JP2006237124A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2006237124A
JP2006237124A JP2005046838A JP2005046838A JP2006237124A JP 2006237124 A JP2006237124 A JP 2006237124A JP 2005046838 A JP2005046838 A JP 2005046838A JP 2005046838 A JP2005046838 A JP 2005046838A JP 2006237124 A JP2006237124 A JP 2006237124A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
cathode
conductive particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005046838A
Other languages
Japanese (ja)
Other versions
JP4498168B2 (en
Inventor
Hiroyoshi Take
弘義 武
Koichi Nishimura
康一 西村
Mamoru Kimoto
衛 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005046838A priority Critical patent/JP4498168B2/en
Publication of JP2006237124A publication Critical patent/JP2006237124A/en
Application granted granted Critical
Publication of JP4498168B2 publication Critical patent/JP4498168B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To fully inhibit that an ESR in a solid electrolytic capacitor rises and a leakage current increases by fully alleviating a pressure to be applied to the solid electrolytic capacitor, suppressing that the exfoliation arises between each layer in a cathode, a contact area between the conductive particles, such as a carbon contained in each layer of the cathode and a silver, etc., is reduced or a crack arises in the interface of the electrolyte layer and the dielectric layer, and in the dielectric layer when a housing body made of an insulating resin is provided for covering the whole solid electrolytic capacitor is provided. <P>SOLUTION: The solid electrolytic capacitor comprises an anode 1 made of a valve action metal or an alloy composed of a valve action metal as a principal component, a dielectric layer 2 formed by anodizing the anode, and a cathode 4. In its cathode, conductive particles A and B having a stress relaxation property are made to be contained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弁作用金属又は弁作用金属を主成分とする合金からなる陽極と、この陽極が陽極酸化されて形成される誘電体層と、陰極とを備えた固体電解コンデンサに係り、特に、この固体電解コンデンサにおける等価直列抵抗を低下させると共に、漏れ電流が増大するのを抑制するようにした点に特徴を有するものである。   The present invention relates to a solid electrolytic capacitor comprising an anode made of a valve action metal or an alloy mainly composed of a valve action metal, a dielectric layer formed by anodizing the anode, and a cathode. This is characterized in that the equivalent series resistance in this solid electrolytic capacitor is reduced and the increase in leakage current is suppressed.

従来より、固体電解コンデンサは様々な電子機器に広く利用されており、特に近年においては、パーソナルコンピュータ等の電子機器の高周波数化により、瞬時に電子回路に電力を供給する必要があり、このため高周波領域での等価直列抵抗(以下、ESRという。)の小さい固体電解コンデンサの開発が要望されている。   Conventionally, solid electrolytic capacitors have been widely used in various electronic devices. Particularly in recent years, it is necessary to instantaneously supply power to electronic circuits due to higher frequency of electronic devices such as personal computers. Development of a solid electrolytic capacitor having a small equivalent series resistance (hereinafter referred to as ESR) in a high frequency region is desired.

ここで、固体電解コンデンサにおけるESRは、誘電体損失、電解質層や陰極の比抵抗及び電解質層と陰極との接触抵抗等が要因となり、特に、高周波領域でのESRは、電解質層や陰極の比抵抗、電解質層と陰極との接触抵抗が大きな要因となる。   Here, ESR in a solid electrolytic capacitor is caused by dielectric loss, specific resistance of the electrolyte layer and the cathode, contact resistance between the electrolyte layer and the cathode, etc. Especially, ESR in the high frequency region is the ratio of the electrolyte layer and the cathode. Resistance and contact resistance between the electrolyte layer and the cathode are major factors.

また、固体電解コンデンサとしては、一般に、タンタル、アルミニウム、二オブ、チタン等の弁作用を有する弁作用金属又はその合金からなる陽極を陽極酸化させて、この陽極の表面にその酸化物からなる誘電体層を形成し、この誘電体層の上に導電性高分子や二酸化マンガン等を用いた電解質層を形成し、さらにこの電解質層の上に、カーボン層と銀ペースト層とを積層させた陰極を形成したものが知られている(例えば、特許文献1参照。)。   In general, as a solid electrolytic capacitor, an anode made of a valve action metal having a valve action such as tantalum, aluminum, niobium, titanium, or an alloy thereof is anodized, and a dielectric made of the oxide is formed on the surface of the anode. A cathode in which a body layer is formed, an electrolyte layer using a conductive polymer, manganese dioxide or the like is formed on the dielectric layer, and a carbon layer and a silver paste layer are laminated on the electrolyte layer. Is known (for example, see Patent Document 1).

そして、このような固体電解コンデンサにおいては、一般に外的要因による特性の劣化を防止するため、この固体電解コンデンサ全体を被覆するようにして絶縁性樹脂からなる外装体を設けるようにしている。   In such a solid electrolytic capacitor, in general, an exterior body made of an insulating resin is provided so as to cover the entire solid electrolytic capacitor in order to prevent deterioration of characteristics due to external factors.

