JP2006225808A - Oil solution for precursor fiber of carbon fiber and precursor fiber bundle of the carbon fiber - Google Patents

Oil solution for precursor fiber of carbon fiber and precursor fiber bundle of the carbon fiber Download PDF

Info

Publication number
JP2006225808A
JP2006225808A JP2005042471A JP2005042471A JP2006225808A JP 2006225808 A JP2006225808 A JP 2006225808A JP 2005042471 A JP2005042471 A JP 2005042471A JP 2005042471 A JP2005042471 A JP 2005042471A JP 2006225808 A JP2006225808 A JP 2006225808A
Authority
JP
Japan
Prior art keywords
carbon fiber
temperature
oil
agent
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005042471A
Other languages
Japanese (ja)
Other versions
JP4507908B2 (en
Inventor
Yasumasa Yamamoto
泰正 山本
Fumihiko Tanaka
文彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005042471A priority Critical patent/JP4507908B2/en
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to US11/793,163 priority patent/US20080152574A1/en
Priority to DE602005026223T priority patent/DE602005026223D1/en
Priority to CN2005800449490A priority patent/CN101091010B/en
Priority to EP05819808A priority patent/EP1837424B1/en
Priority to PCT/JP2005/023702 priority patent/WO2006070706A1/en
Priority to AT05819808T priority patent/ATE497551T1/en
Publication of JP2006225808A publication Critical patent/JP2006225808A/en
Application granted granted Critical
Publication of JP4507908B2 publication Critical patent/JP4507908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil solution for the precursor fiber of a carbon fiber with which a high performance carbon fiber can be stably produced in good quality without fluff and thread breakage even in a calcination condition of higher thread density, higher tension and higher speed than those of conventional ones. <P>SOLUTION: The oil solution for the precursor fiber of the carbon fiber comprises main ingredient and a temperature sensitive polymer. Precursor carbon fiber bundles for the carbon fiber are produced by using the oil solution for the precursor fiber of the carbon fiber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高性能な炭素繊維を高い操業性で製造することができる炭素繊維前駆体繊維束及びそれに用いる炭素繊維前駆体繊維用油剤に関するものである。   The present invention relates to a carbon fiber precursor fiber bundle capable of producing high-performance carbon fibers with high operability, and an oil for carbon fiber precursor fibers used therefor.

炭素繊維は、他の繊維に比べて高い比強度および比弾性率を有するため、複合材料用補強繊維として、従来からのスポーツや航空・宇宙用途に加え、自動車や土木・建築、圧力容器、風車ブレードなどの一般産業用途にも幅広く展開されつつあるが、特にスポーツや航空・宇宙用途においては、更なる高強度化や高弾性率化の要請が高い。   Carbon fiber has higher specific strength and elastic modulus than other fibers, so it can be used as a reinforcing fiber for composite materials in addition to conventional sports, aviation and space applications, as well as automobiles, civil engineering / architecture, pressure vessels, windmills. Although it is being widely deployed in general industrial applications such as blades, there is a strong demand for higher strength and higher elastic modulus, especially in sports, aerospace, and space applications.

炭素繊維の中で、最も広く利用されているポリアクリロニトリル系炭素繊維は、前駆体となるポリアクリロニトリル系繊維を湿式紡糸または乾湿式紡糸後、200〜400℃の酸化性雰囲気下で耐炎化繊維へ転換し、少なくとも1000℃の不活性雰囲気下で炭素化することによって、工業的に製造されている。   Among the carbon fibers, the most widely used polyacrylonitrile-based carbon fibers are wet-spun or dry-wet-spun polyacrylonitrile-based fibers that are precursors, and then converted into flame-resistant fibers in an oxidizing atmosphere at 200 to 400 ° C. It is produced industrially by converting and carbonizing under an inert atmosphere of at least 1000 ° C.

高性能な炭素繊維を得るためには、先述の各製造工程において、張力を高く、あるいは高い延伸倍率に設定することがよく行われるが、その際、単繊維同士の接着が発生して品位・品質が低下しやすいため、安定生産のためには妥協的な延伸倍率で操業せざるを得ないという問題がある。   In order to obtain a high-performance carbon fiber, in each of the manufacturing processes described above, it is often performed to set a high tension or a high draw ratio. Since the quality is liable to deteriorate, there is a problem that it is necessary to operate at a compromise draw ratio for stable production.

この問題に対し、耐熱性の高いシリコーン油剤をアクリルプリカーサーに付与する技術が多数提案され、工業的に広く適用されている。例えば、特定のアミノ変性シリコーン、エポキシ変性シリコーン、アルキレンオキサイド変性シリコーンを混合した油剤は、空気中及び窒素中での加熱時の減量が少なく、接着防止効果が高いことが開示されている(例えば、特許文献1)。しかしながら、このような従来のシリコーン油剤は、耐炎化工程において単繊維間に介在して耐炎化反応に必須となる酸素の供給を妨げ、その結果、耐炎化反応の進行度ムラ、いわゆる焼成ムラの発生が誘起され、更にはこれが原因となって、続く炭化工程において糸切れや毛羽発生などの問題を引き起こしやすく、生産性向上の大きな障害となる。この問題に対し、シリコーン油剤の硬化挙動を特定することにより改善する技術(例えば、特許文献2)が開示されているが、更なる炭素繊維の高性能化については限界があった。
特公平3−40152号公報(全体) 特開2001−172880号公報(全体)
In response to this problem, many techniques for applying a silicone oil agent having high heat resistance to an acrylic precursor have been proposed and widely applied industrially. For example, it is disclosed that an oil agent mixed with a specific amino-modified silicone, epoxy-modified silicone, and alkylene oxide-modified silicone has a low weight loss upon heating in air and nitrogen and has a high anti-adhesion effect (for example, Patent Document 1). However, such a conventional silicone oil agent prevents the supply of oxygen that is essential for the flameproofing reaction by interposing between the single fibers in the flameproofing process, and as a result, unevenness in the progress of the flameproofing reaction, so-called uneven firing. Occurrence of this phenomenon is induced, and this causes a problem such as yarn breakage and fluff generation in the subsequent carbonization process, which is a great obstacle to productivity improvement. Although the technique (for example, patent document 2) improved by specifying the hardening behavior of a silicone oil agent is disclosed with respect to this problem, there existed a limit about the further performance enhancement of carbon fiber.
Japanese Patent Publication No. 3-40152 (Overall) JP 2001-172880 A (Overall)

本発明は、上記問題点を解決し、高糸条密度、高張力の条件下においても、単繊維間接着を防ぎ、かつ、耐炎化工程での酸素の供給を円滑に行うことができる、優れた性能を有する炭素繊維を製造するための炭素繊維前駆体繊維用油剤、及びそれを用いた炭素繊維前駆体繊維束を提供するものである。   The present invention solves the above-mentioned problems, can prevent adhesion between single fibers even under conditions of high yarn density and high tension, and can smoothly supply oxygen in the flameproofing process. An oil agent for carbon fiber precursor fibers for producing carbon fibers having high performance, and a carbon fiber precursor fiber bundle using the same.

本発明者らは油剤の役割に着目し、鋭意検討した結果、下記骨子の手段により、上記課題を解決する。   The present inventors pay attention to the role of the oil agent and, as a result of intensive studies, solve the above problems by the following means.

即ち、本発明の解決手段は、主剤と感温性高分子を含む炭素繊維前駆体繊維用油剤であり、当該炭素繊維前駆体繊維用油剤を用いて製造された炭素繊維用前駆体繊維束である。   That is, the solution of the present invention is a carbon fiber precursor fiber oil containing a main agent and a temperature-sensitive polymer, and a carbon fiber precursor fiber bundle produced using the carbon fiber precursor fiber oil. is there.

本発明によれば、炭素繊維用前駆体繊維用油剤の成分として、主剤の他に、感温性高分子が存在することにより、主剤を単繊維一本一本に均一に付着させることが可能となるために単繊維間接着を高効率で抑制させることができ、従来よりも高い糸条密度、高張力、高速の焼成条件であっても、毛羽や糸切れのない安定した品位で、高性能な炭素繊維を製造することができる。   According to the present invention, the presence of a thermosensitive polymer in addition to the main agent as a component of the carbon fiber precursor fiber oil agent makes it possible to uniformly adhere the main agent to each single fiber. Therefore, it is possible to suppress the bonding between single fibers with high efficiency, and even with higher yarn density, higher tension, and higher speed firing conditions than in the past, stable and high quality without fluff or yarn breakage. High performance carbon fibers can be produced.

本発明の炭素繊維前駆体繊維用油剤(以下、単に油剤と略記する)は、少なくとも主剤と感温性高分子を含むが、後述するように液状媒体中での感温性高分子の挙動が重要であるため、本発明で言う油剤とは、実質的に主剤と感温性高分子と液状媒体を必須成分とするものを油剤と呼ぶ。なお、主剤が液状媒体を兼ねる場合は、本発明の油剤の必須成分は、主剤と感温性高分子となる。   The oil agent for carbon fiber precursor fibers of the present invention (hereinafter simply referred to as “oil agent”) includes at least a main agent and a temperature-sensitive polymer, but the behavior of the temperature-sensitive polymer in a liquid medium as described later. Since it is important, the oil agent referred to in the present invention is an oil agent that substantially contains a main agent, a temperature-sensitive polymer, and a liquid medium as essential components. When the main agent also serves as a liquid medium, the essential components of the oil agent of the present invention are the main agent and a temperature-sensitive polymer.

