(ピン15の径1.0mm、ピッチ:20mm)
次に、基材圧着工程でピン15を内包していた筒状圧子14の内径が約1.0mm、外形が3.0mm、長さ5mmの筒状圧子14が一体化されたプレス機で、筒状圧子14にかかる圧力が0.1MPaになるようにプレス機の圧力を設定し、試験片を加圧、約1時間保持した。
Next, in the penetrating process, the pin 15 in the test piece arranged between the presses was moved up and down to provide the through hole 4 . The diameter pitch of the pins 15 is as follows. (Pin 15 diameter 1.0 mm, pitch: 20 mm)
Next, an inner diameter of about 1.0mm cylindrical indenter 14 was encapsulated pins 15 at the substrate bonding step, in outer shape 3.0 mm, length 5mm cylindrical indenter 14 integrated press, The pressure of the press was set so that the pressure applied to the cylindrical indenter 14 was 0.1 MPa, and the test piece was pressurized and held for about 1 hour.

その後、冷却工程でオーブン内に約30℃の冷風を循環させ試験片の温度が40℃以下になるまで冷却した。   Thereafter, in the cooling step, cold air of about 30 ° C. was circulated in the oven, and the test piece was cooled to a temperature of 40 ° C. or lower.

次に、ピン除去工程で強化繊維積層体に刺さっていたピン15を抜き、筒状圧子14に内包させた後、プレス機の圧力を減圧し試験体から圧子を離した。 Next, after removing the pin 15 stuck in the reinforcing fiber laminate 1 in the pin removal step and enclosing it in the cylindrical indenter 14 , the pressure of the press was reduced to separate the indenter from the test body.

最後にベルトコンベアを稼働し、炉外に試験体を送り出した。ここで、試験片を金属Tool板の上に配置して、シーラントテープ(リッチモンド製:SM−5126)とバギングフィルム(リッチモンド製:VAC―PAC2000、ナイロン製)を配置し試験片を含む閉空間内を真空ポンプで真空圧が100kPaになるように真空引きをした。その後、3次元計測器で該強化繊維積層体筒状圧子14で圧着した部分と未圧着部分の厚さを測定し、その値から強化繊維体積含有率を測定したところ、接着部は52%、未接着部は44%であった。 Finally, the belt conveyor was operated and the specimen was sent out of the furnace. Here, a test piece is arranged on a metal tool plate, and a sealant tape (manufactured by Richmond: SM-5126) and a bagging film (manufactured by Richmond: VAC-PAC2000, made of nylon) are arranged in a closed space including the test piece. The vacuum was drawn with a vacuum pump so that the vacuum pressure was 100 kPa. Then, when the thickness of the part crimped with the cylindrical indenter 14 of the reinforcing fiber laminate 1 and the thickness of the non-crimped part was measured with a three-dimensional measuring instrument, and the reinforcing fiber volume content was measured from the value, the bonded part was 52 %, And the non-bonded part was 44%.