しかし、このように固体電解コンデンサ全体を被覆するようにして絶縁性樹脂からなる外装体を設けるようにした場合、上記の絶縁性樹脂が硬化する際の収縮等により、固体電解コンデンサに圧力が加わり、これによって陰極における各層間に剥離が生じたり、陰極の各層に含まれるカーボンや銀等の導電性粒子間の接触面積が低下したり、電解質層と誘電層との界面や誘電体層に亀裂が生じる等により、固体電解コンデンサにおけるESRが上昇したり、漏れ電流が増加する等の問題が生じた。   However, when an exterior body made of an insulating resin is provided so as to cover the entire solid electrolytic capacitor in this way, pressure is applied to the solid electrolytic capacitor due to shrinkage or the like when the insulating resin is cured. As a result, delamination occurs between the layers of the cathode, the contact area between the conductive particles such as carbon and silver contained in each layer of the cathode decreases, and the interface between the electrolyte layer and the dielectric layer and the dielectric layer crack. As a result, problems such as an increase in ESR in a solid electrolytic capacitor and an increase in leakage current occurred.

そして、近年においては、陰極として、カーボン粒子と樹脂とを主成分とする第1の陰極層と、この第1の陰極層に積層された金属粒子とエラストマーとを主成分とする第2の陰極層と、この第2の陰極層に積層された金属粒子と樹脂とを主成分とする第3の陰極層とを設け、上記の金属粒子とエラストマーとを主成分とする第2の陰極層において、固体電解コンデンサに加わる圧力を吸収させるようにした固体電解コンデンサが提案されている(例えば、特許文献2参照。)。   In recent years, as a cathode, a first cathode layer mainly composed of carbon particles and a resin, and a second cathode mainly composed of metal particles and an elastomer laminated on the first cathode layer. And a third cathode layer mainly composed of metal particles and a resin laminated on the second cathode layer, and the second cathode layer mainly composed of the metal particles and the elastomer. There has been proposed a solid electrolytic capacitor that absorbs pressure applied to the solid electrolytic capacitor (see, for example, Patent Document 2).

しかし、上記の固体電解コンデンサでは、十分に圧力を緩和できないため陰極における各層間に剥離が生じたり、陰極の各層に含まれるカーボンや銀等の導電性粒子間の接触面積が低下したり、電解質層と誘電体層との界面や誘電体層に亀裂が生じる等により、固体電解コンデンサにおけるESRの上昇や漏れ電流の増大を十分に抑制できない。
特開平3−46215号公報 特開2001−160524号公報
However, in the above-mentioned solid electrolytic capacitor, the pressure cannot be sufficiently relaxed, so that peeling occurs between the layers in the cathode, the contact area between the conductive particles such as carbon and silver contained in each layer of the cathode decreases, and the electrolyte An increase in ESR and an increase in leakage current in the solid electrolytic capacitor cannot be sufficiently suppressed due to cracks in the interface between the dielectric layer and the dielectric layer and the dielectric layer.
Japanese Patent Laid-Open No. 3-46215 JP 2001-160524 A

本発明は、上記のように固体電解コンデンサ全体を被覆するようにして絶縁性樹脂からなる外装体を設ける場合等において、固体電解コンデンサに加わる圧力を十分に緩和し、陰極における各層間に剥離が生じたり、陰極の各層に含まれるカーボンや銀等の導電性粒子間の接触面積が低下したり、電解質層と誘電層との界面や誘電体層に亀裂が生じたりするのを抑制し、固体電解コンデンサにおけるESRが上昇したり、漏れ電流が増加したりするのを十分に防止できるようにすることを課題とするものである。   The present invention sufficiently relaxes the pressure applied to the solid electrolytic capacitor in the case where an exterior body made of an insulating resin is provided so as to cover the entire solid electrolytic capacitor as described above, and peeling between the respective layers of the cathode occurs. It is possible to suppress the occurrence of contact, decrease in the contact area between conductive particles such as carbon and silver contained in each layer of the cathode, cracks in the interface between the electrolyte layer and the dielectric layer and the dielectric layer, and It is an object of the present invention to sufficiently prevent an increase in ESR or an increase in leakage current in an electrolytic capacitor.

本発明においては、上記のような課題を解決するために、弁作用金属又は弁作用金属を主成分とする合金からなる陽極と、この陽極が陽極酸化されて形成される誘電体層と、陰極とを備えた固体電解コンデンサにおいて、上記の陰極中に応力緩和性を有する導電性粒子を含有させるようにした。   In the present invention, in order to solve the above-described problems, an anode made of a valve metal or an alloy mainly containing a valve metal, a dielectric layer formed by anodizing the anode, and a cathode In the solid electrolytic capacitor having the above, conductive particles having stress relaxation properties are contained in the cathode.

ここで、上記の応力緩和性を有する導電性粒子とは、応力に対して弾性的に変化することができる導電性粒子を意味し、このような応力緩和性を有する導電性粒子としては、例えば、銀,金,白金から選択される少なくとも1種の金属で構成された中空状の導電性粒子や、エラストマー粒子の表面に銀,金,白金から選択される少なくとも1種の金属で構成された導電性の被覆層が設けられた導電性粒子等を用いることができる。   Here, the above-mentioned conductive particles having stress relaxation means conductive particles that can change elastically with respect to stress, and examples of such conductive particles having stress relaxation include: Hollow conductive particles composed of at least one metal selected from silver, gold and platinum, and at least one metal selected from silver, gold and platinum on the surface of elastomer particles Conductive particles provided with a conductive coating layer can be used.

そして、上記の中空状の導電性粒子としては、その中空部の体積比率が10〜60体積%の範囲になったものを用いることが好ましい。   And as said hollow electroconductive particle, it is preferable to use what the volume ratio of the hollow part became the range of 10-60 volume%.

また、上記のエラストマー粒子としては、例えば、ポリスチレン、ポリエチレン、ポリアミド、ゴムから選択される少なくとも1種の材料で構成されたものを用いることができる。   Moreover, as said elastomer particle | grains, what was comprised with the at least 1 sort (s) of material selected from polystyrene, polyethylene, polyamide, rubber | gum, for example can be used.

