JP2006219362A - Synthetic method of carbon nanotube film by introduction of gas phase into liquid phase and synthesizing unit - Google Patents

Synthetic method of carbon nanotube film by introduction of gas phase into liquid phase and synthesizing unit Download PDF

Info

Publication number
JP2006219362A
JP2006219362A JP2005063021A JP2005063021A JP2006219362A JP 2006219362 A JP2006219362 A JP 2006219362A JP 2005063021 A JP2005063021 A JP 2005063021A JP 2005063021 A JP2005063021 A JP 2005063021A JP 2006219362 A JP2006219362 A JP 2006219362A
Authority
JP
Japan
Prior art keywords
substrate
gas
carbon nanotube
nanotube film
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005063021A
Other languages
Japanese (ja)
Inventor
Keishin Ota
慶新 太田
Megumi Matsumoto
恵 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICROPHASE CO Ltd
Japan Science and Technology Agency
Original Assignee
MICROPHASE CO Ltd
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICROPHASE CO Ltd, Japan Science and Technology Agency filed Critical MICROPHASE CO Ltd
Priority to JP2005063021A priority Critical patent/JP2006219362A/en
Publication of JP2006219362A publication Critical patent/JP2006219362A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of synthesizing a carbon nanotube film having high purity and high stability at a low cost on a massive scale, and a unit used for the method, and a carbon nanotube film formed on a substrate. <P>SOLUTION: In this method, a substrate 7, which is made of a catalyst metal or has a catalyst metal thin film deposited thereon, is put in an organic liquid 1 and the substrate 7 is heated to a certain temperature by a heater 5 while introducing, through a gas-introducing tube 9, bubbles 11 of an inert gas, a reducing gas, and a reactive gas around the substrate 7, and the carbon nanotube film is synthesized on the substrate 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機液体中に置かれた基板を加熱することにより基板表面にカーボンナノチューブ膜を合成するための合成方法と合成装置に関する。  The present invention relates to a synthesis method and a synthesis apparatus for synthesizing a carbon nanotube film on a substrate surface by heating a substrate placed in an organic liquid.

カーボンナノチューブの生成法には、アーク放電法、レーザー蒸着法、化学気相蒸着(CVD)法などが挙げられる。アーク放電法は、正負のグラファイト電極間にアーク放電を起こすことでグラファイトが蒸発し、陰極先端に凝縮した炭素の堆積物の中にカーボンナノチューブが生成される方法である。また、レーザー蒸着法は、高温に加熱した不活性ガス中に金属触媒を混合したグラファイト試料を入れ、レーザー照射することによりカーボンナノチューブを生成する。そしてCVD法は、COガスやCH4ガス中で触媒金属を加熱することによりカーボンナノチューブを生成する方法である。例えば、特許文献1に開示されたアーク放電による製造方法が、特許文献2に開示されたレーザー蒸発法による製造方法が、特許文献3に開示されたCVDによる製造方法が、それぞれ提案されている。これらの合成法のうち、アーク放電法とレーザー蒸着法では、主として粉末状のカーボンナノチューブが合成され、基板上へのカーボンナノチューブ膜の均一合成はできていない。  Examples of the method for producing the carbon nanotube include an arc discharge method, a laser vapor deposition method, and a chemical vapor deposition (CVD) method. The arc discharge method is a method in which an arc discharge is generated between positive and negative graphite electrodes, whereby graphite is evaporated and carbon nanotubes are generated in a carbon deposit condensed at the cathode tip. In the laser vapor deposition method, a carbon nanotube is produced by putting a graphite sample mixed with a metal catalyst in an inert gas heated to a high temperature and irradiating it with a laser. The CVD method is a method of generating carbon nanotubes by heating a catalytic metal in CO gas or CH4 gas. For example, a manufacturing method by arc discharge disclosed in Patent Document 1, a manufacturing method by laser evaporation disclosed in Patent Document 2, and a manufacturing method by CVD disclosed in Patent Document 3 have been proposed. Among these synthesis methods, the arc discharge method and the laser deposition method mainly synthesize powdery carbon nanotubes, and the carbon nanotube film cannot be uniformly synthesized on the substrate.

上記の合成法のうちのCVD法においては、粉末状のカーボンナノチューブの大量合成が可能であるだけでなく、合成条件の調整によって基板へのカーボンナノチューブ膜も合成できるが、真空排気などの真空プロセスが不可欠であることと、石英真空容器およびその中の炭素源ガス全体を高温までに加熱する必要があることが故に、合成プロセスが複雑で加熱・冷却を含めたプロセス時間が長いという課題がある。  Of the above synthesis methods, the CVD method not only enables mass synthesis of powdered carbon nanotubes, but also allows the synthesis of carbon nanotube films on the substrate by adjusting the synthesis conditions. Is indispensable and the quartz vacuum vessel and the entire carbon source gas in it must be heated to a high temperature, so the synthesis process is complicated and the process time including heating and cooling is long. .