本発明で言う感温性高分子とは、かかる高分子と液状媒体の混合液において、ある特定の温度より温度が低い場合には実質的に溶液状態、高い場合には少なくとも高分子の一部が液状媒体より析出する性質を有する高分子を指す。その特定の温度は、曇点や下限臨界共溶温度と呼ばれる。感温性高分子として、例えば、エチレンオキサイド鎖と、疎水部、例えばアルキル基や炭素が3以上のアルキレンオキサイド鎖、からなる重量平均分子量が2,000以上の分子、より好ましくは重量平均分子量が5,000以上の分子、更に好ましくは重量平均分子量が10,000以上の分子、あるいは、N−アルキル(メタ)アクリルアミドのホモポリマーや前記モノマーと(メタ)アクリル酸などとの共重合体、ジメチルアミノエチル(メタ)クリレートとエチレングリコールジメタクリレートなどの多官能性モノマーとの共重合体などや、それらの混合物などが挙げられる。中でも、N−イソプロピルアクリルアミドまたはジメチルアミノエチルメタクリレートのいずれかあるいは両方を必須成分として重合された高分子は好ましく用いられる。N−イソプロピルアクリルアミドの場合、そのホモポリマーの下限臨界共溶温度は水中では約32℃であるが、曇点や下限臨界共用温度は、共重合させることによってコントロール可能である。基本的にはアニオン性モノマーやカチオン性モノマー、ノニオン性の親水性モノマーなどを共重合すると、下限臨界共溶温度は上昇する。アニオン性モノマーとしては、例えば(メタ)アクリル酸、スルホン酸基を有するモノマー、より具体的にはスチレンスルホン酸などが挙げられ、カチオン性モノマーとしては含窒素モノマー、例えばN,N−ジメチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアクリルアミドなどが挙げられ、ノニオン性の親水性モノマーとしては、例えば親水基を有するビニル系化合物や(メタ)アクリレート、より具体的には、N−ビニル−2−ピロリドンや、ヒドロキシアルキル(メタ)アクリレートなど、更に具体的には2−ヒドロキシエチル(メタ)アクリレートなどが挙げられるが、これらに限定されず種々のモノマーが用いられる。なお、例えば油剤にイオン性物質が用いられる場合、凝集などによって油剤としての機能や状態に不具合を起こさないようにするため、感温性高分子は少なくとも異符号のイオン性ではないことが好ましい。より具体的には乳化剤がカチオン性であるとか、主剤がアミノ基を含んでいるような場合は、感温性高分子はカチオン性かノニオン性が好ましい。このような感温性高分子に対応する液状媒体としては、感温性高分子の曇点または下限臨界共用温度が現れるようにするため、親水性媒体が好ましく、なかんずく水が好ましい。後述の主剤に対する感温性高分子の割合は、油剤の付与方法を開示した後に述べる。   The temperature-sensitive polymer referred to in the present invention is a substantially liquid state when the temperature is lower than a specific temperature in a mixed liquid of the polymer and the liquid medium, and at least a part of the polymer when the temperature is higher. Refers to a polymer having the property of precipitating from a liquid medium. The specific temperature is called a cloud point or a lower critical eutectic temperature. As the temperature-sensitive polymer, for example, a molecule having a weight average molecular weight of 2,000 or more, more preferably a weight average molecular weight composed of an ethylene oxide chain and a hydrophobic portion, for example, an alkyl group or an alkylene oxide chain having 3 or more carbon atoms. 5,000 or more molecules, more preferably a molecule having a weight average molecular weight of 10,000 or more, or a homopolymer of N-alkyl (meth) acrylamide or a copolymer of the monomer and (meth) acrylic acid, dimethyl Examples thereof include a copolymer of aminoethyl (meth) acrylate and a polyfunctional monomer such as ethylene glycol dimethacrylate, a mixture thereof, and the like. Among them, a polymer polymerized with either or both of N-isopropylacrylamide and dimethylaminoethyl methacrylate as an essential component is preferably used. In the case of N-isopropylacrylamide, the lower critical eutectic temperature of the homopolymer is about 32 ° C. in water, but the cloud point and lower critical shared temperature can be controlled by copolymerization. Basically, when an anionic monomer, a cationic monomer, a nonionic hydrophilic monomer or the like is copolymerized, the lower critical solution temperature rises. Examples of the anionic monomer include (meth) acrylic acid, a monomer having a sulfonic acid group, more specifically styrene sulfonic acid, and the like, and examples of the cationic monomer include nitrogen-containing monomers such as N, N-dimethylacrylamide, N, N-dimethylaminopropyl acrylamide, N, N-diethyl acrylamide, etc. may be mentioned. Examples of nonionic hydrophilic monomers include vinyl compounds and (meth) acrylates having a hydrophilic group, and more specifically, N -Vinyl-2-pyrrolidone, hydroxyalkyl (meth) acrylate and the like, more specifically, 2-hydroxyethyl (meth) acrylate and the like are exemplified, but not limited thereto, various monomers are used. For example, when an ionic substance is used for the oil agent, it is preferable that the temperature-sensitive polymer is not at least ionic with a different sign so as not to cause problems in the function and state of the oil agent due to aggregation or the like. More specifically, when the emulsifier is cationic or the main agent contains an amino group, the temperature-sensitive polymer is preferably cationic or nonionic. As the liquid medium corresponding to such a temperature-sensitive polymer, a hydrophilic medium is preferable so that the cloud point or the lower critical shared temperature of the temperature-sensitive polymer appears, and water is particularly preferable. The ratio of the temperature-sensitive polymer to the main agent described below will be described after disclosing the method of applying the oil agent.

本発明で言う主剤とは、主剤と感温性高分子と液状媒体の三者を対象にして比較した場合、油剤中の感温性高分子の重量含有率より多く、かつ主剤と液状媒体が異なる場合に液状媒体ではないものを指す。本発明の油剤に含まれる主剤としては、単糸間接着防止効果や集束性が認められるものであれば特に限定されないが、背景技術でも説明したように、シリコーン化合物は、一般に高い接着防止効果が認められるため、その効果をより一層際立たせるために好ましく使用できる。シリコーン化合物としては、例えば、ジメチルポリシロキサンなどのジオルガノポリシロキサンや、それを基本にしたアミノ変性やエポキシ変性やポリエーテル変性などの各種変性物が知られており、本発明にも用いられるが、少なくとも主剤の一部には繊維と親和性の高いアミノ変性シリコーンが含まれているのが好ましく、アミノ変性シリコーンと乳化安定性に優れるポリエーテル変性シリコーンを併用するのは更に好ましく、アミノ変性シリコーンと耐熱性に優れるエポキシ変性シリコーンとポリエーテル変性シリコーンを併用するのが特に好ましい。アミノ変性シリコーンは、主剤のうち、20〜100重量%が好ましく、30〜90重量%がより好ましく、40〜80重量%がなお好ましい。   The main agent referred to in the present invention is more than the weight content of the temperature-sensitive polymer in the oil when compared with the main agent, the temperature-sensitive polymer, and the liquid medium, and the main agent and the liquid medium are When different, it refers to something that is not a liquid medium. The main agent contained in the oil agent of the present invention is not particularly limited as long as the effect of preventing adhesion between single yarns and sizing properties are recognized, but as described in the background art, silicone compounds generally have a high adhesion preventing effect. Since it is recognized, it can be preferably used in order to further enhance the effect. As the silicone compound, for example, diorganopolysiloxane such as dimethylpolysiloxane and various modified products such as amino modification, epoxy modification, and polyether modification based on the same are known and used in the present invention. In addition, it is preferable that at least a part of the main component contains an amino-modified silicone having a high affinity for fibers, and it is more preferable to use an amino-modified silicone and a polyether-modified silicone having excellent emulsion stability in combination. It is particularly preferable to use an epoxy-modified silicone and a polyether-modified silicone which are excellent in heat resistance. The amino-modified silicone is preferably 20 to 100% by weight, more preferably 30 to 90% by weight, and still more preferably 40 to 80% by weight of the main agent.

また、本発明の油剤の主剤が、ケイ素非含有化合物であることも好ましいものである。先述のように、シリコーン化合物は、高い単糸間接着防止効果を有する一方で、焼成炉内で窒化ケイ素や酸化ケイ素を形成して操業性を低下させる可能性がある。従って、そのような懸念のないケイ素を含有しない化合物を用いるのは好ましいことである。このようなケイ素非含有化合物としては、耐熱性の高い有機化合物が好ましく、特に芳香族系有機化合物は好ましく用いられる。例えば、付加モル数1以上のスチレン化フェノール系化合物、ビスフェノール系化合物、ナフタレンのホルムアルデヒド縮合物、タンニンなどのポリフェノール類などが挙げられる。また、この中でも、ケイ素非含有化合物が実質的に水溶性または水中自己乳化性を有する液体であることが単糸への均一付着の点で好ましい。例えば、上記例のような各種の芳香族系有機化合物に親水基、例えばエチレンオキサイド鎖や水酸基などが付加されているような化合物が挙げられる。   It is also preferable that the main component of the oil agent of the present invention is a silicon-free compound. As described above, the silicone compound has a high effect of preventing adhesion between single yarns, but may form silicon nitride or silicon oxide in a firing furnace to reduce operability. Therefore, it is preferable to use a silicon-free compound that does not have such a concern. As such a silicon-free compound, an organic compound having high heat resistance is preferable, and an aromatic organic compound is particularly preferably used. Examples thereof include styrenated phenol compounds having 1 or more added moles, bisphenol compounds, formaldehyde condensates of naphthalene, polyphenols such as tannin, and the like. Of these, the silicon-free compound is preferably a liquid that is substantially water-soluble or self-emulsifiable in water from the viewpoint of uniform adhesion to a single yarn. Examples thereof include compounds in which a hydrophilic group such as an ethylene oxide chain or a hydroxyl group is added to various aromatic organic compounds as in the above examples.

本発明の油剤の主剤は、シリコーン化合物の場合であっても、ケイ素非含有化合物であっても、それらの混合物であっても構わないが、240℃で2時間、空気中で熱処理した時に、その減量率が70%以下、好ましくは50%以下に抑えられるような耐熱性を有するものが好ましい。   The main component of the oil agent of the present invention may be a silicone compound, a silicon-free compound, or a mixture thereof, but when heat-treated in air at 240 ° C. for 2 hours, Those having heat resistance such that the weight loss rate can be suppressed to 70% or less, preferably 50% or less are preferable.