本発明における固体電解コンデンサのように、陰極中に応力緩和性を有する導電性粒子を含有させると、前記のように固体電解コンデンサ全体を被覆するようにして絶縁性樹脂からなる外装体を設ける場合等において、固体電解コンデンサに圧力が加わっても、上記の応力緩和性を有する導電性粒子が変形して、この圧力が緩和され、陰極における各層間に剥離が生じたり、陰極の各層に含まれるカーボンや銀等の導電性粒子間の接触面積が低下したり、電解質層と誘電層との界面や誘電体層に亀裂が生じたりするのが抑制されるようになる。   When the conductive particles having stress relaxation properties are contained in the cathode, as in the solid electrolytic capacitor in the present invention, the exterior body made of an insulating resin is provided so as to cover the entire solid electrolytic capacitor as described above. In this case, even when pressure is applied to the solid electrolytic capacitor, the above-mentioned conductive particles having stress relaxation properties are deformed, and this pressure is relaxed, and peeling occurs between the layers of the cathode or is contained in each layer of the cathode. The contact area between conductive particles such as carbon and silver is reduced, and the interface between the electrolyte layer and the dielectric layer and the dielectric layer are prevented from cracking.

この結果、本発明における固体電解コンデンサにおいては、前記のように固体電解コンデンサ全体を被覆するようにして絶縁性樹脂からなる外装体を設ける場合等においても、固体電解コンデンサにおけるESRが上昇したり、漏れ電流が増加したりするのが十分に抑制されるようになる。   As a result, in the solid electrolytic capacitor according to the present invention, even when an exterior body made of an insulating resin is provided so as to cover the entire solid electrolytic capacitor as described above, the ESR in the solid electrolytic capacitor is increased, An increase in leakage current is sufficiently suppressed.

また、本発明における固体電解コンデンサにおいては、上記の応力緩和性を有する導電性粒子として、銀,金,白金から選択される少なくとも1種の金属で構成された中空状の導電性粒子や、エラストマー粒子の表面に銀,金,白金から選択される少なくとも1種の金属で構成された導電性の被覆層が設けられた導電性粒子を用い、この導電性粒子自体が変形して応力を緩和するようになっているため、ESRの上昇や漏れ電流の増加を十分に抑制できるようになる。   Further, in the solid electrolytic capacitor according to the present invention, hollow conductive particles made of at least one metal selected from silver, gold, and platinum as the conductive particles having stress relaxation properties, and elastomer Using conductive particles provided with a conductive coating layer made of at least one metal selected from silver, gold, and platinum on the surface of the particles, the conductive particles themselves are deformed to relieve stress. Therefore, it is possible to sufficiently suppress an increase in ESR and an increase in leakage current.

ここで、上記の応力緩和性を有する導電性粒子として、銀,金,白金から選択される少なくとも1種の金属で構成された中空状の導電性粒子を用いる場合、この中空部の比率が小さいと、この導電性粒子が変形しにくくなって十分に応力を緩和することが困難になる一方、この中空部の比率が大きくなりすぎると、導電性粒子が割れるため応力を十分に緩和できない。その結果、陰極における各層間に剥離が生じたり、陰極の各層に含まれるカーボンや銀等の導電性粒子間の接触面積が低下したり、電解質層と誘電体層との界面や誘電体層に亀裂が生じる等により、固体電解コンデンサにおけるESRの上昇や漏れ電流の増大を十分に抑制できない。このため、上記のように中空部の体積比率が10〜60体積%の範囲になったものを用いることが好ましい。   Here, when using hollow conductive particles made of at least one metal selected from silver, gold, and platinum as the conductive particles having stress relaxation properties, the ratio of the hollow portion is small. On the other hand, the conductive particles are difficult to be deformed and it is difficult to sufficiently relax the stress. On the other hand, if the ratio of the hollow portions is too large, the conductive particles are cracked and the stress cannot be sufficiently relaxed. As a result, delamination occurs between the layers of the cathode, the contact area between the conductive particles such as carbon and silver contained in each layer of the cathode decreases, the interface between the electrolyte layer and the dielectric layer, and the dielectric layer Due to cracks and the like, it is not possible to sufficiently suppress the increase in ESR and increase in leakage current in the solid electrolytic capacitor. For this reason, it is preferable to use what the volume ratio of the hollow part became the range of 10-60 volume% as mentioned above.

次に、この発明の実施形態に係る固体電解コンデンサを添付図面に基づいて具体的に説明する。なお、この発明の固体電解コンデンサは下記の実施形態に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, a solid electrolytic capacitor according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. In addition, the solid electrolytic capacitor of this invention is not limited to what was shown to the following embodiment, In the range which does not change the summary, it can implement suitably.

この実施形態における固体電解コンデンサにおいては、図1に示すように、タンタル、アルミニウム、二オブ、チタン等の弁作用を有する弁作用金属又はこのような弁作用金属を主成分とする合金で構成された陽極1を用い、この陽極1からリード線11を延出させている。   In the solid electrolytic capacitor in this embodiment, as shown in FIG. 1, it is composed of a valve action metal having a valve action such as tantalum, aluminum, niobium, titanium, or an alloy containing such a valve action metal as a main component. The lead wire 11 is extended from the anode 1.