次に試験片を雄型マンドレル(50mm角材の隣り合う2角をR=5に加工)上に移送し、雄型マンドレル上の試験片が動かないようにテープで固定し雌型(上記雄型と合うように平坦部の両端内R=7.8に加工)を取り付けたプレス機の間に挿入した。雌型と雄型の配置は正しい配置になるように予めプレス面にけがいてあり該けがきラインに合うように型をセットし、該プレス機で挟み込み10分間保持した。(賦形条件は0.4MPa、90℃)型を開いたところ賦形じわのない良好なプリフォームが得られた。また、得られたプリフォームの強化体積含有率は平均54.2%であり、かつ、厚み方向に孔を観察することができた。次に、上記で作成したプリフォームを用いて成形試験を実施した。プリフォームを該雄型マンドレル上にセットした後、ピールプライ、プラスチックネット(樹脂含浸媒体)の順で積層配置し、これらをバッグフィルムで覆い、該マンドレルとバギングフィルム間をシーラントテープでシールした。そして、樹脂注入口、吸引口としてナイロンチューブを取り付け、バッグフィルム内を真空吸引、樹脂注入口をクランプで閉じて、設定60℃のオーブン内に投入した。続いて、プリフォーム温度、樹脂温度が60±5℃の温度範囲の時に樹脂注入口のクランプを外して樹脂の注入を開始した。なお注入するマトリクス樹脂には“エピコート(登録商標)”828(ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン(株)製)100重量部に、“キュアゾール(登録商標)”2E4MZ(2ーエチル−4ーメチルイミダゾール、アニオン重合型硬化剤、四国化成工業(株)製)3重量部を加え、よく撹拌して、調製した液状の熱硬化性樹脂を使用する。   Next, the test piece is transferred onto a male mandrel (the two adjacent corners of a 50 mm square material are processed into R = 5), and fixed with a tape so that the test piece on the male mandrel does not move. Was inserted between the presses to which R = 7.8 inside the both ends of the flat part was attached. The press surface was scribed beforehand so that the female die and the male die were correctly arranged, and the die was set so as to match the marking line, and sandwiched by the press machine and held for 10 minutes. (Shaping conditions were 0.4 MPa, 90 ° C.) When the mold was opened, a good preform without forming wrinkles was obtained. Moreover, the reinforcement | strengthening volume content rate of the obtained preform was 54.2% on average, and the hole was able to be observed in the thickness direction. Next, a molding test was performed using the preform created above. After the preform was set on the male mandrel, a peel ply and a plastic net (resin impregnated medium) were laminated in this order, covered with a bag film, and sealed between the mandrel and the bagging film with a sealant tape. Then, a nylon tube was attached as a resin injection port and a suction port, the bag film was vacuumed, and the resin injection port was closed with a clamp, and placed in an oven set at 60 ° C. Subsequently, when the preform temperature and the resin temperature were in the temperature range of 60 ± 5 ° C., the resin injection port was removed and resin injection was started. For the matrix resin to be injected, 100 parts by weight of “Epicoat (registered trademark)” 828 (bisphenol A type epoxy resin, Japan Epoxy Resin Co., Ltd.) and “Cureazole (registered trademark)” 2E4MZ (2-ethyl-4-methyl) are used. Add 3 parts by weight of imidazole, anionic polymerization type curing agent (manufactured by Shikoku Kasei Kogyo Co., Ltd.), stir well and use the prepared liquid thermosetting resin.

また、プリフォームの厚さ方向に強化繊維基材とマンドレルとの間(最下層)に、貫通孔の最遠部に樹脂含浸を確認する樹脂センサーを配置した。 In addition, a resin sensor for confirming resin impregnation was disposed at the farthest part of the through hole 4 between the reinforcing fiber base 2 and the mandrel (lowermost layer) in the thickness direction of the preform.

その結果、約8分で最下層に配置したセンサーが反応した。最下層のセンサーが反応した時点で樹脂注入口を閉じ、樹脂硬化のためオーブン温度を130℃まで0.5℃/分で昇温してプリフォーム温度が130±5℃の範囲で2時間保持した後室温まで冷却した。 As a result, the sensor arranged in the lowermost layer reacted in about 8 minutes. When the lowermost sensor reacts, the resin injection port is closed, and the oven temperature is raised to 130 ° C at 0.5 ° C / min for resin curing, and the preform temperature is maintained at 130 ± 5 ° C for 2 hours. And then cooled to room temperature.

これにより成形されたCFRP未含浸部はなく、Vfは55%であった。
比較例1
平板プレスで0.1MPa、80℃で、1時間加熱したほかは実施例1と同様にして強化繊維積層体を作成した。強化繊維体積含有率を測定したところ、54%であった。
No unimpregnated portion molded CFRP Thus, Vf was 55%.
Comparative Example 1
A reinforced fiber laminate 1 was prepared in the same manner as in Example 1 except that it was heated at 0.1 MPa and 80 ° C. for 1 hour with a flat plate press. The reinforcing fiber volume content was measured and found to be 54%.