上記CVD法の課題を解決し得る方法として、特許文献4に開示された液相合成法が提案されている。これは有機液体中において触媒が形成された基板を加熱することにより基板上に高配向のカーボンナノチューブ膜を合成する方法である。基板を有機液体に入れているため、真空排気する必要はない。また、通電加熱法で液体中の基板を直接加熱しているため、加熱効率が高く、昇温・降温速度が非常に早い特徴を有する。  As a method that can solve the problems of the CVD method, a liquid phase synthesis method disclosed in Patent Document 4 has been proposed. This is a method of synthesizing a highly oriented carbon nanotube film on a substrate by heating the substrate on which a catalyst is formed in an organic liquid. Since the substrate is placed in an organic liquid, there is no need to evacuate. Further, since the substrate in the liquid is directly heated by the electric heating method, the heating efficiency is high, and the temperature rise / fall rate is very fast.

しかしながら、この方法では、基板が常に有機液体に囲まれているため、基板がカーボンナノチューブの最適合成温度に到達する前に基板上の触媒が有機液体と反応してしまうため、純度の高いカーボンナノチューブが得られにくい。また、触媒金属膜あるいは触媒金属基板の表面には金属の表面酸化膜が通常形成されているため、触媒活性が低く、カーボンナノチューブ膜の品質が不安定になりやすい。その改善法としてプラズマCVD装置にて基板の触媒薄膜の水素プラズマ還元処理を施してからカーボンナノチューブの合成に用いるプロセスが用いられているが、コスト増と量産に不向きの問題を抱えている。  However, in this method, since the substrate is always surrounded by the organic liquid, the catalyst on the substrate reacts with the organic liquid before the substrate reaches the optimum synthesis temperature of the carbon nanotube. Is difficult to obtain. Further, since a metal surface oxide film is usually formed on the surface of the catalytic metal film or the catalytic metal substrate, the catalytic activity is low and the quality of the carbon nanotube film tends to become unstable. As an improvement method, a process used for synthesizing carbon nanotubes after performing a hydrogen plasma reduction treatment of a catalyst thin film on a substrate in a plasma CVD apparatus is used, but has problems that are unsuitable for cost increase and mass production.

純度および安定性の高いカーボンナノチューブ膜を低コストで効率よく量産することができるようになれば、カーボンナノチューブの特性を生かしたナノテクノロジー製品を低コストで大量に供給することが可能になる。
特開2000−95509号公報
特開平10−273308号公報
特開2000−86217号公報
特開2001−193629号公報
If carbon nanotube films with high purity and stability can be mass-produced efficiently at low cost, it becomes possible to supply a large amount of nanotechnology products utilizing the characteristics of carbon nanotubes at low cost.
JP 2000-95509 JP JP 10-273308 JP JP 2000-86217 JP JP 2001-193629 A

本発明は上記課題に鑑み、純度および安定性の高いカーボンナノチューブ膜の提供及び低コストで簡便に高純度カーボンナノチューブ膜を合成できる合成装置を提供することを目的とする。  In view of the above problems, an object of the present invention is to provide a carbon nanotube film having high purity and stability, and to provide a synthesis apparatus capable of easily synthesizing a high purity carbon nanotube film at low cost.

上記課題を解決するために本発明のカーボンナノチューブの合成方法は、液相合成法において、液体中に不活性ガス、還元性ガス、あるいは反応性ガスを導入する手段を設けることにより、有機液体と基板との反応タイミングを制御したり、触媒金属基板表面あるいは触媒金属膜の表面酸化膜の還元を行ったり、あるいは炭素源ガスを追加提供したりして、高品質のカーボンナノチューブ膜を実現し得る合成装置であることを特徴とする。  In order to solve the above problems, the carbon nanotube synthesis method of the present invention is a liquid phase synthesis method in which an inert gas, a reducing gas, or a reactive gas is provided in the liquid to provide an organic liquid. A high-quality carbon nanotube film can be realized by controlling the reaction timing with the substrate, reducing the surface of the catalytic metal substrate or the catalytic oxide film, or providing additional carbon source gas. It is a synthesizer.

前記不活性ガスは、N2、Ar、Heから選択される一種類の気体又は複数の気体からなる不活性ガスが好適である。  The inert gas is preferably an inert gas composed of one kind of gas selected from N 2, Ar, and He or a plurality of gases.

前記還元性ガスは、H2あるいは不活性ガスとの混合ガスが好適である。基板種類に応じて、塩酸ガス、硝酸ガス、硫酸ガス、弗酸ガスなどの還元性ガスも選択できる。  The reducing gas is preferably a mixed gas with H2 or an inert gas. A reducing gas such as hydrochloric acid gas, nitric acid gas, sulfuric acid gas or hydrofluoric acid gas can be selected according to the substrate type.

前記反応性ガスは、CO、C2H2、CH4など、炭素源と成り得る反応性ガスが好適である。  The reactive gas is preferably a reactive gas that can be a carbon source, such as CO, C2H2, and CH4.

本発明の合成法によれば、触媒薄膜を形成した基板を有機液体中に沈めてから、基板周囲に不活性ガスを導入し、カーボンナノチューブの最適合成温度に到達するまで不活性ガスを流しながら基板加熱することにより、最適合成温度に到達する前に触媒薄膜が炭素と反応してしまうことを防ぎ、低温における不定形炭素の析出を抑え、より純度の高いカーボンナノチューブを得ることができる。  According to the synthesis method of the present invention, after the substrate on which the catalyst thin film is formed is submerged in the organic liquid, an inert gas is introduced around the substrate, and the inert gas is allowed to flow until the optimum synthesis temperature of the carbon nanotube is reached. By heating the substrate, it is possible to prevent the catalyst thin film from reacting with carbon before reaching the optimum synthesis temperature, suppress precipitation of amorphous carbon at a low temperature, and obtain a carbon nanotube with higher purity.

本発明の合成法によれば、触媒薄膜に表面酸化層が形成されていても、または触媒薄膜が成膜されていない通常のステンレス基板に対しても、基板周囲に還元性ガスを導入しながら基板加熱し、H2の還元作用で基板最表面の酸化膜を還元して金属触媒元素を析出させてから、有機液体を基板に接触させることにより、安定性の高いカーボンナノチューブ膜を得ることができる。ステンレス基板の場合、触媒薄膜の成膜プロセスを省くことも可能になる。また、触媒が合成時間の経過とともに触媒活性が劣化することが知られており、H2ガスを断続的に導入することにより、触媒活性の劣化を防ぐことができ、長いカーボンナノチューブを合成することができる。  According to the synthesis method of the present invention, even when a surface oxide layer is formed on a catalyst thin film or a normal stainless steel substrate on which no catalyst thin film is formed, a reducing gas is introduced around the substrate. A highly stable carbon nanotube film can be obtained by heating the substrate, reducing the oxide film on the outermost surface of the substrate by the reduction action of H2 to deposit the metal catalyst element, and then bringing the organic liquid into contact with the substrate. . In the case of a stainless steel substrate, the catalyst thin film forming process can be omitted. In addition, it is known that the catalytic activity of the catalyst deteriorates with the lapse of the synthesis time. By introducing H2 gas intermittently, the catalytic activity can be prevented from deteriorating and a long carbon nanotube can be synthesized. it can.

本発明の合成法によれば、基板周囲に他の炭素源ガス、例えばC2H2ガスを導入することにより、炭素源を気相の形でも供給することが可能になる。同一の触媒金属および温度条件に対して、有機液体の熱分解と炭化水素ガスの熱分解とでは、合成されるカーボンナノチューブの形態が異なる場合が多いことは従来の熱CVD法で既に確認されている。有機液体とともの炭化水素ガスも供給することにより、多種多様な形態のカーボンナノチューブ、例えば単層カーボンナノチューブ、2層カーボンナノチューブ、または多層カーボンナノチューブを同時に合成できる。  According to the synthesis method of the present invention, by introducing another carbon source gas, for example, C2H2 gas, around the substrate, the carbon source can be supplied also in a gas phase. It has already been confirmed by the conventional thermal CVD method that, for the same catalytic metal and temperature conditions, the thermal decomposition of organic liquid and the thermal decomposition of hydrocarbon gas often have different shapes of synthesized carbon nanotubes. Yes. By supplying the hydrocarbon gas together with the organic liquid, various types of carbon nanotubes, for example, single-walled carbon nanotubes, double-walled carbon nanotubes, or multi-walled carbon nanotubes can be synthesized simultaneously.

本発明のカーボンナノチューブ合成法及び合成装置によれば、純度・密度・安定性の高カーボンナノチューブ膜を大掛かりな装置がいらずに低コストで合成することができる。  According to the carbon nanotube synthesis method and the synthesis apparatus of the present invention, it is possible to synthesize a carbon nanotube film having high purity, density, and stability at a low cost without requiring a large-scale apparatus.

以下、本発明の実施の形態を図面1に基づき詳細に説明する。  Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.