そして、上記の陽極1を、例えばリン酸水溶液等の電解液中において陽極酸化させ、この陽極1の表面を覆うようにして酸化膜からなる誘電体層2を形成している。   The anode 1 is anodized in an electrolyte such as an aqueous phosphoric acid solution, and a dielectric layer 2 made of an oxide film is formed so as to cover the surface of the anode 1.

また、この誘電体層2の表面を覆うようにして電解質層3を形成している。ここで、電解質層3に使用する材料としては、例えば、ポリピロール,ポリチオフェン,ポリアニリン等の導電性高分子材料や、二酸化マンガン等の導電性酸化物を用いることができる。   The electrolyte layer 3 is formed so as to cover the surface of the dielectric layer 2. Here, as a material used for the electrolyte layer 3, for example, a conductive polymer material such as polypyrrole, polythiophene, or polyaniline, or a conductive oxide such as manganese dioxide can be used.

そして、上記の電解質層3の表面を覆うようにして、カーボン等を用いた第1陰極層41と応力緩和性を有する導電性粒子を用いた第2陰極層42とを積層させた陰極4を形成している。   Then, a cathode 4 in which a first cathode layer 41 using carbon or the like and a second cathode layer 42 using conductive particles having stress relaxation properties are laminated so as to cover the surface of the electrolyte layer 3. Forming.

ここで、上記の応力緩和性を有する導電性粒子としては、例えば、図2に示すような銀,金,白金から選択される少なくとも1種の金属で構成された中空状の導電性粒子Aや、図3に示すようなエラストマー粒子b1の表面に銀,金,白金から選択される少なくとも1種の金属で構成された導電性の被覆層b2が設けられた導電性粒子Bを用いることができる。   Here, as the conductive particles having the stress relaxation property, for example, hollow conductive particles A made of at least one metal selected from silver, gold, and platinum as shown in FIG. As shown in FIG. 3, conductive particles B in which a conductive coating layer b2 made of at least one metal selected from silver, gold, and platinum is provided on the surface of the elastomer particles b1 can be used. .

また、この実施形態においては、上記の陽極1から延出させたリード線11に陽極リード5を接続させると共に、上記の陰極4における第2陰極層42に陰極リード6を接続させ、この陽極リード5と陰極リード6とを外部に取り出すようにしてエポキシ樹脂等の絶縁性樹脂からなる外装体7によって外装するようにしている。   In this embodiment, the anode lead 5 is connected to the lead wire 11 extended from the anode 1, and the cathode lead 6 is connected to the second cathode layer 42 in the cathode 4. 5 and the cathode lead 6 are taken out to the outside and are covered with an exterior body 7 made of an insulating resin such as an epoxy resin.

次に、この発明の具体的な実施例に係る固体電解コンデンサについて説明すると共に、この発明の実施例に係る固体電解コンデンサにおいては、固体電解コンデンサに圧力が加わった場合においても、固体電解コンデンサにおけるESRが上昇したり、漏れ電流が増加したりするのが抑制されることを、比較例を挙げて明らかにする。なお、この発明の固体電解コンデンサは下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, a solid electrolytic capacitor according to a specific embodiment of the present invention will be described. In the solid electrolytic capacitor according to the embodiment of the present invention, even when pressure is applied to the solid electrolytic capacitor, the solid electrolytic capacitor It will be clarified by giving a comparative example that the increase of the ESR and the increase of the leakage current are suppressed. In addition, the solid electrolytic capacitor of this invention is not limited to what was shown in the following Example, In the range which does not change the summary, it can implement suitably.

(実施例1)
実施例1の固体電解コンデンサにおいては、タンタル粉末を焼結させて、タンタルの多孔質焼結体からなる陽極1を作製すると共に、この陽極1からリード線11を延出させるようにした。
Example 1
In the solid electrolytic capacitor of Example 1, tantalum powder was sintered to produce anode 1 made of a porous tantalum sintered body, and lead wire 11 was extended from anode 1.

そして、この陽極1を約60℃に保持した約0.5重量%のリン酸水溶液中において約10Vの定電圧で約10時間陽極酸化させて、この陽極1の表面に酸化皮膜からなる誘電体層2を形成し、このように形成した誘電体層2の上に、化学重合によりポリピロールからなる電解質層3を形成した。   Then, the anode 1 is anodized at a constant voltage of about 10 V in a phosphoric acid aqueous solution of about 0.5% by weight maintained at about 60 ° C. for about 10 hours, and the surface of the anode 1 is made of an oxide film. The layer 2 was formed, and the electrolyte layer 3 made of polypyrrole was formed on the dielectric layer 2 thus formed by chemical polymerization.

次に、上記の電解質層3の上に陰極4を形成するにあたっては、先ず上記の電解質層3の上にカーボンペーストを塗布し、これを乾燥させて、第1陰極層41を形成した。また、この第1陰極層41の上に第2陰極層42を形成するにあたっては、応力緩和性を有する導電性粒子として、上記の図2に示すような中空状の導電性粒子Aであって、中空部の体積比率が約40体積%になった中空状の銀粒子を使用し、この中空状の銀粒子を用いた銀ペーストを上記の第1陰極層41の上に塗布し、これを乾燥させて第2陰極層42を形成した。   Next, when forming the cathode 4 on the electrolyte layer 3, first, a carbon paste was applied on the electrolyte layer 3 and dried to form a first cathode layer 41. Further, in forming the second cathode layer 42 on the first cathode layer 41, the conductive particles A having a hollow shape as shown in FIG. , Hollow silver particles having a hollow volume ratio of about 40% by volume are used, and a silver paste using the hollow silver particles is applied onto the first cathode layer 41, The second cathode layer 42 was formed by drying.