次に試験片を雄型マンドレル(50mm角材の隣り合う2角をR=5に加工)上に移送し、試験片をセットした雄型マンドレルを試験片が動かないようにテープで固定し雌型(上記雄型と合うように平坦部の両端内R=7.8に加工)を取り付けたプレス機の間に挿入した。雌型と雄型の配置が正しくなるように予めけがいてあった印に合うように雄型をセットし、該プレス機で挟み込み10分間保持した。(賦形条件は0.4MPa、90℃)型を開いたところ雄型の肩部にあたる屈曲部の屈曲ラインに並行で10mm程度離れた位置に面外方向に盛り上がるしわが観察された。これは、層間が完全に接着されており試験片を曲げたときに積層体の厚さ方向で周長差が生じ、その周長差がしわになったためと考えられる。
比較例2
実施例1と同様の積層構成で疑似等方積層した試験片を用意し、貫通工程および基材圧着工程を経由せずに成形を行った。
Next, the test piece is transferred onto a male mandrel (the two adjacent corners of a 50 mm square material are processed to R = 5), and the male mandrel with the test piece set is fixed with tape so that the test piece does not move. It was inserted between press machines equipped with (processed to R = 7.8 in both ends of the flat part so as to match the male mold). The male mold was set so as to match the previously marked marks so that the arrangement of the female mold and the male mold was correct, and was sandwiched by the press machine and held for 10 minutes. (Shaping conditions were 0.4 MPa, 90 ° C.) When the mold was opened, a wrinkle rising in the out-of-plane direction was observed at a position about 10 mm away in parallel to the bending line of the bending portion corresponding to the shoulder portion of the male mold. This is thought to be due to the fact that the circumferential length difference occurred in the thickness direction of the laminate when the test piece was bent because the layers were completely bonded, and the circumferential length difference was wrinkled.
Comparative Example 2
A test piece that was quasi-isotropically laminated with the same laminated structure as in Example 1 was prepared and molded without going through the penetration step and the substrate pressing step.

試験片を雄型マンドレル(50mm角材の隣り合う2角をR=5に加工)上に移送するために持ち上げたところ層間が接着していないため試験片の端部が剥がれた。そのため厚紙上に乗せて雄型上に搬送しなければならなかった。次に試験片をセットした雄型マンドレルを試験片が動かないようにテープで固定し雌型(上記雄型と合うように平坦部の両端内R=7.8に加工)を取り付けたプレス機の間に挿入した。雌型と雄型の配置が正しくなるように予めけがいてあった印に合うように雄型をセットし、該プレス機で挟み込み10分間保持した。(賦形条件は0.4MPa、90℃)型を開いたところ賦形じわのない良好なプリフォームが得られた。また、得られたプリフォームの強化体積含有率は平均54.2%であった。次に、上記で作成したプリフォームを用いて実施例1と同様の条件で成形試験を実施した。 When the test piece was lifted for transfer onto a male mandrel (an adjacent two corners of a 50 mm square piece were processed to R = 5), the end of the test piece was peeled off because the layers were not adhered. Therefore, it had to be carried on a male mold on a cardboard. Next, the male mandrel on which the test piece is set is fixed with tape so that the test piece does not move, and a female die (processed to R = 7.8 in both ends of the flat portion so as to match the male die) is attached. Inserted between. The male mold was set so as to match the previously marked marks so that the arrangement of the female mold and the male mold was correct, and was sandwiched by the press machine and held for 10 minutes. (Shaping conditions were 0.4 MPa, 90 ° C.) When the mold was opened, a good preform without forming wrinkles was obtained. Moreover, the reinforcement | strengthening volume content rate of the obtained preform was 54.2% on average. Next, a molding test was performed under the same conditions as in Example 1 using the preform created above.

また、最下層に、配置した樹脂センサーの反応時間は、実施例1のプリフォームが約8分で反応したのに対し、約35分と長時間を要した。   In addition, the reaction time of the resin sensor arranged in the lowermost layer took about 35 minutes, while the preform of Example 1 reacted in about 8 minutes.