図1は、本発明のカーボンナノチューブ膜を合成する装置の構造を示す図である。この合成装置は、有機液体1を保持するための容器である液体槽2、その蓋3、ヒータへの電流を流すための電極4、基板加熱用通電加熱ヒーター5、基板保持用絶縁板6、カーボンナノチューブ膜合成用基板7、ガス混合器8、ガス導入管9、容器内が加圧になることを防ぐための排気管10、導入されたガスの気泡11で構成される。  FIG. 1 is a diagram showing the structure of an apparatus for synthesizing a carbon nanotube film of the present invention. This synthesizer includes a liquid tank 2 that is a container for holding an organic liquid 1, a lid 3, an electrode 4 for flowing a current to the heater, an energizing heater 5 for heating a substrate, an insulating plate 6 for holding a substrate, The carbon nanotube film synthesizing substrate 7, a gas mixer 8, a gas introduction pipe 9, an exhaust pipe 10 for preventing the inside of the container from being pressurized, and an introduced gas bubble 11 are configured.

まずは基板に触媒薄膜を成膜しておく。基板自体が触媒金属でできている場合は触媒金属薄膜を成膜しなくてもよい場合がある。基板は加熱温度まで耐えるもので、たとえばSi、石英ガラス、各種金属、ステンレス、各種セラミックスなどでよい。触媒薄膜は、例えばFe、Co、Niまたはそれらの元素を含む複合酸化物成膜でよい。膜厚は数nm〜数十nmの範囲でよい。成膜方法は、例えばスパッタ法、真空蒸着法、EB蒸着法でよい。  First, a catalyst thin film is formed on a substrate. When the substrate itself is made of a catalytic metal, the catalytic metal thin film may not be formed. The substrate can withstand the heating temperature, and may be Si, quartz glass, various metals, stainless steel, various ceramics, or the like. The catalyst thin film may be a complex oxide film containing, for example, Fe, Co, Ni, or an element thereof. The film thickness may be in the range of several nm to several tens of nm. The film forming method may be, for example, a sputtering method, a vacuum evaporation method, or an EB evaporation method.

このようにして触媒薄膜が形成された基板7を基板保持用絶縁板上に固定し、有機液体1で液体槽2を満たし、蓋3をしておく。ガス混合器8からガス導入管9を介して不活性ガスであるN2ガスの気泡で基板表面を覆わせるようにN2ガスを導入しながら、電極4を介してヒーターに電流を流して基板を加熱する。加熱中は、基板表面がガス気泡10で覆われているため、有機液体との反応が抑えられ、低温における不定形炭素の析出を防ぐことができる。基板温度がカーボンナノチューブ合成温度、例えば650℃に到達した後、ガス混合器でN2ガスから還元性ガスであるH2ガスに切り替え、H2ガス気泡で基板の表面を覆わせ、基板表面の還元を数分間程度行う。その後H2ガスの導入を停止し、有機液体を基板に接触させ、カーボンナノチューブ膜の合成を行う。  The substrate 7 on which the catalyst thin film has been formed in this way is fixed on the substrate holding insulating plate, the liquid tank 2 is filled with the organic liquid 1, and the lid 3 is left. While the N2 gas is introduced from the gas mixer 8 through the gas introduction pipe 9 so as to cover the surface of the substrate with bubbles of the inert gas, the substrate is heated by passing an electric current through the electrode 4 to the heater. To do. During heating, since the substrate surface is covered with the gas bubbles 10, reaction with the organic liquid can be suppressed, and precipitation of amorphous carbon at low temperatures can be prevented. After the substrate temperature reaches the carbon nanotube synthesis temperature, for example, 650 ° C., the gas mixer is switched from N2 gas to H2 gas, which is a reducing gas, and the substrate surface is covered with H2 gas bubbles, and the substrate surface is reduced several times. Do for about a minute. Thereafter, the introduction of H2 gas is stopped, the organic liquid is brought into contact with the substrate, and the carbon nanotube film is synthesized.

従来の液相合成法では、有機液体の熱分解で得られる炭素源密度は有機液体の種類と基板温度によって一意的に決まり、その増減調整ができない。熱分解しやすいC2H2ガスを利用すると、単層カーボンナノチューブ、2層カーボンナノチューブを効率よく合成できることが知られている。層数の少ない細いカーボンナノチューブを含めたカーボンナノチューブを合成する必要がある場合は、有機液体の熱分解に加えて、ガス導入管から熱分解しやすい反応性の炭素源ガスを基板周囲に供給すればよい。  In the conventional liquid phase synthesis method, the carbon source density obtained by pyrolysis of the organic liquid is uniquely determined by the type of the organic liquid and the substrate temperature, and cannot be increased or decreased. It is known that single-walled carbon nanotubes and double-walled carbon nanotubes can be efficiently synthesized by using C2H2 gas that is easily pyrolyzed. When it is necessary to synthesize carbon nanotubes including thin carbon nanotubes with a small number of layers, in addition to pyrolysis of organic liquid, a reactive carbon source gas that is easily pyrolyzed is supplied from the gas introduction pipe to the periphery of the substrate. That's fine.

次に、本発明の実施例を挙げ、本発明を具体的に説明するが、本発明は、以下の実施例1,2,3によって限定されるものではない。  Next, the present invention will be specifically described with reference to examples of the present invention, but the present invention is not limited to the following examples 1, 2, and 3.