また、本発明の油剤の主剤は、液状媒体に溶解するもの、または自己乳化するものであれば特に問題ないが、溶解または自己乳化しない場合は、乳化・分散するために乳化剤や分散剤などの界面活性剤を併用するのが好ましい。本発明の油剤に用いられる界面活性剤は、特に種類は問わず、アニオン性、カチオン性、ノニオン性、両性のいずれもが用いられ、アニオン性とカチオン性の組み合わせ以外は、組み合わせて用いても構わないが、カチオン性が好ましく、アミノ基などがもたらす弱カチオン性はなお好ましく、ノニオン性は特に好ましく用いられる。ノニオン性の界面活性剤としては、例えばポリエチレングリコールのアルキルエーテルやアルキルフェニルエーテル、アルキルアミンエーテルなどを挙げることができる。乳化・分散した場合の重量平均粒子径は、0.001〜1μmが好ましく、0.01〜0.5μmがより好ましく、0.05〜0.2μmがなかんずく好ましい。0.001μmより小さい場合、効果が飽和する傾向にあるにも関わらず、乳化・分散が困難となりやすい。また、0.5μmより大きい場合には、繊維束の中心付近まで粒子が届かず、不均一付着を起こす場合がある。かかる重量平均粒子径は市販の光散乱などを原理とする粒度分布計で確認することができる。主剤に対する界面活性剤の添加量は、界面活性剤、主剤、液状媒体の組み合わせによるものであり、一慨には言えない。しかしながら、上記の平均粒子径を達成し、かつ主剤100重量部に対して0〜60重量部、好ましくは0〜35重量部となるような界面活性剤の種類を選ぶべきである。なお、界面活性剤の種類を複数にして用いることは、乳化・分散が安定するため、好ましい手法である。   Further, the main agent of the oil agent of the present invention is not particularly problematic as long as it is soluble in a liquid medium or self-emulsified, but when not dissolved or self-emulsified, an emulsifier, a dispersant, etc. It is preferable to use a surfactant in combination. The surfactant used in the oil of the present invention is not particularly limited, and any of anionic, cationic, nonionic, and amphoteric can be used, and combinations other than anionic and cationic can be used. However, the cationic property is preferable, the weak cationic property caused by an amino group or the like is still preferable, and the nonionic property is particularly preferably used. Examples of nonionic surfactants include polyethylene glycol alkyl ethers, alkylphenyl ethers, and alkylamine ethers. The weight average particle diameter when emulsified and dispersed is preferably 0.001 to 1 μm, more preferably 0.01 to 0.5 μm, and most preferably 0.05 to 0.2 μm. When it is smaller than 0.001 μm, emulsification / dispersion tends to be difficult even though the effect tends to be saturated. On the other hand, if it is larger than 0.5 μm, the particles do not reach the vicinity of the center of the fiber bundle and may cause non-uniform adhesion. Such a weight average particle diameter can be confirmed with a particle size distribution meter based on the principle of commercially available light scattering. The addition amount of the surfactant with respect to the main agent depends on the combination of the surfactant, the main agent and the liquid medium, and cannot be said at a glance. However, the surfactant type should be selected so as to achieve the above average particle size and 0 to 60 parts by weight, preferably 0 to 35 parts by weight with respect to 100 parts by weight of the main agent. Use of a plurality of types of surfactants is a preferable technique because emulsification and dispersion are stable.

本発明の油剤は、炭素繊維前駆体繊維束の製糸工程のいずれの段階で付与しても良いが、単糸同士の接着や融着を効果的に防止するためには、油剤なしでは前駆体繊維束の単繊維同士が接着する程の熱が加わる工程の前に付与するのが好ましい。炭素繊維としてはポリアクリロニトリル系やピッチ系、セルロース系などが知られており、どの炭素繊維の場合にも本発明の油剤は前記のような熱が加わる工程、例えば耐炎化や不融化と呼ばれる工程の前に好ましく前駆体繊維束に付与できるが、以下、特に高性能炭素繊維としてよく用いられるポリアクリロニトリル系炭素繊維に用いる場合について、より好ましい実施の形態を説明する。   The oil agent of the present invention may be applied at any stage of the spinning process of the carbon fiber precursor fiber bundle. However, in order to effectively prevent adhesion and fusion between single yarns, the precursor without the oil agent is used. It is preferable to apply before the step of applying heat enough to bond the single fibers of the fiber bundle. As the carbon fiber, polyacrylonitrile-based, pitch-based, cellulose-based, etc. are known, and in any carbon fiber, the oil agent of the present invention is a process in which heat is applied as described above, for example, a process called flame resistance or infusibilization. Although it can be preferably applied to the precursor fiber bundle before the above, a more preferred embodiment will be described below particularly for the case of using it for polyacrylonitrile-based carbon fibers often used as high-performance carbon fibers.

ポリアクリロニトリル系前駆体繊維は、通常は湿式紡糸または乾湿式紡糸によって製造されるが、その工程中、最終の炭素繊維を実用的な物性とするため、加熱することによって前駆体繊維を乾燥・緻密化させる工程がある。本発明の油剤は、その乾燥工程以前に前駆体繊維束に付与されるのが好ましい。付与する方法は、ディップ・ニップ法やスプレー法、ガイド給油法など、特に限定されるものではないが、後述するように感温性高分子の作用の都合により、実用面からは油剤温度を35℃以下にして付与することが好ましい。下限の温度は、概ね液状媒体の凝固点までとなる。上記の乾燥・緻密化させる工程の加熱温度は、120〜220℃が好ましく、140〜210℃がより好ましく、160〜200℃が更に好ましい。220℃を超えると単繊維間接着を起こしやすく、120℃未満では乾燥に時間が掛かり、効率的ではない場合がある。加熱時間は、5〜120秒が好ましく、10〜90秒がより好ましく、15〜60秒が更に好ましい。加熱時間が5秒に満たないと乾燥・緻密化の効果が不十分になり、120秒を超えても、乾燥・緻密化の効果は飽和していることが多い。この時間は、加熱温度や加熱の方式(例えば、接触加熱か非接触加熱かなど)などによって適宜決められる。加熱する形態は、電気ヒーターやスチームなどで加熱した空気の中に前駆体繊維束を通過させるテンターや赤外線加熱装置のような非接触式と、プレート式ヒーターやドラム式ヒーターなどのような接触式のいずれもが用いられるが、接触式の方が熱伝達効率の点でより好ましい。   Polyacrylonitrile-based precursor fibers are usually manufactured by wet spinning or dry-wet spinning. During the process, the final carbon fiber is dried and densified by heating to make practical properties. There is a process to make it. The oil agent of the present invention is preferably applied to the precursor fiber bundle before the drying step. The application method is not particularly limited, such as a dip nip method, a spray method, or a guide oil supply method. However, as described later, the temperature of the oil agent is set to 35 from the practical point of view due to the effect of the thermosensitive polymer. It is preferable to apply at a temperature not higher than C. The lower limit temperature is approximately up to the freezing point of the liquid medium. The heating temperature in the drying / densification step is preferably 120 to 220 ° C, more preferably 140 to 210 ° C, and still more preferably 160 to 200 ° C. If it exceeds 220 ° C, adhesion between single fibers tends to occur, and if it is less than 120 ° C, it takes time to dry, which may not be efficient. The heating time is preferably 5 to 120 seconds, more preferably 10 to 90 seconds, and still more preferably 15 to 60 seconds. If the heating time is less than 5 seconds, the effect of drying / densification becomes insufficient, and the effect of drying / densification is often saturated even if it exceeds 120 seconds. This time is appropriately determined depending on the heating temperature and heating method (for example, contact heating or non-contact heating). The heating mode is non-contact type such as a tenter or infrared heating device that allows the precursor fiber bundle to pass through air heated by an electric heater or steam, and a contact type such as a plate heater or drum heater. Any of these may be used, but the contact type is more preferable in terms of heat transfer efficiency.

従来から知られている油剤は、上述のごとき主剤と液状媒体からなるが、これに感温性高分子を併用して本発明の油剤とすることによって、炭素繊維前駆体繊維束の単繊維同士の接着または融着防止効果がより一層高度なものとなるのである。そのメカニズムは、必ずしも明確になった訳ではないが、次のように考えている。即ち、主剤と液状媒体からなる油剤が炭素繊維前駆体繊維束に付与された後、加熱による乾燥工程に移るが、その際、液状媒体は前駆体繊維束の表面から雰囲気に対して揮発蒸散するため、繊維束内の液状媒体は束の表面に向かって移動する。これに伴って液状媒体に溶解または乳化または分散している主剤も移動するため、繊維束の内側は主剤が不足することになり、油剤の効果が希薄となる。そこに、感温性高分子が存在する場合、油剤が加熱されて感温性高分子の曇点または下限臨界共溶温度を超える温度になると、感温性高分子が析出して、油剤全体は寒天やゼリーやプリン状のゲル状態となる。これによって、液状媒体の乾燥は起こっても主剤の移動は抑制されるため、繊維束の内側の主剤不足は解消され、油剤の効果は繊維束全体でほぼ均等になると考えられる。また、単繊維同士の間に存在する油剤は、加熱途中に単繊維が動くことによって押し出され、単繊維同士が融着または接着する可能性があるが、感温性高分子の働きによって油剤がゲル化すると押し出されにくくなり、単繊維同士の融着または接着が抑制されると考えられる。このような効果は、感温性高分子が曇点または下限臨界共溶温度を有するために発現するのであって、例えば液状媒体が水の場合にポリビニルアルコールや各種水溶性ガムのような通常の水溶性高分子を用いたとしても、それらは水が揮発蒸散する場所、即ち繊維束の表面で濃縮され、飽和溶解度を超えて初めて析出するため、主剤の繊維束の内部から表面への移動を抑制することはできないし、単繊維間からの油剤の押し出されに対しても何の抑制効果もない。   Conventionally known oil agents are composed of the above-mentioned main agent and a liquid medium, but by using a temperature-sensitive polymer in combination with the oil agent of the present invention, the single fibers of the carbon fiber precursor fiber bundle are made of each other. Thus, the effect of preventing adhesion or fusion is further enhanced. The mechanism is not necessarily clear, but I think as follows. That is, after the oil agent composed of the main agent and the liquid medium is applied to the carbon fiber precursor fiber bundle, the process proceeds to a drying process by heating. At this time, the liquid medium evaporates from the surface of the precursor fiber bundle to the atmosphere. Therefore, the liquid medium in the fiber bundle moves toward the surface of the bundle. Along with this, the main agent dissolved, emulsified or dispersed in the liquid medium also moves, so that the main agent is insufficient inside the fiber bundle, and the effect of the oil agent becomes dilute. If there is a temperature-sensitive polymer, when the oil is heated to a temperature exceeding the cloud point or lower critical eutectic temperature of the temperature-sensitive polymer, the temperature-sensitive polymer precipitates and the entire oil is Becomes a gel state of agar, jelly or pudding. Thereby, even if the liquid medium is dried, the movement of the main agent is suppressed, so that the shortage of the main agent inside the fiber bundle is eliminated, and the effect of the oil agent is considered to be substantially uniform over the entire fiber bundle. In addition, the oil agent present between the single fibers may be extruded by the movement of the single fibers during heating, and the single fibers may be fused or bonded together. When gelled, it becomes difficult to extrude, and it is considered that fusion or adhesion between single fibers is suppressed. Such an effect is manifested because the temperature-sensitive polymer has a cloud point or a lower critical eutectic temperature. For example, when the liquid medium is water, it is a common substance such as polyvinyl alcohol and various water-soluble gums. Even when water-soluble polymers are used, they are concentrated at the surface where the water evaporates, that is, at the surface of the fiber bundle, and precipitate only after exceeding the saturation solubility, so that the main agent moves from the inside to the surface of the fiber bundle. It cannot be suppressed, and there is no suppression effect against the extrusion of oil from between single fibers.

上記の推定メカニズムから、感温性高分子の曇点または下限臨界共溶温度は、油剤を炭素繊維前駆体繊維束に付与する際の油剤温度より高いことが望ましく、液状媒体の沸点より低いことが望ましい。具体的には、曇点または下限臨界共溶温度は20〜98℃が好ましく、30〜80℃がより好ましく、35〜70℃がより一層好ましい。20℃未満の曇点または下限臨界共溶温度であっても、それより更に低い温度で繊維束に油剤を付与できれば特に差し支えはないが、一般的な室温や特に夏場の室温を考慮すると、油剤を冷却したり、製造する空間を冷房したりする必要があるため、製造のコストや操業性などの面で好ましい選択とは言えない。一方、98℃を超える曇点または下限臨界共溶温度の場合は、室温と曇点または下限臨界共溶温度との温度差が大きく、加熱した際に、繊維束内はまだ曇点または下限臨界共溶温度に到達していないにも関わらず、繊維束表面は液状媒体の沸点に到達し、繊維束の内側から表面に向かっての液状媒体や主剤や感温性高分子の移動が開始する可能性が高まるため、好ましくない。従って、製造する場所において、年間の最高油剤温度よりも高い温度範囲の中で、できるだけ低い温度に曇点または下限臨界共溶温度を設定した感温性高分子を用いるのが実用的で、かつ最大の効果を引き出すことができると言える。   From the above estimation mechanism, the cloud point or lower critical eutectic temperature of the thermosensitive polymer is preferably higher than the oil temperature when applying the oil to the carbon fiber precursor fiber bundle, and lower than the boiling point of the liquid medium. Is desirable. Specifically, the cloud point or lower critical eutectic temperature is preferably 20 to 98 ° C, more preferably 30 to 80 ° C, and still more preferably 35 to 70 ° C. Even if it is a cloud point of less than 20 ° C. or a lower critical eutectic temperature, there is no problem as long as the oil agent can be applied to the fiber bundle at a temperature lower than that. Since it is necessary to cool the manufacturing space or to cool the space for manufacturing, it is not a preferable choice in terms of manufacturing cost, operability, and the like. On the other hand, when the cloud point or lower critical eutectic temperature exceeds 98 ° C., the temperature difference between the room temperature and the cloud point or lower critical eutectic temperature is large. Although the eutectic temperature has not been reached, the fiber bundle surface reaches the boiling point of the liquid medium, and the movement of the liquid medium, the main agent and the thermosensitive polymer from the inside of the fiber bundle toward the surface starts. Since possibility increases, it is not preferable. Therefore, it is practical to use a thermosensitive polymer in which the cloud point or the lower critical eutectic temperature is set as low as possible within the temperature range higher than the maximum oil temperature of the year at the production site, and It can be said that the maximum effect can be brought out.

感温性高分子の濃度は、用いる感温性高分子や液状媒体の種類の組み合わせによって適正値が変わるために一慨には言えないが、油剤全量に対して概ね0.0001〜10重量%である。より重要なことは、油剤を炭素繊維前駆体繊維束に付与する時の温度における油剤の粘度が1〜50cP、より好ましくは1〜20cP、なかんずく好ましくは2〜10cPとなることである。粘度が50cPを超えると、束内に油剤を均一に付与することが難しくなる。下限は特に限定されるものでなく、均一付着の点で低ければ低い方が良いことになるが、例えば常温付近で約1cPの水を液状媒体として選択した場合には、実質的には、感温性高分子の溶解や、主剤の溶解または乳化・分散があるため、2cP以上になることが多い。なお、粘度は、市販の回転式粘度計を用いて測定できる。その際、測定温度は、油剤を前駆体繊維束に付与する際の油剤の温度とする。もし、油剤が剪断力に応じて粘度が変化するチキソトロピーなどの性質がある場合は、剪断力を変化させた時に漸近する粘度を本発明で言う粘度と見なすが、漸近する粘度が回転式粘度計の都合によって予測し難い場合は、回転式粘度計の最高の剪断力を加えた時の粘度の2倍を本発明で言う粘度と見なす。使用できる好ましい回転式粘度計としては、東機産業株式会社製R型粘度計(形名:RE115L)が一例として挙げられる。   The concentration of the temperature-sensitive polymer cannot be said at a glance because the appropriate value varies depending on the combination of the type of the temperature-sensitive polymer and the liquid medium used, but is generally 0.0001 to 10% by weight based on the total amount of the oil agent. It is. More importantly, the viscosity of the oil agent at the temperature at which the oil agent is applied to the carbon fiber precursor fiber bundle is 1 to 50 cP, more preferably 1 to 20 cP, and particularly preferably 2 to 10 cP. When the viscosity exceeds 50 cP, it is difficult to uniformly apply the oil in the bundle. The lower limit is not particularly limited, and it is better if it is low in terms of uniform adhesion. For example, when about 1 cP of water is selected as a liquid medium at around room temperature, the sensitivity is substantially reduced. In many cases, it becomes 2 cP or more because of dissolution of the warm polymer and dissolution or emulsification / dispersion of the main agent. The viscosity can be measured using a commercially available rotary viscometer. At that time, the measurement temperature is the temperature of the oil agent when the oil agent is applied to the precursor fiber bundle. If the oil agent has a property such as thixotropy in which the viscosity changes according to the shearing force, the asymptotic viscosity when the shearing force is changed is regarded as the viscosity referred to in the present invention. If it is difficult to predict due to the circumstances of the above, the viscosity referred to in the present invention is regarded as twice the viscosity when the maximum shearing force of the rotary viscometer is applied. An example of a preferable rotary viscometer that can be used is an R-type viscometer (model name: RE115L) manufactured by Toki Sangyo Co., Ltd.

主剤の濃度も、油剤がどのくらい繊維束に付与されるかということと密接に関係し、かつ、主剤の効き方も種類によって異なるため、一慨に言えないが、概ね油剤全量に対して0.1〜10重量%である。それよりも重要なことは、上記の通り、油剤の粘度が50cPを超えないことが重要である。また、感温性高分子と主剤との混合比も、上記のように種類などによって変わるものであり、一慨には言えないが、主剤に対して感温性高分子が0.001〜50重量%が好ましく、0.01〜20重量%が更に好ましく、0.1〜10重量%が尚更に好ましい。   The concentration of the main agent is closely related to how much of the oil agent is applied to the fiber bundle, and the effect of the main agent varies depending on the type. 1 to 10% by weight. More importantly, as described above, it is important that the viscosity of the oil does not exceed 50 cP. Further, the mixing ratio of the temperature-sensitive polymer and the main agent also varies depending on the kind as described above, and cannot be said at a glance, but the temperature-sensitive polymer is 0.001 to 50 with respect to the main agent. % By weight is preferred, 0.01 to 20% by weight is more preferred, and 0.1 to 10% by weight is still more preferred.

本発明の油剤には、上記の成分以外にも、平滑剤、吸湿剤、界面活性剤、粘度調整剤、離型剤、展着剤、酸化防止剤、抗菌剤、防腐剤、およびpH調整剤などの成分を含んでもよい。これらの成分は、本発明の油剤全体の5重量%を超えない範囲で混合することが好ましい。   In addition to the above components, the oil agent of the present invention includes a smoothing agent, a hygroscopic agent, a surfactant, a viscosity adjusting agent, a mold release agent, a spreading agent, an antioxidant, an antibacterial agent, an antiseptic agent, and a pH adjusting agent. And the like. These components are preferably mixed within a range not exceeding 5% by weight of the whole oil agent of the present invention.

かかる油剤の製造には、特に限定されず、公知の化学薬品の混合方法や、乳化方法を用いることができる。例えば、装置的にはプロペラ撹拌、ホモミキサーおよびホモジナイザーなどを用いることができる。また、プロセス的には、乳化が必要であれば、強制攪拌による乳化や、均一微小粒径が生成しやすい転相乳化法などを用いることができる。主剤、感温性高分子、液状媒体の三者を最初に仕込み、上記装置とプロセスを選択採用して油剤を製造しても構わないし、あるいは、便宜的に主剤と液状媒体からなる油剤成分1と、感温性高分子と液状媒体からなる油剤成分2に分けてそれぞれについて上記装置とプロセスから適宜選択採用して製造した後に油剤成分1と油剤成分2を混合しても構わないし、またあるいは、前記の油剤成分1を製造した後、上記装置とプロセスから適宜選択採用して油剤成分1に感温性高分子を混合して製造しても構わない。ただし、感温性高分子が関わる工程については、感温性高分子の曇点または下限臨界共溶温度以下で行うのが、感温性高分子について均一な油剤となるので好ましい。かかる工程としては、例えば、前記の三者を最初に仕込んで製造する工程や、前記の油剤成分2を製造するような工程や、油剤成分1と油剤成分2または感温性高分子を混合するような工程がある。
本発明の炭素繊維前駆体繊維束は、ポリアクリロニトリル系重合体を湿式または乾湿式紡糸した後、水洗して得られる水膨潤状態の糸条に上述の油剤を付与した後、130〜200℃で熱処理することにより製造することができる。ポリアクリロニトリル系重合体の成分としては、少なくとも95モル%以上、より好ましくは98モル%以上のアクリロニトリルと、5モル%以下、より好ましくは2モル%以下の、耐炎化を促進し、かつ、アクリロニトリルと共重合性のある耐炎化促進成分を共重合したものを好適に使用することができる。
Production of such an oil agent is not particularly limited, and a known chemical mixing method or emulsification method can be used. For example, propeller stirring, a homomixer, a homogenizer, etc. can be used for the apparatus. In terms of process, if emulsification is necessary, emulsification by forced stirring, a phase inversion emulsification method that easily generates a uniform fine particle size, or the like can be used. The main agent, temperature-sensitive polymer, and liquid medium may be initially charged, and the above-mentioned apparatus and process may be selectively employed to produce an oil agent. Alternatively, an oil agent component 1 composed of the main agent and the liquid medium may be used for convenience. And the oil agent component 2 composed of a temperature-sensitive polymer and a liquid medium, and the oil agent component 1 and the oil agent component 2 may be mixed after being manufactured by appropriately selecting and manufacturing from the above apparatus and process. After the oil agent component 1 is manufactured, the oil agent component 1 may be mixed with a temperature-sensitive polymer by appropriately selecting and employing the above apparatus and process. However, the process involving the temperature-sensitive polymer is preferably performed at a temperature equal to or lower than the cloud point or the lower critical solution temperature of the temperature-sensitive polymer because the temperature-sensitive polymer becomes a uniform oil agent. As such a process, for example, a process in which the above three parties are initially charged, a process in which the oil component 2 is manufactured, an oil component 1 and an oil component 2 or a temperature-sensitive polymer are mixed. There are such processes.
The carbon fiber precursor fiber bundle of the present invention is obtained by applying the above-described oil agent to a water-swollen yarn obtained by wet or dry-wet spinning of a polyacrylonitrile-based polymer, and then at 130 to 200 ° C. It can be manufactured by heat treatment. The components of the polyacrylonitrile-based polymer include at least 95 mol% or more, more preferably 98 mol% or more acrylonitrile, 5 mol% or less, more preferably 2 mol% or less, which promotes flame resistance, and acrylonitrile. A copolymer obtained by copolymerizing a flame resistance-promoting component having a copolymerizable property with styrene can be suitably used.

かかる耐炎化促進成分としては、ビニル基含有化合物(以下ビニル系モノマーと表記する)からなる共重合体が好適に使用される。ビニル系モノマーの具体例としては、アクリル酸、メタクリル酸、イタコン酸など使用することができるが、これらに限定されるものではない。また、一部または全量をアンモニア中和したアクリル酸、メタクリル酸、またはイタコン酸のアンモニウム塩からなる共重合体は、耐炎化促進成分としてより好適に使用される。   As such a flame resistance promoting component, a copolymer composed of a vinyl group-containing compound (hereinafter referred to as a vinyl monomer) is preferably used. Specific examples of the vinyl monomer include acrylic acid, methacrylic acid, and itaconic acid, but are not limited thereto. A copolymer comprising acrylic acid, methacrylic acid, or an ammonium salt of itaconic acid, which is partially or wholly neutralized with ammonia, is more preferably used as a flame resistance promoting component.

紡糸原液は、従来知られている溶液重合法、懸濁重合法、乳化重合法などを採用し得る。紡糸原液に使用される溶媒としては、有機、無機の従来公知の溶媒が使用することができる。特に有機溶媒を使用するのが好ましく、具体的には、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどが使用され、特にジメチルスルホキシドが好ましく使用される。   As the spinning dope, a conventionally known solution polymerization method, suspension polymerization method, emulsion polymerization method and the like can be adopted. As the solvent used in the spinning dope, organic and inorganic conventionally known solvents can be used. In particular, an organic solvent is preferably used. Specifically, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, or the like is used, and dimethyl sulfoxide is particularly preferably used.

紡糸方法は、乾湿式紡糸法や湿式紡糸法が好ましく採用されるが、より表面が平滑な原糸を、生産性よく製造することができることから、前者がより好ましく使用される。   As the spinning method, a dry-wet spinning method or a wet spinning method is preferably employed, but the former is more preferably used because a raw yarn having a smoother surface can be produced with high productivity.

口金から直接または間接に凝固浴中に紡糸原液を吐出して凝固糸を得るが、凝固浴液は、紡糸原液に使用する溶媒と凝固促進成分とから構成するのが、簡便性の点から好ましく、凝固促進成分として水を用いるのがさらに好ましい。凝固浴中の紡糸溶媒と凝固促進成分の割合、および凝固浴液温度は、得られる凝固糸の緻密性、表面平滑性および可紡性などを考慮して適宜選択して使用される。   The spinning stock solution is discharged directly or indirectly from the die into the coagulation bath to obtain a coagulated yarn. The coagulation bath solution is preferably composed of a solvent used for the spinning stock solution and a coagulation promoting component from the viewpoint of simplicity. More preferably, water is used as the coagulation promoting component. The ratio of the spinning solvent and the coagulation promoting component in the coagulation bath, and the coagulation bath liquid temperature are appropriately selected and used in consideration of the denseness, surface smoothness, spinnability, and the like of the coagulated yarn obtained.

得られた凝固糸は、20〜98℃に温調された単数または複数の水浴中で水洗、延伸するのがよい。延伸倍率は、糸切れや単繊維間の接着が生じない範囲で、適宜設定することができるが、より表面が平滑な炭素繊維前駆体繊維を得るためには、5倍以下が好ましく、4倍以下がより好ましく、3倍以下がさらに好ましい。また、得られる炭素繊維前駆体繊維の緻密性を向上させる観点から、延伸浴の最高温度は、50℃以上とするのが好ましく、70℃以上がより好ましい。   The obtained coagulated yarn is preferably washed and drawn in one or more water baths whose temperature is adjusted to 20 to 98 ° C. The draw ratio can be appropriately set within a range where yarn breakage or adhesion between single fibers does not occur. However, in order to obtain a carbon fiber precursor fiber having a smoother surface, it is preferably 5 times or less, and 4 times. The following is more preferable, and 3 times or less is more preferable. Moreover, from the viewpoint of improving the denseness of the obtained carbon fiber precursor fiber, the maximum temperature of the stretching bath is preferably 50 ° C. or higher, and more preferably 70 ° C. or higher.

本発明の油剤は、水洗、延伸された後の水膨潤状態の糸条に付与するのが好ましい。その炭素繊維前駆体繊維束への付着量は、繊維の乾燥重量に対する液状媒体を除く油剤成分の割合が、0.1〜5重量%が好ましく、0.3〜3重量%がより好ましく、0.5〜2重量%がさらに好ましい。0.1重量%を下回ると、単繊維同士の融着が生じ、得られる炭素繊維の引張強度が低下することがある。また、5重量%を超えると、本発明の効果が得にくくなることがある。   The oil agent of the present invention is preferably applied to the yarn in a water-swollen state after being washed and stretched. The amount of the oil agent component excluding the liquid medium relative to the dry weight of the fiber is preferably 0.1 to 5% by weight, more preferably 0.3 to 3% by weight, and the adhesion amount to the carbon fiber precursor fiber bundle is preferably 0 to 0%. More preferably, it is 5 to 2% by weight. If it is less than 0.1% by weight, fusion between single fibers may occur and the tensile strength of the resulting carbon fibers may be reduced. Moreover, when it exceeds 5 weight%, it may become difficult to acquire the effect of this invention.

油剤を付与された糸条は、速やかに乾燥するのがよい。乾燥の方法は、上述の通りである。   The yarn to which the oil is applied should be dried quickly. The drying method is as described above.

乾燥された糸条は、さらに加圧スチーム中または乾熱下で後延伸されるのが、得られる炭素繊維前駆体繊維の緻密性や生産性の観点から好ましい。後延伸時のスチーム圧力または温度や後延伸倍率は、糸切れ、毛羽発生のない範囲で適宜選択して使用するのがよい。   The dried yarn is preferably post-drawn in pressurized steam or under dry heat from the viewpoint of denseness and productivity of the obtained carbon fiber precursor fiber. The steam pressure or temperature at the time of post-stretching and the post-stretch ratio are preferably selected and used as appropriate within the range where yarn breakage and fluff are not generated.

本発明の前駆体繊維の単糸繊度は、0.1〜2.0dTexであることが好ましく、0.3〜1.5dTexであることがより好ましく、0.5〜1.2dTexがさらに好ましい。該繊度は小さいほど、得られる炭素繊維の引張強度や弾性率の点で有利であるが、生産性は低下するため、性能とコストのバランスを勘案し選択するのがよい。
また、本発明の前駆体繊維束を構成する単繊維数は、好ましくは、1000〜96000本であり、より好ましくは、12000〜48000本であり、さらに好ましくは、24000〜48000本である。ここで、前駆体繊維の糸条を構成する単繊維数とは、耐炎化処理される直前の単繊維数をいい、生産性の観点から多いほど好ましい。単繊維の数が1000本未満では、生産性が悪化することが多く、また、96000本を超えると耐炎化の際に焼成むらを発生しやすくなることが多い。
The single yarn fineness of the precursor fiber of the present invention is preferably 0.1 to 2.0 dTex, more preferably 0.3 to 1.5 dTex, and further preferably 0.5 to 1.2 dTex. The smaller the fineness, the more advantageous in terms of the tensile strength and elastic modulus of the obtained carbon fiber, but the productivity is lowered. Therefore, the fineness should be selected in consideration of the balance between performance and cost.
The number of single fibers constituting the precursor fiber bundle of the present invention is preferably 1000 to 96000, more preferably 12000 to 48000, and further preferably 24,000 to 48000. Here, the number of single fibers constituting the yarn of the precursor fiber refers to the number of single fibers immediately before being subjected to flameproofing treatment, and it is more preferable from the viewpoint of productivity. When the number of single fibers is less than 1,000, productivity often deteriorates, and when it exceeds 96,000, uneven firing is likely to occur during flame resistance.

上述したような好ましい方法により、炭素繊維前駆体繊維束が製造され、さらに以下に述べるような方法で、該前駆体繊維束を耐炎化および炭化することにより、高性能な炭素繊維を製造することができる。   A carbon fiber precursor fiber bundle is produced by the preferred method as described above, and a high-performance carbon fiber is produced by flameproofing and carbonizing the precursor fiber bundle by the method described below. Can do.

耐炎化温度は、酸素含有気体雰囲気下、好ましくは空気雰囲気下、200〜300℃で加熱することがよく、糸条が反応熱の蓄熱によって糸切れを生じる温度よりも、10〜20℃低い温度で耐炎化するのがコスト削減および得られる炭素繊維の性能を高める観点から好ましい。耐炎化時間は、生産性および得られる炭素繊維の性能を高める観点から、10〜100分間が好ましく、30〜60分間がより好ましい。この耐炎化時間とは、糸条が耐炎化炉内に滞留している全時間をいう。この時間が10分を下回ると、各単繊維の酸化された外周部分と酸化不足の内側部分の二重構造の構造差が全体的に顕著となり、高性能な炭素繊維を得にくくなることがある。耐炎化工程における糸条の延伸比は0.85〜1.10が良く、0.88〜1.06がより好ましく、0.92〜1.02がさらに好ましい。   The flameproofing temperature is preferably heated at 200 to 300 ° C. in an oxygen-containing gas atmosphere, preferably in an air atmosphere, and the temperature is 10 to 20 ° C. lower than the temperature at which the yarn breaks due to heat accumulation of reaction heat. It is preferable to make it flame resistant from the viewpoint of cost reduction and enhancing the performance of the obtained carbon fiber. The flameproofing time is preferably 10 to 100 minutes, more preferably 30 to 60 minutes, from the viewpoint of improving productivity and the performance of the obtained carbon fiber. This flameproofing time means the total time that the yarn stays in the flameproofing furnace. If this time is less than 10 minutes, the structural difference between the oxidized outer peripheral part of each single fiber and the double structure of the insufficiently oxidized inner part becomes conspicuous as a whole, and it may be difficult to obtain high-performance carbon fibers. . The draw ratio of the yarn in the flameproofing step is preferably 0.85 to 1.10, more preferably 0.88 to 1.06, and still more preferably 0.92 to 1.02.

耐炎化工程に続いて、炭化工程に移るが、その前に300〜800℃の不活性雰囲気下、好ましくは窒素またはアルゴン雰囲気下で行う予備炭化工程を設けるのも好ましい。この予備炭化工程における延伸比を、0.90〜1.25、より好ましくは1.00〜1.20、特に好ましくは1.05〜1.15と設定するのが、得られる炭素繊維の性能を高める観点から良い。   Following the flameproofing step, the process proceeds to a carbonization step, but before that, it is also preferable to provide a preliminary carbonization step performed in an inert atmosphere of 300 to 800 ° C., preferably in a nitrogen or argon atmosphere. The stretch ratio in this preliminary carbonization step is set to 0.90 to 1.25, more preferably 1.00 to 1.20, and particularly preferably 1.05 to 1.15. It is good from the viewpoint of improving

不活性雰囲気下で行われる炭化工程の温度は800〜2000℃であるのがよい。また、その最高温度は、所望する炭素繊維の要求特性に応じて適宜選択して使用されるが、800℃を下回ると、得られる炭素繊維の引張強度、弾性率が低下することがある。炭化工程における延伸比は、好ましくは0.95〜1.05、より好ましくは0.97〜1.02、特に好ましくは0.98〜1.01であるのが、得られる炭素繊維の性能を高める観点から良い。   The temperature of the carbonization process performed in an inert atmosphere is good to be 800-2000 degreeC. Further, the maximum temperature is appropriately selected and used according to the required characteristics of the desired carbon fiber, but if it is lower than 800 ° C., the tensile strength and elastic modulus of the resulting carbon fiber may be lowered. The draw ratio in the carbonization step is preferably 0.95 to 1.05, more preferably 0.97 to 1.02, and particularly preferably 0.98 to 1.01, in order to improve the performance of the obtained carbon fiber. It is good from the viewpoint of enhancing.

より弾性率が高い炭素繊維を所望する場合には、炭化工程に続き黒鉛化を行うこともできる。黒鉛化工程の温度は2000〜2800℃であるのがよい。また、その最高温度は、所望する炭素繊維の要求特性に応じて適宜選択して使用される。黒鉛化工程における延伸比は、所望する炭素繊維の要求特性に応じて、毛羽発生など品位低下の生じない範囲で適宜選択するのがよい。   When a carbon fiber having a higher elastic modulus is desired, graphitization can be performed following the carbonization step. The temperature of the graphitization step is preferably 2000 to 2800 ° C. The maximum temperature is appropriately selected and used according to the required characteristics of the desired carbon fiber. The drawing ratio in the graphitization step is preferably selected as appropriate within a range where no deterioration in quality such as generation of fluff occurs according to the required characteristics of the desired carbon fiber.

得られた炭素繊維に対して、表面処理をすることにより、複合材料とした時のマトリックスとの接着強度をより高めることができる。表面処理方法としては、気相、液相処理を採用できるが、生産性、品質ばらつきを考慮すると、液相処理における電解処理が好ましく適用される。   By subjecting the obtained carbon fiber to a surface treatment, it is possible to further increase the adhesive strength with the matrix when it is made into a composite material. As the surface treatment method, a gas phase or liquid phase treatment can be adopted, but in consideration of productivity and quality variation, electrolytic treatment in the liquid phase treatment is preferably applied.

電解処理に用いられる電解液としては、硫酸、硝酸、塩酸といった酸、水酸化ナトリウム、水酸化カリウム、テトラエチルアンモニウムヒドロキシドといったアルカリあるいはそれらの塩を用いることができるが、特に好ましくはアンモニウムイオンを含む水溶液が好ましい。例えば、硝酸アンモニウム、硫酸アンモニウム、過硫酸アンモニウム、塩化アンモニウム、臭化アンモニウム、燐酸2水素アンモニウム、燐酸水素2アンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、あるいは、それらの混合物を用いることができる。   As an electrolytic solution used for the electrolytic treatment, an acid such as sulfuric acid, nitric acid or hydrochloric acid, an alkali such as sodium hydroxide, potassium hydroxide or tetraethylammonium hydroxide or a salt thereof can be used, and particularly preferably an ammonium ion is contained. An aqueous solution is preferred. For example, ammonium nitrate, ammonium sulfate, ammonium persulfate, ammonium chloride, ammonium bromide, ammonium dihydrogen phosphate, ammonium dihydrogen phosphate, ammonium hydrogen carbonate, ammonium carbonate, or a mixture thereof can be used.

電解処理の電気量は、使用する炭素繊維により異なり、例えば、炭化度の高い炭素繊維ほど、高い通電電気量が必要となる。表面処理量としては、X線光電子分光法(ESCA)により測定される炭素繊維の表面酸素濃度O/Cおよび表面窒素濃度N/Cが、それぞれ0.05以上0.40以下、および、0.02以上0.30以下の範囲になることが、接着特性の上から好ましい。   The amount of electricity in the electrolytic treatment varies depending on the carbon fiber used. For example, the higher the degree of carbonization, the higher the amount of electricity that needs to be supplied. As the surface treatment amount, the surface oxygen concentration O / C and the surface nitrogen concentration N / C of the carbon fiber measured by X-ray photoelectron spectroscopy (ESCA) are 0.05 or more and 0.40 or less, respectively. A range of 02 or more and 0.30 or less is preferable from the viewpoint of adhesive properties.

これらの条件を満足することにより、炭素繊維とマトリックスとの接着が、適正なレベルとなり、したがって接着が強すぎて非常にブリトルな破壊となって強度が低下してしまうという欠点も、あるいは、強度は強いものの接着力が低すぎて、非縦方向の機械的特性が発現しないといった欠点も防止することができ、縦および横方向にバランスのとれたコンポジット特性が発現される。   By satisfying these conditions, the bond between the carbon fiber and the matrix will be at an appropriate level, and therefore the bond will be too strong, resulting in a very brittle fracture and reduced strength, or strength. Although it is strong, the adhesive strength is too low to prevent the disadvantage that the non-longitudinal mechanical characteristics are not exhibited, and the composite characteristics balanced in the longitudinal and lateral directions are exhibited.

得られた炭素繊維は、さらに、必要に応じて、サイジング処理がなされる。サイジング剤には、マトリックスとの相溶性の良いサイジング剤が好ましく、マトリックスに併せて選択して使用される。   The obtained carbon fiber is further subjected to sizing treatment as necessary. The sizing agent is preferably a sizing agent having good compatibility with the matrix, and is selected and used in combination with the matrix.

このようにして得られた炭素繊維は、プリプレグ化したのち複合材料に成形することもできるし、織物などのプリフォームとした後、ハンドレイアップ法、プルトルージョン法およびレジントランスファーモールディング法などにより複合材料に成形することもできる。また、フィラメントワインディング法や、チョップドファイバーやミルドファイバー化した後射出成形することにより複合材料に成形することができる。   The carbon fiber obtained in this way can be prepreg and then molded into a composite material. After forming a preform such as a woven fabric, it is composited by a hand lay-up method, a pultrusion method and a resin transfer molding method. It can also be formed into a material. Further, it can be formed into a composite material by a filament winding method or by injection molding after chopped fiber or milled fiber.

本発明で得られた炭素繊維を用いた複合材料は、ゴルフシャフトや釣り竿などのスポーツ用途、航空宇宙用途、フードおよびプロペラシャフトなどの自動車構造部材用途、フライホイールおよびCNGタンクなどのエネルギー関連用途などに好適に用いることができる。   Composite materials using carbon fibers obtained by the present invention are used for sports applications such as golf shafts and fishing rods, aerospace applications, automotive structural member applications such as hoods and propeller shafts, energy-related applications such as flywheels and CNG tanks, etc. Can be suitably used.

以下、実施例を用いて、本発明の効果をさらに具体的に説明する。   Hereinafter, the effects of the present invention will be described more specifically with reference to examples.

なお、炭素繊維の引張強度および引張弾性率の測定は、次のようにして測定した。炭素繊維束に下記組成の樹脂を含浸させて130℃の温度で35分間硬化させ、ストランドとした。6本のストランドについてそれぞれJIS R7601(1986年)に基づいて引張試験を行い、各試験で得られた強度および弾性率をそれぞれ平均して、炭素繊維の引張強度および引張弾性率とした。
*樹脂組成(かっこ内は本発明の実施例で用いたもののメーカーなど)
・3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキシルカルボキシレート(ERL−4221、ユニオンカーバイド社製) 100重量部
・3−フッ化ホウ素モノエチルアミン(ステラケミファ(株)製) 3重量部
・アセトン(和光純薬工業(株)製) 4重量部
[実施例1]
下記処方の炭素繊維前駆体繊維用油剤を調製した。
The tensile strength and tensile modulus of carbon fiber were measured as follows. A carbon fiber bundle was impregnated with a resin having the following composition and cured at a temperature of 130 ° C. for 35 minutes to form a strand. Ten strands were each subjected to a tensile test based on JIS R7601 (1986), and the strength and elastic modulus obtained in each test were averaged to obtain the tensile strength and tensile elastic modulus of the carbon fiber.
* Resin composition (inside the parentheses is the manufacturer of the one used in the examples of the present invention)
3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate (ERL-4221, manufactured by Union Carbide) 100 parts by weight 3-boron fluoride monoethylamine (manufactured by Stella Chemifa Corporation) 3 parts by weight Acetone (manufactured by Wako Pure Chemical Industries, Ltd.) 4 parts by weight [Example 1]
An oil for carbon fiber precursor fiber having the following formulation was prepared.

主剤
アミノ変性シリコーン 50重量部
エポキシ変性シリコーン 25重量部
ポリエーテル変性シリコーン 25重量部
ノニオン性界面活性剤 30重量部
感温性高分子
N−イソプロピルアクリルアミド系共重合体 0.5重量部
水 4000重量部
アミノ変性シリコーンは、アミノ当量2000mol/g、その25℃における動粘度が1000cStのものを用いた。エポキシ変性シリコーンは、エポキシ当量6000mol/g、その25℃における動粘度が6000cStのものを用いた。ポリエーテル変性シリコーンは、ポリエーテル部が全重量に占める割合が50重量%、その25℃における動粘度が300cStのものを用いた。ノニオン性界面活性剤としては、ノニルフェノールのエチレンオキサイド(以下、EOと略す)付加物(付加モル数10と8と6を同重量混合したもの)を使用した。N−イソプロピルアクリルアミド系共重合体としては、N,N−ジメチルアミノプロピルアクリルアミドを3モル%共重合したものを用いた。
Main agent
50 parts by weight of amino-modified silicone
25 parts by weight of epoxy-modified silicone
25 parts by weight of polyether-modified silicone
Nonionic surfactant 30 parts by weight Thermosensitive polymer
N-isopropylacrylamide copolymer 0.5 parts by weight Water 4000 parts by weight The amino-modified silicone used had an amino equivalent of 2000 mol / g and a kinematic viscosity at 25 ° C. of 1000 cSt. As the epoxy-modified silicone, one having an epoxy equivalent of 6000 mol / g and a kinematic viscosity at 25 ° C. of 6000 cSt was used. As the polyether-modified silicone, a polyether-modified silicone having a proportion of 50% by weight in the total weight and a kinematic viscosity at 25 ° C. of 300 cSt was used. As the nonionic surfactant, an ethylene oxide (hereinafter abbreviated as EO) adduct of nonylphenol (a mixture of the same number of addition moles 10, 8, and 6) was used. As the N-isopropylacrylamide copolymer, 3 mol% copolymerized N, N-dimethylaminopropylacrylamide was used.

3種のシリコーンと界面活性剤を、25℃でプロペラ攪拌し、25℃の3500重量部の水をゆっくりと添加した。一方、25℃でN−イソプロピルアクリルアミド系共重合体を25℃の500重量部の水に添加して溶解するまで攪拌し、前記の3種シリコーンと界面活性剤と水からなる乳化液に添加した。   The three silicones and the surfactant were propeller-stirred at 25 ° C., and 3500 parts by weight of water at 25 ° C. was slowly added. On the other hand, the N-isopropylacrylamide copolymer was added at 25 ° C to 500 parts by weight of water at 25 ° C and stirred until dissolved, and added to the emulsion composed of the above three types of silicone, surfactant and water. .

得られた油剤の平均粒子径は、粒度分布計で測定した結果、0.2μmであった。
この油剤を、25℃にて、ポリアクリロニトリル系繊維(0.7dtex、3000フィラメント)にディップ−ニップ法で付着させ、次いで170℃×30秒で乾燥させた。その後、延伸倍率5のスチーム延伸を経て、炭素繊維用前駆体繊維束を得た。
The average particle size of the obtained oil was 0.2 μm as a result of measurement with a particle size distribution meter.
This oil was attached to polyacrylonitrile fiber (0.7 dtex, 3000 filament) at 25 ° C. by the dip-nip method, and then dried at 170 ° C. for 30 seconds. Then, the precursor fiber bundle for carbon fibers was obtained through steam drawing at a draw ratio of 5.

かかる炭素繊維用前駆体繊維束を8本合糸して単繊維数24000本とした後、250℃で延伸倍率1.00の耐炎化工程、650℃で延伸倍率1.10の予備炭化工程、1450℃で延伸倍率1.00の炭化工程を経て、炭素繊維束を得た。これらの間、炭素繊維は、操業性に影響を及ぼすような顕著な毛羽や切断は発生しなかった。得られた良好な品位の炭素繊維の引張強度は7.1GPa、引張弾性率は350GPaであった。
[比較例1]
実施例1で使用した感温性高分子を用いずに、それ以外は、実施例1と同様の操作を行った。その結果、予備炭化工程で毛羽が大量に発生し、品位の良好な炭素繊維を得ることはできなかった。
[実施例2]
下記処方の炭素繊維前駆体繊維用油剤を調製した。
8 carbon fiber precursor fiber bundles are combined to form 24,000 single fibers, and then a flameproofing step at a draw ratio of 1.00 at 250 ° C., a preliminary carbonization step at a draw ratio of 1.10 at 650 ° C., A carbon fiber bundle was obtained through a carbonization step at 1450 ° C. and a draw ratio of 1.00. During these periods, the carbon fiber did not generate significant fuzz or cutting that would affect operability. The resulting good-quality carbon fiber had a tensile strength of 7.1 GPa and a tensile modulus of 350 GPa.
[Comparative Example 1]
The same operation as in Example 1 was performed except that the temperature-sensitive polymer used in Example 1 was not used. As a result, a large amount of fluff was generated in the preliminary carbonization step, and it was not possible to obtain carbon fibers with good quality.
[Example 2]
An oil for carbon fiber precursor fiber having the following formulation was prepared.

主剤
トリスチレン化フェノールEO20mol付加物 100重量部
感温性高分子
N−イソプロピルアクリルアミド系共重合体 5重量部
水 3000重量部
N−イソプロピルアクリルアミド系共重合体には、アクリル酸を5モル%共重合したものを用いた。
Main agent
100 parts by weight of tristyrenated phenol EO 20 mol adduct Temperature sensitive polymer
N-isopropylacrylamide copolymer 5 parts by weight Water 3000 parts by weight As the N-isopropylacrylamide copolymer, a copolymer obtained by copolymerizing 5 mol% of acrylic acid was used.

主剤と感温性高分子を水に添加し、溶解するまで25℃で攪拌し、油剤とした。   The main agent and the thermosensitive polymer were added to water and stirred at 25 ° C. until dissolved to obtain an oil.

この油剤を、25℃にて、ポリアクリロニトリル系繊維(1.0dtex、4000フィラメント)にディップ−ニップ法で付着させ、次いで170℃×30秒で乾燥させた。その後、延伸倍率5のスチーム延伸を経て、炭素繊維用前駆体繊維束を得た。   This oil agent was attached to polyacrylonitrile fiber (1.0 dtex, 4000 filament) at 25 ° C. by a dip-nip method, and then dried at 170 ° C. for 30 seconds. Then, the precursor fiber bundle for carbon fibers was obtained through steam drawing at a draw ratio of 5.

かかる炭素繊維用前駆体繊維束を3本合糸して単繊維数12000本とした後、250℃で延伸倍率0.86の耐炎化工程、650℃で延伸倍率0.95の予備炭化工程、1400℃で延伸倍率0.95の炭化工程を経て、炭素繊維束を得た。これらの間、炭素繊維については、操業性に影響を及ぼすような顕著な毛羽や切断は発生しなかった。得られた良好な品位の炭素繊維の引張強度は4.8GPa、引張弾性率は245GPaであった。

[比較例2]
実施例2で使用した感温性高分子を用いずに、それ以外は、実施例2と同様の操作を行った。その結果、乾燥工程での単糸間接着が多く発生し、スチーム延伸の工程において、切断が多発し、炭素繊維前駆体繊維束を得ることができなかった。
Three carbon fiber precursor fiber bundles are combined to obtain 12,000 single fibers, followed by a flameproofing process at a stretching ratio of 0.86 at 250 ° C., a preliminary carbonizing process at a stretching ratio of 0.95 at 650 ° C., A carbon fiber bundle was obtained through a carbonization step at 1400 ° C. and a draw ratio of 0.95. During these periods, the carbon fiber did not generate significant fuzz or cutting that would affect operability. The resulting good-quality carbon fiber had a tensile strength of 4.8 GPa and a tensile modulus of 245 GPa.

[Comparative Example 2]
The same operation as in Example 2 was performed except that the temperature-sensitive polymer used in Example 2 was not used. As a result, a large amount of adhesion between single yarns occurred in the drying process, and many cuts occurred in the steam drawing process, and a carbon fiber precursor fiber bundle could not be obtained.

本発明によれば、炭素繊維用前駆体繊維用油剤の成分として、主剤の他に、感温性高分子が存在することにより、主剤を単繊維一本一本に均一に付着させることが可能となるために単繊維間接着を高効率で抑制させることができ、従来よりも高い糸条密度、高張力、高速の焼成条件であっても、毛羽や糸切れのない安定した品位で、高性能な炭素繊維を製造することができる。かかる炭素繊維は、プリプレグ化したのち複合材料に成形することもでき、本発明で得られた炭素繊維を用いた複合材料は、ゴルフシャフトや釣り竿などのスポーツ用途、航空宇宙用途、フードおよびプロペラシャフトなどの自動車構造部材用途、フライホイールおよびCNGタンク、風車などのエネルギー関連用途などに好適に用いることができ、有用である。   According to the present invention, the presence of a thermosensitive polymer in addition to the main agent as a component of the carbon fiber precursor fiber oil agent makes it possible to uniformly adhere the main agent to each single fiber. Therefore, it is possible to suppress the bonding between single fibers with high efficiency, and even with higher yarn density, higher tension, and higher speed firing conditions than in the past, stable and high quality without fluff or yarn breakage. High performance carbon fibers can be produced. Such carbon fiber can be formed into a composite material after prepreg, and the composite material using the carbon fiber obtained in the present invention is used for sports applications such as golf shafts and fishing rods, aerospace applications, hoods and propeller shafts. It can be used suitably for energy-related applications such as automotive structural member applications such as flywheels and CNG tanks, windmills, and the like.

Claims (6)

主剤と感温性高分子を含む炭素繊維前駆体繊維用油剤。 Oil for carbon fiber precursor fiber containing main agent and thermosensitive polymer. 感温性高分子が、N−イソプロピルアクリルアミド、ジメチルアミノエチルメタクリレートから選ばれる少なくとも一つのモノマーを必須成分として重合されてなる請求項1記載の炭素繊維前駆体繊維用油剤。 The oil agent for carbon fiber precursor fibers according to claim 1, wherein the temperature-sensitive polymer is polymerized using at least one monomer selected from N-isopropylacrylamide and dimethylaminoethyl methacrylate as an essential component. 主剤がシリコーン化合物を含む請求項1または2記載の炭素繊維前駆体繊維用油剤。 The oil agent for carbon fiber precursor fibers according to claim 1 or 2, wherein the main agent contains a silicone compound. 主剤がケイ素非含有化合物を含む請求項1または2記載の炭素繊維前駆体繊維用油剤。 The oil agent for carbon fiber precursor fibers according to claim 1 or 2, wherein the main agent contains a silicon-free compound. 主剤に含まれるケイ素非含有化合物が、実質的に水溶性または水中自己乳化性を有する液体である請求項4記載の炭素繊維前駆体繊維用油剤。 The oil agent for carbon fiber precursor fibers according to claim 4, wherein the silicon-free compound contained in the main agent is a liquid having substantially water solubility or self-emulsification in water. 請求項1ないし5のいずれかに記載の炭素繊維前駆体繊維用油剤を用いて製造された炭素繊維用前駆体繊維束。 A precursor fiber bundle for carbon fibers produced using the oil agent for carbon fiber precursor fibers according to any one of claims 1 to 5.
JP2005042471A 2004-12-27 2005-02-18 Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle Expired - Fee Related JP4507908B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005042471A JP4507908B2 (en) 2005-02-18 2005-02-18 Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle
DE602005026223T DE602005026223D1 (en) 2004-12-27 2005-12-26 OILAVIVAGE FOR CARBON FIBER PRECURSOR FIBER, CARBON FIBER AND METHOD FOR THE PRODUCTION OF CARBON FIBER
CN2005800449490A CN101091010B (en) 2004-12-27 2005-12-26 Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
EP05819808A EP1837424B1 (en) 2004-12-27 2005-12-26 Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
US11/793,163 US20080152574A1 (en) 2004-12-27 2005-12-26 Oil Agent for Precursor Fiber of Carbon Fiber, Carbon Fiber and Production Method of the Carbon Fiber
PCT/JP2005/023702 WO2006070706A1 (en) 2004-12-27 2005-12-26 Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
AT05819808T ATE497551T1 (en) 2004-12-27 2005-12-26 OIL LAVIVAGE FOR CARBON FIBER PRECURSOR FIBER, CARBON FIBER AND METHOD FOR PRODUCING CARBON FIBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042471A JP4507908B2 (en) 2005-02-18 2005-02-18 Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle

Publications (2)

Publication Number Publication Date
JP2006225808A true JP2006225808A (en) 2006-08-31
JP4507908B2 JP4507908B2 (en) 2010-07-21

Family

ID=36987416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042471A Expired - Fee Related JP4507908B2 (en) 2004-12-27 2005-02-18 Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle

Country Status (1)

Country Link
JP (1) JP4507908B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099167A (en) * 2009-11-04 2011-05-19 Mitsubishi Rayon Co Ltd Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP2013513034A (en) * 2009-12-04 2013-04-18 エスゲーエル カーボン ソシエタス ヨーロピア Fiber for manufacturing composite materials
JP2016084563A (en) * 2014-10-28 2016-05-19 松本油脂製薬株式会社 Acrylic fiber treatment agent and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172880A (en) * 1999-12-17 2001-06-26 Toray Ind Inc Silicone oil agent for carbon fiber and method for producing carbon fiber
JP2003055881A (en) * 2001-06-06 2003-02-26 Toray Ind Inc Precursor for carbon fiber, method for producing the same and method for producing carbon fiber
JP2003253567A (en) * 2001-12-27 2003-09-10 Toray Ind Inc Silicone oil for production of acrylic precursor fiber for carbon fiber and acrylic precursor fiber bundle for carbon fiber
JP2004149983A (en) * 2002-11-01 2004-05-27 Toho Tenax Co Ltd Acrylic fiber for carbon fiber production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172880A (en) * 1999-12-17 2001-06-26 Toray Ind Inc Silicone oil agent for carbon fiber and method for producing carbon fiber
JP2003055881A (en) * 2001-06-06 2003-02-26 Toray Ind Inc Precursor for carbon fiber, method for producing the same and method for producing carbon fiber
JP2003253567A (en) * 2001-12-27 2003-09-10 Toray Ind Inc Silicone oil for production of acrylic precursor fiber for carbon fiber and acrylic precursor fiber bundle for carbon fiber
JP2004149983A (en) * 2002-11-01 2004-05-27 Toho Tenax Co Ltd Acrylic fiber for carbon fiber production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099167A (en) * 2009-11-04 2011-05-19 Mitsubishi Rayon Co Ltd Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP2013513034A (en) * 2009-12-04 2013-04-18 エスゲーエル カーボン ソシエタス ヨーロピア Fiber for manufacturing composite materials
JP2016084563A (en) * 2014-10-28 2016-05-19 松本油脂製薬株式会社 Acrylic fiber treatment agent and application thereof

Also Published As

Publication number Publication date
JP4507908B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
TWI396786B (en) Carbon fiber strand exhibiting excellent mechanical property
EP1837424B1 (en) Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
CN115777032A (en) Carbon fiber bundle having sizing agent attached thereto
JP4518046B2 (en) Oil for carbon fiber precursor and carbon fiber precursor
JP2008127697A (en) Spinning dope for carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP2010053467A (en) Lubricant for carbon fiber precursor fiber
JP4507908B2 (en) Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP6477546B2 (en) Method for producing carbon fiber precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle
JP2020015997A (en) Method for producing precursor fiber for carbon fiber
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
JP5066952B2 (en) Method for producing polyacrylonitrile-based polymer composition, and method for producing carbon fiber
JP4543931B2 (en) Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame resistant fiber, carbon fiber and method for producing the same
JP4715386B2 (en) Carbon fiber bundle manufacturing method
WO2020071445A1 (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP2009256831A (en) Carbon fiber precursors and method for producing carbon fibers
JP2011208290A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP5146394B2 (en) Method for producing carbon fiber precursor fiber and method for producing carbon fiber
JP4957634B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber bundle and method for producing the same
JP2003020516A (en) Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP6217342B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
KR20110130186A (en) Manufacturing method of carbon fiber
JP2022098766A (en) Polyacrylonitrile fiber and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees