JP2005161852A - Metal/fiber-reinforced plastic composite material, and its production method - Google Patents

Metal/fiber-reinforced plastic composite material, and its production method Download PDF

Info

Publication number
JP2005161852A
JP2005161852A JP2004330275A JP2004330275A JP2005161852A JP 2005161852 A JP2005161852 A JP 2005161852A JP 2004330275 A JP2004330275 A JP 2004330275A JP 2004330275 A JP2004330275 A JP 2004330275A JP 2005161852 A JP2005161852 A JP 2005161852A
Authority
JP
Japan
Prior art keywords
fiber reinforced
reinforced plastic
metal
composite material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004330275A
Other languages
Japanese (ja)
Other versions
JP2005161852A5 (en
Inventor
Tomoyuki Shinoda
知行 篠田
Kenichi Yoshioka
健一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004330275A priority Critical patent/JP2005161852A/en
Publication of JP2005161852A publication Critical patent/JP2005161852A/en
Publication of JP2005161852A5 publication Critical patent/JP2005161852A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal/fiber-reinforced plastic composite material which is lightweight, has high strength and excellent durability, and thus can suitably be used in various fields such as aircraft, automobiles, sports, civil engineering or building, particularly for the members which bear a bending load stationarily, dynamically or repeatedly. <P>SOLUTION: In this composite material formed by bonding the fiber-reinforced plastic to a metal, the lamination is performed so that their adhesion face is positioned outside the range of ±5% of total thickness from a neutral plane on which a maximum shear stress occurs by bending deformation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば航空機、自動車、スポーツ、土木、建築などの分野において、特に軽量で高強度、耐久性が求められる材料として活用が期待されている、金属と繊維強化プラスチックの積層体からなる複合材料の改良に関する。詳しくは特に静的、もしくは繰り返しの曲げ荷重または曲げ変形を伴う衝撃荷重を負担する部材に好適に用いることができる軽量で耐久性に優れる金属/繊維強化プラスチック複合材料に関する。   The present invention is a composite composed of a laminate of a metal and a fiber reinforced plastic, which is expected to be used as a material that is particularly lightweight and requires high strength and durability in the fields of aircraft, automobiles, sports, civil engineering, architecture, and the like. It relates to the improvement of materials. More particularly, the present invention relates to a metal / fiber reinforced plastic composite material that is suitably used for a member that bears a static or repeated bending load or an impact load that accompanies bending deformation and that is lightweight and excellent in durability.

従来より、航空機、自動車などの輸送機器、各種スポーツ及び土木、建築などの分野においては、軽量で高強度、高剛性で耐久性を有する材料が求められている。   2. Description of the Related Art In the fields of aircraft, automobiles and other transportation equipment, various sports and civil engineering, and architecture, light weight, high strength, high rigidity, and durability have been demanded.

その要求に応えるために金属材料としては、炭素鋼、ステンレス合金、アルミニウム合金、チタン合金などが用いられている。一方、非金属材料としては、強化繊維とマトリックス樹脂からなる繊維強化プラスチック材料が用いられており、代表的にはガラス繊維強化プラスチック(以下、GFRPという。)や炭素繊維強化プラスチック(以下、CFRPという。)が挙げられる。   In order to meet the demand, carbon steel, stainless alloy, aluminum alloy, titanium alloy and the like are used as metal materials. On the other hand, fiber reinforced plastic materials composed of reinforced fibers and a matrix resin are used as non-metallic materials, and are typically glass fiber reinforced plastic (hereinafter referred to as GFRP) and carbon fiber reinforced plastic (hereinafter referred to as CFRP). .).

これら従来の各種金属材料及び繊維強化プラスチックの代表的物性を次の表1に示す。   Table 1 shows typical physical properties of these conventional various metal materials and fiber reinforced plastics.

Figure 2005161852
Figure 2005161852

表中のGFRP及びCFRPのVfとは繊維の体積含有率、(L)、(T)はそれぞれ繊維方向、繊維と垂直方向の物性を意味する。またUD積層とは繊維を一方向(ni−irectional)に揃えて積層したものであり、疑似等方積層とは積層角度、積層枚数を適切に設計することにより、面内の各方向において等しい物性になるように設計した積層方法のことである。 In the table, Vf of GFRP and CFRP means the volume content of fiber, and (L) and (T) mean physical properties in the fiber direction and in the direction perpendicular to the fiber, respectively. Also the UD laminate is obtained by laminating by aligning fibers in one direction (U ni- D irectional), lamination angles pseudo isotropic laminate, by appropriately designing the number of laminations in each direction in the plane It is a lamination method designed to have the same physical properties.

近年、自動車などの輸送機器においては、環境対策として軽量化が求められており、高張力鋼板の使用による部材の薄肉化やアルミニウム合金の使用による軽量化などが実用化されており、比強度(比重あたりの強度)、比弾性率(比重あたりの弾性率)が特に要求される重要な物性値となっている。そこで比強度、比弾性率に着目すると、炭素鋼、ステンレス合金などは高強度、高弾性率ではあるものの、比重がそれぞれ7.8,8.0と大きいため、比強度はそれぞれ106、65MPa、比弾性率はそれぞれ26,25GPaとなる。アルミニウム合金は引張強度、弾性率ともに炭素鋼やステンレス合金に及ばないが、比重が2.8と小さいため、比強度は127MPa、比弾性率は25GPaであり、炭素鋼、ステンレス合金と同等程度の物性値となる。よって、アルミニウム合金は低比重である一方、力学特性が低いため、アルミニウム合金を構造部材に使用する場合、構造部材に求められる耐荷重などの要求を満たすためには、使用量が増加するなどにより、大幅な軽量化は困難である場合が少なくない。   In recent years, in transportation equipment such as automobiles, weight reduction is required as an environmental measure, and thinning of members by using high-tensile steel plates and weight reduction by using aluminum alloys have been put into practical use. (Strength per specific gravity) and specific elastic modulus (elastic modulus per specific gravity) are particularly important physical property values. Therefore, when focusing on specific strength and specific modulus, carbon steel, stainless alloy and the like have high strength and high modulus, but specific gravity is as large as 7.8 and 8.0, respectively. Specific elastic moduli are 26 and 25 GPa, respectively. Aluminum alloy has neither tensile strength nor elastic modulus comparable to carbon steel or stainless steel alloy, but specific gravity is as small as 2.8, so specific strength is 127MPa and specific elastic modulus is 25GPa, which is comparable to carbon steel and stainless steel alloy. It becomes a physical property value. Therefore, aluminum alloy has low specific gravity, but its mechanical properties are low. Therefore, when aluminum alloy is used for structural members, the use amount is increased in order to satisfy the demands such as load resistance required for structural members. In many cases, significant weight reduction is difficult.

一方、チタン合金は比重が4.4と小さく、高強度であるため、比強度は223MPa、比弾性率は24GPaであり、好ましい金属材料として特に近年注目を集めている材料である。   On the other hand, a titanium alloy has a specific gravity as small as 4.4 and high strength, and therefore has a specific strength of 223 MPa and a specific elastic modulus of 24 GPa.

ところで、繊維強化プラスチックの1つの使用形態としては、強化繊維を一方向に引き揃えた繊維状物に熱硬化性マトリックス樹脂を含浸させて得られるプリプレグと呼ばれるシート状物があり、繊維強化プラスチックはプリプレグを所定の積層構成に基づき積層して、所定の温度、圧力をかけてマトリックス樹脂を硬化することによって得られる。   By the way, as one form of use of fiber reinforced plastic, there is a sheet-like material called a prepreg obtained by impregnating a fibrous material obtained by aligning reinforcing fibers in one direction with a thermosetting matrix resin. It is obtained by laminating a prepreg based on a predetermined laminated structure and curing the matrix resin under a predetermined temperature and pressure.

そのため繊維強化プラスチックからなる積層体の物性は繊維の体積含有率や積層角度、積層枚数などの積層構成により設計することができる。このように求められる特性に対して最適に積層構成を設計できることが、繊維強化プラスチックの長所の1つである。積層構成の代表的な例としては、繊維を一方向に揃えて積層したUD積層、面内の各方向において等しい物性になるように積層した疑似等方積層がある。GFRPは比重が1.9であり、Vf=50%のUD積層では比強度が395MPa(L)、比弾性率が20GPa(L)となる。疑似等方積層では比強度が174MPa、比弾性率が11GPaとなり、アルミ合金よりも比強度が高い。   Therefore, the physical properties of a laminate made of fiber reinforced plastic can be designed by a laminated configuration such as fiber volume content, lamination angle, and the number of laminated layers. One of the advantages of the fiber reinforced plastic is that the laminated structure can be designed optimally for the required characteristics. Typical examples of the laminated structure include a UD lamination in which fibers are laminated in one direction, and a quasi-isotropic lamination in which the same physical properties are obtained in each in-plane direction. GFRP has a specific gravity of 1.9, and a UD laminate with Vf = 50% has a specific strength of 395 MPa (L) and a specific modulus of 20 GPa (L). In the pseudo isotropic lamination, the specific strength is 174 MPa, the specific elastic modulus is 11 GPa, and the specific strength is higher than that of the aluminum alloy.

上記表1に示したようにCFRPは比重が1.5であり、Vf=60%のUD積層では比強度が1767MPa(L)、比弾性率が85GPa(L)となる。疑似等方積層では比強度が530MPa、比弾性率が33GPaとなり、各種金属材料よりも比強度、比弾性率ともに大幅に高い。このように繊維強化プラスチックは軽量、高強度であり、積層構成の最適化により求められる特性に対して最適な設計ができるため、先進複合材料として特に軽量化、高強度、高弾性が求められる分野において用いられている。   As shown in Table 1 above, CFRP has a specific gravity of 1.5, and a UD laminate with Vf = 60% has a specific strength of 1767 MPa (L) and a specific modulus of 85 GPa (L). In the quasi-isotropic lamination, the specific strength is 530 MPa and the specific elastic modulus is 33 GPa, and both specific strength and specific elastic modulus are significantly higher than various metal materials. In this way, fiber reinforced plastics are lightweight and high-strength, and can be optimally designed for the characteristics required by optimizing the laminated structure. Therefore, fields that require particularly light weight, high strength, and high elasticity as advanced composite materials. Is used.

しかし、繊維強化プラスチックは耐衝撃特性が低いこと、孔空箇所などの加工端面からの層間剥離、切欠きでの応力集中による強度低下などの問題がある。そこで、金属と繊維強化プラスチックを積層して得られる複合材料(以下、金属/繊維強化プラスチック複合材料という。)が注目されている。金属と繊維強化プラスチックを積層する事により、金属、繊維強化プラスチックのそれぞれの長所を活用できるだけでなく、短所をお互いに補うことにより、金属および繊維強化プラスチック単体よりも優れた力学特性、機能特性を発揮することができるからである。   However, fiber reinforced plastics have problems such as low impact resistance, delamination from a processed end face such as a hole, and strength reduction due to stress concentration at the notch. Therefore, a composite material obtained by laminating a metal and a fiber reinforced plastic (hereinafter referred to as a metal / fiber reinforced plastic composite material) has attracted attention. By laminating metal and fiber reinforced plastic, not only can you take advantage of the advantages of both metal and fiber reinforced plastic, but also make up for each other with better mechanical and functional properties than metal and fiber reinforced plastic alone. It is because it can be demonstrated.

かかる従来技術として、特許文献1には、チタン合金とCFRPからなる積層体において、チタン合金とCFRPの強度/弾性率を±40%の範囲内に一致させることにより、チタン合金/CFRP積層体に荷重が負荷した場合に、チタン合金層、CFRP層が共に同等に応力を負担して、各層が十分に強度を利用できるようにすることが提案されている。   As such prior art, Patent Document 1 discloses that in a laminate made of a titanium alloy and CFRP, the strength / elastic modulus of the titanium alloy and CFRP is matched within a range of ± 40%, so that a titanium alloy / CFRP laminate is obtained. It has been proposed that when a load is applied, both the titanium alloy layer and the CFRP layer bear the same stress so that each layer can fully utilize the strength.

また、特許文献2には、ステンレス、鋼、鉄、アルミニウム、チタンなどの各種金属及びその合金の金属箔と繊維強化プラスチックの積層体からなるゴルフクラブのフェースが提案されている。ゴルフクラブのフェースは打球時にボールとの衝突により、フェースの周囲を固定端、打球箇所を荷重点として曲げ変形を受けるため、この曲げ荷重に耐えるだけの強度が求められるだけでなく、打球回数に応じた耐久性も求められる部材である。特許文献2には繊維強化プラスチック層に樹脂フィルム、金属箔を積層して、ローラーにて押圧して貼着して得られる複合プリプレグを準備し、該プリプレグを各層間に樹脂フィルムを介在させて、積層する事により金属/繊維強化プラスチック積層体からなるゴルフクラブフェース材を成形することが示されている。該フェース材は打球時の衝撃に対して、金属箔と繊維強化プラスチック層間或いは繊維強化プラスチック層間での剥離がなく、耐摩耗性に優れ、しかも衝撃強度などの機械的強度も優れており、使用時の感触及び美観にも優れることが示されている。   Patent Document 2 proposes a face of a golf club made of a laminate of a metal foil of various metals such as stainless steel, steel, iron, aluminum, titanium, and alloys thereof and a fiber reinforced plastic. A golf club face is subjected to bending deformation by collision with the ball at the time of hitting, with the periphery of the face being a fixed end and the hitting spot as a load point. Therefore, not only is the strength required to withstand this bending load, but also the number of hits It is a member that also requires a corresponding durability. Patent Document 2 prepares a composite prepreg obtained by laminating a resin film and a metal foil on a fiber reinforced plastic layer, and pressing and sticking with a roller, and interposing the resin film between the layers. It is shown that a golf club face material made of a metal / fiber reinforced plastic laminate is formed by laminating. The face material has no abrasion between the metal foil and the fiber reinforced plastic layer or between the fiber reinforced plastic layers, and has excellent wear resistance and mechanical strength such as impact strength. It is shown to be excellent in the feel and aesthetics of time.

さらに、特許文献3には、金属薄板と高弾性ファイバ系素材とを積層一体化したフェース部を有するゴルフクラブヘッドが提案されている。打球時にフェースを十分に撓ませて、ボールの反発を上げることにより、ボールの飛距離を向上させることができる。一方、フェースを撓みやすいように薄肉にすると耐久性が低下する問題がある。特許文献3では金属を薄くしても高弾性ファイバで補強しているため、金属が塑性変形することなく、飛距離を向上させたヘッドを得ることができることが示されている。   Further, Patent Document 3 proposes a golf club head having a face portion in which a metal thin plate and a highly elastic fiber material are laminated and integrated. The flying distance of the ball can be improved by sufficiently deflecting the face at the time of hitting and increasing the rebound of the ball. On the other hand, if the face is made thin so as to be easily bent, there is a problem that durability is lowered. Patent Document 3 shows that even if the metal is thin, it is reinforced with a highly elastic fiber, so that a head with an improved flight distance can be obtained without plastic deformation of the metal.

しかしながら、上記特許文献に記載の技術は、以下に述べる問題点がある。   However, the techniques described in the above patent documents have the following problems.

すなわち、特許文献1においては、チタン合金とCFRPの引張強度/弾性率を合わせることで、チタン合金、CFRPのそれぞれの引張強度を十分に発現させることができると説明されているが、部材の曲げ変形を伴うようないわゆる曲げ荷重がかけられた場合には、部材内部にせん断応力が発生し、特に圧縮応力と引張応力の転換面である中立面には最大せん断応力が発生するため、チタン合金及びCFRPの引張強度を十分に発現する前に、特に中立面近傍におけるチタン合金とCFRPの層間もしくはCFRP層間でせん断により破壊する問題がある。   That is, in Patent Document 1, it is explained that the tensile strength of each of the titanium alloy and CFRP can be sufficiently expressed by combining the tensile strength / elastic modulus of the titanium alloy and CFRP. When a so-called bending load with deformation is applied, shear stress is generated inside the member, and in particular, the maximum shear stress is generated on the neutral surface, which is the conversion surface between compressive stress and tensile stress. Before fully exhibiting the tensile strength of the alloy and CFRP, there is a problem of breaking due to shear between the titanium alloy and the CFRP layer in the vicinity of the neutral plane or between the CFRP layers.

本発明で意味するところの中立面を次に説明する。曲げ荷重を負担するはりが曲げ荷重を受けて変形した様子を図1に示す。ここでMは曲げモーメントを示す。図1に示す曲げモーメントMを示す矢印の向きは、はりを下側にふくらませるように変形させる向きであることを意味している。すなわち、周知のようにはりの上側は縮み、下側は伸びるので、上側には負の引張応力すなわち圧縮応力が、下側には正の引張応力が生じることになる。このとき部材の内部には伸びも縮みもしない、すなわち引張応力がゼロである面が存在するはずである。この面が中立面である。特にチタン合金は難接着金属であるため、チタン合金の接着表面に特殊な表面処理もしくは特殊な接着剤を用いる場合を除いて、チタン合金とCFRPを構成するマトリックス樹脂もしくは接着樹脂との接着力は極めて低いため、さらにチタン合金とCFRPとの層間での破壊が懸念される。   Next, the neutral plane as used in the present invention will be described. FIG. 1 shows a state in which a beam bearing a bending load is deformed by receiving the bending load. Here, M represents a bending moment. The direction of the arrow indicating the bending moment M shown in FIG. 1 means that the beam is deformed so as to swell downward. That is, as is well known, the upper side of the beam is contracted and the lower side is extended, so that a negative tensile stress or compressive stress is generated on the upper side and a positive tensile stress is generated on the lower side. At this time, there should be a surface that does not stretch or contract, that is, has a tensile stress of zero. This plane is a neutral plane. In particular, titanium alloy is a difficult-to-adhere metal, so the adhesive strength between the titanium alloy and the matrix resin or adhesive resin that constitutes CFRP is limited except when a special surface treatment or special adhesive is used for the adhesive surface of the titanium alloy. Since it is extremely low, there is a concern about destruction between the titanium alloy and CFRP layers.

特許文献2においても上記と同様に打球時の曲げ変形において、金属箔及び繊維強化プラスチックの引張もしくは圧縮強度を十分に発現する前に、金属箔と繊維強化プラスチックの層間もしくは繊維強化プラスチック層間でせん断により破壊する問題がある。   Also in Patent Document 2, in the bending deformation at the time of hitting in the same manner as described above, shearing is performed between the metal foil and the fiber reinforced plastic layer or between the fiber reinforced plastic layer before sufficiently exhibiting the tensile or compressive strength of the metal foil and fiber reinforced plastic. There is a problem of destruction.

特に特許文献2において説明されるフェース材の積層構成は、金属箔/繊維強化プラスチックが交互に積層される構成であるため、打球時の曲げ変形において、最大のせん断応力がかかる中立面に極めて近い箇所に金属薄と繊維強化プラスチックの層間が位置することになる。通常、同種材である繊維強化プラスチック同士の層間強度よりも異種材料である繊維強化プラスチックと金属箔との接着強度の方が低いため、最大せん断応力がかかる中立面に近い箇所に金属箔と繊維強化プラスチックの層間があると、まず金属箔と繊維強化プラスチック層間が破壊して、部材の破壊の起点となる問題がある。該層間での破壊を防ぐためには、曲げ変形量すなわち撓み量を抑える必要があり、積層枚数を増やして曲げ剛性を向上させる必要がある。しかしながら、フェース材として利用する場合には、撓み量を抑えることはボールの反発を抑えることになり、飛距離が低下する懸念があるばかりでなく、重量増加の原因ともなるため好ましくない。   In particular, the laminated structure of the face material described in Patent Document 2 is a structure in which metal foils / fiber reinforced plastics are alternately laminated, so that the neutral surface where the maximum shear stress is applied in bending deformation at the time of hitting is extremely high. The layer between the thin metal and the fiber reinforced plastic will be located in the vicinity. Usually, the adhesive strength between the fiber reinforced plastic, which is a different material, and the metal foil is lower than the interlaminar strength between the fiber reinforced plastics, which are the same material, so the metal foil and the metal foil are close to the neutral surface where the maximum shear stress is applied. If there is an interlayer of fiber reinforced plastic, there is a problem that the metal foil and the fiber reinforced plastic layer are first broken, which becomes the starting point of the destruction of the member. In order to prevent breakage between the layers, it is necessary to suppress the amount of bending deformation, that is, the amount of bending, and it is necessary to increase the number of laminated layers to improve the bending rigidity. However, when it is used as a face material, it is not preferable to suppress the amount of bending because it suppresses the repulsion of the ball, which may cause a decrease in flight distance and also cause an increase in weight.

特許文献3においても上記と同様に、金属薄板と高弾性ファイバで補強された合成樹脂層の層間で破壊が起こる懸念がある。特に特許文献3には、金属薄板にはチタン合金が好適であると説明されているが、チタン合金は難接着金属であるため、チタン合金の接着表面に特殊な表面処理もしくは特殊な接着剤を用いる場合を除いて、チタン合金と高弾性ファイバで補強された合成樹脂層との接着力は極めて低いため、さらに該層間での破壊が懸念される。   In Patent Document 3, as described above, there is a concern that breakage may occur between layers of a synthetic resin layer reinforced with a thin metal plate and a highly elastic fiber. In particular, Patent Document 3 describes that a titanium alloy is suitable for the metal thin plate. However, since the titanium alloy is a difficult-to-bond metal, a special surface treatment or a special adhesive is applied to the bonding surface of the titanium alloy. Except when used, the adhesive force between the titanium alloy and the synthetic resin layer reinforced with the high elastic fiber is extremely low, and there is a concern about the destruction between the layers.

つまり、繊維強化プラスチックの層間せん断破壊荷重は同種材の引張、圧縮破壊荷重よりも一般にはるかに低いため、曲げ荷重がかかったときに、曲げ応力に対して部材の引張及び圧縮側に満足な強度を有するように積層構成を設計したとしても、せん断応力により破壊が起きて破断にいたる場合がある。よって、上記のように曲げ荷重を負担する金属/繊維強化プラスチック複合材料からなる部材については、特に曲げ変形に伴うせん断応力を考慮に入れた積層構成の最適化が求められる。
特表2002−509491号公報 特開平6−165842号公報 特開2003−102878号公報
In other words, since the interlaminar shear failure load of fiber reinforced plastics is generally much lower than the tensile and compressive failure loads of the same type of material, when the bending load is applied, satisfactory strength is obtained on the tensile and compression side of the member against the bending stress. Even if the laminated structure is designed so as to have rupture, breakage may occur due to shear stress, leading to breakage. Therefore, for a member made of a metal / fiber reinforced plastic composite material that bears a bending load as described above, it is particularly necessary to optimize the laminated structure taking into account the shear stress accompanying bending deformation.
Japanese translation of PCT publication No. 2002-509491 JP-A-6-165842 JP 2003-102878 A

本発明の課題は、例えば航空機、自動車、スポーツ、土木、建築などの分野において、軽量で高強度、耐久性が求められ、特に静的、もしくは繰り返しの曲げ荷重または曲げ変形を伴う衝撃荷重を負担する部材に好適に用いることができる、軽量で高強度、かつ耐久性に優れる金属/繊維強化プラスチック複合材料およびその製造方法を提供することにある。   The problem of the present invention is that, for example, in the fields of aircraft, automobiles, sports, civil engineering, architecture, etc., light weight, high strength, and durability are required, and in particular, it bears static or repeated bending loads or impact loads with bending deformation. An object of the present invention is to provide a metal / fiber reinforced plastic composite material that can be suitably used for a member that is lightweight, has high strength, and is excellent in durability, and a method for producing the same.

本発明の金属/繊維強化プラスチック複合材料は、上記課題を達成するために、以下の手段を採用する。   The metal / fiber reinforced plastic composite material of the present invention employs the following means in order to achieve the above-mentioned problems.

金属に繊維強化プラスチックが積層され、これら部材が接着されて一体化されてなる複合材料において、前記接着面が、複合材料を曲げた場合に生じる中立面から、複合材料総厚みの±5%の厚みの範囲外に存在することを特徴とする。   In a composite material in which fiber reinforced plastic is laminated on a metal and these members are bonded and integrated, the adhesive surface is ± 5% of the total thickness of the composite material from the neutral surface generated when the composite material is bent It exists outside the range of thickness.

ここで、金属の厚みは0.1mm以上2.0mm以下の範囲内であることが好ましい。また、金属はチタン又はチタン合金であることが好ましい。   Here, the thickness of the metal is preferably in the range of 0.1 mm to 2.0 mm. The metal is preferably titanium or a titanium alloy.

繊維強化プラスチックの一枚あたりの厚みは0.1mm以上1.0mm以下の範囲内であることが好ましい。繊維強化プラスチックは炭素繊維強化プラスチックであることが好ましい。炭素繊維強化プラスチックの一枚あたりの炭素繊維の目付は100g/m2以上700g/m2以下の範囲内であることが好ましい。繊維強化プラスチックは、その強化繊維として連続繊維を用いるとともに繊維配列方向が一方向である一方向積層材であって、JIS K 7078「炭素繊維強化プラスチックの層間せん断試験方法」に基づく見掛けの層間せん断強さが60MPa以上であるものが好ましい。繊維強化プラスチックは、その強化繊維として連続繊維を用いるとともに繊維配列方向が一方向である一方向積層材であって、JIS K 7073「炭素繊維強化プラスチックの引張試験方法」に基づく引張最大ひずみが0.9%以上であるものが好ましい。   The thickness per fiber reinforced plastic is preferably in the range of 0.1 mm to 1.0 mm. The fiber reinforced plastic is preferably a carbon fiber reinforced plastic. The basis weight of carbon fiber per piece of carbon fiber reinforced plastic is preferably in the range of 100 g / m 2 to 700 g / m 2. The fiber reinforced plastic is a unidirectional laminated material in which continuous fibers are used as the reinforced fibers and the fiber arrangement direction is unidirectional, and an apparent interlaminar shear based on JIS K 7078 “Interlaminar shear test method for carbon fiber reinforced plastics”. Those having a strength of 60 MPa or more are preferred. The fiber reinforced plastic is a unidirectional laminated material in which continuous fibers are used as the reinforced fibers and the fiber arrangement direction is unidirectional, and the maximum tensile strain based on JIS K 7073 “Tensile test method for carbon fiber reinforced plastic” is 0. It is preferably 9% or more.

金属と繊維強化プラスチックとの間に非繊維強化樹脂層を有することが好ましく、この非繊維強化樹脂層は熱硬化性樹脂からなるものがより好ましい。また、非繊維強化樹脂層は熱可塑性樹脂を含有することが好ましい。   It is preferable to have a non-fiber reinforced resin layer between the metal and the fiber reinforced plastic, and the non-fiber reinforced resin layer is more preferably made of a thermosetting resin. The non-fiber reinforced resin layer preferably contains a thermoplastic resin.

熱可塑性樹脂を含有する場合、熱可塑性樹脂はモード径が3μm以上20μm以下の微粒子であることが好ましい。ここでいうモード径とは、粒子径分布中の最頻度範囲から求める粒子径で、レーザー回折・散乱法や電子顕微鏡を用いた画像解析法等の既知の方法で測定できるものである。   When the thermoplastic resin is contained, the thermoplastic resin is preferably fine particles having a mode diameter of 3 μm to 20 μm. The mode diameter here is a particle diameter obtained from the most frequent range in the particle diameter distribution and can be measured by a known method such as a laser diffraction / scattering method or an image analysis method using an electron microscope.

非繊維強化樹脂層を構成する樹脂は、イミダゾールシラン化合物を含むことが好ましい。   The resin constituting the non-fiber reinforced resin layer preferably contains an imidazole silane compound.

金属と繊維強化プラスチックとの積層構成が対称積層構成であることが好ましい。   The laminated structure of the metal and the fiber reinforced plastic is preferably a symmetrical laminated structure.

次に、本発明の金属/繊維強化プラスチック複合材料の製造方法は、上記課題を達成するために、次の手段を採用する。   Next, the manufacturing method of the metal / fiber reinforced plastic composite material of the present invention employs the following means in order to achieve the above-mentioned problems.

金属と、未硬化状態または半硬化状態のマトリックス樹脂を含浸してある繊維強化基材の積層体とを準備し、両部材の間に非繊維強化樹脂層を形成する樹脂を配置して積層した後、マトリックス樹脂及び非繊維強化樹脂層を形成する樹脂の硬化と、金属と繊維強化プラスチックとの接着を同時に行うことを特徴とする製造方法である。   A laminate of a metal and a fiber reinforced base material impregnated with a matrix resin in an uncured state or a semi-cured state is prepared, and a resin that forms a non-fiber reinforced resin layer is disposed between both members and laminated. Thereafter, curing of the resin for forming the matrix resin and the non-fiber reinforced resin layer and bonding of the metal and the fiber reinforced plastic are performed simultaneously.

また、金属と、硬化後の繊維強化プラスチックの積層体とを準備し、両部材の間に室温硬化型の樹脂からなる非繊維強化樹脂層を形成する樹脂を配置して積層した後、該樹脂を硬化するとともに、金属と繊維強化プラスチックとの接着を同時に行うことを特徴とする製造方法である。   Also, a metal and a cured fiber reinforced plastic laminate are prepared, and a resin that forms a non-fiber reinforced resin layer made of a room temperature curable resin is disposed between the two members, and then laminated. And a metal and a fiber reinforced plastic are simultaneously bonded to each other.

本発明の金属に繊維強化プラスチックが接着された複合材料によれば、特に静的、もしくは繰り返しの曲げ荷重、または曲げ変形を伴う衝撃荷重の負担時に金属と繊維強化プラスチックとの接着面における破壊を抑止することができ、軽量で高強度且つ耐久性に優れる複合材料を提供することができる。   According to the composite material in which the fiber reinforced plastic is bonded to the metal of the present invention, the fracture of the bonded surface between the metal and the fiber reinforced plastic is caused particularly when a static or repeated bending load or an impact load accompanied by bending deformation is applied. It is possible to provide a composite material that can be suppressed, lightweight, high strength, and excellent in durability.

また、本発明の金属と繊維強化プラスチックの積層体からなる複合材料の製造方法によれば、上記のような軽量で高強度且つ耐久性に優れる金属に繊維強化プラスチックが接着された複合材料を、特別な製造機器が不要で、従来の繊維強化プラスチックの製造を装置を用いて一度の硬化工程により得ることができるとともに、表層にのみ金属が積層される構成であっても、反りのない積層体を製造することができる。   Further, according to the method for producing a composite material comprising a laminate of a metal and a fiber reinforced plastic of the present invention, a composite material in which a fiber reinforced plastic is bonded to a metal having a light weight, high strength and excellent durability as described above, No special manufacturing equipment is required, and conventional fiber-reinforced plastics can be produced by a single curing process using a device, and even if the metal is laminated only on the surface layer, the laminate does not warp Can be manufactured.

以下、本発明を実施するための最良の形態を図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

上述したように、本発明の金属/繊維強化プラスチック複合材料は、金属と繊維強化プラスチックとの積層体の接着面が、両部材からなる複合材料を曲げた場合に生じる中立面から、複合材料総厚みの±5%の厚みの範囲外に存在すること、換言すれば接着面が曲げ変形による最大せん断応力が生じる中立面近傍に存在しない積層構成であることを特徴とする。ここで接着面の位置が、中立面から複合材料総厚みの±5%の厚み未満に存在すると、曲げ変形時に中立面に生じる最大せん断応力により、接着面もしくは接着面近傍での破壊がおこるため、好ましくない。   As described above, the metal / fiber reinforced plastic composite material of the present invention is a composite material in which the adhesive surface of the laminate of metal and fiber reinforced plastic is formed from a neutral surface generated when the composite material composed of both members is bent. It is characterized in that it exists outside the range of thickness of ± 5% of the total thickness, in other words, the laminated surface does not exist in the vicinity of the neutral plane where the maximum shear stress due to bending deformation occurs. Here, if the position of the adhesive surface is less than ± 5% of the total thickness of the composite material from the neutral surface, the maximum shear stress generated on the neutral surface during bending deformation causes the fracture at or near the adhesive surface. Because it happens, it is not preferable.

ただし使用形態として、本発明の複合材料の表面に外観保護や美観のために塗装をほどこしたり、緩衝のために発泡材などの緩衝材をはりつけることは常であり、何ら問題ないが、上記「複合材料総厚み」の中にはこれら塗装や発泡材の厚みは加算されない。   However, as a use form, it is usual to apply a coating on the surface of the composite material of the present invention for appearance protection or aesthetics, or to apply a cushioning material such as a foam material for cushioning, but there is no problem, The total thickness of the composite material does not include the thickness of these paints and foams.

したがって、本発明においては前述した中立面が大きな意味を持つ。この中立面の位置は、積層板理論などにより解析的に求めることもできるが、実験的には4点曲げ試験によって求めることができ、その4点曲げ試験方法としてはJIS K 7074「炭素繊維強化プラスチックの曲げ試験方法」に規定されている。   Therefore, in the present invention, the above-described neutral plane has a great meaning. The position of the neutral plane can be analytically determined by a laminated plate theory or the like, but can be experimentally determined by a four-point bending test. As the four-point bending test method, JIS K 7074 “carbon fiber” is used. It is defined in “Bending test method of reinforced plastic”.

これを図2を用いて説明すると、まず試験片1の両端を支点6で支え、この試験片に曲げ変形時に圧縮側となる面の中心に圧縮ひずみを測定できるようにひずみゲージ2を貼り付け、同様に引張側となる面の中心に引張ひずみを測定できるようにひずみゲージ3を貼り付ける。そして、試験片1の上部から圧子5を有する圧子ジグ4で試験片方向に押さえ、圧縮側と引っ張り側の歪みをひずみゲージ2、3で検出する。   This will be explained with reference to FIG. 2. First, both ends of the test piece 1 are supported by the fulcrum 6, and a strain gauge 2 is attached to the test piece so that the compressive strain can be measured at the center of the compression side during bending deformation. Similarly, the strain gauge 3 is attached so that the tensile strain can be measured at the center of the surface on the tension side. Then, the test piece 1 is pressed in the direction of the test piece with the indenter jig 4 having the indenter 5, and the strain on the compression side and the tension side is detected with the strain gauges 2 and 3.

このようにして該試験片用いてを上記試験方法により試験を行い、圧縮、引張ひずみを測定して、チャートの縦軸に圧縮、引張ひずみ、横軸にクロスヘッド移動量を記した例を図3に示す。圧縮、引張ひずみ共に線形の領域において、ある一定のクロスヘッド移動量における圧縮ひずみa、引張ひずみbを求める。試験片の中立面の位置は圧縮ひずみa、引張ひずみbの比に対応しており、図4に試験片断面における中立面の位置を示す。このように4点曲げ試験時の上記圧縮ひずみaと、引張ひずみbを測定することにより、試験片の中立面位置が求められる。   In this way, the test piece is tested by the above test method, compression and tensile strain are measured, and the vertical axis of the chart shows the compression and tensile strain, and the horizontal axis shows the amount of crosshead movement. 3 shows. In a region where both compression and tensile strain are linear, compression strain a and tensile strain b are obtained for a certain amount of crosshead movement. The position of the neutral surface of the test piece corresponds to the ratio of the compressive strain a and the tensile strain b, and FIG. 4 shows the position of the neutral surface in the cross section of the test piece. Thus, the neutral surface position of a test piece is calculated | required by measuring the said compression strain a and the tensile strain b at the time of a 4-point bending test.

前述したように本発明の特徴は、換言すれば金属と繊維強化プラスチックの積層体からなる複合材料において、該複合材料の中立面から、複合材料総厚みの±5%の厚みの範囲内に金属と繊維強化プラスチックとの接着面が存在しないことを特徴とする。このような積層構成にすることにより、金属/繊維強化プラスチック複合材料に曲げ変形が生じたときに、中立面に発生する最大せん断応力による該複合材料の層間および層内でのせん断破壊を抑止することができる。通常、金属/繊維強化プラスチック複合材料は引張強度、圧縮強度は十分に高いが、層間および層内のせん断強度は引張強度、圧縮強度に比べ一桁以上低いため、曲げ変形において引張側及び圧縮側で破壊するよりも先に層間又は層内もしくはその両方においてせん断破壊が起こることがあり、本発明における積層構成により層間および層内でのせん断破壊を抑止することにより、特に静的、もしくは繰り返しの曲げ荷重または曲げ変形を伴う衝撃荷重に対して、高強度且つ耐久性に優れた金属/繊維強化プラスチック複合材料を提供することができる。このような作用効果からすると接着面の位置は、より好ましくは中立面から総厚みの±7%の範囲外に、最も好ましくは±10%の範囲外に存在することである。   As described above, the feature of the present invention is that, in other words, in a composite material composed of a laminate of metal and fiber reinforced plastic, within a range of ± 5% of the total thickness of the composite material from the neutral surface of the composite material. It is characterized in that there is no bonding surface between the metal and the fiber reinforced plastic. By adopting such a laminated structure, when bending deformation occurs in a metal / fiber reinforced plastic composite material, shear fracture between layers and layers of the composite material due to the maximum shear stress generated on the neutral surface is suppressed. can do. Usually, metal / fiber reinforced plastic composites have sufficiently high tensile strength and compressive strength, but the shear strength between layers and layers is one or more orders of magnitude lower than the tensile strength and compressive strength. In some cases, shear failure may occur in the interlayer and / or in the layer prior to breaking in the layer, and by suppressing the shear fracture in the interlayer and in the layer by the laminated structure in the present invention, particularly static or repeated A metal / fiber reinforced plastic composite material having high strength and excellent durability against a bending load or an impact load accompanying bending deformation can be provided. In view of such effects, the position of the adhesive surface is more preferably outside the range of ± 7% of the total thickness from the neutral surface, and most preferably outside the range of ± 10%.

以下、本発明をその構成要素毎に詳しく説明する。   Hereinafter, the present invention will be described in detail for each component.

本発明において金属とは、ステンレス鋼や鉄、アルミニウム合金、チタン合金、マグネシウム合金、その他種々の金属及び合金のことである。中でも比強度の高いアルミニウム合金、チタン合金が好ましい。より好ましくはチタン合金である。その理由は既に示した表1から明らかである。代表的なアルミニウム合金(A2017P)とチタン合金(Ti−6Al−4V)は、特にチタン合金は比強度が223(MPa/比重)と非常に高いため、本発明で用いる金属に使用することにより、軽量で高強度、高弾性率な金属/繊維強化プラスチック複合材料を提供することができる。   In the present invention, the metal means stainless steel, iron, aluminum alloy, titanium alloy, magnesium alloy, and other various metals and alloys. Of these, aluminum alloys and titanium alloys having high specific strength are preferred. More preferably, it is a titanium alloy. The reason is clear from Table 1 already shown. Typical aluminum alloy (A2017P) and titanium alloy (Ti-6Al-4V), especially titanium alloy has a very high specific strength of 223 (MPa / specific gravity), so by using it in the metal used in the present invention, It is possible to provide a metal / fiber reinforced plastic composite material that is lightweight, has high strength, and has a high elastic modulus.

本発明に用いる金属の厚みは0.1mm以上2.0mm以下であることが好ましい。0.1mm未満であると、金属層の負担できる荷重が小さくなりすぎる為好ましくない。また厚みが0.1mm未満の金属薄膜の製造コストも高いため、好ましくない。一方、2.0mmより厚いと本発明で用いる複合材料の重量増加が懸念され、使用数が限定されることにより積層構成の設計自由度が低くなるため好ましくない。また、2.0mmよりも厚いと本発明の複合材料に曲げ変形が生じたときに、金属の接着面にかかるせん断応力が高くなるため、金属層と繊維強化プラスチック層の接着面つまり金属/繊維強化プラスチック層間における、せん断破壊が懸念されるため好ましくない。   The thickness of the metal used in the present invention is preferably from 0.1 mm to 2.0 mm. If it is less than 0.1 mm, the load that can be borne by the metal layer becomes too small, which is not preferable. Moreover, since the manufacturing cost of the metal thin film whose thickness is less than 0.1 mm is also high, it is not preferable. On the other hand, if it is thicker than 2.0 mm, there is a concern about an increase in the weight of the composite material used in the present invention, and the number of use is limited, so that the degree of freedom in designing the laminated structure is lowered, which is not preferable. Further, when the thickness is larger than 2.0 mm, when the composite material of the present invention undergoes bending deformation, the shear stress applied to the metal bonding surface increases, so the bonding surface between the metal layer and the fiber reinforced plastic layer, that is, metal / fiber. This is not preferred because there is concern about shear fracture between reinforced plastic layers.

本発明において繊維強化プラスチックとは強化繊維束にマトリックス樹脂を含浸させた複合材料をいう。   In the present invention, the fiber reinforced plastic refers to a composite material in which a reinforcing fiber bundle is impregnated with a matrix resin.

強化繊維としては、炭素繊維、ガラス繊維、アルミナ繊維、窒化ケイ素繊維などの無機繊維とアラミド繊維、ナイロンなどのポリアミド系合成繊維、PBO繊維、ポリオレフィン系繊維、ポリエステル繊維、ポリフェニルスルホン繊維などの有機繊維を単独又は2種以上を混合して使用することができる。とりわけ炭素繊維は軽量で高強度、高弾性率を有し、耐食性に優れると言う特徴を持つため好ましい。   Reinforcing fibers include carbon fibers, glass fibers, alumina fibers, silicon nitride fibers and other inorganic fibers and aramid fibers, polyamide synthetic fibers such as nylon, PBO fibers, polyolefin fibers, polyester fibers, and polyphenylsulfone fibers. A fiber can be used individually or in mixture of 2 or more types. In particular, carbon fibers are preferred because they are lightweight, have high strength and high elastic modulus, and have excellent corrosion resistance.

強化繊維束の形態としては、連続繊維を用いた糸束状はもちろんのこと織物状や組み紐状、マット状の他、短繊維などの不連続な繊維束から構成される強化繊維束の形態を単独又は2種類以上の形態を組み合わせて使用することができる。具体的な繊維強化プラスチックの基材形態としては、糸束状や織物状、組み紐状、マット状の強化繊維束にマトリックス樹脂を予め含浸してなるプリプレグ基材、チョップドファイバーなどの短繊維などの繊維束がランダムもしくは規則的に配置された強化繊維束にマトリックス樹脂が予め含浸してなるSMC基材、BMC基材がある。なかでも 糸束状の連続繊維を一方向に引き揃えて樹脂を含浸させて得られるプリプレグ基材を用いた繊維強化プラスチックは強度、弾性率に優れ、繊維の配向角度や積層数などの積層構成により、積層体の力学特性を設計できるため好ましい。   As a form of the reinforcing fiber bundle, a reinforcing fiber bundle formed of discontinuous fiber bundles such as short fibers as well as a woven form, braided form, mat form as well as a yarn bundle form using continuous fibers. It can use individually or in combination of 2 or more types. Specific fiber reinforced plastic substrate forms include yarn bundles, fabrics, braids, mats, and prepreg substrates that are pre-impregnated with matrix resin, short fibers such as chopped fibers, etc. There are SMC base material and BMC base material in which a matrix resin is impregnated in advance into a reinforcing fiber bundle in which fiber bundles are randomly or regularly arranged. Among them, fiber reinforced plastics using a prepreg base material obtained by aligning yarn bundle-like continuous fibers in one direction and impregnating with resin are excellent in strength and elastic modulus, and are laminated structures such as fiber orientation angle and number of layers. Is preferable because the mechanical properties of the laminate can be designed.

マトリックス樹脂としては、熱硬化性樹脂が好ましく、なかでもエポキシ樹脂がより好ましい。   As the matrix resin, a thermosetting resin is preferable, and an epoxy resin is more preferable.

本発明の複合材料に用いる繊維強化プラスチックは、通常は上記強化繊維束にマトリックス樹脂がウェット法、ホットメルト法などにより、予め含浸されてなるものであるが、予め強化繊維束にマトリックス樹脂が含浸されている必要は必ずしも無く、各種形態の強化繊維束からなる基材を積層、真空バギングした後、加圧もしくは真空圧を利用してマトリックス樹脂を強化繊維束からなる基材に含浸することによって成形する、いわゆるレジントランスファー成形によって得られるものであっても差し支えない。表1に代表的なガラス繊維強化プラスチック(GFRP)と炭素繊維強化プラスチック(CFRP)のプリプレグを成形して得られた材料の物性値を示す。   The fiber reinforced plastic used in the composite material of the present invention is usually obtained by impregnating the reinforcing fiber bundle with a matrix resin in advance by a wet method, a hot melt method, or the like. It is not always necessary, and after laminating a base material composed of reinforcing fiber bundles of various forms, vacuum bagging, and then impregnating the base material composed of reinforcing fiber bundles with matrix resin using pressure or vacuum pressure It may be obtained by so-called resin transfer molding. Table 1 shows physical property values of materials obtained by molding prepregs of typical glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP).

繊維強化プラスチックの一枚あたりの厚みは0.07mm以上1.0mm以下であることが好ましい。0.07mm未満であると、繊維強化プラスチック層の負担できる荷重が小さくなりすぎる為好ましくない。一方、1.0mmより厚いと使用数が限定されることにより積層構成の設計自由度が低くなるだけでなく、本発明の複合材料に曲げ変形が生じたときに、繊維強化プラスチック層内及び層間にかかるせん断応力が高くなるため、繊維強化プラスチックの層内又は金属層と繊維強化プラスチック層の接着面つまり金属/繊維強化プラスチック層間でのせん断破壊が懸念されるため好ましくない。   The thickness per fiber reinforced plastic is preferably 0.07 mm or more and 1.0 mm or less. If it is less than 0.07 mm, the load that can be borne by the fiber-reinforced plastic layer becomes too small, which is not preferable. On the other hand, if it is thicker than 1.0 mm, the number of uses is limited, so that not only the design freedom of the laminated structure is lowered, but also when bending deformation occurs in the composite material of the present invention, the fiber reinforced plastic layer and the interlayer Since the shear stress applied to the metal fiber and the fiber reinforced plastic layer is concerned, there is a concern about the shear failure in the fiber reinforced plastic layer or between the metal layer and the fiber reinforced plastic layer.

繊維強化プラスチックとしては軽量、高強度、高弾性率、耐食性を有することなどから炭素繊維強化プラスチックが好ましい。より好ましくは炭素繊維強化プラスチックの炭素繊維の目付が100g/m以上700g/m以下である。炭素繊維強化プラスチックの厚みは目付と樹脂含有率に大きく依存するが、概ね炭素繊維の目付が100g/m以上700g/m以下の範囲に相当する炭素繊維強化プラスチックの厚みは0.07mm以上1.0mm以下の範囲である。 As the fiber reinforced plastic, carbon fiber reinforced plastic is preferable because it has light weight, high strength, high elastic modulus, and corrosion resistance. More preferably, the carbon fiber basis weight of the carbon fiber reinforced plastic is 100 g / m 2 or more and 700 g / m 2 or less. Although the thickness of the carbon fiber reinforced plastic is highly dependent on the basis weight and resin content, generally the thickness of the carbon fiber reinforced plastic, which corresponds to a range having a basis weight of 100 g / m 2 or more 700 g / m 2 or less of the carbon fibers than 0.07mm The range is 1.0 mm or less.

また本発明で用いる繊維強化プラスチックが連続繊維を用いた一方向材である場合には、その繊維配列方向が一方向である一方向積層材のJIS K 7078「炭素繊維強化プラスチックの層間せん断試験方法」に基づいて測定した見掛けの層間せん断強さが60MPa以上であることが好ましい。繊維強化プラスチックが連続繊維を用いた一方向材でない場合においても、JIS K 7078「炭素繊維強化プラスチックの層間せん断試験方法」に基づいて測定した見掛けの層間せん断強さが60MPa以上であることが好ましい。見掛けの層間せん断強さが60MPa未満であると、層間せん断強さが弱すぎるために、金属と繊維強化プラスチックとの接着面を中立面からずらしても、金属/繊維強化プラスチック複合材料が十分な曲げ荷重を負担する前に、繊維強化プラスチック層間において破壊するため好ましくない。   In addition, when the fiber reinforced plastic used in the present invention is a unidirectional material using continuous fibers, JIS K 7078 “Interlayer shear test method for carbon fiber reinforced plastic” is used for the unidirectional laminated material in which the fiber arrangement direction is unidirectional. It is preferable that the apparent interlaminar shear strength measured based on “ Even when the fiber reinforced plastic is not a unidirectional material using continuous fibers, the apparent interlayer shear strength measured according to JIS K 7078 “Interlaminar shear test method for carbon fiber reinforced plastic” is preferably 60 MPa or more. . If the apparent interlaminar shear strength is less than 60 MPa, the interlaminar shear strength is too weak, so even if the bonding surface between the metal and the fiber reinforced plastic is shifted from the neutral surface, the metal / fiber reinforced plastic composite material is sufficient. This is not preferable because it breaks between fiber reinforced plastic layers before bearing a large bending load.

また本発明で用いる繊維強化プラスチックが連続繊維を用いた一方向材である場合には、その繊維配列方向が一方向である一方向積層材のJIS K 7073「炭素繊維強化プラスチックの引張試験方法」に基づいて測定した引張最大ひずみが0.9%以上であることが好ましい。繊維強化プラスチックが連続繊維を用いた一方向材でない場合においても、JIS K 7073「炭素繊維強化プラスチックの引張試験方法」に基づいて測定した引張最大ひずみが0.9%以上であることが好ましい。引張最大ひずみが0.9%未満であると、ひずみ量が小さすぎるために、金属と繊維強化プラスチックとの接着面を中立面からずらしても、金属/繊維強化プラスチック複合材料が十分な曲げ荷重を負担する前に、引張側の繊維強化プラスチックが破壊するため好ましくない。   Further, when the fiber reinforced plastic used in the present invention is a unidirectional material using continuous fibers, JIS K 7073 “Tensile test method for carbon fiber reinforced plastic” of a unidirectional laminated material in which the fiber arrangement direction is unidirectional. It is preferable that the maximum tensile strain measured based on the above is 0.9% or more. Even when the fiber reinforced plastic is not a unidirectional material using continuous fibers, it is preferable that the maximum tensile strain measured based on JIS K 7073 “Tensile test method for carbon fiber reinforced plastic” is 0.9% or more. If the maximum tensile strain is less than 0.9%, the amount of strain is too small, and the metal / fiber reinforced plastic composite material can be bent sufficiently even if the bonding surface between the metal and the fiber reinforced plastic is shifted from the neutral surface. This is not preferable because the fiber-reinforced plastic on the tension side breaks before the load is applied.

次に本発明の金属/繊維強化プラスチック複合材料の接着方法について説明する。接着方法は従来の繊維強化プラスチックの成形方法を利用することができる。   Next, a method for bonding the metal / fiber reinforced plastic composite material of the present invention will be described. As a bonding method, a conventional method for molding fiber-reinforced plastic can be used.

繊維強化プラスチックに未硬化状態のマトリックス樹脂が予め含浸されてなる繊維強化基材を用いる場合には、プレス成形方法やオートクレーブ成形方法が好適に用いることができる。   When using a fiber reinforced base material in which a fiber reinforced plastic is pre-impregnated with an uncured matrix resin, a press molding method or an autoclave molding method can be suitably used.

プレス成形方法およびオートクレーブ成形方法の概要はJIS K 7072「炭素繊維強化プラスチックの試料の作成方法」(2002)5.成形方法に記載されている。   The outline of the press molding method and the autoclave molding method is JIS K 7072 “Method for preparing a sample of carbon fiber reinforced plastic” (2002). It is described in the molding method.

なかでもオートクレーブ成形方法は成形温度、圧力を高精度で管理することができるため、高品質な繊維強化プラスチックを成形することができる方法として用いられており、本発明においても好適に用いることができる。   Among these, the autoclave molding method is used as a method capable of molding a high-quality fiber-reinforced plastic because the molding temperature and pressure can be managed with high accuracy, and can be suitably used in the present invention. .

本発明の複合材料は、所定の形状に切り出した金属と繊維強化プラスチックを所定の積層構成に基づき積層して、繊維強化プラスチックの成形条件に基づいて、プレス成形もしくはオートクレーブ成形することにより、繊維強化プラスチックのマトリックス樹脂を硬化するとともに、マトリックス樹脂と金属を接着することが可能である。   The composite material of the present invention is obtained by laminating metal cut into a predetermined shape and fiber reinforced plastic based on a predetermined laminated structure, and press forming or autoclave forming based on the molding conditions of the fiber reinforced plastic, thereby reinforcing the fiber It is possible to harden the plastic matrix resin and bond the matrix resin to the metal.

当然のことであるが、金属は複数層が積層されていても、成形および接着にはなんら問題はない。   As a matter of course, even if a plurality of layers of metal are laminated, there is no problem in molding and adhesion.

一方、マトリックス樹脂が予め含浸されていない繊維強化基材を用いる場合には、上記同様に所定の形状に切り出した金属と繊維強化基材を所定の積層方法に基づき積層した後、レジントランスファー成形方法などにより、繊維強化基材にマトリックス樹脂を含浸させた後、マトリックス樹脂を硬化させるとともに、マトリックス樹脂と金属を接着することが可能である。   On the other hand, when using a fiber reinforced base material not pre-impregnated with a matrix resin, after laminating a metal cut into a predetermined shape and a fiber reinforced base material in the same manner as described above, a resin transfer molding method For example, after the fiber reinforced base material is impregnated with the matrix resin, the matrix resin can be cured and the matrix resin and the metal can be bonded.

以上が本発明の複合材料の基本的な構成であるが、本発明では金属と繊維強化プラスチックとの間に、後述する非繊維強化樹脂層を介在させることが好ましい。この非繊維強化樹脂層が金属と繊維強化プラスチックとの接着性を向上させるだけでなく、複合材料に衝撃を伴う繰り返しの曲げ荷重が負荷された場合に応力緩和層として作用するため、衝撃を伴う曲げ荷重に対しても金属と繊維強化プラスチックの接着面での剥離を抑止することができるからである。   The above is the basic structure of the composite material of the present invention. In the present invention, it is preferable to interpose a non-fiber reinforced resin layer described later between the metal and the fiber reinforced plastic. This non-fiber reinforced resin layer not only improves the adhesion between the metal and fiber reinforced plastic, but also acts as a stress relaxation layer when the composite material is subjected to repeated bending loads with impact, so it involves impact. This is because it is possible to prevent the metal and the fiber reinforced plastic from being peeled from each other even against a bending load.

ここで非繊維強化樹脂層の厚さは、応力緩和性、対衝撃性と軽量性との兼ね合いから、0.01mm〜0.2mmの範囲内であることが好ましく、より好ましくは0.02mm〜0.1mmの範囲内である。これらの範囲よりも薄いと応力緩和性、対衝撃性が小さく、逆にこれらの範囲よりも厚いと重量増加の原因となる。   Here, the thickness of the non-fiber reinforced resin layer is preferably within a range of 0.01 mm to 0.2 mm, more preferably 0.02 mm to 0.2 mm, in view of stress relaxation, impact resistance, and light weight. Within the range of 0.1 mm. If it is thinner than these ranges, the stress relaxation property and impact resistance are small, and conversely if it is thicker than these ranges, it causes an increase in weight.

非繊維強化樹脂層としてはエポキシ樹脂からなることが好ましい。より好ましくは繊維強化プラスチック素材と同一又は類似の樹脂からなることが好ましい。   The non-fiber reinforced resin layer is preferably made of an epoxy resin. More preferably, it is made of the same or similar resin as the fiber reinforced plastic material.

また非繊維強化樹脂層を強化もしくは靱生を向上、厚みを確保するなどの目的で、熱可塑性樹脂もしくは熱可塑性エラストマーからなる粒子もしくは不織布などを含有することが好ましい。   Further, for the purpose of reinforcing the non-fiber reinforced resin layer or improving the toughness and ensuring the thickness, it is preferable to contain particles or nonwoven fabric made of a thermoplastic resin or a thermoplastic elastomer.

ここで、熱可塑性樹脂としては、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルスルホン(PES)、ポリエーテルエーテルン(PEE)などが好ましく使用される。   Here, as the thermoplastic resin, polyimide (PI), polyetherimide (PEI), polyamide (PA), polyamideimide (PAI), polyethersulfone (PES), polyetheretherone (PEE), etc. are preferably used. Is done.

また、熱可塑性エラストマーとしては、アイオノマー(IO)、ポリオレフィン系(TPO)、ウレタン系(TPU)、ポリアミド系(TPAE)、ポリ塩化ビニル系(TPVC)系などが好ましく使用される。中でもポリアミドは接着性に優れるため、より好ましい。   As the thermoplastic elastomer, ionomer (IO), polyolefin (TPO), urethane (TPU), polyamide (TPAE), polyvinyl chloride (TPVC), and the like are preferably used. Of these, polyamide is more preferable because of its excellent adhesiveness.

熱可塑性樹脂はモード径が3μm以上20μm以下の微粒子形状で有ることが好ましい。非繊維強化樹脂層を構成する樹脂に、3μm以上20μm以下の熱可塑性樹脂の微粒子を配合することにより、複合材料の製造条件において、該樹脂の流出を抑制し、非繊維強化樹脂層の厚みを確保することができるだけでなく、強化繊維の繊維間に熱可塑性樹脂の微粒子が入り込むことができるため、非繊維強化樹脂層と繊維強化プラスチックとの接着性が向上できるため好ましい。一方、3μm未満の場合、熱可塑性樹脂の微粒子の製造コストが高くなるため好ましくない。また、20μmより大きいと、粒径が大きすぎるため、強化繊維の繊維間に熱可塑性樹脂の微粒子が入り込むことが困難になるため、好ましくない。   The thermoplastic resin preferably has a fine particle shape with a mode diameter of 3 μm to 20 μm. By blending thermoplastic resin fine particles of 3 μm or more and 20 μm or less into the resin constituting the non-fiber reinforced resin layer, the outflow of the resin is suppressed in the production conditions of the composite material, and the thickness of the non-fiber reinforced resin layer is reduced. It is preferable because not only can be ensured but also the fine particles of the thermoplastic resin can enter between the fibers of the reinforcing fiber, and the adhesion between the non-fiber reinforced resin layer and the fiber reinforced plastic can be improved. On the other hand, when the thickness is less than 3 μm, the production cost of the thermoplastic resin fine particles increases, which is not preferable. On the other hand, if it is larger than 20 μm, the particle size is too large, and it becomes difficult for the fine particles of the thermoplastic resin to enter between the fibers of the reinforcing fiber, which is not preferable.

非繊維強化樹脂層を構成する樹脂は、イミダゾールシラン化合物を含むことが好ましい。 本発明において、イミダゾールシラン化合物とは、イミダゾール環を有するシラン化合物を意味する。イミダゾール化合物の例として、一般式(I)、(II)、(III)で表されるイミダゾールシラン化合物、およびかかるイミダゾールシラン化合物と酸の塩が挙げられる。これらイミダゾールシラン化合物の製法および具体例は、特公平07−068256号公報に記載されている。   The resin constituting the non-fiber reinforced resin layer preferably contains an imidazole silane compound. In the present invention, the imidazole silane compound means a silane compound having an imidazole ring. Examples of imidazole compounds include imidazole silane compounds represented by general formulas (I), (II), and (III), and salts of such imidazole silane compounds and acids. Production methods and specific examples of these imidazole silane compounds are described in JP-B-07-068256.

Figure 2005161852
Figure 2005161852

Figure 2005161852
Figure 2005161852

Figure 2005161852
Figure 2005161852

(ここでR5〜R7は、それぞれ独立に、水素原子またはアルキル基、アミノアルキル基、ヒドロキシアルキル基、シアノアルキル基、アリール基、アラルキル基より選ばれる置喚基を表し、R8,R9はアルキル基を表す。nは1〜3の整数である。)
イミダゾールシラン化合物を含むことによって、非繊維強化樹脂層と金属との接着性が向上するだけでなく、高温高湿度の暴露後においても、金属との接着性を保持することができるため、好ましい。
(Here, R5 to R7 each independently represents a hydrogen atom or an alkyl group, an aminoalkyl group, a hydroxyalkyl group, a cyanoalkyl group, an aryl group, or an aralkyl group, and an alkyl group, R8 and R9 are alkyl groups. N is an integer of 1 to 3)
By including an imidazolesilane compound, not only the adhesion between the non-fiber reinforced resin layer and the metal is improved, but also the adhesion with the metal can be maintained even after exposure to high temperature and high humidity.

イミダゾールシラン化合物の含有量は、0.1wt%以上2.0wt%以下であることが好ましい。   The content of the imidazole silane compound is preferably 0.1 wt% or more and 2.0 wt% or less.

ここでいう非繊維強化樹脂とは、前述した繊維強化プラスチックとは区別することを意味しており、非繊維強化樹脂そのものを強化する目的で、ガラス繊維や炭素繊維などの強化繊維のミルドファイバーなどを含有することはもちろん可能である。非繊維強化樹脂層の好ましい使用形態としては、非繊維強化樹脂層を形成する液状樹脂を金属の接着表面に塗布、もしくはフィルム状の樹脂を金属の接着表面または未硬化状態のマトリックス樹脂を予め含浸している繊維強化基材の金属との接着面に配置後、カレンダーロール等を用いて、フィルム状の樹脂を金属の接着表面または繊維強化基材の金属との接着面に転写したものを用いるなどして、所定の積層構成に積層した後、マトリックス樹脂と非繊維強化樹脂の硬化条件を満足するように加熱、加圧して成形する。樹脂の金属、繊維強化基材の付与方法は塗布やカレンダーロールによる転写以外にもスプレイアップやディッピングによるいずれかの方法であってもよい。またフィルム状の樹脂は金属と繊維強化基材の両方に転写してももちろん良い。より好ましくは非繊維強化樹脂層を形成する樹脂の硬化条件が、マトリックス樹脂の硬化条件と同じものを用いることにより、1回の加熱工程において、マトリックス樹脂と非繊維強化樹脂層を形成する樹脂の硬化を同時に行うとともに、非繊維強化樹脂層の硬化を介して繊維強化プラスチックと金属との接着を行うことが好ましい。   Non-fiber reinforced resin here means to distinguish from the above-mentioned fiber reinforced plastic, and for the purpose of reinforcing non-fiber reinforced resin itself, milled fiber of reinforced fiber such as glass fiber or carbon fiber, etc. Of course, it is possible to contain. As a preferred form of use of the non-fiber reinforced resin layer, a liquid resin for forming the non-fiber reinforced resin layer is applied to a metal adhesive surface, or a film-like resin is impregnated in advance with a metal adhesive surface or an uncured matrix resin. After placing the fiber reinforced base material on the adhesive surface with the metal, use a calender roll or the like to transfer the resin in the form of a film to the metal adhesive surface or the fiber reinforced base material with the metal. For example, after being laminated in a predetermined laminated structure, it is molded by heating and pressing so as to satisfy the curing conditions of the matrix resin and the non-fiber reinforced resin. The method for applying the resin metal and the fiber reinforced base material may be any one of spray-up and dipping methods other than coating and transfer using a calender roll. Of course, the film-like resin may be transferred to both the metal and the fiber-reinforced substrate. More preferably, the curing conditions of the resin that forms the non-fiber reinforced resin layer are the same as the curing conditions of the matrix resin, so that the resin that forms the matrix resin and the non-fiber reinforced resin layer in one heating step. It is preferable to perform the curing at the same time and to bond the fiber reinforced plastic and the metal through the curing of the non-fiber reinforced resin layer.

また層間強化型のプリプレグのように、予めプリプレグの接着面に層間を確保できるような樹脂層を有するプリプレグを用いることも好ましい。この場合、繊維強化プラスチックの硬化と繊維強化プラスチックの金属への接着を同時に行うことができるため好ましい。   It is also preferable to use a prepreg having a resin layer that can secure an interlayer on the adhesive surface of the prepreg in advance, such as an interlayer-reinforced prepreg. In this case, the fiber reinforced plastic can be cured and the fiber reinforced plastic can be bonded to the metal at the same time, which is preferable.

一方、マトリックス樹脂と非繊維強化樹脂層を形成する樹脂の硬化条件が異なる場合には、どちらかの樹脂の硬化条件に基づき成形した後、他方の樹脂の硬化条件を満足するように後硬化処理を施すことによって、マトリックス樹脂と非繊維強化樹脂層を形成する樹脂を共に十分に硬化することも可能である。   On the other hand, if the curing conditions of the matrix resin and the resin that forms the non-fiber reinforced resin layer are different, after curing based on the curing condition of one of the resins, post-curing treatment is performed to satisfy the curing condition of the other resin. It is also possible to sufficiently cure both the matrix resin and the resin forming the non-fiber reinforced resin layer.

また金属の接着面に予め非繊維強化樹脂層を形成する樹脂を塗布もしくはフィルム状の樹脂を配置したのち、該樹脂を適切な温度、圧力により硬化もしくは半硬化するとともに、金属へ接着もしくは転写させるなどの処理を予め行った金属を用いることも好ましい使用形態の一つである。   In addition, after applying a resin that forms a non-fiber reinforced resin layer or placing a film-like resin on the adhesive surface of the metal, the resin is cured or semi-cured at an appropriate temperature and pressure, and is also adhered or transferred to the metal. It is also one of preferable usage forms to use a metal that has been subjected to a treatment such as the above.

また、硬化後の繊維強化プラスチックに金属を接着する場合には、非繊維強化樹脂層は接着剤を兼ねており、非繊維強化樹脂層を形成する樹脂を金属、繊維強化プラスチックの接着表面の両方または一方に塗布、もしくはフィルム状の樹脂を金属、繊維強化プラスチックの接着表面の両方または一方に配置して、所定の積層構成に基づいて、金属と硬化後の繊維強化プラスチックを積層した後、非繊維強化樹脂層を形成する樹脂の硬化条件に基づいて加熱、加圧を行い、樹脂を硬化することにより、金属と繊維強化プラスチックの間に非繊維強化樹脂層を形成するも可能である。   In addition, when bonding metal to the fiber reinforced plastic after curing, the non-fiber reinforced resin layer also serves as an adhesive, and the resin that forms the non-fiber reinforced resin layer is both the metal and the bonded surface of the fiber reinforced plastic. Alternatively, after applying or coating a film-like resin on one or both of the metal and fiber-reinforced plastic bonding surfaces and laminating the metal and the cured fiber-reinforced plastic based on a predetermined laminate structure, It is also possible to form a non-fiber reinforced resin layer between the metal and the fiber reinforced plastic by heating and pressurizing based on the curing conditions of the resin forming the fiber reinforced resin layer and curing the resin.

本発明の金属と繊維強化プラスチックの積層体からなる複合材料の積層構成は対称積層構成であることが好ましい。ここで、対称積層構成とは、積層構成において鏡面対称性を有する積層構成を意味する。   The laminated structure of the composite material comprising the laminate of the metal and fiber reinforced plastic of the present invention is preferably a symmetrical laminated structure. Here, the symmetric laminated structure means a laminated structure having mirror symmetry in the laminated structure.

特に繊維強化プラスチックに連続繊維を一方向に引き揃えて樹脂を含浸させて得られる一方向プリプレグ基材のように、物性の依存性が強い材料を用いる場合、線膨張係数も依存性があるため、繊維強化プラスチックが非対称積層構成の場合、線膨張係数と成型温度に応じた反りおよび残留応力が生じる。また剛性が十分高い材料へ非対称積層構成の繊維強化プラスチックを成形、接着した場合、反りは軽減されるが残留応力が生じる。   In particular, when using a material that has a strong dependence on physical properties, such as a unidirectional prepreg base material that is obtained by aligning continuous fibers in one direction with a fiber reinforced plastic and impregnating the resin, the linear expansion coefficient is also dependent. When the fiber reinforced plastic has an asymmetric laminated structure, warpage and residual stress are generated according to the linear expansion coefficient and the molding temperature. When a fiber reinforced plastic having an asymmetric laminated structure is molded and bonded to a material having sufficiently high rigidity, warping is reduced but residual stress is generated.

同様に金属と繊維強化プラスチックの線膨張係数も異なるため、特に金属と繊維強化プラスチックの接着を室温以上の温度で行う場合には、線膨張係数と成形温度に応じた反りおよび残留応力が生じる。このような反りや残留応力が問題にならないような状況で使用される場合を除いて、金属と繊維強化プラスチックの積層体からなる複合材料の積層構成は対称積層構成であることが好ましい。   Similarly, since the linear expansion coefficients of the metal and the fiber reinforced plastic are different from each other, particularly when the metal and the fiber reinforced plastic are bonded at a temperature higher than room temperature, warpage and residual stress are generated according to the linear expansion coefficient and the molding temperature. Except for the case where it is used in such a situation that warpage and residual stress do not become a problem, it is preferable that the laminated structure of the composite material composed of a laminate of metal and fiber reinforced plastic is a symmetrical laminated structure.

次に、本発明の金属と繊維強化プラスチックの積層体からなる複合材料の製造方法を説明する。ここでは繊維強化プラスチックとして、未硬化状態のマトリックス樹脂を予め含浸している繊維強化基材を用いる場合を説明する。   Next, the manufacturing method of the composite material which consists of a laminated body of the metal of this invention and a fiber reinforced plastic is demonstrated. Here, a case where a fiber reinforced base material impregnated with an uncured matrix resin in advance is used as the fiber reinforced plastic.

まず、材料として繊維強化基材、金属、必要に応じて非繊維強化樹脂を形成する樹脂を所定の積層構成および形状に基づき、必要な数量分を切断加工して準備する。   First, a fiber reinforced base material, a metal, and a resin that forms a non-fiber reinforced resin as necessary are prepared by cutting a necessary quantity based on a predetermined laminated configuration and shape.

非繊維強化樹脂層が必要な場合には、樹脂を金属の接着表面に塗布、もしくはフィルム状の樹脂を金属の接着表面または繊維強化基材の接着面に配置後、カレンダーロール等を用いて転写するなどして、金属の接着表面、繊維強化基材の接着面に樹脂を付与する。   If a non-fiber reinforced resin layer is required, transfer the resin using a calender roll after applying the resin to the metal adhesive surface or placing the film-like resin on the metal adhesive surface or the fiber reinforced substrate adhesive surface. For example, resin is applied to the adhesion surface of the metal and the adhesion surface of the fiber reinforced base material.

次に上記金属と繊維強化基材を所定の積層構成に基づき積層した後、成形型などに該積層体をセットして、プレス成形、オートクレーブ成形などの適切な成形方法により、マトリックス樹脂、非繊維強化樹脂層を形成する樹脂の硬化条件に基づいて加熱、加圧する。   Next, after laminating the metal and the fiber reinforced base material based on a predetermined laminating structure, the laminate is set in a molding die or the like, and subjected to an appropriate molding method such as press molding or autoclave molding, and a matrix resin or non-fiber. Heating and pressing are performed based on the curing conditions of the resin forming the reinforced resin layer.

樹脂の硬化条件に基づいた加熱、加圧後、硬化済みの金属/繊維強化プラスチック複合材料を脱型して取り出す。   After heating and pressurization based on the curing conditions of the resin, the cured metal / fiber reinforced plastic composite material is demolded and removed.

なお、マトリックス樹脂と非繊維強化樹脂層を形成する樹脂の硬化条件が同じ場合には、1回の硬化工程により、マトリックス樹脂と非繊維強化樹脂層を形成する樹脂を硬化するとともに非繊維強化樹脂層を介して金属と繊維強化プラスチックとの接着を同時に行うことができるため好ましい。   When the curing conditions of the matrix resin and the resin that forms the non-fiber reinforced resin layer are the same, the resin that forms the matrix resin and the non-fiber reinforced resin layer is cured and the non-fiber reinforced resin is formed by a single curing step. The metal and the fiber reinforced plastic can be bonded simultaneously through the layer, which is preferable.

マトリックス樹脂と非繊維強化樹脂層を形成する樹脂の硬化条件が異なる場合は、マトリックス樹脂又は非繊維強化樹脂層を形成する樹脂のどちらか一方の樹脂の硬化条件により硬化、成形した後、他方の樹脂の硬化条件に基づき後硬化処理を施すことにより、マトリックス樹脂および非繊維強化樹脂層を形成する樹脂を共に十分に硬化することが好ましい。   When the curing conditions of the matrix resin and the resin forming the non-fiber reinforced resin layer are different, after curing and molding according to the curing conditions of either the matrix resin or the resin forming the non-fiber reinforced resin layer, the other It is preferable that both the matrix resin and the resin forming the non-fiber reinforced resin layer are sufficiently cured by performing a post-curing treatment based on the resin curing conditions.

次に繊維強化プラスチックとして、未硬化状態のマトリックス樹脂を予め含浸していない繊維強化基材を用いる場合は、上記と同様に材料を準備して、所定の積層構成に基づき積層した後、成形型などに該積層体をセットする。レジントランスファー成形など適切な成形方法により、マトリックス樹脂を繊維強化基材内に注入、含浸させた後、樹脂の硬化条件に基づいて、加熱、加圧する。   Next, when using a fiber reinforced base material that has not been impregnated with an uncured matrix resin in advance as a fiber reinforced plastic, prepare a material in the same manner as described above, laminate it based on a predetermined laminate configuration, and then mold The laminated body is set in the above. The matrix resin is injected and impregnated into the fiber reinforced base material by an appropriate molding method such as resin transfer molding, and then heated and pressurized based on the curing conditions of the resin.

樹脂の硬化条件に基づいた加熱、加圧後、硬化済みの金属/繊維強化プラスチック複合材料を脱型して取り出す。成形型の占有時間を短くするために、短時間で脱型後、後硬化処理を行うことにより、十分に硬化することも可能である。   After heating and pressurization based on the curing conditions of the resin, the cured metal / fiber reinforced plastic composite material is demolded and removed. In order to shorten the occupation time of the mold, it can be sufficiently cured by performing post-curing treatment after demolding in a short time.

また繊維強化プラスチックとして、硬化後の繊維強化プラスチックを用いる場合には、非繊維強化樹脂層を兼ねる接着用樹脂を、金属、繊維強化プラスチックの接着表面の両方または一方に付与した後、上記同様に成形する。特に室温硬化型の非繊維強化樹脂層を形成する接着用樹脂を用いた場合、積層構成が片側一面のみに金属層を貼り付けるような非対称積層構成であっても、金属と繊維強化プラスチックの線膨張係数の違いによる反りや残留応力はないため好ましい。   In the case of using a fiber reinforced plastic after curing as a fiber reinforced plastic, after applying a bonding resin that also serves as a non-fiber reinforced resin layer to both or one of the bonding surfaces of the metal and the fiber reinforced plastic, the same as above. Mold. In particular, when an adhesive resin that forms a room temperature curable non-fiber reinforced resin layer is used, even if the laminated structure is an asymmetric laminated structure in which a metal layer is attached to only one side, the wire between the metal and the fiber reinforced plastic This is preferable because there is no warpage or residual stress due to a difference in expansion coefficient.

以下、本発明を実施例に基づき具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

まず実施例で使用した材料およびその特徴を次に示す。
CFRP1:東レ株式会社製炭素繊維T800Hを強化繊維に用いた一方向プリプレグ、 180℃硬化樹脂使用、繊維目付190g/m
CFRP1の繊維配列方向が一方向である一方向材のJIS K 7078「炭素繊維強化プラスチックの層間せん断試験方法」に基づいて測定した見掛けの層間せん断強さは108MPaである。同様にJIS K 7073「炭素繊維強化プラスチックの引張試験方法」に基づいて測定した引張最大ひずみは1.55%である。
CFRP2:東レ株式会社製炭素繊維T800Hを強化繊維に用いた一方向プリプレグ、 135℃硬化樹脂使用、繊維目付175g/m
CFRP2の同上の見掛けの層間せん断強さは98MPaである。CFRP2の同上の引張最大ひずみは1.50%である。
CFRP3:東レ株式会社製炭素繊維T700Gを強化繊維に用いた一方向プリプレグ、 135℃硬化樹脂使用、繊維目付150g/m
CFRP3の同上の見掛けの層間せん断強さは90MPaである。CFRP3の同上の引張最大ひずみは1.80%である。
CFRP4:東レ株式会社製M60Jを強化繊維に用いた一方向プリプレグ、180℃ 硬化樹脂使用、繊維目付190g/m
CFRP4の同上の見掛けの層間せん断強さは69MPaである。CFRP4の同上の引張最大ひずみは0.50%である。
Ti(1.0):神戸製鋼株式会社製チタン合金KS15−3−3−3、厚み1.0mm
Ti(0.13):神戸製鋼株式会社製チタン合金KS15−3−3−3、厚み0.13 mm。
Ti(0.5):神戸製鋼株式会社社製チタン合金KS15−3−3−3、厚み0.5m
m。
[実施例1]
以下に金属と繊維強化プラスチックからなる積層体1の成形方法を説明する。
積層構成1:
Ti(1.0)/[(60/0/−60)Ti(0.13)]
硬化および接着条件1:温度180℃、圧力6kg/cm、温度、圧力保持時間2時間。
First, materials used in the examples and their characteristics are shown below.
CFRP1: Unidirectional prepreg using carbon fiber T800H manufactured by Toray Industries, Inc. as a reinforcing fiber, 180 ° C. cured resin used, fiber basis weight 190 g / m 2 ,
The apparent interlaminar shear strength measured based on JIS K 7078 “Interlaminar shear test method for carbon fiber reinforced plastic” of a unidirectional material in which the fiber arrangement direction of CFRP1 is one direction is 108 MPa. Similarly, the maximum tensile strain measured based on JIS K 7073 “Tensile test method for carbon fiber reinforced plastic” is 1.55%.
CFRP2: Unidirectional prepreg using carbon fiber T800H manufactured by Toray Industries, Inc. as a reinforcing fiber, using 135 ° C. curable resin, fiber basis weight 175 g / m 2 ,
The apparent interlaminar shear strength of CFRP2 is 98 MPa. The tensile maximum strain of CFRP2 is 1.50%.
CFRP3: one-way prepreg using carbon fiber T700G manufactured by Toray Industries, Inc. as a reinforcing fiber, 135 ° C. cured resin used, fiber basis weight 150 g / m 2 ,
The apparent interlaminar shear strength of CFRP3 is 90 MPa. The tensile maximum strain of CFRP3 is 1.80%.
CFRP4: One-way prepreg using M60J manufactured by Toray Industries, Inc. as a reinforcing fiber, 180 ° C. curable resin used, fiber basis weight 190 g / m 2 ,
The apparent interlaminar shear strength of CFRP4 is 69 MPa. The tensile maximum strain of CFRP4 is 0.50%.
Ti (1.0): Kobe Steel Co., Ltd. titanium alloy KS15-3-3-3, thickness 1.0 mm
Ti (0.13): Titanium alloy KS15-3-3-3 manufactured by Kobe Steel, thickness 0.13 mm.
Ti (0.5): Kobe Steel Co., Ltd. titanium alloy KS15-3-3-3, thickness 0.5 m
m.
[Example 1]
A method for forming the laminate 1 made of metal and fiber reinforced plastic will be described below.
Laminated structure 1:
Ti (1.0) / [(60/0 / -60) 2 /Ti(0.13) ] S
Curing and bonding conditions 1: temperature 180 ° C., pressure 6 kg / cm 2 , temperature, pressure holding time 2 hours.

ここで積層構成1のTi(1.0)のうち(1.0)は、Tiの厚みが1.0mmであることを示している。また、[ ]内の60,0,−60は繊維強化プラスチックの積層角度である。( )の2は2回の繰り返しの積層を意味し、[ ]のSは鏡面対称の積層構成を意味する。Ti(0.13)の下線は対称面に1層のみ存在することを意味する。 Here, (1.0) of Ti (1.0) in the laminated structure 1 indicates that the thickness of Ti is 1.0 mm. Moreover, 60,0, -60 in [] is a lamination angle of a fiber reinforced plastic. () 2 of 2 means two-time repeated lamination, and S in [] S means a mirror-symmetric laminated structure. The underline of Ti (0.13) means that only one layer exists on the symmetry plane.

まず、成形材料の準備として、Ti(1.0),Ti(0.13)の接着面を粒度が#400のサンドペーパーを用いて表面研磨した後、水洗して乾燥後、アセトンにより洗浄、脱脂を行った。   First, as preparation of the molding material, after polishing the surface of Ti (1.0), Ti (0.13) adhesion using sandpaper having a particle size of # 400, washed with water, dried, washed with acetone, Degreasing was performed.

次にCFRP1,Ti(1.0),Ti(0.13)を300×300mmの形状に切断して、積層体1の材料を準備した。300×300mmに切断したCFRP1、Ti(1.0),Ti(0.13)を積層構成1に基づいて積層した後、JIS K 7072「炭素繊維強化プラスチックの資料の作成方法」(2002)に記載の5.2オートクレーブ成形方法の(2)非ブリード方法に基づいて成形を行った。また、CFRP1の樹脂の硬化およびTi(1.0),Ti(0.13)への接着条件は上記の硬化および接着条件1に従った。   Next, CFRP1, Ti (1.0), Ti (0.13) were cut into a shape of 300 × 300 mm to prepare a material for the laminate 1. After laminating CFRP1, Ti (1.0), Ti (0.13) cut to 300 × 300 mm based on the laminated structure 1, JIS K 7072 “Preparation method for materials of carbon fiber reinforced plastic” (2002) Molding was performed based on the (2) non-bleed method of the described 5.2 autoclave molding method. Further, the curing of CFRP1 resin and the bonding conditions to Ti (1.0) and Ti (0.13) were in accordance with the above-mentioned curing and bonding conditions 1.

このようにして得られた積層体1の厚みをJIS K 7072「炭素繊維強化プラスチックの試料の作成方法」(2002)に記載の6.検査(2)寸法に基づいて測定した測定結果の平均値を積層体1の総厚みとすると、積層体1の総厚みは3.41mmであった。一方、積層体1の中立面は四点曲げ試験法で測定すると、Ti(1.0)の外表面から1.57mmに位置しており、積層体1の総厚みは3.41mmであるから、中立面に最も近いチタン合金とCFRP1の接着面位置は中立面から0.57mmに位置しており、中立面から総厚みの16.7%離れた位置となり、結局中立面から総厚みの±5%の範囲内にTi(1.0),Ti(0.13)の接着面は存在していない。   The thickness of the laminate 1 obtained as described above is described in JIS K 7072 “Method for preparing a sample of carbon fiber reinforced plastic” (2002). When the average value of the measurement results measured based on the inspection (2) dimensions was the total thickness of the laminate 1, the total thickness of the laminate 1 was 3.41 mm. On the other hand, the neutral surface of the laminate 1 is located 1.57 mm from the outer surface of Ti (1.0) when measured by a four-point bending test method, and the total thickness of the laminate 1 is 3.41 mm. Therefore, the adhesion surface position of the titanium alloy closest to the neutral surface and CFRP1 is located at 0.57 mm from the neutral surface, which is 16.7% of the total thickness from the neutral surface, and eventually the neutral surface Therefore, there is no bonding surface of Ti (1.0) and Ti (0.13) within a range of ± 5% of the total thickness.

静的試験として、積層体1からJIS K 7078に基づいて試験片を切り出して、
層間せん断試験を行った結果、見掛けの層間せん断強さは比較例1に記載のブランク対比12%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。
As a static test, a test piece was cut out from the laminate 1 based on JIS K 7078,
As a result of the interlaminar shear test, it was confirmed that the apparent interlaminar shear strength was improved by 12% compared to the blank described in Comparative Example 1. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

衝撃試験として、積層体1から100×100mmの試験片を切り出し、ゴルフボールを用いたゴルフボールキャノン試験を行った。用いた試験器はBIRD MACHINE&FAB.CO.社製のBMF GOLF BALL CANNONである。該試験器を用いて、試験片の中央にゴルフボールが衝突するように試験片を固定し、米国のタイトリスト社製ピナクルゴールド・ボール(ボール質量45.4g±0.4g、ボール温度23℃±1℃)を48.768m/secのスピードで試験片に衝突させた。10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   As an impact test, a test piece of 100 × 100 mm was cut out from the laminate 1 and a golf ball cannon test using a golf ball was performed. The tester used was BIRD MACHINE & FAB. CO. BMF GOLF BALL CANNON manufactured by the company. Using the tester, the test piece was fixed so that the golf ball collided with the center of the test piece, and the pinnacle gold ball (ball mass: 45.4 g ± 0.4 g, ball temperature: 23 ° C. ± 1 ° C.) was made to collide with the test piece at a speed of 48.768 m / sec. After colliding 10,000 times, the test piece was cut centering on the collision part, and the cross section was observed. As a result, no cracks were confirmed, and it was confirmed that no destruction occurred.

幅100mm、長さ100mmの積層体1の重量は、厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比56%に軽量化されている。また積層体1は若干の反りが確認できた。
[実施例2]
積層構成を次に記載の積層構成2にする以外は、実施例1に記載と同様に成形して積層体2を得た。
積層構成2:
Ti(1.0)/[(45/0/−45/90)Ti(0.13)]
実施例1と同様に総厚みを測定した結果、4.17mmであった。積層体2の中立面はTi(1.0)の外表面から1.95mmに位置しており、積層体2の総厚みは4.17mmであるから、中立面から総厚みの±5%の範囲内にTi(1.2),Ti(0.13)の接着面は無い。実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは16%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。
The weight of the laminate 1 having a width of 100 mm and a length of 100 mm is reduced to 56% compared with Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. Yes. In addition, it was confirmed that the laminate 1 was slightly warped.
[Example 2]
A laminate 2 was obtained by molding in the same manner as described in Example 1 except that the laminate configuration was changed to the laminate configuration 2 described below.
Laminated structure 2:
Ti (1.0) / [(45/0 / −45 / 90) 2 /Ti(0.13) ] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 4.17 mm. Since the neutral surface of the laminated body 2 is located 1.95 mm from the outer surface of Ti (1.0) and the total thickness of the laminated body 2 is 4.17 mm, ± 5 of the total thickness from the neutral surface. There is no adhesion surface of Ti (1.2) and Ti (0.13) in the range of%. As a result of performing the static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 16%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

また、実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   Further, as a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed and no destruction occurred. I was able to confirm.

幅100mm、長さ100mmの積層体2の重量は、厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比62%に軽量化されている。また積層体2は若干の反りが確認できた。
[実施例3]
積層構成を次に記載の積層構成3にする以外は、実施例1に記載と同様に成形して積層体3を得た。
The weight of the laminate 2 having a width of 100 mm and a length of 100 mm is reduced to 62% compared to Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. Yes. In addition, the laminate 2 was confirmed to be slightly warped.
[Example 3]
A laminated body 3 was obtained by molding in the same manner as described in Example 1 except that the laminated structure was changed to the laminated structure 3 described below.

積層構成3:
Ti(1.0)/[45/0/Ti(0.13)/−45/90/45/0/−45/90]
実施例1と同様に総厚みを測定した結果、4.30mmであった。積層体3の中立面はTi(1.0)の外表面から2.15mmに位置しており、積層体3の総厚みは4.30mmであるから、中立面から総厚みの±5%の範囲内にTi(1.0),Ti(0.13)の接着面は無い。
Laminated configuration 3:
Ti (1.0) / [45/0 / Ti (0.13) /-45/90/45/0 / -45 / 90] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 4.30 mm. The neutral surface of the laminate 3 is located 2.15 mm from the outer surface of Ti (1.0), and the total thickness of the laminate 3 is 4.30 mm. There is no adhesion surface of Ti (1.0) and Ti (0.13) in the range of%.

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは18%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 18%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   As a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed, and no breakage occurred. It could be confirmed.

幅100mm、長さ100mmの積層体3の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比66%に軽量化されている。また積層体3は若干の反りが確認できた。
[実施例4]
積層構成を次に記載の積層構成4にする以外は、実施例1に記載と同様に成形して積層体4を得た。
The weight of the laminate 3 having a width of 100 mm and a length of 100 mm is reduced to 66% as compared with Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . In addition, it was confirmed that the laminate 3 was slightly warped.
[Example 4]
A laminate 4 was obtained by molding in the same manner as described in Example 1 except that the laminate configuration was changed to the laminate configuration 4 described below.

積層構成4:
Ti(0.5)/[60/0/Ti(0.13)/−60/60/Ti(0.13)/0/−60/60/0/−60]
実施例1と同様に総厚みを測定した結果、4.44mmであった。
Laminated configuration 4:
Ti (0.5) / [60/0 / Ti (0.13) /-60/60 / Ti (0.13) / 0 / -60 / 60/0 / -60] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 4.44 mm.

積層体4の中立面はTi(0.5)の外表面から2.09mmに位置しており、積層体4の総厚みは4.44mmであるから、中立面から総厚みの±5%の範囲内にTi(0.5),Ti(0.13)の接着面は無い。   Since the neutral surface of the laminated body 4 is located 2.09 mm from the outer surface of Ti (0.5) and the total thickness of the laminated body 4 is 4.44 mm, ± 5 of the total thickness from the neutral surface. %, There is no bonding surface of Ti (0.5) and Ti (0.13).

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは21%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlaminar shear strength was improved by 21%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

また、実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   Further, as a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed and no destruction occurred. I was able to confirm.

幅100mm、長さ100mmの積層体4の重量は、厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比68%に軽量化されている。 The weight of the laminate 4 having a width of 100 mm and a length of 100 mm is reduced to 68% compared with Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. Yes.

また積層体4は若干の反りが確認できた。
[実施例5]
積層構成を次に記載の積層構成5にする以外は、実施例1に記載と同様に成形して積層体5を得た。
Further, the laminate 4 was confirmed to be slightly warped.
[Example 5]
A laminated body 5 was obtained by molding in the same manner as described in Example 1 except that the laminated structure was changed to the laminated structure 5 described below.

積層構成5:
Ti(0.5)/[45/0/Ti(0.13)/−45/90/Ti(0.13)/45/0/−45/90]
実施例1と同様に総厚みを測定した結果、4.06mmであった。積層体4の中立面はTi(0.5)の外表面から2.09mmに位置しており、積層体4の総厚みは4.06mmであるから、中立面から総厚みの±5%の範囲内にTi(0.5),Ti(0.13)の接着面は無い。
Laminated structure 5:
Ti (0.5) / [45/0 / Ti (0.13) /-45/90 / Ti (0.13) / 45/0 / -45 / 90] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 4.06 mm. Since the neutral surface of the laminated body 4 is located 2.09 mm from the outer surface of Ti (0.5) and the total thickness of the laminated body 4 is 4.06 mm, ± 5 of the total thickness from the neutral surface. %, There is no bonding surface of Ti (0.5) and Ti (0.13).

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは19%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 19%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

また、実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   Further, as a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed and no destruction occurred. I was able to confirm.

幅100mm、長さ100mmの積層体5の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比64%に軽量化されている。また積層体5は若干の反りが確認できた。
[実施例6]
積層構成を積層構成4として、Ti(0.5),Ti(0.13)の接着面に次に記載の非繊維強化樹脂1を配した他は実施例1に記載と同様に成形して積層体6を得た。
The weight of the laminate 5 having a width of 100 mm and a length of 100 mm is reduced to 64% as compared to Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . In addition, it was confirmed that the laminate 5 was slightly warped.
[Example 6]
The laminated structure is made into the laminated structure 4 and molded in the same manner as described in Example 1 except that the non-fiber reinforced resin 1 described below is arranged on the bonding surface of Ti (0.5) and Ti (0.13). A laminate 6 was obtained.

非繊維強化樹脂1:モード径17μmのナイロン製粒子をエポキシ樹脂重量対比30重量%含む180℃硬化型で目付が60g/mのエポキシ樹脂フィルム。 Non-fiber reinforced resin 1: an epoxy resin film having a weight of 60 g / m 2 and a 180 ° C. curing type containing 30% by weight of nylon particles having a mode diameter of 17 μm with respect to the weight of the epoxy resin.

実施例1と同様に総厚みを測定した結果、5.07mmであった。   As a result of measuring the total thickness in the same manner as in Example 1, it was 5.07 mm.

積層体6の中立面はTi(0.5)の外表面から2.44mmに位置しており、積層体6の総厚みは5.07mmであるから、中立面から総厚みの±5%の範囲内にTi(0.5),Ti(0.13)の接着面は無い。   The neutral surface of the laminated body 6 is located 2.44 mm from the outer surface of Ti (0.5), and the total thickness of the laminated body 6 is 5.07 mm. Therefore, ± 5 of the total thickness from the neutral surface. %, There is no bonding surface of Ti (0.5) and Ti (0.13).

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは24%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 24%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

また、実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   Further, as a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed and no destruction occurred. I was able to confirm.

幅100mm、長さ100mmの積層体6の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比73%に軽量化されている。また積層体6は若干の反りが確認できた。
[実施例7]
積層構成を積層構成5として、Ti(0.5),Ti(0.13)の接着面に実施例6に記載の非繊維強化樹脂1を配した他は実施例1に記載と同様に成形して積層体7を得た。
The weight of the laminated body 6 having a width of 100 mm and a length of 100 mm is reduced to 73% compared to Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . Further, the laminate 6 was confirmed to be slightly warped.
[Example 7]
Molded in the same manner as described in Example 1, except that the laminated structure is the laminated structure 5 and the non-fiber reinforced resin 1 described in Example 6 is arranged on the bonding surface of Ti (0.5) and Ti (0.13). Thus, a laminate 7 was obtained.

実施例1と同様に総厚みを測定した結果、4.69mmであった。   As a result of measuring the total thickness in the same manner as in Example 1, it was 4.69 mm.

積層体7の中立面はTi(0.5)の外表面から2.25mmに位置しており、積層体7の総厚みは4.69mmであるから、中立面から総厚みの±5%の範囲内にTi(0.5),Ti(0.13)の接着面は無い。   The neutral surface of the laminated body 7 is located 2.25 mm from the outer surface of Ti (0.5), and the total thickness of the laminated body 7 is 4.69 mm. Therefore, ± 5 of the total thickness from the neutral surface. %, There is no bonding surface of Ti (0.5) and Ti (0.13).

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは26%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 26%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   As a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed, and no breakage occurred. It could be confirmed.

幅100mm、長さ100mmの積層体7の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比69%に軽量化されている。また積層体7は若干の反りが確認できた。
[実施例8]
積層構成を積層構成5として、繊維強化プラスチックにCFRP2を用い、Ti(0.5),Ti(0.13)の接着面に次に記載の非繊維強化樹脂2を配し、硬化および接着条件を硬化および成形条件2で成形した以外は実施例1に記載と同様に成形して積層体8を得た。
非繊維強化樹脂2:モード径17μmのナイロン製粒子をエポキシ樹脂重量対比30重量%含む135℃硬化型で目付が60g/mのエポキシ樹脂フィルム。
硬化および接着条件2:135℃、圧力:6kg/cm、温度、圧力保持時間:2時間。
The weight of the laminate 7 having a width of 100 mm and a length of 100 mm is reduced to 69% of the weight of Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . The laminate 7 was confirmed to have a slight warpage.
[Example 8]
The laminated structure is the laminated structure 5, CFRP2 is used as the fiber reinforced plastic, the non-fiber reinforced resin 2 described below is arranged on the bonding surface of Ti (0.5), Ti (0.13), and curing and bonding conditions A laminate 8 was obtained by molding in the same manner as in Example 1 except that was molded under curing and molding conditions 2.
Non-fiber reinforced resin 2: an epoxy resin film having a basis weight of 60 g / m 2 and curable at 135 ° C. containing 30% by weight of nylon particles having a mode diameter of 17 μm relative to the weight of the epoxy resin.
Curing and bonding conditions 2: 135 ° C., pressure: 6 kg / cm 2 , temperature, pressure holding time: 2 hours.

実施例1と同様に総厚みを測定した結果、4.05mmであった。
積層体8の中立面はTi(0.5)の外表面から2.01mmに位置しており、積層体8の総厚みは4.05mmであるから、中立面から総厚みの±5%の範囲内にTi(0.5),Ti(0.13)の接着面は無い。
As a result of measuring the total thickness in the same manner as in Example 1, it was 4.05 mm.
The neutral surface of the laminated body 8 is located 2.01 mm from the outer surface of Ti (0.5), and the total thickness of the laminated body 8 is 4.05 mm. %, There is no bonding surface of Ti (0.5) and Ti (0.13).

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは24%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 24%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   As a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed, and no breakage occurred. It could be confirmed.

幅100mm、長さ100mmの積層体8の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比63%に軽量化されている。また積層体8は若干の反りが確認できた。
[実施例9]
積層構成を次に記載の積層構成6とした以外は、実施例8に記載と同様に成形して積層体9を得た。
The weight of the laminate 8 having a width of 100 mm and a length of 100 mm is reduced to 63% of the weight of Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . The laminate 8 was confirmed to be slightly warped.
[Example 9]
A laminated body 9 was obtained by molding in the same manner as described in Example 8 except that the laminated structure was changed to the laminated structure 6 described below.

積層構成6:Ti(0.13)/[60/−60/Ti(0.13)/0/(60/−60/0)]
実施例1と同様に総厚みを測定した結果、3.44mmであった。
Laminated structure 6: Ti (0.13) / [60 / -60 / Ti (0.13) / 0 / (60 / -60 / 0) 2 ] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 3.44 mm.

積層体9の中立面はTi(0.13)の外表面から1.82mmに位置しており、積層体9の総厚みは3.44mmであるから、中立面から総厚みの±5%の範囲内にTi(0.13)の接着面は無い。   The neutral surface of the laminate 9 is located 1.82 mm from the outer surface of Ti (0.13), and the total thickness of the laminate 9 is 3.44 mm. There is no bonding surface of Ti (0.13) in the range of%.

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは28%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 28%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   As a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed, and no breakage occurred. It could be confirmed.

幅100mm、長さ100mmの積層体8の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比43%に軽量化されている。また積層体9は若干の反りが確認できた。
[実施例10]
積層構成を次に記載の積層構成7とした以外は、実施例8に記載と同様に成形して積層体10を得た。
The weight of the laminate 8 having a width of 100 mm and a length of 100 mm is reduced to 43% compared to Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . In addition, it was confirmed that the laminate 9 was slightly warped.
[Example 10]
A laminated body 10 was obtained by molding in the same manner as described in Example 8 except that the laminated structure was changed to the laminated structure 7 described below.

積層構成7:[45/0/Ti(0.13)/−45/90/(60/−60/0)]
実施例1と同様に総厚みを測定した結果、3.54mmであった。
Laminated structure 7: [45/0 / Ti (0.13) / − 45/90 / (60 / −60 / 0) 2 ] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 3.54 mm.

積層体10の中立面は表面から1.77mmに位置しており、積層体10の総厚みは3.54mmであるから、中立面から総厚みの±5%の範囲内にTi(0.13)の接着面は無い。   The neutral surface of the laminated body 10 is located at 1.77 mm from the surface, and the total thickness of the laminated body 10 is 3.54 mm. Therefore, Ti (0) is within a range of ± 5% of the total thickness from the neutral surface. .13) There is no adhesive surface.

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは28%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 28%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   As a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed, and no breakage occurred. It could be confirmed.

幅100mm、長さ100mmの積層体8の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比41%に軽量化されている。また積層体10には反りが確認されなかった。
[実施例11]
積層構成を次に記載の積層構成8とし、繊維強化プラスチックにCFRP3を用いた以外は、実施例8に記載と同様に成形して積層体11を得た。
The weight of the laminate 8 having a width of 100 mm and a length of 100 mm is reduced to 41% as compared with Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . Further, no warpage was confirmed in the laminate 10.
[Example 11]
The laminated structure was changed to the laminated structure 8 described below, and a laminate 11 was obtained by molding in the same manner as described in Example 8 except that CFRP3 was used as the fiber reinforced plastic.

積層構成8:
Ti(0.5)/[45/0/Ti(0.13)/−45/90/Ti(0.13)/(45/0/−45/90)]
実施例1と同様に総厚みを測定した結果、4.53mmであった。
Multilayer configuration 8:
Ti (0.5) / [45/0 / Ti (0.13) / − 45/90 / Ti (0.13) / (45/0 / −45 / 90) 2 ] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 4.53 mm.

積層体11の中立面はTi(0.5)の外表面から2.31mmに位置しており、積層体11の総厚みは4.53mmであるから、中立面から総厚みの±5%の範囲内にTi(0.5),Ti(0.13)の接着面は無い。   The neutral surface of the laminate 11 is located 2.31 mm from the outer surface of Ti (0.5), and the total thickness of the laminate 11 is 4.53 mm. %, There is no bonding surface of Ti (0.5) and Ti (0.13).

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは28%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 28%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   As a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed, and no breakage occurred. It could be confirmed.

幅100mm、長さ100mmの積層体7の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比68%に軽量化されている。 The weight of the laminate 7 having a width of 100 mm and a length of 100 mm is reduced to 68% compared with Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm and a length of 100 mm. .

また積層体11は若干の反りが確認できた。
[実施例12]
積層構成を次に記載の積層構成9とした以外は、実施例8に記載と同様に成形して積層体12を得た。
Further, the laminate 11 was confirmed to be slightly warped.
[Example 12]
A laminated body 12 was obtained by molding in the same manner as described in Example 8 except that the laminated structure was changed to the laminated structure 9 described below.

積層構成9:
[Ti(0.5)/45/0/Ti(0.13)/−45/90/45/0/−45/90]
実施例1と同様に総厚みを測定した結果、4.08mmであった。
Laminated structure 9:
[Ti (0.5) / 45/0 / Ti (0.13) / − 45/90/45/0 / −45 / 90] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 4.08 mm.

積層体12の中立面はTi(0.5)の外表面から2.04mmに位置しており、積層体12の総厚みは4.08mmであるから、中立面から総厚みの±5%の範囲内にTi(0.5),Ti(0.13)の接着面は無い。   Since the neutral surface of the laminated body 12 is located 2.04 mm from the outer surface of Ti (0.5) and the total thickness of the laminated body 12 is 4.08 mm, ± 5 of the total thickness from the neutral surface. %, There is no bonding surface of Ti (0.5) and Ti (0.13).

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは25%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 25%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   As a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed, and no breakage occurred. It could be confirmed.

幅100mm、長さ100mmの積層体7の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比69%に軽量化されている。 The weight of the laminate 7 having a width of 100 mm and a length of 100 mm is reduced to 69% of the weight of Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. .

また積層体12は反りのないことが確認できた。
[実施例13]
CFRP2と以下に記載のSUS(0.7),非繊維強化樹脂3からなる積層構成10を有する積層体13の成形方法を説明する。
SUS(0.7):神戸製鋼株式会社社製ステンレス合金SUS631、厚み0.7mm。
非繊維強化樹脂3:東レファインケミカル社製TE2220
積層構成10:SUS(0.7)/[60/−60/0/60/−60/0/Ti(0.13)]
まずCFRP2を用いて積層構成[60/−60/0/60/−60/0/Ti(0.13)]
の積層体13−1を実施例8に記載と同様に成形した。
Further, it was confirmed that the laminate 12 had no warp.
[Example 13]
A method for forming a laminate 13 having a laminate structure 10 composed of CFRP2, SUS (0.7), and non-fiber reinforced resin 3 described below will be described.
SUS (0.7): Stainless steel SUS631 manufactured by Kobe Steel Co., Ltd., thickness 0.7 mm.
Non-fiber reinforced resin 3: TE2220 manufactured by Toray Fine Chemical Co., Ltd.
Laminated structure 10: SUS (0.7) / [60 / -60 / 0/60 / -60 / 0 / Ti (0.13)] S
First, a laminated structure using CFRP2 [60 / -60 / 0/60 / -60 / 0 / Ti (0.13)] S
The laminate 13-1 was molded in the same manner as described in Example 8.

次にSUS(0.7)の接着面に非繊維強化樹脂3を60g/mの目付となるように均一に塗布した後、積層体13−1の片面に積層した。 Next, the non-fiber reinforced resin 3 was uniformly applied to the adhesion surface of SUS (0.7) so as to have a basis weight of 60 g / m 2 , and then laminated on one side of the laminate 13-1.

次にプレス機を用いてSUS(0.7)を両面に配した積層体13−1の表面に6kg/cmの圧力をかけた状態で、80℃にて2時間保持することにより積層体13を得た。 Next, the laminate was held at 80 ° C. for 2 hours in a state where a pressure of 6 kg / cm 2 was applied to the surface of the laminate 13-1 in which SUS (0.7) was arranged on both sides using a press. 13 was obtained.

実施例1と同様に総厚みを測定した結果、2.84mmであった。   As a result of measuring the total thickness in the same manner as in Example 1, it was 2.84 mm.

積層体13の中立面はSUS(0.7)の外表面から1.07mmに位置しており、積層体13の総厚みは2.84mmであるから、中立面から総厚みの±5%の範囲内にSUS(0.7),Ti(0.13)の接着面は無い。   The neutral surface of the laminate 13 is located 1.07 mm from the outer surface of SUS (0.7), and the total thickness of the laminate 13 is 2.84 mm. There is no adhesion surface of SUS (0.7) and Ti (0.13) within the range of%.

実施例1と同様に静的試験を行った結果、見掛けの層間せん断強さは23%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing a static test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 23%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

また、実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   Further, as a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed and no destruction occurred. I was able to confirm.

幅100mm、長さ100mmの積層体11の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比62%に軽量化されている。また積層体13は若干の反りが確認できた。
[実施例14]
積層構成を積層構成4として、Ti(0.5),Ti(0.13)の接着面に次に記載の非繊維強化樹脂4を配した他は実施例4に記載と同様に成形して積層体14を得た。
The weight of the laminate 11 having a width of 100 mm and a length of 100 mm is reduced to 62% compared to Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . In addition, the laminate 13 was confirmed to be slightly warped.
[Example 14]
The laminated structure is the same as the laminated structure 4 except that the non-fiber reinforced resin 4 described below is arranged on the bonding surface of Ti (0.5) and Ti (0.13). A laminate 14 was obtained.

非繊維強化樹脂4:モード径5μmのナイロン製粒子をエポキシ重量対比30重量%および日鉱マテリアル社製イミダゾールシラン化合物(IS1000)をエポキシ樹脂重量対比1重量%含む180℃硬化型で目付が60g/mのエポキシ樹脂フィルム。 Non-fiber reinforced resin 4: Nylon particles with a mode diameter of 5 μm are 30% by weight relative to the weight of epoxy and imidazole silane compound (IS1000) manufactured by Nikko Materials Co., Ltd. is 1% by weight with respect to the weight of the epoxy resin. 2. Epoxy resin film.

実施例1と同様に総厚みを測定した結果、5.07mmであった。   As a result of measuring the total thickness in the same manner as in Example 1, it was 5.07 mm.

積層体14の中立面はTi(0.5)の外表面から2.44mmに位置しており、積層体6の総厚みは5.07mmであるから、中立面から総厚みの±5%の範囲内にTi(0.5),Ti(0.13)の接着面は無い。   The neutral surface of the laminate 14 is located 2.44 mm from the outer surface of Ti (0.5), and the total thickness of the laminate 6 is 5.07 mm. %, There is no bonding surface of Ti (0.5) and Ti (0.13).

実施例1と同様に背的試験を行った結果、見掛けの層間せん断強さ26%の向上が確認できた。試験後の試験片の断面観察をした結果、破壊箇所はCFRP層間であった。   As a result of performing the spin test in the same manner as in Example 1, it was confirmed that the apparent interlayer shear strength was improved by 26%. As a result of observing the cross section of the test piece after the test, the fracture location was between the CFRP layers.

また、実施例1と同様に衝撃試験を行った結果、10000回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、クラックなどは確認されず、破壊が起きていないことが確認できた。   Further, as a result of performing the impact test in the same manner as in Example 1, after colliding 10,000 times, the test piece was cut around the collision location, and the cross section was observed. As a result, no cracks were confirmed and no destruction occurred. I was able to confirm.

幅100mm、長さ100mmの積層体6の重量は厚み3.0mm、幅100mm、長さ100mmのTi15−3−3−3(比重5.0g/cm)対比73%に軽量化されている。また積層体14は若干の反りが確認できた。 The weight of the laminated body 6 having a width of 100 mm and a length of 100 mm is reduced to 73% compared to Ti15-3-3-3 (specific gravity 5.0 g / cm 3 ) having a thickness of 3.0 mm, a width of 100 mm, and a length of 100 mm. . The laminate 14 was confirmed to be slightly warped.

[比較例1]
積層構成を次に記載の積層構成11とした以外は、実施例1に記載と同様に成形して積層体13を得た。
[Comparative Example 1]
A laminated body 13 was obtained by molding in the same manner as described in Example 1 except that the laminated structure was changed to the laminated structure 11 described below.

積層構成11:
Ti(1.2)/[45/0/−45/90/45/Ti(0.13)/0/−45/90]
実施例1と同様に総厚みを測定した結果、4.50mmであった。
Laminated structure 11:
Ti (1.2) / [45/0 / -45 / 90/45 / Ti (0.13) / 0 / -45 / 90] S
As a result of measuring the total thickness in the same manner as in Example 1, it was 4.50 mm.

積層体13の中立面はTi(1.2)の外表面から2.15mmに位置しており、積層体13の総厚みは4.50mmであるから、中立面に最も近いTi(0.13)とCFRP1との接着面は、中立面から総厚みの0および2.9%の位置に位置しており、結局総厚みの±5%の範囲内にTi(1.2)の接着面があることになる。   The neutral surface of the laminated body 13 is located 2.15 mm from the outer surface of Ti (1.2), and the total thickness of the laminated body 13 is 4.50 mm. Therefore, Ti (0 .13) and CFRP1 are located at 0 and 2.9% of the total thickness from the neutral plane, and eventually within the range of ± 5% of the total thickness of Ti (1.2) There will be an adhesive surface.

実施例1と同様に静的試験を行った結果、中立面に近いTi(0.13)およびTi(1.2)とCFRPとの層間での破壊が確認された。また、実施例1と同様に衝撃試験を行った結果、100回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、中立面に近いTi(0.13)およびTi(1.2)とCFRPとの層間での破壊が確認された。
[比較例2]
積層構成を積層構成11とし、繊維強化プラスチックにCFRP4を用いた以外は、実施例1に記載と同様に成形して積層体14を得た。
As a result of performing a static test in the same manner as in Example 1, it was confirmed that fracture between layers of Ti (0.13) and Ti (1.2) close to the neutral plane and CFRP occurred. Further, as a result of performing an impact test in the same manner as in Example 1, after colliding 100 times, the test piece was cut around the collision location, and as a result of cross-sectional observation, Ti (0.13) close to the neutral plane and Destruction between the layers of Ti (1.2) and CFRP was confirmed.
[Comparative Example 2]
A laminated body 14 was obtained by molding in the same manner as described in Example 1 except that the laminated structure was changed to the laminated structure 11 and CFRP4 was used as the fiber reinforced plastic.

実施例1と同様に総厚みを測定した結果、4.50mmであった。積層体14の中立面は金属1の外表面から2.47mmに位置しており、積層体14の総厚みは4.50mmであるから、中立面から総厚みの±5%の範囲内にTi(0.13)の接着面がある。   As a result of measuring the total thickness in the same manner as in Example 1, it was 4.50 mm. Since the neutral surface of the laminated body 14 is located 2.47 mm from the outer surface of the metal 1, and the total thickness of the laminated body 14 is 4.50 mm, it is within ± 5% of the total thickness from the neutral surface. Have a bonding surface of Ti (0.13).

実施例1と同様に静的試験を行った結果、CFRP層間および中立面に近いTi(0.
13)とCFRPとの層間での破壊が確認され、見掛けの層間せん断強さは比較例1に記載のブランク対比18%の低下が確認できた。
As a result of conducting a static test in the same manner as in Example 1, Ti (0.
13) and CFRP between the layers were confirmed to be broken, and the apparent interlayer shear strength was confirmed to be 18% lower than the blank described in Comparative Example 1.

実施例1と同様に衝撃試験を行った結果、100回衝突させた後、試験片を衝突箇所を中心に切断し、断面観察した結果、CFRP層間および中立面に近いTi(0.13)とCFRPとの層間での破壊が確認された。   As a result of performing an impact test in the same manner as in Example 1, after colliding 100 times, the test piece was cut around the collision location, and the cross-section was observed. As a result, Ti (0.13) close to the CFRP layer and the neutral plane And destruction between the layers of CFRP were confirmed.

用いた炭素繊維強化プラスチックの物性と以上の結果をそれぞれ次の表2,3に纏めて記載した。   The physical properties of the carbon fiber reinforced plastic used and the above results are summarized in Tables 2 and 3 below.

Figure 2005161852
Figure 2005161852

Figure 2005161852
Figure 2005161852

表2,3から分かるように、特に静的、もしくは繰り返しの曲げ荷重または曲げ変形を伴う衝撃荷重を負担する部材に用いる金属/繊維強化プラスチック複合材料において、曲げ変形により最大せん断応力が生じる中立面から、総厚みの±5%の厚みの範囲内に金属と繊維強化プラスチックとの接着面が存在しないように積層構成を最適化することにより、金属単体に比べ軽量化を満足しつつ、見掛けの層間せん断強さおよび耐衝撃特性を向上できることが分かった。   As can be seen from Tables 2 and 3, neutrality in which maximum shear stress is generated by bending deformation, especially in metal / fiber reinforced plastic composite materials used for members bearing static or repeated bending loads or impact loads with bending deformation From the surface, by optimizing the laminated structure so that there is no bonding surface between the metal and fiber reinforced plastic within the range of ± 5% of the total thickness, the appearance is reduced while satisfying weight reduction compared to the metal alone It has been found that the interlaminar shear strength and impact resistance can be improved.

また特に本発明に用いる炭素繊維強化プラスチッックは、繊維配列方向が一方向である一方向材の見掛けの層間せん断強さ、引張最大ひずみが大きいほど、金属/繊維強化プラスチック複合材料の見掛けの層間せん断強さおよび耐衝撃特性が向上することが分かった。   In particular, the carbon fiber reinforced plastic used in the present invention has an apparent interlaminar shear strength of a unidirectional material in which the fiber arrangement direction is unidirectional, and the greater the maximum tensile strain, the apparent interlaminar of the metal / fiber reinforced plastic composite material. It was found that the shear strength and impact resistance were improved.

本発明は、たとえば航空機、自動車、スポーツ、土木、建築などの分野に置いて、軽量で高強度、耐久性が求められ、特に静的もしくは繰り返しの曲げ荷重または曲げ変形を伴う衝撃荷重を負担する部材に利用することができる。   The present invention requires light weight, high strength, and durability, particularly in the fields of aircraft, automobiles, sports, civil engineering, architecture, and the like, and particularly bears an impact load with static or repeated bending load or bending deformation. It can be used as a member.

曲げ荷重を受けて曲げられたはりの横断面の断面図である。It is sectional drawing of the cross section of the beam bent under the bending load. 中立面を求めるために用いるひずみゲージを貼り付けた4点曲げ試験片の一例を示す断面図である。It is sectional drawing which shows an example of the 4-point bending test piece which affixed the strain gauge used in order to obtain | require a neutral surface. 4点曲げ試験を行ったときの試験片の圧縮側および引張側のひずみを縦軸に、クロスヘッド移動量を横軸にプロットしたひずみ−クロスヘッド移動量図の一例を示すグラフである。It is a graph which shows an example of the strain-crosshead movement amount figure which plotted the distortion of the compression side of a test piece at the time of a 4-point bending test, and the tension | pulling side on the vertical axis | shaft, and the crosshead movement amount on the horizontal axis. 図3に示す圧縮ひずみ値a、引張ひずみ値bから求められた試験片の中立面の位置を求める方法の一例を示す断面図である。It is sectional drawing which shows an example of the method of calculating | requiring the position of the neutral surface of the test piece calculated | required from the compressive strain value a and the tensile strain value b shown in FIG.

符号の説明Explanation of symbols

1……はりの横断面
2……圧縮側のひずみゲージ
3……引張側のひずみゲージ
4……4点曲げ試験に用いる圧子ジグ
5……4点曲げ試験に用いる圧子
6……4点曲げ試験に用いる支点
1. Cross section of beam 2. Strain gauge on compression side 3. Strain gauge on tension side 4. Indenter jig used for 4-point bending test 5 ... Indenter used for 4-point bending test 6 ... 4-point bending The fulcrum used for the test

Claims (16)

金属に繊維強化プラスチックが積層され、これら部材が接着されて一体化されてなる複合材料において、前記接着面が、複合材料を曲げた場合に生じる中立面から、複合材料総厚みの±5%の厚みの範囲外に存在することを特徴とする複合材料。 In a composite material in which fiber reinforced plastic is laminated on a metal and these members are bonded and integrated, the adhesive surface is ± 5% of the total thickness of the composite material from the neutral surface generated when the composite material is bent A composite material characterized by existing outside the range of the thickness. 金属の厚みが0.1mm以上2.0mm以下の範囲内であることを特徴とする請求項1に記載の複合材料。 The composite material according to claim 1, wherein the metal has a thickness in a range of 0.1 mm to 2.0 mm. 金属がチタン又はチタン合金であることを特徴とする請求項1又は2に記載の複合材料。 The composite material according to claim 1, wherein the metal is titanium or a titanium alloy. 繊維強化プラスチックの一枚あたりの厚みが0.1mm以上1.0mm以下の範囲内であることを特徴とする請求項1〜3のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 3, wherein the thickness of each fiber-reinforced plastic is in the range of 0.1 mm to 1.0 mm. 繊維強化プラスチックが炭素繊維強化プラスチックであることを特徴とする請求項1〜4のいずれかに記載の複合材料。 The composite material according to claim 1, wherein the fiber reinforced plastic is a carbon fiber reinforced plastic. 炭素繊維強化プラスチックの一枚あたりの炭素繊維の目付が100g/m以上700g/m以下の範囲内であることを特徴とする請求項5に記載の複合材料。 6. The composite material according to claim 5, wherein the basis weight of the carbon fiber per sheet of the carbon fiber reinforced plastic is within a range of 100 g / m 2 or more and 700 g / m 2 or less. 繊維強化プラスチックが、その強化繊維として連続繊維を用いるとともに繊維配列方向が一方向である一方向積層材であって、JIS K 7078「炭素繊維強化プラスチックの層間せん断試験方法」に基づく見掛けの層間せん断強さが60MPa以上であることを特徴とする請求項1〜6のいずれかに記載の複合材料。 The fiber reinforced plastic is a unidirectional laminated material in which continuous fibers are used as the reinforced fibers and the fiber arrangement direction is unidirectional, and an apparent interlayer shear based on JIS K 7078 “Interlaminar shear test method for carbon fiber reinforced plastics” The composite material according to any one of claims 1 to 6, wherein the strength is 60 MPa or more. 繊維強化プラスチックが、その強化繊維として連続繊維を用いるとともに繊維配列方向が一方向である一方向積層材であって、JIS K 7073「炭素繊維強化プラスチックの引張試験方法」に基づく引張最大ひずみが0.9%以上であることを特徴とする請求項1〜7のいずれかに記載の複合材料。 The fiber reinforced plastic is a unidirectional laminate in which continuous fibers are used as the reinforced fibers and the fiber arrangement direction is unidirectional, and the maximum tensile strain based on JIS K 7073 “Tensile test method for carbon fiber reinforced plastic” is 0. It is 9% or more, The composite material in any one of Claims 1-7 characterized by the above-mentioned. 金属と繊維強化プラスチックとの間に非繊維強化樹脂層を有することを特徴とする請求項1〜8のいずれかに記載の複合材料。 The composite material according to claim 1, further comprising a non-fiber reinforced resin layer between the metal and the fiber reinforced plastic. 非繊維強化樹脂層が熱硬化性樹脂からなることを特徴とする請求項9に記載の複合材料。 The composite material according to claim 9, wherein the non-fiber reinforced resin layer is made of a thermosetting resin. 非繊維強化樹脂層が熱可塑性樹脂を含有することを特徴とする請求項9又は10に記載の複合材料。 The composite material according to claim 9 or 10, wherein the non-fiber reinforced resin layer contains a thermoplastic resin. 非繊維強化樹脂層にモード径が3μm以上20μm以下の熱可塑性樹脂の微粒子を含有することを特徴とする請求項11に記載の複合材料。 The composite material according to claim 11, wherein the non-fiber reinforced resin layer contains fine particles of a thermoplastic resin having a mode diameter of 3 μm or more and 20 μm or less. 非繊維強化樹脂層を構成する樹脂が、イミダゾールシラン化合物を含むことを特徴とする請求項9〜12のいずれかに記載の複合材料。 Resin which comprises a non-fiber reinforced resin layer contains an imidazole silane compound, The composite material in any one of Claims 9-12 characterized by the above-mentioned. 金属と繊維強化プラスチックとの積層構成が対称積層構成であることを特徴とする請求項1〜13のいずれかに記載の複合材料。 The composite material according to claim 1, wherein the laminated structure of the metal and the fiber reinforced plastic is a symmetrical laminated structure. 金属と、未硬化状態または半硬化状態のマトリックス樹脂を含浸してある繊維強化基材の積層体とを準備し、両部材の間に非繊維強化樹脂層を形成する樹脂を配置して積層した後、マトリックス樹脂及び非繊維強化樹脂層を形成する樹脂の硬化と、金属と繊維強化プラスチックとの接着を同時に行うことを特徴とする金属と繊維強化プラスチックの積層体からなる複合材料の製造方法。 A laminate of a metal and a fiber reinforced base material impregnated with a matrix resin in an uncured or semi-cured state was prepared, and a resin that forms a non-fiber reinforced resin layer was disposed between the two members and laminated. Thereafter, a method for producing a composite material comprising a laminate of metal and fiber reinforced plastic, wherein the matrix resin and the resin forming the non-fiber reinforced resin layer are cured and the metal and the fiber reinforced plastic are bonded simultaneously. 金属と、硬化後の繊維強化プラスチックの積層体とを準備し、両部材の間に室温硬化型の樹脂からなる非繊維強化樹脂層を形成する樹脂を配置して積層した後、該樹脂を硬化するとともに、金属と繊維強化プラスチックとの接着を同時に行うことを特徴とする金属と繊維強化プラスチックの積層体からなる複合材料の製造方法。 Prepare a metal and a laminate of cured fiber reinforced plastic, and place and laminate a resin that forms a non-fiber reinforced resin layer made of room temperature curable resin between both members, and then cure the resin And a method for producing a composite material comprising a laminate of a metal and a fiber reinforced plastic, wherein the metal and the fiber reinforced plastic are simultaneously bonded.
JP2004330275A 2003-11-13 2004-11-15 Metal/fiber-reinforced plastic composite material, and its production method Withdrawn JP2005161852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330275A JP2005161852A (en) 2003-11-13 2004-11-15 Metal/fiber-reinforced plastic composite material, and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003383612 2003-11-13
JP2004330275A JP2005161852A (en) 2003-11-13 2004-11-15 Metal/fiber-reinforced plastic composite material, and its production method

Publications (2)

Publication Number Publication Date
JP2005161852A true JP2005161852A (en) 2005-06-23
JP2005161852A5 JP2005161852A5 (en) 2007-12-06

Family

ID=34741731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330275A Withdrawn JP2005161852A (en) 2003-11-13 2004-11-15 Metal/fiber-reinforced plastic composite material, and its production method

Country Status (1)

Country Link
JP (1) JP2005161852A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172950A (en) * 2008-01-28 2009-08-06 Mitsubishi Electric Corp Composite material sheet and composite component equipped therewith
WO2012073775A1 (en) 2010-12-02 2012-06-07 東レ株式会社 Method for producing metal composite, and chassis for electronic equipment
JP2014051834A (en) * 2012-09-07 2014-03-20 Sozo Gijutsu Co Ltd Structural member, manufacturing method of structural member and reinforcing method of structural member
JP2017106405A (en) * 2015-12-11 2017-06-15 本田技研工業株式会社 Structural member for movable body
JP2019503909A (en) * 2016-01-22 2019-02-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se A laminate comprising a first layer made of a first material and a second layer made of a polymer reinforced with continuous filament fibers
WO2019066022A1 (en) * 2017-09-29 2019-04-04 日東電工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, production method for reinforcing sheet, and production method for reinforcing member
CN112571888A (en) * 2020-11-30 2021-03-30 燕山大学 Resin-based carbon fiber composite material reinforced laminate and preparation method thereof
CN114561864A (en) * 2022-03-11 2022-05-31 中国人民解放军63983部队 High-bearing-capacity integrally-formed composite material joint and manufacturing method thereof
CN115544644A (en) * 2022-09-13 2022-12-30 成都飞机工业(集团)有限责任公司 Adhesive determination method and device for laminated structure, storage medium and equipment

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172950A (en) * 2008-01-28 2009-08-06 Mitsubishi Electric Corp Composite material sheet and composite component equipped therewith
WO2012073775A1 (en) 2010-12-02 2012-06-07 東レ株式会社 Method for producing metal composite, and chassis for electronic equipment
KR20130136490A (en) 2010-12-02 2013-12-12 도레이 카부시키가이샤 Method for producing metal composite, and chassis for electronic equipment
US9505177B2 (en) 2010-12-02 2016-11-29 Toray Industries, Inc. Method for producing a metal composite
JP2014051834A (en) * 2012-09-07 2014-03-20 Sozo Gijutsu Co Ltd Structural member, manufacturing method of structural member and reinforcing method of structural member
JP2017106405A (en) * 2015-12-11 2017-06-15 本田技研工業株式会社 Structural member for movable body
JP2019503909A (en) * 2016-01-22 2019-02-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se A laminate comprising a first layer made of a first material and a second layer made of a polymer reinforced with continuous filament fibers
JPWO2019066023A1 (en) * 2017-09-29 2020-11-05 日東電工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, manufacturing method of reinforcing sheet and manufacturing method of reinforcing member
JP7287893B2 (en) 2017-09-29 2023-06-06 日東電工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, method for manufacturing reinforcing sheet, and method for manufacturing reinforcing member
CN111148630A (en) * 2017-09-29 2020-05-12 日东电工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, method for producing reinforcing sheet, and method for producing reinforcing member
CN111163937A (en) * 2017-09-29 2020-05-15 日东电工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, method for producing reinforcing sheet, and method for producing reinforcing member
JPWO2019066022A1 (en) * 2017-09-29 2020-10-22 日東電工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, manufacturing method of reinforcing sheet and manufacturing method of reinforcing member
WO2019066022A1 (en) * 2017-09-29 2019-04-04 日東電工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, production method for reinforcing sheet, and production method for reinforcing member
JP7287894B2 (en) 2017-09-29 2023-06-06 日東電工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, method for manufacturing reinforcing sheet, and method for manufacturing reinforcing member
WO2019066023A1 (en) * 2017-09-29 2019-04-04 日東電工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, production method for reinforcing sheet, and production method for reinforcing member
CN111148630B (en) * 2017-09-29 2022-05-06 日东电工株式会社 Reinforcing sheet, reinforcing member, reinforcing kit, method for producing reinforcing sheet, and method for producing reinforcing member
US11654655B2 (en) 2017-09-29 2023-05-23 Nitto Denko Corporation Reinforcement sheet, reinforcement member, reinforcement kit, producing method of reinforcement sheet, and producing method of reinforcement member
US11654656B2 (en) 2017-09-29 2023-05-23 Nitto Denko Corporation Reinforcement sheet, reinforcement member, reinforcement kit, producing method of reinforcement sheet, and producing method of reinforcement member
CN112571888B (en) * 2020-11-30 2021-08-27 燕山大学 Resin-based carbon fiber composite material reinforced laminate and preparation method thereof
CN112571888A (en) * 2020-11-30 2021-03-30 燕山大学 Resin-based carbon fiber composite material reinforced laminate and preparation method thereof
CN114561864A (en) * 2022-03-11 2022-05-31 中国人民解放军63983部队 High-bearing-capacity integrally-formed composite material joint and manufacturing method thereof
CN114561864B (en) * 2022-03-11 2023-12-29 中国人民解放军63983部队 High-bearing-capacity integrally-formed composite material joint and manufacturing method thereof
CN115544644A (en) * 2022-09-13 2022-12-30 成都飞机工业(集团)有限责任公司 Adhesive determination method and device for laminated structure, storage medium and equipment
CN115544644B (en) * 2022-09-13 2024-05-14 成都飞机工业(集团)有限责任公司 Method and device for determining adhesive of laminated structure, storage medium and equipment

Similar Documents

Publication Publication Date Title
US11135825B2 (en) Metal/fiber-reinforced resin material composite body and method for producing same
US20140144568A1 (en) Bonding of composite materials
JP4821262B2 (en) Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof
US20180066797A1 (en) Fiber reinforced polymer matrix composite structure and high pressure container, and method of manufacturing the same
US11926111B2 (en) Manufacturing method for fiber-reinforced plastic composite
JP5712943B2 (en) Method for producing metal composite
KR20170063680A (en) Process for producing fiber-reinforced plastic
Stoll et al. The effect of an elastomer interlayer thickness variation on the mechanical properties of Fiber-Metal-Laminates
JP5712944B2 (en) Method for producing metal composite
JP2009235182A (en) Base material for preform and method for manufacturing the same
JP2005161852A (en) Metal/fiber-reinforced plastic composite material, and its production method
Sung et al. Increased breaking strain of carbon fiber-reinforced plastic and steel hybrid laminate composites
JP2006256202A (en) Substrate for preform and its manufacturing method
JP3641553B2 (en) Fiber reinforced composite material molding
Khalili et al. Mechanical behavior of notched plate repaired with polymer composite and smart patches-experimental study
Reddy et al. Fabrication, testing and evaluation of mechanical properties of woven glass fibre composite material
JP5138506B2 (en) Epoxy resin composition and prepreg
JP5712908B2 (en) Method for producing metal composite
Pradeep et al. Design manufacture and testing of a composite support structure for spacecraft application
Bere et al. Influence of the stacking sequence on the mechanical proprieties of glass fiber reinforced polymer
TWI779294B (en) Carbon fiber reinforced plastic sheet and method for producing carbon fiber reinforced plastic sheet
JP6965547B2 (en) Manufacturing method of fiber reinforced composite material
Kim A Simple Method to Produce Fiber Metal Laminates with Enhanced Mechanical Properties Using an Ethylene Vinyl Acetate (EVA)-based Adhesive Film
JP5239350B2 (en) Prepreg and fiber reinforced composite materials
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A621 Written request for application examination

Effective date: 20071019

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090309