そして、上記の陽極1から延出させたリード線11に陽極リード5を接続させると共に、上記の陰極4における第2陰極層42に陰極リード6を接続させた後、この陽極リード5と陰極リード6とを外部に取り出すようにしてエポキシ樹脂からなる外装体7により外装させて、実施例1の固体電解コンデンサを作製した。   The anode lead 5 is connected to the lead wire 11 extending from the anode 1 and the cathode lead 6 is connected to the second cathode layer 42 of the cathode 4, and then the anode lead 5 and the cathode lead are connected. 6 was taken out by the exterior body 7 made of an epoxy resin so as to be taken out, and the solid electrolytic capacitor of Example 1 was produced.

(実施例2)
実施例2においては、陽極1の材料として、アルミニウムが0.5重量%含有されたタンタルを主成分とするタンタル合金を用いるようにし、それ以外は、上記の実施例1の場合と同様にして、実施例2の固体電解コンデンサを作製した。
(Example 2)
In Example 2, a tantalum alloy mainly composed of tantalum containing 0.5% by weight of aluminum is used as the material of the anode 1, and other than that, the same as in the case of Example 1 above. A solid electrolytic capacitor of Example 2 was produced.

(実施例3)
実施例3においては、第2陰極層42を設けるにあたり、応力緩和性を有する導電性粒子として、上記の図2に示すような中空状の導電性粒子Aであって、中空部の体積比率が約40体積%になった中空状の金粒子を用いるようにし、それ以外は、上記の実施例1の場合と同様にして、実施例3の固体電解コンデンサを作製した。
(Example 3)
In Example 3, when the second cathode layer 42 is provided, the conductive particles A having the stress relaxation properties are hollow conductive particles A as shown in FIG. 2 described above, and the volume ratio of the hollow portion is as follows. A solid electrolytic capacitor of Example 3 was produced in the same manner as in Example 1 except that hollow gold particles having a volume of about 40% by volume were used.

(実施例4)
実施例4においては、第2陰極層42を設けるにあたり、応力緩和性を有する導電性粒子として、上記の図2に示すような中空状の導電性粒子Aであって、中空部の体積比率が約40体積%になった中空状の白金粒子を用いるようにし、それ以外は、上記の実施例1の場合と同様にして、実施例4の固体電解コンデンサを作製した。
Example 4
In Example 4, in providing the second cathode layer 42, the conductive particles A having the stress relaxation properties are hollow conductive particles A as shown in FIG. 2 described above, and the volume ratio of the hollow portion is as follows. A solid electrolytic capacitor of Example 4 was produced in the same manner as in Example 1 except that hollow platinum particles having a volume of about 40% by volume were used.

(実施例5)
実施例5においては、第2陰極層42を設けるにあたり、応力緩和性を有する導電性粒子として、上記の図3に示すようなエラストマー粒子b1の表面に導電性の被覆層b2が設けられた導電性粒子Bであって、ポリスチレン粒子の表面に無電解めっき法により銀の被覆層を形成した導電性粒子を使用し、それ以外は、上記の実施例1の場合と同様にして、実施例5の固体電解コンデンサを作製した。
(Example 5)
In Example 5, in providing the second cathode layer 42, the conductive particles in which the conductive coating layer b2 is provided on the surface of the elastomer particles b1 as shown in FIG. 3 as the conductive particles having stress relaxation properties. Example 5 is the same as in Example 1 except that conductive particles B, which are conductive particles in which a silver coating layer is formed on the surface of polystyrene particles by electroless plating, are used. A solid electrolytic capacitor was prepared.

(実施例6)
実施例6においては、第2陰極層42を設けるにあたり、応力緩和性を有する導電性粒子として、上記の図3に示すようなエラストマー粒子b1の表面に導電性の被覆層b2が設けられた導電性粒子Bであって、ポリスチレン粒子の表面に無電解めっき法により金の被覆層を形成した導電性粒子を使用し、それ以外は、上記の実施例1の場合と同様にして、実施例6の固体電解コンデンサを作製した。
(Example 6)
In Example 6, in providing the second cathode layer 42, the conductive particles in which the conductive coating layer b2 is provided on the surface of the elastomer particle b1 as shown in FIG. 3 as the conductive particles having stress relaxation properties. Example 6 is the same as in Example 1 except that conductive particles B, which are conductive particles in which a gold coating layer is formed on the surface of polystyrene particles by electroless plating, are used. A solid electrolytic capacitor was prepared.

(実施例7)
実施例7においては、第2陰極層42を設けるにあたり、応力緩和性を有する導電性粒子として、上記の図3に示すようなエラストマー粒子b1の表面に導電性の被覆層b2が設けられた導電性粒子Bであって、ポリスチレン粒子の表面に無電解めっき法により白金の被覆層を形成した導電性粒子を使用し、それ以外は、上記の実施例1の場合と同様にして、実施例7の固体電解コンデンサを作製した。
(Example 7)
In Example 7, when the second cathode layer 42 is provided, the conductive particles in which the conductive coating layer b2 is provided on the surface of the elastomer particles b1 as shown in FIG. 3 as the conductive particles having stress relaxation properties. Example 7 was made in the same manner as in Example 1 except that conductive particles B, which were formed by forming a platinum coating layer on the surface of polystyrene particles by electroless plating, were used. A solid electrolytic capacitor was prepared.