本発明に係わる強化繊維積層体の一実施態様の斜視図である。1 is a perspective view of an embodiment of a reinforcing fiber laminate according to the present invention. 図1の強化繊維積層体のA−A‘線矢視断面図である。FIG. 2 is a cross-sectional view taken along line A-A ′ of the reinforcing fiber laminate of FIG. 1. 本発明に係わる強化繊維積層体製造方法及び装置の一一実施態様の斜視図である。It is a perspective view of one embodiment of the reinforcing fiber laminated body manufacturing method and apparatus concerning this invention. 図3の強化繊維積層体の製造方法及び装置における筒状圧子の部分拡大図である。It is the elements on larger scale of the cylindrical indenter in the manufacturing method and apparatus of the reinforced fiber laminated body of FIG. 図3の強化繊維積層体の製造方法及び装置における筒状圧子の別の態様にかかる部分拡大図である。It is the elements on larger scale concerning another aspect of the cylindrical indenter in the manufacturing method and apparatus of the reinforced fiber laminated body of FIG.

符号の説明Explanation of symbols

1:強化繊維積層体
2:強化繊維基材
3:樹脂材料
4:貫通孔
5:一体化部
6:非一体化部
11:加熱装置
12:ヒーター
13:モーター
14:筒状圧子
15:ピン
1: Reinforced fiber laminate 2: Reinforced fiber base material 3: Resin material 4: Through hole 5: Integrated part 6: Non-integrated part
11 : Heating device
12 : Heater
13 : Motor
14 : cylindrical indenter
15 : Pin

Claims (15)