(実施例1)
ここで、不活性ガスの導入効果を確認するための実施例を示す。
Example 1
Here, the Example for confirming the introduction effect of an inert gas is shown.

基板には、10mm角のSi基板を用いた。Si基板は、エタノール中で超音波洗浄した後、真空蒸着法により膜厚10nmのFe薄膜を成膜した。このSi基板を図1の基板保持用絶縁板に固定し、容器を高純度エタノール(99.9%)液体で満たした。ガス導入管から不活性ガスであるN2を100ml/minの流量で連続的に流し、基板表面をN2ガスの気泡で包むようにした。そして、基板の表面温度を放射温度計で測定しながらカーボンナノチューブ合成温度である650℃になるまで電流を流して基板温度を上げた。基板表面温度が650℃に到達した後、N2を流すことをやめ、5分間電流値を保持したまま、有機液体を基板に接触させ、カーボンナノチューブ膜を10分間成長させた。  A 10 mm square Si substrate was used as the substrate. The Si substrate was ultrasonically cleaned in ethanol, and then a 10 nm thick Fe thin film was formed by vacuum deposition. The Si substrate was fixed to the substrate holding insulating plate of FIG. 1, and the container was filled with a high purity ethanol (99.9%) liquid. N2 as an inert gas was continuously flowed from the gas introduction pipe at a flow rate of 100 ml / min so that the substrate surface was wrapped with bubbles of N2 gas. Then, while measuring the surface temperature of the substrate with a radiation thermometer, the substrate temperature was raised by passing an electric current until the carbon nanotube synthesis temperature reached 650 ° C. After the substrate surface temperature reached 650 ° C., the flow of N 2 was stopped, the organic liquid was brought into contact with the substrate while maintaining the current value for 5 minutes, and the carbon nanotube film was grown for 10 minutes.

このようにして合成したカーボンナノチューブ膜を走査電子顕微鏡(SEM)にて評価したところ、図2のSEM像に示されるように、純度の高い配向カーボンナノチューブ膜であることが確認された。一方、上記プロセスでN2ガスを流していなかった場合に得られたカーボンナノチューブ膜をSEMにて評価したところ、図3のSEM像に示されるように、カーボンナノチューブ膜の中に多くの不定形カーボン粒子が混在していることが確認された。  When the carbon nanotube film synthesized in this way was evaluated with a scanning electron microscope (SEM), it was confirmed to be an oriented carbon nanotube film having high purity as shown in the SEM image of FIG. On the other hand, when the carbon nanotube film obtained when N2 gas was not flowed in the above process was evaluated with an SEM, as shown in the SEM image of FIG. It was confirmed that particles were mixed.

(実施例2)
ここでは、還元性ガスの導入効果を確認するための実施例を示す。
(Example 2)
Here, the Example for confirming the introduction effect of reducing gas is shown.

基板には、10mm角のステンレス304基板を用いた。ステンレス基板は、エタノール中で超音波洗浄した。このステンレス基板を表面に触媒薄膜を成膜せずに図1の基板保持用絶縁板に固定し、容器を高純度エタノール(99.9%)液体で満たした。ガス導入管から不活性ガスであるN2を100ml/minの流量で連続的に流し、基板表面をN2ガスの気泡で包むようにした。基板の表面温度を放射温度計で測定しながらカーボンナノチューブ合成温度である650℃になるまで電流を流して基板温度を上げた。基板表面温度が650℃に到達した後、N2ガスから還元性ガスであるH2に切り替え、H2ガスを100ml/minの流量で連続的に流し、基板表面をH2ガスの気泡で包むようにした。この還元状態を5分間持続させた。これによりステンレス基板表面の金属酸化膜が還元され、ステンレス基板に含まれているFe、Niなどの触媒金属が基板表面に析出され、触媒作用を有することになったと思われる。その後、H2を流すことをやめ、電流値を保持したまま、有機液体を基板に接触させ、カーボンナノチューブ膜を10分間成長させた。  A 10 mm square stainless steel 304 substrate was used as the substrate. The stainless steel substrate was ultrasonically cleaned in ethanol. The stainless steel substrate was fixed to the substrate holding insulating plate of FIG. 1 without forming a catalyst thin film on the surface, and the container was filled with high-purity ethanol (99.9%) liquid. N2 as an inert gas was continuously flowed from the gas introduction pipe at a flow rate of 100 ml / min so that the substrate surface was wrapped with bubbles of N2 gas. While measuring the surface temperature of the substrate with a radiation thermometer, the substrate temperature was raised by supplying an electric current until the carbon nanotube synthesis temperature reached 650 ° C. After the substrate surface temperature reached 650 ° C., the N2 gas was switched to the reducing gas H2, and the H2 gas was continuously flowed at a flow rate of 100 ml / min, so that the substrate surface was wrapped with H2 gas bubbles. This reduced state was maintained for 5 minutes. As a result, the metal oxide film on the surface of the stainless steel substrate was reduced, and catalytic metals such as Fe and Ni contained in the stainless steel substrate were deposited on the surface of the substrate, which seems to have a catalytic action. Thereafter, the flow of H2 was stopped, the organic liquid was brought into contact with the substrate while maintaining the current value, and the carbon nanotube film was grown for 10 minutes.

このようにして合成したカーボンナノチューブ膜をSEMにて評価したところ、図4のSEM像に示されるように、純度の高い配向カーボンナノチューブ膜であることが確認された。一方、上記プロセスでH2ガスを流していなかった場合に得られたカーボンナノチューブ膜をSEMにて評価したところ、図5のSEM像に示されるように、カーボンナノチューブとカーボン粒子とが混在した膜であることが確認された。  When the carbon nanotube film synthesized in this manner was evaluated by SEM, it was confirmed that the carbon nanotube film was a highly oriented carbon nanotube film as shown in the SEM image of FIG. On the other hand, when the carbon nanotube film obtained when H2 gas was not flowed in the above process was evaluated by SEM, as shown in the SEM image of FIG. It was confirmed that there was.

(実施例3)
ここでは、反応性の炭素源ガスの導入効果を確認するための実施例を示す。
(Example 3)
Here, the Example for confirming the introduction effect of reactive carbon source gas is shown.

基板には、10mm角の金属Ti基板を用いた。Ti基板は、エタノール中で超音波洗浄した後、真空蒸着法により膜厚10nmのCo薄膜を成膜した。高純度エタノール(99.9%)を用いた。このTi基板を図1の基板保持用絶縁板に固定し、容器を高純度エタノール(99.9%)液体で満たした。ガス導入管から不活性ガスであるN2を100ml/minの流量で連続的に流し、基板表面をN2ガスの気泡で包むようにした。そして、基板の表面温度を放射温度計で測定しながらカーボンナノチューブ合成温度である750℃になるまで電流を流して基板温度を上げた。基板表面温度が750℃に到達した後、ガス混合器の出力ガスをN2ガスから同一流量のH2ガスに切り替え、5分間持続させた。その後、電流値を保持したまま、25ml/minの流量の炭化水素系反応性ガスであるC2H2ガスに切り替え、有機液体とC2H2ガスとを同時に基板に接触させ、カーボンナノチューブ膜を10分間成長させた。  A 10 mm square metal Ti substrate was used as the substrate. The Ti substrate was subjected to ultrasonic cleaning in ethanol, and then a Co thin film having a thickness of 10 nm was formed by vacuum deposition. High purity ethanol (99.9%) was used. The Ti substrate was fixed to the substrate holding insulating plate of FIG. 1, and the container was filled with a high purity ethanol (99.9%) liquid. N2 as an inert gas was continuously flowed from the gas introduction pipe at a flow rate of 100 ml / min so that the substrate surface was wrapped with bubbles of N2 gas. Then, while measuring the surface temperature of the substrate with a radiation thermometer, the substrate temperature was raised by passing an electric current until the carbon nanotube synthesis temperature reached 750 ° C. After the substrate surface temperature reached 750 ° C., the output gas of the gas mixer was switched from N 2 gas to H 2 gas of the same flow rate and maintained for 5 minutes. Thereafter, while maintaining the current value, switching to C2H2 gas, which is a hydrocarbon-based reactive gas at a flow rate of 25 ml / min, was made to contact the organic liquid and C2H2 gas simultaneously with the substrate, and the carbon nanotube film was grown for 10 minutes. .

このようにして合成したカーボンナノチューブ膜を透過電子顕微鏡(TEM)にて評価したところ、図6のTEM像に示されるように、ほとんとが太さ10nm以下のカーボンナノチューブで、単層カーボンナノチューブ、2層カーボンナノチューブも含まれていた。一方、上記プロセスでC2H2ガスを流していなかった場合に得られたカーボンナノチューブ膜をTEMにて評価したところ、図7のTEM像に示されるように、ほとんとが太さ10nm以上の多層カーボンナノチューブおよび不定形カーボン粒子の混合膜であった。  When the carbon nanotube film synthesized in this way was evaluated with a transmission electron microscope (TEM), as shown in the TEM image of FIG. Double-walled carbon nanotubes were also included. On the other hand, when the carbon nanotube film obtained when the C2H2 gas was not passed in the above process was evaluated with a TEM, as shown in the TEM image of FIG. And a mixed film of amorphous carbon particles.

本発明の、液相への気相導入手段を有するカーボンナノチューブ合成装置の構成を示す図である。It is a figure which shows the structure of the carbon nanotube synthesis apparatus which has a gaseous-phase introduction | transduction means to a liquid phase of this invention. 不活性ガスであるN2ガスを導入した場合のSi基板上のカーボンナノチューブ膜のSEM像である。It is a SEM image of the carbon nanotube film | membrane on Si substrate at the time of introduce | transducing N2 gas which is an inert gas. 不活性ガスであるN2ガスを導入しなかった場合のSi基板上のカーボンナノチューブ膜のSEM像である。It is a SEM image of the carbon nanotube film | membrane on Si substrate at the time of not introduce | transducing N2 gas which is an inert gas. 還元性ガスであるH2ガスを導入した場合のSUS基板上のカーボンナノチューブ膜のSEM像である。It is a SEM image of the carbon nanotube film | membrane on a SUS board | substrate at the time of introduce | transducing H2 gas which is reducing gas. 還元性ガスであるH2ガスを導入しなかった場合のSUS基板上のカーボンナノチューブ膜のSEM像である。It is a SEM image of the carbon nanotube film | membrane on a SUS board | substrate when not introducing H2 gas which is reducing gas. N2ガス、H2ガスそして反応性ガスであるC2H2ガスを順次に導入した場合のTi基板上のカーボンナノチューブ膜のTEM像である。It is a TEM image of a carbon nanotube film on a Ti substrate when N2 gas, H2 gas, and C2H2 gas which is a reactive gas are sequentially introduced. N2ガスとH2ガスを順次に導入したが、その後に反応性ガスであるC2H2ガスを導入しなかった場合のSUS基板上のカーボンナノチューブ膜のTEM像である。It is a TEM image of the carbon nanotube film | membrane on a SUS board | substrate when N2 gas and H2 gas were introduce | transduced sequentially, but C2H2 gas which is reactive gas was not introduce | transduced after that.

符号の説明Explanation of symbols

1 有機液体
2 液体槽
3 蓋
4 電極
5 ヒーター
6 絶縁板
7 基板
8 ガス混合器
9 ガス導入管
10 排気管
11 気泡
DESCRIPTION OF SYMBOLS 1 Organic liquid 2 Liquid tank 3 Lid 4 Electrode 5 Heater 6 Insulation board 7 Substrate 8 Gas mixer 9 Gas introduction pipe 10 Exhaust pipe 11 Bubble

Claims (5)

基板を有機液体中に浸かり、ガスを液体中に導入し、ガスの気泡を基板に接触させながら基板を加熱し、基板表面に炭素膜を堆積させることを特徴とする、カーボンナノチューブ膜の合成方法と合成装置。  A method of synthesizing a carbon nanotube film, comprising: dipping a substrate in an organic liquid; introducing a gas into the liquid; heating the substrate while bringing gas bubbles into contact with the substrate; and depositing the carbon film on the substrate surface And synthesizer. 前記基板は、触媒作用を有する金属基板であるFe基板、Ni基板、Co基板、それらの合金基板、ステンレス基板、基板表面に上記触媒金属を有する薄膜が成膜された各種金属基板およびセラミックス基板であることを特徴とする、請求項1に記載のカーボンナノチューブ膜の合成方法。  The substrate is an Fe substrate, a Ni substrate, a Co substrate, an alloy substrate, a stainless steel substrate, various metal substrates on which a thin film having the catalyst metal is formed on the substrate surface, or a ceramic substrate, which is a metal substrate having a catalytic action. The method of synthesizing a carbon nanotube film according to claim 1, wherein: 前記有機液体は、炭素源となり得るエタノール、メタノール、オクタノールであることを特徴とする、請求項1に記載のカーボンナノチューブ膜の合成方法。  The method for synthesizing a carbon nanotube film according to claim 1, wherein the organic liquid is ethanol, methanol, or octanol that can be a carbon source. 前記ガスは、有機液体と基板との反応を一時的に避ける役割を果たすAr、N2、Heから選択される一種類のまたは混合された不活性ガス、触媒金属基板あるいは基板表面に成膜された触媒金属膜の表面酸化膜層を還元する役割を果たすH2、塩酸、硝酸、硫酸、弗酸から選択される一種類のまたは混合された還元性ガス、炭素源と成り得るC2H2、CH4、COから選択される一種類のまたは混合された反応性ガスであることを特徴とする請求項1に記載のカーボンナノチューブ膜の合成方法。  The gas was deposited on one or a mixed inert gas selected from Ar, N2, and He, a catalytic metal substrate or a substrate surface, which serves to temporarily avoid the reaction between the organic liquid and the substrate From one or a mixed reducing gas selected from H2, hydrochloric acid, nitric acid, sulfuric acid and hydrofluoric acid which plays a role of reducing the surface oxide film layer of the catalytic metal film, from C2H2, CH4 and CO which can be a carbon source The method for synthesizing a carbon nanotube film according to claim 1, wherein the reactive gas is one kind or a mixed reactive gas selected. 有機液体中に置かれた基板の周囲に不活性ガス、還元性ガス及び反応性ガスが導入できる手段を有していることを特徴とする、カーボンナノチューブ膜の合成装置。  An apparatus for synthesizing a carbon nanotube film, comprising means for introducing an inert gas, a reducing gas, and a reactive gas around a substrate placed in an organic liquid.
JP2005063021A 2005-02-08 2005-02-08 Synthetic method of carbon nanotube film by introduction of gas phase into liquid phase and synthesizing unit Pending JP2006219362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063021A JP2006219362A (en) 2005-02-08 2005-02-08 Synthetic method of carbon nanotube film by introduction of gas phase into liquid phase and synthesizing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063021A JP2006219362A (en) 2005-02-08 2005-02-08 Synthetic method of carbon nanotube film by introduction of gas phase into liquid phase and synthesizing unit

Publications (1)

Publication Number Publication Date
JP2006219362A true JP2006219362A (en) 2006-08-24

Family

ID=36981912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063021A Pending JP2006219362A (en) 2005-02-08 2005-02-08 Synthetic method of carbon nanotube film by introduction of gas phase into liquid phase and synthesizing unit

Country Status (1)

Country Link
JP (1) JP2006219362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116279A (en) * 2008-11-11 2010-05-27 National Institute For Materials Science Method for producing nano carbon material
WO2011062254A1 (en) * 2009-11-19 2011-05-26 国立大学法人熊本大学 Apparatus and process for producing nanocarbon material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500326A (en) * 1999-06-02 2003-01-07 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティー オブ オクラホマ Methods and catalysts for producing carbon nanotubes
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus
JP2003146631A (en) * 2001-11-12 2003-05-21 Japan Science & Technology Corp Method for manufacturing functional nanomaterial using endothermic reaction
JP2004211213A (en) * 2002-12-27 2004-07-29 Kanegafuchi Chem Ind Co Ltd Method for producing composite carbonaceous substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500326A (en) * 1999-06-02 2003-01-07 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティー オブ オクラホマ Methods and catalysts for producing carbon nanotubes
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus
JP2003146631A (en) * 2001-11-12 2003-05-21 Japan Science & Technology Corp Method for manufacturing functional nanomaterial using endothermic reaction
JP2004211213A (en) * 2002-12-27 2004-07-29 Kanegafuchi Chem Ind Co Ltd Method for producing composite carbonaceous substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116279A (en) * 2008-11-11 2010-05-27 National Institute For Materials Science Method for producing nano carbon material
WO2011062254A1 (en) * 2009-11-19 2011-05-26 国立大学法人熊本大学 Apparatus and process for producing nanocarbon material
JP5428066B2 (en) * 2009-11-19 2014-02-26 国立大学法人 熊本大学 Nanocarbon material manufacturing apparatus and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7033650B2 (en) Method of producing a nanotube layer on a substrate
EP1413550B1 (en) Method and device for synthesizing high orientationally arranged carbon nanotubes by using organic liquid
US7682658B2 (en) Method for making carbon nanotube array
JP2001020072A (en) Method of low temperature synthesis of carbon nanotube using catalyst metal film for decomposition of carbon source gas
JP2003331711A (en) Electron element comprising as electrode metal having high affinity with carbon
JPS5891100A (en) Synthesizing method for diamond
KR19990073593A (en) Chemical vapor deposition system for massive synthesis of carbon nanotubes
CA2815678C (en) Process for production of carbon nanotube
JP2007182374A (en) Method for manufacturing single-walled carbon nanotube
EP2716600A1 (en) Apparatus and method for producing oriented carbon nanotube aggregate
JP2002069643A (en) Method for producing carbon nanotube
JP2006219362A (en) Synthetic method of carbon nanotube film by introduction of gas phase into liquid phase and synthesizing unit
JP3747440B2 (en) Manufacturing method of metal nanowire
US10060029B2 (en) Graphene manufacturing method
JP2007161512A (en) Method of producing carbon nanotube
KR100372333B1 (en) Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition
JP2006027948A (en) Method of manufacturing monolayer carbon nanotube
JP6476759B2 (en) Method of manufacturing aligned carbon nanotube assembly
JP2000265275A (en) Cleaning method
JP2005001938A (en) Method of manufacturing carbon nanotube
JPS60112699A (en) Manufacture of diamond
JP5321880B2 (en) Nano-carbon material composite
JP2004323303A (en) Method of forming self-regenerative carbon nanotube-graphite mixed membrane
Kostadinov et al. Plasma-assisted chemical vapor deposition of diamond from an ethanol-water-hydrogen gas mixture
JP4907009B2 (en) Carbon nanotube film, carbon nanotube film-containing SiC substrate, and method of manufacturing carbon nanotube film body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025