(比較例1)
比較例1においては、第2陰極層を設けるにあたり、中空部を有さない中実状の銀粒子とポリエチレンゴムとからなるペーストを第1陰極層の上に塗布させるようにし、さらに中空部を有さない中実状の銀粒子とポリアミド樹脂とからなるペーストを第2陰極層の上に塗布することにより、第2陰極層の上に第3陰極層を形成した。それ以外は、上記の実施例1の場合と同様にして、比較例1の固体電解コンデンサを作製した。
(Comparative Example 1)
In Comparative Example 1, when the second cathode layer is provided, a paste made of solid silver particles and polyethylene rubber having no hollow portion is applied on the first cathode layer, and the hollow portion is further provided. A third cathode layer was formed on the second cathode layer by applying a paste made of solid silver particles and a polyamide resin on the second cathode layer. Other than that was carried out similarly to the case of said Example 1, and produced the solid electrolytic capacitor of the comparative example 1. FIG.

(比較例2)
比較例2においては、第2陰極層を設けるにあたり、中空部を有さない中実状の銀粒子だけを使用し、それ以外は、上記の実施例1の場合と同様にして、比較例2の固体電解コンデンサを作製した。
(Comparative Example 2)
In Comparative Example 2, when providing the second cathode layer, only solid silver particles having no hollow portion were used, and other than that, in the same manner as in Example 1 above, Comparative Example 2 was used. A solid electrolytic capacitor was produced.

次に、上記のようにして作製した実施例1〜7及び比較例1,2の各固体電解コンデンサについて、それぞれ約5Vの定電圧を印加して約20秒後における漏れ電流を測定し、さらに各固体電解コンデンサにおいて、約100kHzにおけるESRをLCRメータにより測定した。   Next, for each of the solid electrolytic capacitors of Examples 1 to 7 and Comparative Examples 1 and 2 manufactured as described above, a constant voltage of about 5 V was applied, and the leakage current after about 20 seconds was measured. In each solid electrolytic capacitor, ESR at about 100 kHz was measured with an LCR meter.

そして、上記の実施例1の固体電解コンデンサにおける漏れ電流及びESRの値を基準の100として、各固体電解コンデンサにおける漏れ電流及びESRの値を算出し、その結果を下記の表1に示した。   Then, the leakage current and ESR value in each solid electrolytic capacitor were calculated with the leakage current and ESR value in the solid electrolytic capacitor of Example 1 as the standard 100, and the results are shown in Table 1 below.

Figure 2006237124
Figure 2006237124

この結果、第2陰極層42に、中空状の導電性粒子や、エラストマー粒子の表面に導電性の被覆層を形成した導電性粒子を用いた実施例1〜7の各固体電解コンデンサは、中空部を有さない中実状の銀粒子とポリエチレンゴムとを用いた比較例1の固体電解コンデンサや、中空部を有さない中実状の銀粒子だけを用いた比較例2の固体電解コンデンサに比べて、漏れ電流及びESRが大きく減少していた。   As a result, each solid electrolytic capacitor of Examples 1 to 7 using hollow conductive particles or conductive particles having a conductive coating layer formed on the surface of the elastomer particles in the second cathode layer 42 is hollow. Compared to the solid electrolytic capacitor of Comparative Example 1 using solid silver particles and polyethylene rubber having no part, and the solid electrolytic capacitor of Comparative Example 2 using only solid silver particles having no hollow part Thus, the leakage current and ESR were greatly reduced.

(実施例1a〜1i)
実施例1a〜1iにおいては、第2陰極層42を設けるにあたり、応力緩和性を有する導電性粒子として、上記の実施例1と同様の中空状の銀粒子を用いるようにし、この中空状の銀粒子における中空部の体積比率を、下記の表2に示すように、約5体積%、約7.5体積%、約10体積%、約25体積%、約50体積%、約55体積%、約60体積%、約65体積%、約70体積%に変更させ、それ以外は、上記の実施例1の場合と同様にして、実施例1a〜1iの各固体電解コンデンサを作製した。
(Examples 1a to 1i)
In Examples 1a to 1i, when the second cathode layer 42 is provided, hollow silver particles similar to those in Example 1 described above are used as conductive particles having stress relaxation properties. As shown in Table 2 below, the volume ratio of the hollow part in the particles is about 5% by volume, about 7.5% by volume, about 10% by volume, about 25% by volume, about 50% by volume, about 55% by volume, The solid electrolytic capacitors of Examples 1a to 1i were produced in the same manner as in Example 1 except that the volume was changed to about 60% by volume, about 65% by volume, and about 70% by volume.

そして、上記のようにして作製した実施例1a〜1iの各固体電解コンデンサについても、上記の実施例1の場合と同様にして、各固体電解コンデンサにおける漏れ電流及びESRを測定し、上記の実施例1の固体電解コンデンサにおける漏れ電流及びESRの値を基準の100として、各固体電解コンデンサにおける漏れ電流及びESRの値を算出し、その結果を下記の表2に示した。   And also about each solid electrolytic capacitor of Examples 1a-1i produced as mentioned above, similarly to the case of said Example 1, the leakage current and ESR in each solid electrolytic capacitor were measured, and said implementation was carried out. The leakage current and ESR value in each solid electrolytic capacitor were calculated with the leakage current and ESR value in the solid electrolytic capacitor of Example 1 as the standard 100, and the results are shown in Table 2 below.

Figure 2006237124
Figure 2006237124

この結果、第2陰極層42に中空状の導電性粒子を用いるにあたり、中空部の体積比率が10体積%〜60体積%の範囲になった中空状の導電性粒子を用いた場合において、漏れ電流及びESRが大きく減少しており、特に、中空部の体積比率が25体積%〜50体積%の範囲になった中空状の導電性粒子を用いた場合に、漏れ電流及びESRがさらに減少していた。   As a result, when hollow conductive particles are used for the second cathode layer 42, leakage occurs when the hollow conductive particles having a volume ratio of the hollow portion in the range of 10 volume% to 60 volume% are used. The current and ESR are greatly reduced. In particular, when hollow conductive particles in which the volume ratio of the hollow portion is in the range of 25 volume% to 50 volume% are used, the leakage current and ESR are further reduced. It was.

(実施例5a〜5c)
実施例5a〜5cにおいては、第2陰極層42を設けるにあたり、応力緩和性を有する導電性粒子として、上記の実施例5のようにエラストマー粒子の表面に銀の被覆層が設けられた導電性粒子を用いるようにした。
(Examples 5a to 5c)
In Examples 5a to 5c, when the second cathode layer 42 is provided, the conductive particles having stress-relaxing conductive particles provided with a silver coating layer on the surface of the elastomer particles as in Example 5 above. Particles were used.

そして、実施例5a〜5cにおいては、上記の導電性粒子に使用するエラストマー粒子を、下記の表3に示すように、ポリエチレン粒子、ポリアミド粒子、ブタジエンゴム粒子に変更し、それ以外は、上記の実施例5の場合と同様にして、実施例5a〜5cの各固体電解コンデンサを作製した。   In Examples 5a to 5c, the elastomer particles used for the conductive particles are changed to polyethylene particles, polyamide particles, and butadiene rubber particles as shown in Table 3 below. In the same manner as in Example 5, each solid electrolytic capacitor of Examples 5a to 5c was produced.

そして、上記のようにして作製した実施例5a〜5cの各固体電解コンデンサについても、上記の実施例5の場合と同様にして、各固体電解コンデンサにおける漏れ電流及びESRを測定し、上記の実施例5の固体電解コンデンサにおける漏れ電流及びESRの値を基準の100として、各固体電解コンデンサにおける漏れ電流及びESRの値を算出し、その結果を下記の表3に示した。   And also about each solid electrolytic capacitor of Examples 5a-5c produced as mentioned above, similarly to the case of said Example 5, the leakage current and ESR in each solid electrolytic capacitor were measured, and said implementation was carried out. The leakage current and ESR value in each solid electrolytic capacitor were calculated with the leakage current and ESR value in the solid electrolytic capacitor of Example 5 being 100, and the results are shown in Table 3 below.

Figure 2006237124
Figure 2006237124

この結果、上記の導電性粒子に使用するエラストマー粒子に、ポリエチレン粒子、ポリアミド粒子、ブタジエンゴム粒子を用いた実施例5a〜5cの各固体電解コンデンサにおいても、エラストマー粒子にポリスチレン粒子を使用した実施例5の固体電解コンデンサと同様に、比較例1,2の固体電解コンデンサに比べて、漏れ電流及びESRが大きく減少していた。   As a result, in the solid electrolytic capacitors of Examples 5a to 5c in which polyethylene particles, polyamide particles, and butadiene rubber particles are used as the elastomer particles used in the conductive particles, polystyrene particles are used as the elastomer particles. Similarly to the solid electrolytic capacitor of 5, the leakage current and ESR were greatly reduced as compared with the solid electrolytic capacitors of Comparative Examples 1 and 2.

本発明の一実施形態に係る固体電解コンデンサを示した断面説明図である。It is a section explanatory view showing the solid electrolytic capacitor concerning one embodiment of the present invention. 本発明の実施形態において使用する応力緩和性を有する導電性粒子の第1の例を示した断面説明図である。It is sectional explanatory drawing which showed the 1st example of the electroconductive particle which has the stress relaxation property used in embodiment of this invention. 本発明の実施形態において使用する応力緩和性を有する導電性粒子の第2の例を示した断面説明図である。It is sectional explanatory drawing which showed the 2nd example of the electroconductive particle which has the stress relaxation property used in embodiment of this invention.

符号の説明Explanation of symbols

1 陽極
2 誘電体層
3 電解質層
4 陰極
5 陽極リード
6 陰極リード
7 外装体
11 リード線
41 第1陰極層
42 第2陰極層
A 中空状の導電性粒子
B エラストマー粒子の表面に導電性の被覆層が設けられた導電性粒子
b1 エラストマー粒子
b2 導電性の被覆層
DESCRIPTION OF SYMBOLS 1 Anode 2 Dielectric layer 3 Electrolyte layer 4 Cathode 5 Anode lead 6 Cathode lead 7 Exterior body 11 Lead wire 41 1st cathode layer 42 2nd cathode layer A Hollow conductive particle B Conductive coating | cover on the surface of an elastomer particle Conductive particles provided with a layer b1 elastomer particles b2 conductive coating layer

Claims (5)