配列した強化繊維糸条を含む強化繊維基材を複数枚積層一体化した強化繊維積層体であって、前記強化繊維基材の積層層間に熱可塑性樹脂を主成分とする樹脂材料を有し、該樹脂材料を有する前記強化繊維基材の少なくとも複数層を厚み方向に貫通する孔を複数有するとともに、貫通孔を含む0.5〜20.0mmの範囲内では前記樹脂材料が隣接する層を接合する一体化部が設けられ、隣り合う前記一体化部は強化繊維積層体層間面内方向に不連続であることを特徴とする強化繊維積層体。 A reinforcing fiber laminate in which a plurality of reinforcing fiber base materials including aligned reinforcing fiber yarns are laminated and integrated, and has a resin material mainly composed of a thermoplastic resin between the laminated layers of the reinforcing fiber base materials, and having a plurality of holes at least through multiple layers in the thickness direction of the reinforcing fiber base material having the resin material, a layer of the resin material are adjacent within the 0.5~20.0Mm 2 including the through-hole reinforcing fiber laminate, wherein the integral portion joining is provided, it said integrated portion adjacent is discontinuous in the plane between the reinforcing fiber laminate layer direction. 強化繊維積層体の全面に該貫通孔が略均一に分布している請求項1に記載の強化繊維積層体。 The reinforcing fiber laminate according to claim 1, wherein the through holes are distributed substantially uniformly over the entire surface of the reinforcing fiber laminate. 強化繊維積層体の各層の剥離強さが10−700N/mの範囲内である請求項1または2に記載の強化繊維積層体。 Reinforcing fiber laminate according to claim 1 or 2 peel strength of each layer of the reinforcing fiber layer is in the range of 10-700N / m 2. 前記樹脂材料が、強化繊維積層体に対して、1〜20重量%の範囲内である請求項1〜3のいずれかに記載の強化繊維積層体。 The reinforcing fiber laminate according to any one of claims 1 to 3, wherein the resin material is in the range of 1 to 20 wt% with respect to the reinforcing fiber laminate. 前記一体化部と非一体化部からなり、一体化部の強化繊維体積率Vpf(後)と非一体化部の強化繊維体積率Vpf(前)の関係が、Vpf(前)+3%<Vpf(後)<Vpf(前)+20%の範囲内である請求項1〜4のいずれかに記載の強化繊維積層体。
Vpf(前):一体化した後の非一体化部における強化繊維体積率(%)
Vpf(後):一体化した後の一体化部における強化繊維体積率(%)
It is composed of the integrated part and the non-integrated part, and the relationship between the reinforcing fiber volume fraction Vpf (rear) of the integrated part and the reinforcing fiber volume fraction Vpf (previous) of the non-integrated part is Vpf (front) + 3% <Vpf (Back) <Vpf (front) + 20% of range The reinforcing fiber laminate according to any one of claims 1 to 4.
Vpf (front): Reinforced fiber volume ratio (%) in the non-integrated part after integration
Vpf (rear): Reinforced fiber volume ratio (%) in the integrated part after integration
強化繊維基材が、強化繊維糸条が一方向に並行に配列された状態で形態が安定化された一方向性シートである請求項1〜5のいずれかに記載の強化繊維積層体。 The reinforcing fiber laminate according to any one of claims 1 to 5, wherein the reinforcing fiber substrate is a unidirectional sheet whose form is stabilized in a state in which reinforcing fiber yarns are arranged in parallel in one direction. 一方向性シートの積層パターンが疑似等方積層で構成されていることを特徴とする請求項6に記載の強化繊維積層体。 The reinforced fiber laminate according to claim 6, wherein the laminate pattern of the unidirectional sheet is configured by pseudo-isotropic lamination. 請求項1〜7のいずれかに記載の強化繊維積層体全体を加熱、加圧し、強化繊維体積率Vpfを45〜62%の範囲内としたプリフォーム。 The preform which heated and pressurized the whole reinforcing fiber laminated body in any one of Claims 1-7, and made the reinforcing fiber volume fraction Vpf into the range of 45 to 62%. 請求項8に記載のプリフォームと熱硬化性樹脂を含み、強化繊維体積含有率Vfが、45〜70%の範囲内であるFRP。 An FRP comprising the preform according to claim 8 and a thermosetting resin and having a reinforcing fiber volume content Vf in a range of 45 to 70%. 少なくとも次の工程(A)〜(G)を順次経て製造する強化繊維積層体の製造方法。
(A)少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着した配列した強化繊維糸条を含む強化繊維基材を複数枚積層する積層工程
(B)積層した強化繊維基材を加熱する加熱工程
(C)積層した強化繊維基材の厚み方向に、ピンを貫通させ孔を形成させる貫通工程
(D)貫通孔の周辺を筒状圧子で加圧し、積層した基材を圧着する基材圧着工程
(E)積層体を冷却する冷却工程
(F)ピンを除去するピン除去工程
(G)加圧を除去する圧力除去工程
The manufacturing method of the reinforced fiber laminated body manufactured through at least the following process (A)-(G) sequentially.
(A) Laminating step of laminating a plurality of reinforcing fiber substrates including arranged reinforcing fiber yarns on which a resin material mainly composed of a thermoplastic resin is attached to at least one surface (B) Laminating reinforcing fiber substrates Heating step for heating (C) Penetration step for forming a hole by penetrating the pin in the thickness direction of the laminated reinforcing fiber base material (D) Pressurizing the periphery of the through hole with a cylindrical indenter and crimping the laminated base material Substrate crimping step (E) Cooling step for cooling the laminate (F) Pin removing step for removing pins (G) Pressure removing step for removing pressure
少なくとも次の工程(A)〜(G)を順次経て製造する強化繊維積層体の製造方法。
(A)少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着した配列した強化繊維糸条を含む強化繊維基材を複数枚積層する積層工程
(B)積層した強化繊維基材を加熱する加熱工程
(C’)筒状圧子で加圧し、積層した基材を圧着する基材圧着工程
(D’)積層した強化繊維基材の厚み方向に、筒状圧子の筒内部の領域にピンを貫通させ孔を形成させる貫通工程
(E)積層体を冷却する冷却工程
(F)ピンを除去するピン除去工程
(G)加圧を除去する圧力除去工程
The manufacturing method of the reinforced fiber laminated body manufactured through at least the following process (A)-(G) sequentially.
(A) Laminating step of laminating a plurality of reinforcing fiber substrates including arranged reinforcing fiber yarns on which a resin material mainly composed of a thermoplastic resin is attached to at least one surface (B) Laminating reinforcing fiber substrates Heating step of heating (C ′) Substrate pressing step of pressing with a cylindrical indenter and crimping the laminated base material (D ′) In the thickness direction of the laminated reinforcing fiber base, in the region inside the cylinder of the cylindrical indenter (E) Cooling process for cooling the laminate (F) Pin removing process for removing the pins (G) Pressure removing process for removing the pressure
少なくとも次の装置(a)〜(e)を含む強化繊維積層体の製造装置。
(a)積層した基材を搬送する搬送装置
(b)積層した基材を加熱する加熱装置
(c)ピンで積層した基材を厚み方向に、複数枚貫通孔を形成する積層体貫通装置
(d)筒状圧子で積層体を圧着する圧着装置
(e)積層体を冷却する冷却装置
An apparatus for producing a reinforcing fiber laminate comprising at least the following apparatuses (a) to (e).
(A) Conveying device that conveys the laminated base material (b) Heating device that heats the laminated base material (c) Laminate penetrating device that forms a plurality of through holes in the thickness direction of the base material laminated with pins ( d) Crimping device for crimping the laminate with a cylindrical indenter (e) Cooling device for cooling the laminate
(a)搬送装置が、ベルトコンベアである請求項12に記載の製造装置。 The manufacturing apparatus according to claim 12, wherein (a) the conveying device is a belt conveyor. (b)加熱装置が、熱風循環式である請求項12または13のいずれかに記載の製造装置。 (B) The manufacturing apparatus according to claim 12 or 13, wherein the heating apparatus is a hot air circulation type. (c)積層体貫通装置で用いるピン及び(d)圧着装置で用いる筒状圧子が加熱装置と一体化してなり、かつ、該筒状圧子がピンを内包した構造である請求項12〜14のいずれかに記載の製造装置。 15. The structure of (c) a pin used in a laminated body penetrating device and (d) a cylindrical indenter used in a crimping device are integrated with a heating device, and the cylindrical indenter includes a pin. The manufacturing apparatus in any one.
JP2005308119A 2004-10-22 2005-10-24 Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof Active JP4821262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005308119A JP4821262B2 (en) 2004-10-22 2005-10-24 Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004308054 2004-10-22
JP2004308054 2004-10-22
JP2005308119A JP4821262B2 (en) 2004-10-22 2005-10-24 Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof

Publications (3)

Publication Number Publication Date
JP2006142819A JP2006142819A (en) 2006-06-08
JP2006142819A5 JP2006142819A5 (en) 2008-10-09
JP4821262B2 true JP4821262B2 (en) 2011-11-24

Family

ID=36623034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005308119A Active JP4821262B2 (en) 2004-10-22 2005-10-24 Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP4821262B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136876B2 (en) * 2006-11-28 2013-02-06 東レ株式会社 Reinforced fiber laminate and method for producing the same
EP2110221B1 (en) * 2007-02-05 2019-01-09 Toray Industries, Inc. Method for manufacturing laminate
JP5430176B2 (en) * 2008-05-27 2014-02-26 東レ株式会社 FRP panel for container and aircraft container using the same
GB0813785D0 (en) * 2008-07-29 2008-09-03 Airbus Uk Ltd Method of manufacturing a composite element
KR101281185B1 (en) 2010-05-26 2013-07-02 한국기계연구원 A method for manufacturing preform for composites having discontinuous reinforcements
FR2998209B1 (en) * 2012-11-19 2015-05-22 Hexcel Reinforcements METHOD FOR DEPOSITING AN INTERMEDIATE MATERIAL FOR ENSURING COHESION THEREOF AND METHOD FOR ESTABLISHING A STACK FOR THE MANUFACTURE OF COMPOSITE PARTS
JP6460398B2 (en) * 2015-03-26 2019-01-30 本田技研工業株式会社 RTM molding method
JP6731787B2 (en) * 2016-06-02 2020-07-29 株式会社Subaru Fiber-reinforced composite material manufacturing method and perforating/joining device
JP6731788B2 (en) * 2016-06-02 2020-07-29 株式会社Subaru Method for producing fiber-reinforced composite material
JP6762503B2 (en) * 2016-10-17 2020-09-30 株式会社Shindo One-way reinforced fiber sheet
JP6989352B2 (en) * 2017-11-06 2022-01-05 日産自動車株式会社 Manufacturing method of carbon fiber reinforced resin molded body and manufacturing equipment of carbon fiber reinforced resin molded body
JP6895038B2 (en) * 2018-09-26 2021-06-30 福井県 Manufacturing method and manufacturing equipment for composite sheet materials
JPWO2021187043A1 (en) * 2020-03-18 2021-09-23
WO2023095787A1 (en) * 2021-11-29 2023-06-01 東レ株式会社 Porous body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102385A (en) * 1978-01-31 1979-08-11 Nhk Spring Co Ltd Fiber reinforced synthetic resin board and its preparation
JPH07242756A (en) * 1994-03-07 1995-09-19 Toray Ind Inc Perforated frp and its production
JPH0911354A (en) * 1995-06-29 1997-01-14 Sekisui Chem Co Ltd Manufacture of fiber reinforced thermoplastic resin composite tube
JP3523750B2 (en) * 1995-08-31 2004-04-26 東邦テナックス株式会社 Reinforcing fiber material for reinforcing concrete structures, method for reinforcing concrete structures, and reinforcing structure thereof
JP4126978B2 (en) * 2001-07-06 2008-07-30 東レ株式会社 Preform, FRP comprising the same, and method for producing FRP
JP2004060058A (en) * 2002-07-24 2004-02-26 Mitsubishi Heavy Ind Ltd Fiber substrate for composite material

Also Published As

Publication number Publication date
JP2006142819A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4821262B2 (en) Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof
KR101260088B1 (en) Reinforcing woven fabric and process for producing the same
CN106459451B (en) Process for preparing curable, multi-ply, fiber-reinforced prepreg
US9963586B2 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
JP4126978B2 (en) Preform, FRP comprising the same, and method for producing FRP
TWI670169B (en) Resin supply material, method of using reinforced fiber, preform, and method for producing fiber reinforced resin
JPWO2005095079A1 (en) Preform, FRP, and production method thereof
WO2009156754A1 (en) Method and apparatus for fabricating a fibre reinforced thermoplastic composite structure
JP2004050574A (en) Prepreg and method for producing fiber-reinforced composite material using prepreg
TW201637829A (en) Resin supply material, preform, and method for producing fiber-reinforced resin
JP4304948B2 (en) REINFORCED FIBER BASE, PREFORM, FIBER-REINFORCED RESIN MOLDING COMPRISING THE SAME AND METHOD FOR PRODUCING FIBER-REINFORCED RESIN MOLD
JP2003136550A (en) Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
JP4734983B2 (en) Preform substrate and method for producing the same
EP3421212B1 (en) Method for producing fiber reinforced composite material
JP2006103305A (en) Substrate for preform
Scarponi et al. Impact load behaviour of resin transfer moulding (RTM) hemp fibre composite laminates
JP4631395B2 (en) Method for shaping reinforcing fiber base material for FRP molding
US11370183B2 (en) Composite material manufacturing method and composite material
EP3585607B1 (en) Fiber composite with reduced surface roughness and method for its manufacture
JP2007099966A (en) Prepreg
JP2005161852A (en) Metal/fiber-reinforced plastic composite material, and its production method
JP2008247032A (en) Manufacturing process of preform
JP6368748B2 (en) Molding method for molding fiber reinforced resin
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R151 Written notification of patent or utility model registration

Ref document number: 4821262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3