弁作用金属又は弁作用金属を主成分とする合金からなる陽極と、この陽極が陽極酸化されて形成される誘電体層と、陰極とを備えた固体電解コンデンサにおいて、上記の陰極中に応力緩和性を有する導電性粒子が含有されていることを特徴とする固体電解コンデンサ。   In a solid electrolytic capacitor having a valve action metal or an anode made of a valve action metal as a main component, a dielectric layer formed by anodizing the anode, and a cathode, stress relaxation in the cathode A solid electrolytic capacitor comprising conductive particles having a property. 請求項1に記載した固体電解コンデンサにおいて、前記の応力緩和性を有する導電性粒子が、銀,金,白金から選択される少なくとも1種の金属で構成された中空状の導電性粒子であることを特徴とする固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein the conductive particles having stress relaxation properties are hollow conductive particles made of at least one metal selected from silver, gold, and platinum. Solid electrolytic capacitor characterized by 請求項2に記載した固体電解コンデンサにおいて、前記の中空状の導電性粒子における中空部の体積比率が10〜60体積%の範囲であることを特徴とする固体電解コンデンサ。   3. The solid electrolytic capacitor according to claim 2, wherein a volume ratio of a hollow portion in the hollow conductive particles is in a range of 10 to 60% by volume. 請求項1に記載した固体電解コンデンサにおいて、前記の応力緩和性を有する導電性粒子が、エラストマー粒子の表面に銀,金,白金から選択される少なくとも1種の金属で構成された導電性の被覆層が設けられた導電性粒子であることを特徴とする固体電解コンデンサ。   2. The conductive coating according to claim 1, wherein the conductive particles having stress relaxation properties are formed of at least one metal selected from silver, gold, and platinum on the surface of the elastomer particles. A solid electrolytic capacitor comprising conductive particles provided with a layer. 請求項4に記載した固体電解コンデンサにおいて、前記のエラストマー粒子がポリスチレン、ポリエチレン、ポリアミド、ゴムから選択される少なくとも1種の材料で構成されていることを特徴とする固体電解コンデンサ。   5. The solid electrolytic capacitor according to claim 4, wherein the elastomer particles are made of at least one material selected from polystyrene, polyethylene, polyamide, and rubber.
JP2005046838A 2005-02-23 2005-02-23 Solid electrolytic capacitor Expired - Fee Related JP4498168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046838A JP4498168B2 (en) 2005-02-23 2005-02-23 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046838A JP4498168B2 (en) 2005-02-23 2005-02-23 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006237124A true JP2006237124A (en) 2006-09-07
JP4498168B2 JP4498168B2 (en) 2010-07-07

Family

ID=37044472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046838A Expired - Fee Related JP4498168B2 (en) 2005-02-23 2005-02-23 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4498168B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191197A (en) * 2011-03-11 2012-10-04 Avx Corp Solid electrolytic capacitor containing coating formed from colloidal dispersion
CN104246910A (en) * 2012-10-30 2014-12-24 化研科技株式会社 Conductive paste and die bonding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240309A (en) * 1993-02-12 1994-08-30 Soken Kagaku Kk Hollow metal fine grain, metal grain group containing the fine grain and production thereof
JPH07136489A (en) * 1993-11-17 1995-05-30 Japan Synthetic Rubber Co Ltd Composite particle and hollow particle
JPH1173818A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive and liquid crystal display device
JP2004273987A (en) * 2003-03-12 2004-09-30 Sanyo Electric Co Ltd Solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240309A (en) * 1993-02-12 1994-08-30 Soken Kagaku Kk Hollow metal fine grain, metal grain group containing the fine grain and production thereof
JPH07136489A (en) * 1993-11-17 1995-05-30 Japan Synthetic Rubber Co Ltd Composite particle and hollow particle
JPH1173818A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive and liquid crystal display device
JP2004273987A (en) * 2003-03-12 2004-09-30 Sanyo Electric Co Ltd Solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191197A (en) * 2011-03-11 2012-10-04 Avx Corp Solid electrolytic capacitor containing coating formed from colloidal dispersion
CN104246910A (en) * 2012-10-30 2014-12-24 化研科技株式会社 Conductive paste and die bonding method
CN104246910B (en) * 2012-10-30 2016-06-08 化研科技株式会社 Conductive paste and chip welding method
US9818718B2 (en) 2012-10-30 2017-11-14 Kaken Tech Co., Ltd. Conductive paste and die bonding method
US10615144B2 (en) 2012-10-30 2020-04-07 Kaken Tech Co., Ltd. Conductive paste and die bonding method

Also Published As

Publication number Publication date
JP4498168B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP5289033B2 (en) Solid electrolytic capacitor
JP4703400B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5114264B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009170897A (en) Solid electrolytic capacitor
JP2011151353A (en) Solid electrolytic capacitor, and method for producing the same
JPH11219860A (en) Solid electrolyte capacitor using conductive polymer and manufacture thereof
JP2006310776A (en) Solid electrolytic capacitor and manufacturing method therefor
JP5788282B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009182157A (en) Solid-state electrolytic capacitor
JP4953091B2 (en) Capacitor chip and manufacturing method thereof
JP2008182098A (en) Solid electrolytic capacitor and its manufacturing method
JP5623214B2 (en) Solid electrolytic capacitor
JP4498168B2 (en) Solid electrolytic capacitor
JP2010056444A (en) Niobium solid electrolytic capacitor
JP4876705B2 (en) Solid electrolytic capacitor
JP2010278360A (en) Solid electrolytic capacitor and method of manufacturing the same
JP4671339B2 (en) Multilayer solid electrolytic capacitor
US8882857B2 (en) Solid electrolytic capacitor and method for manufacturing the same
JP4372032B2 (en) Solid electrolytic capacitor
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JP7248141B2 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JPH0997747A (en) Solid electrolytic capacitor and manufacture thereof
JP2008235771A (en) Method of manufacturing solid state electrolytic capacitor
JP4557766B2 (en) Solid electrolytic capacitor and method of manufacturing the solid electrolytic capacitor
JP2009246138A (en) Solid electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4498168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees