JP2006176601A - Polymerization catalyst, polymer obtained by using the same, and its polymer complex - Google Patents

Polymerization catalyst, polymer obtained by using the same, and its polymer complex Download PDF

Info

Publication number
JP2006176601A
JP2006176601A JP2004370073A JP2004370073A JP2006176601A JP 2006176601 A JP2006176601 A JP 2006176601A JP 2004370073 A JP2004370073 A JP 2004370073A JP 2004370073 A JP2004370073 A JP 2004370073A JP 2006176601 A JP2006176601 A JP 2006176601A
Authority
JP
Japan
Prior art keywords
polymer
polymerization catalyst
carbon fiber
fine carbon
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370073A
Other languages
Japanese (ja)
Inventor
Takeshi Okubo
毅 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bussan Nanotech Research Institute Inc
Original Assignee
Bussan Nanotech Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc filed Critical Bussan Nanotech Research Institute Inc
Priority to JP2004370073A priority Critical patent/JP2006176601A/en
Priority to PCT/JP2005/023266 priority patent/WO2006068090A1/en
Publication of JP2006176601A publication Critical patent/JP2006176601A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F289/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds not provided for in groups C08F251/00 - C08F287/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/10Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to inorganic materials

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymerization catalyst in which a metal is carried by a fine carbon fiber, a polymer obtained by using the polymerization catalyst, and a polymer complex in which the fine carbon fibers are uniformly and finely dispersed. <P>SOLUTION: The polymer, in which polymer chains are chemically bonded to fine carbon fibers, is obtained by making a metal carried on the surface of carbon fibers having a diameter of 0.5-200 nm and an aspect ratio (length/diameter) of 5 or more, and polymerizing by using the carbon fibers carrying the metal as a polymerization catalyst. In this polymer itself or a polymer complex obtained by mixing the polymer with another polymer, the fine carbon fibers are highly, uniformly and finely dispersed in a matrix, and it is a material superior in conductivity, transparency, mechanical characteristics, heat resistance and the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機高分子を得るための炭素繊維を担体とした新規重合触媒および、この触媒を用いることで炭素繊維表面から成長した重合生成物、さらにこの重合生成物を用いて得られた高分子複合体に関する。   The present invention provides a novel polymerization catalyst using a carbon fiber as a carrier for obtaining an organic polymer, a polymerization product grown from the surface of the carbon fiber by using this catalyst, and a polymer obtained using this polymerization product. It relates to a molecular complex.

エレクトロニクス技術の発展に伴い導電性材料や電磁波シールド材料に軽量、高強度かつ成形性に優れた高分子複合体が用いられるようになっている。このような特性を発現するために高分子に含有される配合材としては、炭素粒子あるいは炭素繊維といった炭素材料が代表的である。   With the development of electronics technology, polymer composites that are lightweight, high-strength, and excellent in moldability have been used for conductive materials and electromagnetic shielding materials. As a compounding material contained in the polymer in order to exhibit such characteristics, a carbon material such as carbon particles or carbon fiber is representative.

炭素材料として、従来から用いられているカーボンブラックは、粒子形状より導電パスを形成させるために比較的多量に含有させなければならず、そのためマトリックス高分子の特性を大きく変化させその特徴を活かすことができない傾向にあった。さらに高分子中で形成された導電パスは成型条件で容易に変化し、電気抵抗が変化しやすい欠点がある。   Carbon black, which has been used as a carbon material, must be contained in a relatively large amount in order to form a conductive path rather than a particle shape, so that the characteristics of the matrix polymer can be greatly changed to take advantage of its characteristics. Tended to be unable to. Furthermore, the conductive path formed in the polymer has a drawback that it easily changes depending on molding conditions and the electric resistance is likely to change.

また、例えば、特許文献1には、カーボンブラックの表面の官能基に当該官能基と反応し得る反応性基を有するポリマー鎖を結合させてなるカーボンブラックグラフトポリマーが開示されており、高分子中におけるカーボンブラックの分散性、分散安定性を向上させ、高分子複合体における物理的および電気的特性を改善することが示されている。しかしながら、このようなカーボンブラックグラフトポリマーとしても、カーボンブラックの形状に起因する上述したような問題は改善されず、また、このようなカーボンブラック表面の官能基とポリマーグラフト鎖の反応率はきわめて低く、制御が困難であって、その分散性、分散安定性の向上の点についても十分満足のできるものではなかった。   Further, for example, Patent Document 1 discloses a carbon black graft polymer in which a polymer chain having a reactive group capable of reacting with the functional group is bonded to a functional group on the surface of carbon black. It has been shown to improve the dispersibility and dispersion stability of carbon black and improve the physical and electrical properties of the polymer composite. However, even with such a carbon black graft polymer, the problems described above due to the shape of the carbon black are not improved, and the reaction rate between the functional group of the carbon black surface and the polymer graft chain is extremely low. However, it was difficult to control, and the dispersibility and dispersion stability were not sufficiently satisfactory.

また、ポリアクリロニトリルなどの有機高分子繊維を黒鉛化して得られるカーボンファイバーは、高分子マトリックス中での導電パスの安定な形成に寄与し、上記欠点を克服するものの、カーボンファイバー自身の電気抵抗が高く、低い導電性を有する高分子複合体を得るためには相当のカーボンファイバーを含有させなければならない。   Carbon fiber obtained by graphitizing organic polymer fibers such as polyacrylonitrile contributes to the stable formation of conductive paths in the polymer matrix and overcomes the above drawbacks, but the electrical resistance of the carbon fiber itself is low. In order to obtain a polymer composite having high and low conductivity, a considerable amount of carbon fiber must be contained.

これらの課題を解決するために、特許文献2および3では、炭化水素と有機金属触媒を水素ガスと共に熱分解させ、必要に応じ熱処理することで得られた繊維径3.5〜75nm、アスペクト比(繊維長/繊維径)5以上の微細炭素繊維を用いた高分子複合体が提唱されている。   In order to solve these problems, in Patent Documents 2 and 3, a fiber diameter of 3.5 to 75 nm obtained by thermally decomposing a hydrocarbon and an organometallic catalyst together with hydrogen gas and heat-treating as necessary, an aspect ratio (Polymer length / fiber diameter) A polymer composite using 5 or more fine carbon fibers has been proposed.

このような微細炭素繊維は、一般に、カーボンナノチューブ(以下、「CNT」とも記する。)と呼称されるものである。カーボンナノチューブに代表されるカーボンナノ構造体を構成するグラファイト層は、通常では、規則正しい六員環配列構造を有し、その特異な電気的性質とともに、化学的、機械的および熱的に安定した性質を持つ物質である。   Such fine carbon fibers are generally called carbon nanotubes (hereinafter also referred to as “CNT”). Graphite layers that constitute carbon nanostructures represented by carbon nanotubes usually have an ordered six-membered ring arrangement structure, and their unique electrical properties as well as chemically, mechanically and thermally stable properties It is a substance with

また同様の技術をエラストマーに限定して適応した複合体が特許文献4に開示されている。   Further, Patent Document 4 discloses a composite in which the same technique is applied only to elastomers.

通常これら高分子複合体は、微細炭素繊維によりほとんどマトリクス高分子の透明性を維持できないが、導電性を金属微粉末を含有させることによって補うことで微細炭素繊維含有量を低減させ、結果的に透明薄膜として得られた高分子複合体が特許文献5に開示されている。   Usually, these polymer composites can hardly maintain the transparency of the matrix polymer due to the fine carbon fibers, but by reducing the content of the fine carbon fibers by supplementing the conductivity by containing metal fine powder, as a result A polymer composite obtained as a transparent thin film is disclosed in Patent Document 5.

しかしながら純粋な微細炭素繊維を高分子に混練させた場合、カーボンブラックなどの場合と同様に、繊維の強い凝集により分散が困難であり、その結果有効な導電パスを形成することができず高アスペクト比を有する炭素繊維の特徴を活かすことはできない。このことはエラストマーを含む多くのマトリックス高分子で同様である。さらに微細炭素繊維とマトリックスの界面相互作用がほとんどない場合、繊維の凝集力が優勢となり高い導電性が得られないばかりか機械特性を向上させることができない。分散性を高める目的でポリエチレングリコールなどの相溶化剤を用いることが知られているが、複合体の顕微鏡観察、導電性、力学特性にほとんど効果が認められない。   However, when pure fine carbon fiber is kneaded with polymer, as in the case of carbon black, it is difficult to disperse due to strong aggregation of the fiber, and as a result, an effective conductive path cannot be formed and a high aspect ratio can be formed. The characteristics of carbon fiber having a ratio cannot be utilized. This is the same for many matrix polymers including elastomers. Further, when there is almost no interfacial interaction between the fine carbon fibers and the matrix, the cohesive force of the fibers becomes dominant and not only high conductivity can be obtained but also the mechanical properties cannot be improved. It is known to use a compatibilizing agent such as polyethylene glycol for the purpose of enhancing dispersibility, but almost no effect is observed in the microscopic observation, conductivity, and mechanical properties of the composite.

また特許文献5におけるように、導電フィラーである金属微粉末と微細炭素繊維の併用では比重が増加し、軽量導電フィラーである微細炭素繊維の特徴を活かすことができない。さらに両導電フィラーの電気的接触が不均一であり、複合体の導電性は不安定である。光の散乱原理から不均質分散体の大きさを観測波長以下にすれば透明体が得られるが、微細炭素繊維をそのように微分散させた高分子複合体は未だ得られていない。   Further, as in Patent Document 5, the specific gravity increases when the metal fine powder as the conductive filler and the fine carbon fiber are used together, and the characteristics of the fine carbon fiber as the lightweight conductive filler cannot be utilized. Furthermore, the electrical contact between the two conductive fillers is not uniform, and the conductivity of the composite is unstable. From the light scattering principle, a transparent body can be obtained if the size of the inhomogeneous dispersion is reduced to the observation wavelength or less, but a polymer composite in which fine carbon fibers are so finely dispersed has not yet been obtained.

高分子マトリックスと微細炭素繊維の界面における相互作用を高めることは、微細炭素繊維の均一かつ微小分散に大きく貢献し、高分子複合体において安定した導電パスの形成、力学強度向上、透明性の向上などをより低い含有量において発現する。従って、これら高分子複合体はさらに多くの用途に適応可能となる。   Enhancing the interaction at the interface between the polymer matrix and the fine carbon fiber greatly contributes to the uniform and fine dispersion of the fine carbon fiber, forming a stable conductive path in the polymer composite, improving the mechanical strength, and improving the transparency. Are expressed at a lower content. Therefore, these polymer composites can be applied to many more applications.

界面相互作用を高める代表的な方法に材料表面の化学修飾があり、特許文献6および特許文献7には、微細炭素繊維の化学修飾法として、多くの有機官能化や有機金属化が開示されている。   A typical method for enhancing the interfacial interaction is chemical modification of the material surface. Patent Document 6 and Patent Document 7 disclose many organic functionalizations and organic metallizations as chemical modification methods for fine carbon fibers. Yes.

微細炭素繊維を酸化することで、最表面のグラファイト構造にカルボキシル基が導入されることを初めとし、酸クロライドなどその種々誘導体、他の有機官能基、及び有機金属化体が試みられている。しかしこれら化学修飾の多様性をもってしても、高分子マトリックスとの相互作用を高めることは複合体の力学特性を向上させる観点から十分ではない。これは微細炭素繊維の単位表面を占める官能基数が低く制御できないこと、マトリックスとの遠距離界面相互作用がないこと、複合化混練過程における官能基の熱安定性がないことなどに起因している。   Oxidizing fine carbon fibers has led to the introduction of carboxyl groups into the outermost graphite structure, and various derivatives thereof such as acid chlorides, other organic functional groups, and organometallic compounds have been attempted. However, even with the diversity of these chemical modifications, enhancing the interaction with the polymer matrix is not sufficient from the viewpoint of improving the mechanical properties of the composite. This is due to the fact that the number of functional groups occupying the unit surface of fine carbon fibers is low and cannot be controlled, there is no long-range interface interaction with the matrix, and there is no thermal stability of the functional groups in the composite kneading process. .

特許文献8には、微細炭素繊維表面を微細炭素繊維と親和性のあるポリマーで被覆して、微細炭素繊維の分散性を改良しようとすることも提案されている。また例えば、特許文献9に示されるように、微細炭素繊維の分散液の存在下にモノマーを重合して分散性の改善された高分子複合体を製造することも提案されている。   Patent Document 8 proposes to improve the dispersibility of fine carbon fibers by coating the surface of fine carbon fibers with a polymer having affinity for fine carbon fibers. For example, as shown in Patent Document 9, it is also proposed to polymerize a monomer in the presence of a fine carbon fiber dispersion to produce a polymer composite with improved dispersibility.

しかしながら、このように単純にポリマーで被覆する方法では、被覆ポリマーと微細炭素繊維との結合力が当然に弱く、十分な改質効果が発揮されず、また、微細炭素繊維を被覆する被覆ポリマーとの親和性の関係で、複合体のマトリックスとなる高分子の種類が大きく制限されることとなる。また、マトリックスとなる高分子の重合時に微細炭素繊維を分散させておく方法においては、得られた複合体においての微細炭素繊維とマトリックス高分子との相互作用自体は何ら改善されておらず、得られた複合体の二次加工時の熱履歴等によって、微細炭素繊維の分散性が大きく変動し、導電性、物理的特性等も不安定となるものである。   However, in such a simple method of coating with a polymer, the binding force between the coating polymer and the fine carbon fiber is naturally weak, and a sufficient modification effect cannot be exhibited. Therefore, the type of polymer that becomes the matrix of the complex is greatly limited. In addition, in the method of dispersing fine carbon fibers during the polymerization of the matrix polymer, the interaction between the fine carbon fibers and the matrix polymer in the obtained composite has not been improved at all. The dispersibility of the fine carbon fiber greatly fluctuates due to the heat history at the time of secondary processing of the obtained composite, and the conductivity, physical characteristics, etc. become unstable.

また、微細炭素繊維は水素添加を初めとする種々の触媒担体に応用可能である。特許文献10ではこのような触媒製造、および反応への応用について開示されており、活性の向上、多種反応への適応性、そして反応後触媒除去容易な不均一触媒としての利点を特徴としている。   The fine carbon fiber can be applied to various catalyst carriers including hydrogenation. Patent Document 10 discloses such catalyst production and application to reaction, and is characterized by improved activity, adaptability to various reactions, and advantages as a heterogeneous catalyst that can be easily removed after reaction.

しかしながら、これまでに開発された微細炭素繊維への触媒担持は反応後に生成物との分離が容易である不均一触媒を意図している。従って触媒の保持力は極めて弱く、微細炭素繊維と強く相互作用したマトリックスからなる複合体合成には適用できない。さらに担持された金属触媒は炭素−炭素不飽和結合への配位力がなく、オレフィンモノマーなどの重合を触媒することができないものであった。   However, the catalyst support on the fine carbon fiber developed so far intends a heterogeneous catalyst that can be easily separated from the product after the reaction. Therefore, the holding power of the catalyst is extremely weak, and cannot be applied to the synthesis of a composite composed of a matrix that interacts strongly with fine carbon fibers. Further, the supported metal catalyst has no coordination power to the carbon-carbon unsaturated bond and cannot catalyze the polymerization of olefin monomers and the like.

WO97/00295WO97 / 00295 特許第2641712号公報Japanese Patent No. 2641712 特許第3034027号公報Japanese Patent No. 3034027 特許第2863192号公報Japanese Patent No. 2863192 特開平9−115334号公報JP-A-9-115334 特表平11−502494号公報Japanese National Patent Publication No. 11-502494 特表2002−503204号公報Special table 2002-503204 gazette 特開2004−2119号公報JP 2004-2119 A 米国特許公開2003/0158323号公報US Patent Publication No. 2003/0158323 特表平7−508455号公報Japanese National Patent Publication No. 7-508455

従って本発明の目的は、上記技術的背景の下、微細炭素繊維に金属を担持させた重合触媒及びこれを用いた重合体を提供すると共に、これを用いて均一かつ微分散した高分子複合体を提供することにある。   Accordingly, an object of the present invention is to provide a polymerization catalyst in which a metal is supported on fine carbon fibers and a polymer using the same, and a polymer composite that is uniformly and finely dispersed using the same. Is to provide.

本発明者は鋭意研究を重ねた結果、直径0.5〜200nm、アスペクト比(長さ/直径)5以上の微細炭素繊維の表面に、金属を金属錯体として担持させた重合触媒を開発し、これを用いて重合して得られた重合体を微細炭素繊維と分離することなく、マトリックス高分子と複合化すること、もしくは得られた重合体自身を微細炭素繊維と分離することなく用いることで、上述した従来技術における課題を解決してなる高分子複合体を提供できることを見出し、本発明に到達したものである。   As a result of extensive research, the present inventor has developed a polymerization catalyst in which a metal is supported as a metal complex on the surface of a fine carbon fiber having a diameter of 0.5 to 200 nm and an aspect ratio (length / diameter) of 5 or more, The polymer obtained by polymerization using this can be combined with a matrix polymer without being separated from fine carbon fibers, or the obtained polymer itself can be used without being separated from fine carbon fibers. The present inventors have found that it is possible to provide a polymer composite obtained by solving the above-described problems in the prior art.

すなわち、上記課題を解決する本発明は、直径0.5〜200nm、アスペクト比(長さ/直径)5以上の炭素繊維の表面に、金属を、金属錯体として担持させたことを特徴とする重合触媒である。   That is, the present invention for solving the above problems is a polymerization characterized in that a metal is supported as a metal complex on the surface of a carbon fiber having a diameter of 0.5 to 200 nm and an aspect ratio (length / diameter) of 5 or more. It is a catalyst.

本発明はまた、当該炭素繊維を構成するグラファイト構造に金属原子が直接配位結合していることを特徴とする上記重合触媒を示すものである。   The present invention also shows the above polymerization catalyst characterized in that a metal atom is directly coordinated to the graphite structure constituting the carbon fiber.

本発明はさらに、当該炭素繊維を酸化することで生成した酸素含有基に金属原子が配位結合していることを特徴とする上記重合触媒を示すものである。   The present invention further shows the polymerization catalyst, wherein a metal atom is coordinated to an oxygen-containing group generated by oxidizing the carbon fiber.

本発明はまた、当該重合触媒が不飽和結合を有するモノマーの重合に用いられることを特徴とする上記重合触媒を示すものである。   This invention also shows the said polymerization catalyst characterized by using the said polymerization catalyst for superposition | polymerization of the monomer which has an unsaturated bond.

本発明はさらに、当該重合触媒が加水分解および脱水をともなう重縮合に用いられることを特徴とする上記重合触媒を示すものである。   The present invention further shows the polymerization catalyst, wherein the polymerization catalyst is used for polycondensation involving hydrolysis and dehydration.

上記課題を解決する本発明はまた、下記一般式(1)で示された構造を特徴とする重合体である。   This invention which solves the said subject is also a polymer characterized by the structure shown by following General formula (1).

Figure 2006176601
(但し、式中、CNTは炭素繊維を表し、Pは前記炭素繊維の表面に担持された金属錯体からなる当該炭素繊維表面に配された重合触媒構造により重合ないし重縮合された重合体であって、CNTとPとはこの重合触媒を介して、相互に結合されている。nは当該重合体の重合度を示し3〜107、およびmはCNTの表面を構成する炭素一つ当りのPの結合数であり0.5〜0.001である。)。
Figure 2006176601
(However, in the formula, CNT represents a carbon fiber, and P is a polymer polymerized or polycondensed by a polymerization catalyst structure arranged on the surface of the carbon fiber consisting of a metal complex supported on the surface of the carbon fiber. Thus, CNT and P are bonded to each other through this polymerization catalyst, n represents the degree of polymerization of the polymer, 3 to 10 7 , and m represents the amount per carbon constituting the surface of the CNT. The number of bonds of P, which is 0.5 to 0.001.)

上記課題を解決する本発明はまた、上記一般式(1)で示された構造を特徴とする重合体を少なくともの一種以上を含有することを特徴とする高分子複合体である。   This invention which solves the said subject is also a polymer composite characterized by including the polymer characterized by the structure shown by the said General formula (1) at least 1 type or more.

本発明に係る重合触媒は、分子量と高分子鎖数を制御しながら、例えば、オレフィン含有モノマー、あるいはポリシアネートとポリアミンの混合物をそれぞれ重合ないし重縮合させることができる。得られた重合体は成長した高分子鎖と微細炭素繊維から成り、両者は触媒の配位構造を介して強く結合している。従ってこの重合体自身、もしくはそれを用いて得られた高分子複合体は熱的に極めて安定であり、構成する微細炭素繊維はマトリックスに均一、かつ微小に分散している。このようにして得られた本発明の高分子複合体は微細炭素繊維の特徴を活かし、耐熱性、高強度、高導電性、高透明性などの特性を有する優れた材料となるものである。また、この触媒を用いて得られた重合生成物は、微細炭素繊維と化学的に強固かつ均一に結合しているため、本発明の重合体自身、もしくはその高分子複合体は導電性、透明性、機械特性、耐熱性などに優れた材料となるものであり、導電性材料や電磁波シールド材料をはじめとする各種用途に好適に使用できるものとなる。   The polymerization catalyst according to the present invention can polymerize or polycondensate, for example, an olefin-containing monomer or a mixture of polycyanate and polyamine, while controlling the molecular weight and the number of polymer chains. The resulting polymer consists of grown polymer chains and fine carbon fibers, both of which are strongly bonded via the coordination structure of the catalyst. Therefore, the polymer itself or a polymer composite obtained using the polymer is thermally extremely stable, and the fine carbon fibers constituting the polymer are uniformly and finely dispersed in the matrix. The polymer composite of the present invention thus obtained is an excellent material having characteristics such as heat resistance, high strength, high conductivity, and high transparency, utilizing the characteristics of fine carbon fibers. In addition, since the polymerization product obtained using this catalyst is chemically strongly and uniformly bonded to the fine carbon fiber, the polymer of the present invention or its polymer composite is conductive, transparent. It becomes a material having excellent properties, mechanical properties, heat resistance and the like, and can be suitably used for various applications including a conductive material and an electromagnetic shielding material.

以下、本発明を実施形態に基づき、詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明に係る重合触媒は、直径0.5〜200nm、より好ましくは0.5〜100nm、アスペクト比(長さ/直径)5以上、より好ましくは100以上の炭素繊維の表面に、金属を、金属錯体として担持させたことを特徴とする。   The polymerization catalyst according to the present invention has a diameter of 0.5 to 200 nm, more preferably 0.5 to 100 nm, an aspect ratio (length / diameter) of 5 or more, more preferably 100 or more, a metal on the surface of carbon fiber, It is supported as a metal complex.

金属錯体としての担持は、代表的には、中心金属に対し、微細炭素繊維のグラファイト構造中の炭素原子を配位原子として結合させる、あるいは、微細炭素繊維表面に導入した金属配位性官能基ないし原子を、中心金属に結合させて、金属錯体とすることによりなされ得る。   The support as a metal complex is typically a metal coordinating functional group bonded to the central metal as a coordinating atom in the graphite structure of the fine carbon fiber or introduced to the surface of the fine carbon fiber. Or an atom can be bonded to the central metal to form a metal complex.

すなわち、本発明においては、微細炭素繊維を構成するグラファイト構造(ないしグラファイト構造の一部領域)を、前記金属錯体の配位子(配位子の少なくとも1つで良い。)となる原子団の骨格の少なくとも一部として(当該グラファイト構造をそのまま前記金属錯体の配位子とする、あるいは、当該グラファイト構造(ないしグラファイト構造の一部領域)を、当該原子団の骨格の一部とする(この場合、配位原子自体は、上述するように炭素繊維表面に導入された炭素以外の原子である。)。)、前記金属錯体が形成され得るので、炭素繊維表面に金属を確実に担持させることができる。   That is, in the present invention, the graphite structure (or a partial region of the graphite structure) constituting the fine carbon fiber is made of an atomic group that becomes a ligand (at least one of the ligands) of the metal complex. As at least a part of the skeleton (the graphite structure as a ligand of the metal complex as it is, or the graphite structure (or a partial region of the graphite structure) as a part of the skeleton of the atomic group (this In this case, the coordination atom itself is an atom other than carbon introduced to the carbon fiber surface as described above.))) Since the metal complex can be formed, the metal is reliably supported on the carbon fiber surface. Can do.

本発明に係る重合触媒の担体として用いられる上記所定条件を満たす炭素繊維は、特に限定されるものではないが、例えば、次のようにして調製することができる。   The carbon fiber satisfying the predetermined condition used as the carrier for the polymerization catalyst according to the present invention is not particularly limited, but can be prepared, for example, as follows.

基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物を化学熱分解して繊維構造体を得、これを必要に応じさらに高温熱処理する。   Basically, an organic compound such as a hydrocarbon is chemically pyrolyzed using transition metal ultrafine particles as a catalyst to obtain a fiber structure, which is further subjected to high-temperature heat treatment as necessary.

原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭素(CO)、エタノール等のアルコール類などが使用できる。雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用いることができる。   As the raw material organic compound, hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used. As the atmospheric gas, an inert gas such as argon, helium, xenon, or hydrogen can be used.

また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフェロセン、酢酸金属塩などの遷移金属化合物と硫黄あるいはチオフェン、硫化鉄などの硫黄化合物の混合物を使用する。   As the catalyst, a transition metal such as iron, cobalt or molybdenum, or a mixture of a transition metal compound such as ferrocene or metal acetate and sulfur or a sulfur compound such as thiophene or iron sulfide is used.

繊維構造体の合成は、通常行われている炭化水素等のCVD法を用い、原料となる炭化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に導入し、800〜1300℃の温度で熱分解することにより行われる。   The synthesis of the fiber structure is carried out by using a CVD method such as hydrocarbon which is usually performed, evaporating a mixed liquid of hydrocarbon and catalyst as raw materials, introducing hydrogen gas or the like into a reaction furnace as a carrier gas, and 800 It is carried out by pyrolysis at a temperature of ˜1300 ° C.

なお、原料である微細炭素繊維は熱処理することでグラファイト構造がより緻密化され、配位する金属数が多くなり、より多くの重合活性点を導入することができる。これは当該重合触媒で生成した重合鎖と微細炭素繊維がより多く相互作用し、界面の接着強度および熱安定性を高める点で有用である。そのための熱処理温度は2000℃以上、好ましくは2400〜3000℃である。   In addition, the fine carbon fiber which is a raw material is heat-treated, so that the graphite structure is further densified, the number of coordinated metals is increased, and more polymerization active sites can be introduced. This is useful in that the polymer chain produced by the polymerization catalyst and fine carbon fibers interact more and increase the adhesive strength and thermal stability of the interface. The heat processing temperature for that is 2000 degreeC or more, Preferably it is 2400-3000 degreeC.

熱処理していない微細炭素繊維は、カルボキシル基、アルデヒド、水酸基などが結合した欠陥部位を有するグラファイト構造からなり、これら酸素含有基もまた金属配位子として用いられる。この酸素含有基は酸化処理により増加させることができ、上述のごとく微細炭素繊維と生成した重合鎖の界面の接着強度および熱安定性を高める点で有用である。   Fine carbon fibers that have not been heat-treated have a graphite structure having a defect site to which a carboxyl group, an aldehyde, a hydroxyl group, and the like are bonded, and these oxygen-containing groups are also used as metal ligands. This oxygen-containing group can be increased by oxidation treatment, and is useful in increasing the adhesive strength and thermal stability at the interface between the fine carbon fiber and the generated polymer chain as described above.

このような酸化処理の条件としては、例えば、濃硫酸/濃硝酸の3/1(体積比)混酸と100〜140℃の温度条件下で30分から12時間加熱する方法や、200〜600℃の範囲で二酸化炭素と接触させる方法などから選ばれる。   The conditions for such oxidation treatment include, for example, a method of heating for 30 minutes to 12 hours under a temperature condition of 3 to 1 (volume ratio) of concentrated sulfuric acid / concentrated nitric acid and 100 to 140 ° C., or 200 to 600 ° C. It is selected from a method of contacting with carbon dioxide in a range.

また、このような高温熱処理前もしくは処理後において、炭素繊維の円相当平均径を数mmに解砕処理する工程と、解砕処理された炭素繊維の円相当平均径を所定の大きさに粉砕処理する工程とを経ることで、所望の繊維径を有する微細炭素繊維を得る。なお、解砕処理を経ることなく、粉砕処理を行っても良い。   Further, before or after such high-temperature heat treatment, a step of crushing the equivalent circle average diameter of the carbon fiber to several mm, and crushing the equivalent circle average diameter of the crushed carbon fiber to a predetermined size The fine carbon fiber which has a desired fiber diameter is obtained by passing through the process to process. In addition, you may perform a grinding | pulverization process, without passing through a crushing process.

また、本発明の重合触媒の担体として用いられる上記所定条件を満たす炭素繊維としては、特に限定されるものではないが、後述するように高分子マトリックス中に配された際に、高い強度および導電性を発揮させる上から、炭素繊維を構成するグラフェンシート中における欠陥が少ないことが望ましく、具体的には、例えば、ラマン分光分析法で測定されるID/IG比が、10以下、より好ましくは1以下であることが望ましい。ここで、ラマン分光分析では、大きな単結晶の黒鉛では1580cm-1付近のピーク(Gバンド)しか現れない。結晶が有限の微小サイズであることや格子欠陥により、1360cm-1付近にピーク(Dバンド)が出現する。このため、DバンドとGバンドの強度比(R=I1360/I1580=ID/IG)が上記したように所定値以下であると、グラフェンシート中における欠陥量が少ないことが認められるためである。 In addition, the carbon fiber satisfying the above-mentioned predetermined conditions used as a carrier for the polymerization catalyst of the present invention is not particularly limited, but has high strength and conductivity when placed in a polymer matrix as will be described later. From the viewpoint of exerting the properties, it is desirable that the number of defects in the graphene sheet constituting the carbon fiber is small, and specifically, for example, the ID / IG ratio measured by Raman spectroscopy is 10 or less, more preferably 1 or less is desirable. Here, in the Raman spectroscopic analysis, only a peak (G band) near 1580 cm −1 appears in large single crystal graphite. A peak (D band) appears in the vicinity of 1360 cm −1 due to the fact that the crystal has a finite minute size and lattice defects. For this reason, when the intensity ratio (R = I 1360 / I 1580 = ID / IG) of the D band and the G band is equal to or less than the predetermined value as described above, it is recognized that the amount of defects in the graphene sheet is small. is there.

このように調製された微細炭素繊維は、有機金属化合物との反応により、本発明に係る重合触媒を提供することができる。   The fine carbon fiber thus prepared can provide the polymerization catalyst according to the present invention by reaction with an organometallic compound.

本発明に係る当該重合触媒として、具体的には、例えば、上述したような微細炭素繊維を構成するグラファイト構造を直接配位子としたメタロセン、および当該グラファイトを酸化生成したカルボキシル基、アルデヒド、水酸基等を配位子の一部とする錯体が好ましく例示できる。   Specific examples of the polymerization catalyst according to the present invention include, for example, a metallocene having a graphite structure constituting the fine carbon fiber as described above as a direct ligand, and a carboxyl group, an aldehyde, and a hydroxyl group formed by oxidizing the graphite. The complex which makes a part of a ligand etc. preferable can be illustrated.

また、中心金属としては、特に限定されるものではないが、例えば、鉄、チタン、ジルコニア、ロジウム、イリジウムなどが挙げられる。   The central metal is not particularly limited, and examples thereof include iron, titanium, zirconia, rhodium, and iridium.

これらの重合触媒は、例えば、下記スキームに従い調製される。   These polymerization catalysts are prepared according to the following scheme, for example.

Figure 2006176601
Figure 2006176601

有機金属化合物としてメタロセンを用いた場合、上記反応式に示すように、微細炭素繊維とチタノセン、フェロセン、ジルコノセン等のメタロセンを、1,4−ジオキサン、シクロヘキサン等の適当な媒体中に分散させ、触媒である無水塩化アルミニウム、三フッ化ホウ素・ジエチルエーテル錯体等の存在下に加熱することで、フリーデルクラフト型の環置換反応を生じさせ、メタロセン配位子を交換し、微細炭素繊維のグラファイト構造に、メタロセン由来の金属原子を直接配位結合させることにより、本発明の重合触媒が得られる。   When metallocene is used as the organometallic compound, as shown in the above reaction formula, fine carbon fibers and metallocene such as titanocene, ferrocene, zirconocene, etc. are dispersed in a suitable medium such as 1,4-dioxane, cyclohexane, etc. By heating in the presence of anhydrous aluminum chloride, boron trifluoride / diethyl ether complex, etc., a Friedel-Craft-type ring substitution reaction occurs, the metallocene ligand is exchanged, and the graphite structure of fine carbon fibers The metallocene-derived metal atom is directly coordinated to the polymerization catalyst of the present invention.

また、酸素含有基を有する微細炭素繊維は、イリジウム錯体であるバスカ(Vaska)試薬およびロジウム錯体であるウィルキンソン(Wilkinson)試薬とジメチルスルフォキサイド等の適当な媒体中で加熱することで、本発明の重合触媒を容易に得ることができる。   Further, the fine carbon fiber having an oxygen-containing group is heated in an appropriate medium such as a Vaska reagent that is an iridium complex and a Wilkinson reagent that is a rhodium complex and dimethyl sulfoxide. The polymerization catalyst of the invention can be easily obtained.

これらにおいて導入される金属量は、それぞれ用いるフェロセン量、および酸素含有基量に依存する。前者の場合、微細炭素繊維1g当り0.01〜10mmolの範囲が好ましく、後者では微細炭素繊維1g当り0.01〜0.5当量でなければならない。これらの下限より少ない場合は、界面の十分な相互作用が得られず、後述するように最終的に得られる高分子複合体の機械特性を、所望のものに向上させることができない。   The amount of metal introduced in these depends on the amount of ferrocene and the amount of oxygen-containing group used. In the former case, a range of 0.01 to 10 mmol per 1 g of fine carbon fiber is preferable, and in the latter case, it should be 0.01 to 0.5 equivalent per 1 g of fine carbon fiber. When less than these lower limits, sufficient interaction at the interface cannot be obtained, and the mechanical properties of the finally obtained polymer composite cannot be improved to a desired one as will be described later.

上述のようにして調製される、本発明に係る重合触媒である微細炭素繊維と金属との配位化合物は、例えば、オレフィンモノマーの付加重合及び縮重合によるポリアミド生成を触媒することができる。なお、これらの重合ないし縮重合条件としては、例えば、従来公知のメタロセン触媒等の触媒を用いた重合ないし縮重合条件と同様のものを適用することができ、溶液重合、塊状重合、気相重合等の各種重合法を用いることができる。   The coordination compound of fine carbon fibers and metal, which is a polymerization catalyst according to the present invention, prepared as described above can catalyze polyamide formation by addition polymerization and condensation polymerization of olefin monomers, for example. As the polymerization or condensation polymerization conditions, for example, the same polymerization or condensation polymerization conditions as those using a conventionally known metallocene catalyst can be applied, and solution polymerization, bulk polymerization, gas phase polymerization can be applied. Various polymerization methods such as these can be used.

オレフィンモノマーとしては、特に限定されるものではないが、例えば、エテン、プロペン、1,4−ブタジエン、イソプレン、シクロペンテン、ノルボルネン、3,4−ジヒドロフラン、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、アクリルアミド、N,N−ジメチルアクリルアミド、N−ビニルピロリドン、ジt−ブチルフマレート、スチレン、アクリロニトリルなどおよびこれらの2種またはそれ以上の混合物が挙げられる。なお、ここでメチル(メタ)アクリレートはメチルメタクリレートとメチルアクリレートの両者を示し、その他も同様である。また、これらオレフィンモノマーの重合の際、重合度を高めたり重合体の分子量分散度を下げる目的でメチルアルミノキサンなどの助触媒を用いることができる。   The olefin monomer is not particularly limited, and examples thereof include ethene, propene, 1,4-butadiene, isoprene, cyclopentene, norbornene, 3,4-dihydrofuran, methyl (meth) acrylate, and butyl (meth) acrylate. Benzyl (meth) acrylate, acrylamide, N, N-dimethylacrylamide, N-vinylpyrrolidone, di-t-butyl fumarate, styrene, acrylonitrile and the like and mixtures of two or more thereof. Here, methyl (meth) acrylate indicates both methyl methacrylate and methyl acrylate, and the others are the same. In the polymerization of these olefin monomers, a promoter such as methylaluminoxane can be used for the purpose of increasing the degree of polymerization or decreasing the molecular weight dispersion of the polymer.

また縮重合原料としては、特に限定されるものではないが、例えば、1,n−ジシアノ直鎖アルカン (n=4〜20)、1,n−ビスシアノメチルベンゼン (n=2、3、4)、1、n−ジシアノシクロヘキサン (n=3、4)、1,1,1−トリスシアノメチルエタン、ポリアクリロニトリルなどのポリシアノ化合物から選ばれた一種以上と、1,n−ジアミノ直鎖アルカン (n=2〜20)、1,n−ジアミノベンゼン (n=2、3、4)、1,n−ビスアミノメチルベンゼン (n=2、3、4)、1,n−ジアミノシクロヘキサン (n=3、4)、ポリアリルアミンなどのポリアミノ化合物から選ばれた一種以上の混合物から成る。   In addition, the polycondensation raw material is not particularly limited. For example, 1, n-dicyano linear alkane (n = 4 to 20), 1, n-biscyanomethylbenzene (n = 2, 3, 4). ) 1, n-dicyanocyclohexane (n = 3, 4), one or more selected from polycyano compounds such as 1,1,1-triscyanomethylethane, polyacrylonitrile, and 1, n-diamino linear alkane ( n = 2-20), 1, n-diaminobenzene (n = 2, 3, 4), 1, n-bisaminomethylbenzene (n = 2, 3, 4), 1, n-diaminocyclohexane (n = 3, 4), or a mixture of one or more selected from polyamino compounds such as polyallylamine.

次に本発明に係る重合体は、このようにして上記した本発明に係る重合触媒を用いて、これらのモノマーを重合ないし重縮合して得られるものであって、重合触媒を担持した微細炭素繊維とそこから成長した高分子鎖からなる、下記一般式(1)で示された構造を有することを特徴とする。   Next, the polymer according to the present invention is obtained by polymerizing or polycondensing these monomers using the polymerization catalyst according to the present invention as described above, and is a fine carbon carrying the polymerization catalyst. It has a structure represented by the following general formula (1) consisting of a fiber and a polymer chain grown therefrom.

Figure 2006176601
(但し、式中、CNTは炭素繊維を表し、Pは前記炭素繊維の表面に担持された金属錯体からなる当該炭素繊維表面に配された重合触媒構造により重合ないし重縮合された重合体であって、CNTとPとはこの重合触媒を介して、相互に結合されている。nは当該重合体の重合度を示し、mはCNTの表面を構成する炭素一つ当りのPの結合数である。)。
Figure 2006176601
(However, in the formula, CNT represents a carbon fiber, and P is a polymer polymerized or polycondensed by a polymerization catalyst structure arranged on the surface of the carbon fiber consisting of a metal complex supported on the surface of the carbon fiber. CNT and P are bonded to each other through this polymerization catalyst, n indicates the degree of polymerization of the polymer, and m is the number of bonds of P per carbon constituting the surface of the CNT. is there.).

上記一般式において、重合度nとしては、3〜107、より好ましくは5〜107、結合数mとしては、0.5〜0.001、より好ましくは0.1〜0.001であることが望ましい。 In the above general formula, the polymerization degree n is 3 to 10 7 , more preferably 5 to 10 7 , and the bond number m is 0.5 to 0.001, more preferably 0.1 to 0.001. It is desirable.

重合度nが3未満であると、結合した重合体の分子鎖による炭素繊維の分散性等の改質効果が十分なものとならず、一方、重合度が107を越えると、複合体の特性が純粋な高分子のそれと同等となり、炭素繊維を複合化させた効果が得られにくい。また、結合数mが0.5よりも大きいと、結合した重合体の分子鎖によって、炭素繊維本来の導電特性等が大きく損なわれ、一方、結合数が0.001よりも小さいと、結合した重合体の分子鎖による炭素繊維の分散性等の改質効果が十分なものとならない。 If the degree of polymerization n is less than 3, the modification effect such as dispersibility of carbon fibers due to the molecular chain of the bonded polymer will not be sufficient, while if the degree of polymerization exceeds 10 7 , The characteristics are equivalent to those of pure polymer, and it is difficult to obtain the effect of combining carbon fibers. Further, when the bond number m is larger than 0.5, the carbon fiber inherent conductive properties and the like are greatly impaired by the molecular chain of the bonded polymer. On the other hand, when the bond number is smaller than 0.001, the carbon fiber is bonded. Modification effects such as dispersibility of carbon fibers due to the molecular chain of the polymer are not sufficient.

なお、この高分子鎖の分子量は、重合時における、重合温度、重合時間、モノマー濃度などで制御できる。   The molecular weight of the polymer chain can be controlled by the polymerization temperature, polymerization time, monomer concentration, etc. during polymerization.

本発明に係る重合体は高分子鎖の分子量が5000以下のオリゴマーである場合、分子レベルで表面が改質された微細炭素繊維として回収され、また当該分子量が5000を超える高分子領域である場合、目視認識可能な繊維もしくはフレーク状の高分子に包埋された微細炭素繊維として回収される。   When the polymer according to the present invention is an oligomer having a polymer chain molecular weight of 5000 or less, it is recovered as fine carbon fibers whose surface is modified at the molecular level, and the molecular weight is a polymer region exceeding 5000 It is recovered as a fine carbon fiber embedded in a visually recognizable fiber or flaky polymer.

本発明に係る重合体は、そのまま高分子複合体として、あるいは、さらに他の高分子材料に配合されて複合体を形成して使用されることができる。   The polymer according to the present invention can be used as a polymer composite as it is, or further blended with another polymer material to form a composite.

特に、重合体を構成する高分子鎖が5000以下の分子量を有する場合には、他の高分子材料と混合して、好ましい本発明の高分子複合体を調製することができる。   In particular, when the polymer chain constituting the polymer has a molecular weight of 5,000 or less, it can be mixed with another polymer material to prepare a preferable polymer composite of the present invention.

本発明に係る高分子複合体において、上記した本発明に係る重合体と混合される他の高分子材料としては、特に限定されるものではないが、前記重合体の有する高分子鎖と同じ一次構造を有することが微細炭素繊維との界面相互作用を強化する上で好ましい。   In the polymer composite according to the present invention, the other polymer material mixed with the polymer according to the present invention is not particularly limited, but the same primary polymer chain as the polymer has. Having a structure is preferable for enhancing the interfacial interaction with the fine carbon fibers.

例えば本発明の重合体製造に用いたモノマーがプロペンであれば、他の高分子材料としてポリプロピレンと混合することが好ましい。しかし特にこの概念に限定されることなく、他の高分子複合体を製造してもよい。   For example, if the monomer used for producing the polymer of the present invention is propene, it is preferable to mix with polypropylene as another polymer material. However, the present invention is not particularly limited to this concept, and other polymer composites may be manufactured.

一方、本発明に係る重合体の有する高分子鎖が5000以上の分子量を有する場合、本発明の重合体は単独、もしくは他の高分子材料と混合することで本発明の高分子複合体として用いることができる。なお、この場合における他の高分子材料としても、上述したものと同様のものが好ましい。   On the other hand, when the polymer chain of the polymer according to the present invention has a molecular weight of 5000 or more, the polymer of the present invention is used alone or mixed with another polymer material to be used as the polymer composite of the present invention. be able to. In this case, the other polymer materials are preferably the same as those described above.

本発明に係る高分子複合体を得る上で、他の高分子材料と混合する手段としては、溶媒に分散・溶解させ、当該溶媒を除去する方法、ロール、ニーダー、エクストルーダーなどで加熱・溶融混合させる方法、および本発明の重合体を分散させたモノマーを重合させる方法などから適宜選択することができる。また、本発明に係る高分子複合体において、マトリックスとなる他の高分子材料としては、最終的な製品形態において、必ずしも、固相のものに限られず、混合時だけでなく最終的な製品形態としても液状の高分子や高分子組成物等も含まれ得る。   In obtaining the polymer composite according to the present invention, as a means for mixing with other polymer materials, a method of dispersing and dissolving in a solvent and removing the solvent, heating and melting with a roll, kneader, extruder, etc. The method can be appropriately selected from a method of mixing, a method of polymerizing a monomer in which the polymer of the present invention is dispersed, and the like. Further, in the polymer composite according to the present invention, the other polymer material used as the matrix is not necessarily limited to the solid phase in the final product form, and is not limited to the final product form. In addition, liquid polymers and polymer compositions may be included.

本発明の高分子複合体は、このような混合方法のいかんにかかわらず、熱的もしくは機械的特性に優れたものとなる。このことは本発明の重合触媒を構成する金属と微細炭素繊維の表面の結合による強い相互作用が、当該金属から成長する高分子鎖を強固に結合させ、当該高分子鎖が最終的に得られる高分子複合体のマトリックスと化学的相互作用もしくは物理的な絡み合いなどで結合していることに起因している。さらにこれらの全相互作用が当該重合触媒の調製から複合体製造まで制御可能であることも、本発明の効果の重要な因子である。特に当該高分子鎖と微細炭素繊維の相互作用を担う本発明の重合触媒の調製法は、これまで報告された炭素繊維の表面修飾が、化学種や官能基の導入率に相当低いところで限界があり、かつ制御できないことの課題を克服した。このように重合触媒から分子レベルで構築された本発明の高分子複合体では、微細炭素繊維がマトリックス中に均一、かつ微分散しているため、従来の混練技術による複合体製造に比較して微細炭素繊維のより低い含有量(特に限定されるわけではないが、具体的には例えば、マトリックス高分子に対し0.01〜5質量%程度)で導電性と透明性の高い複合体を与えることができる。特に、従来混練法では分散を高めるため強いせん断力を微細炭素繊維に印加するのが常法であり、これが原因で繊維は切断され、アスペクト比の低下により導電性や機械強度の向上が困難であった。本発明の重合体は微細炭素繊維表面が高分子鎖で覆われているため、マトリックスとの相溶性やぬれ性が高められ分散が容易であり、高いせん断力を加えなくとも均一分散性に優れた複合体を調製できる。従って上記の如く得られた本発明の複合体は、熱的、機械的、電気的、もしくは光学的特性に優れており、それぞれの特性を活かした用途で好適に用いることができる。   Regardless of the mixing method, the polymer composite of the present invention has excellent thermal or mechanical properties. This means that the strong interaction due to the bonding between the metal constituting the polymerization catalyst of the present invention and the surface of the fine carbon fiber strongly bonds the polymer chain grown from the metal, and the polymer chain is finally obtained. This is because it is bonded to the matrix of the polymer composite by chemical interaction or physical entanglement. Furthermore, it is an important factor of the effect of the present invention that all these interactions can be controlled from the preparation of the polymerization catalyst to the production of the composite. In particular, the method for preparing the polymerization catalyst of the present invention responsible for the interaction between the polymer chain and the fine carbon fiber has a limit where the surface modification of the carbon fiber reported so far is considerably lower than the introduction rate of chemical species and functional groups. Overcoming the challenges of being and not being controllable. Thus, in the polymer composite of the present invention constructed at the molecular level from the polymerization catalyst, the fine carbon fibers are uniformly and finely dispersed in the matrix, so compared with the production of the composite by the conventional kneading technique. A composite with high conductivity and transparency is provided at a lower content of fine carbon fibers (specifically, for example, but not limited to about 0.01 to 5% by mass with respect to the matrix polymer). be able to. In particular, in conventional kneading methods, it is usual to apply a strong shearing force to fine carbon fibers in order to increase dispersion, and this causes the fibers to be cut, and it is difficult to improve conductivity and mechanical strength due to a decrease in aspect ratio. there were. In the polymer of the present invention, the surface of fine carbon fibers is covered with polymer chains, so that the compatibility and wettability with the matrix are enhanced and the dispersion is easy, and it is excellent in uniform dispersibility without applying high shearing force. Composites can be prepared. Therefore, the composite of the present invention obtained as described above is excellent in thermal, mechanical, electrical, or optical characteristics, and can be suitably used for applications utilizing each characteristic.

なお、本発明に係る高分子複合体においては、上記した本発明に係る重合体および他の高分子材料に加えて、従来公知の各種添加剤ないし配合剤、例えば、着色剤、酸化防止剤、紫外線防止剤、難燃剤、滑剤、他の充填剤、可塑剤等を、本発明に係る高分子複合体の所期の特性を満たす限りにおいて任意に配合することができる。   In addition, in the polymer composite according to the present invention, in addition to the polymer according to the present invention and other polymer materials described above, various conventionally known additives or compounding agents, for example, colorants, antioxidants, An ultraviolet inhibitor, a flame retardant, a lubricant, other fillers, a plasticizer, and the like can be arbitrarily blended as long as the desired characteristics of the polymer composite according to the present invention are satisfied.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

なお、実施例と比較例で得られた重合体および高分子複合体の物性は、以下に示す方法に従って測定した。   The physical properties of the polymers and polymer composites obtained in Examples and Comparative Examples were measured according to the methods shown below.

1.熱重量天秤
マックサイエンス社製 TG−DTA 2000Sを用いてアルゴン雰囲気下、5℃/分の昇温で得られた重量減少曲線から求めた。
1. Thermogravimetric balance It calculated | required from the weight reduction curve obtained by the temperature increase of 5 degree-C / min in argon atmosphere using the TG-DTA 2000S by a Mac Science company.

2.重量平均分子量
サンプルを0.02容量%の溶液に調製し、TOSOH製カラム TSK−GELGMHHR−H(S)HとRI検出器を備えた(株)センシュー科学製 GPC装置 SSC−7100を用い、流速 1ml/分、温度 140℃にて測定した。得られたクロマトグラムを標準ポリスチレン換算し、重量平均分子量を求めた。
2. Weight average molecular weight A sample was prepared in a 0.02% by volume solution, and a flow rate was measured using a TOSOH column TSK-GELGMHHR-H (S) H and a Senshu Scientific GPC apparatus SSC-7100 equipped with an RI detector. The measurement was performed at 1 ml / min and at a temperature of 140 ° C. The obtained chromatogram was converted into standard polystyrene, and the weight average molecular weight was determined.

3.電気抵抗
三菱化学社製 MCP−T600を用い、4端子法により測定した。
3. The electrical resistance was measured by the 4-terminal method using MCP-T600 manufactured by Mitsubishi Chemical Corporation.

4.弾性率、ガラス転移温度
ボーリンインスツルメンツ社製 Geminiを用い、厚さ1mmの試料を10Hzの加振下、5℃/分の昇温で得られる貯蔵弾性率と損失正接の温度分散から求めた。
4). Elastic modulus, glass transition temperature Using a Gemini manufactured by Borin Instruments Co., Ltd., a sample having a thickness of 1 mm was obtained from the storage elastic modulus obtained by heating at 5 ° C./min under vibration of 10 Hz and the temperature dispersion of loss tangent.

5.光線透過率
日立製作所製紫外可視分光光度計 UV−330を用い、厚み1 μmのフィルム試料の分光測定結果から求めた。
5. Light transmittance The UV-visible spectrophotometer UV-330 manufactured by Hitachi, Ltd. was used, and the light transmittance was obtained from the spectroscopic measurement result of a film sample having a thickness of 1 μm.

6.熱膨張係数
リガク社製TMA装置により直径0.5mmのピンを用いて98.07mN (10 gf)の荷重でTMA測定を行ない、10℃/分の昇温で得られたチャートより評価した。
6). Coefficient of thermal expansion TMA measurement was performed with a load of 98.07 mN (10 gf) using a pin having a diameter of 0.5 mm by a TMA apparatus manufactured by Rigaku Corporation, and evaluation was performed from a chart obtained by heating at 10 ° C./min.

[実施例1] 重合触媒の調製
真空下、120℃にて乾燥した内径が40〜80nmの多層微細炭素繊維(MWCNT)200mgとチタノセン 200mgをジオキサン 20mlに分散させ、そこへ塩化アルミニウム テトラヒドロフラン錯体 (0.5 mol/l) 2mlを加え、アルゴン雰囲気下、室温にて12時間撹拌した。沈殿した金属アルミニウムをデカンテーションにて除き、残りの反応混合物を濾過し、残査を2N−塩酸で3回、純粋で4回洗浄した。回収残査をソックスレー抽出器を用いてテトラヒドロフランで12時間洗浄し、真空乾燥させ本発明の重合触媒を得た。
[Example 1] Preparation of polymerization catalyst 200 mg of multi-layer fine carbon fibers (MWCNT) having an inner diameter of 40 to 80 nm and 200 mg of titanocene dried at 120 ° C. under vacuum were dispersed in 20 ml of dioxane, and aluminum chloride tetrahydrofuran complex (0 0.5 mol / l) 2 ml was added, and the mixture was stirred at room temperature for 12 hours under an argon atmosphere. The precipitated metallic aluminum was removed by decantation, the remaining reaction mixture was filtered, and the residue was washed 3 times with 2N hydrochloric acid and 4 times with pure. The recovered residue was washed with tetrahydrofuran using a Soxhlet extractor for 12 hours and vacuum dried to obtain the polymerization catalyst of the present invention.

[実施例2]重合触媒の調製
内径が40〜80nmのMWCNT 120mgと濃硫酸と濃硝酸の混酸(体積比3:1)19mlの混合物を130℃にて2時間撹拌した。反応混合物を大量の純水に投入し、濾別、水洗、乾燥によりMWCNTを回収した。このMWCNTを15mlのジメチルスルフォキサイド(DMSO)に溶解し、そこへ10mmol/lのウィルキンソン試薬 DMSO溶液10mlを加え、60℃にて72時間加熱した。反応混合物を冷却後、濾過し、残査をDMSO洗浄、エタノール洗浄、水洗し、乾燥させることで本発明の重合触媒を得た。
[Example 2] Preparation of polymerization catalyst A mixture of 120 mg of MWCNT having an inner diameter of 40 to 80 nm and 19 ml of a mixed acid of concentrated sulfuric acid and concentrated nitric acid (volume ratio 3: 1) was stirred at 130 ° C for 2 hours. The reaction mixture was poured into a large amount of pure water, and MWCNT was recovered by filtration, washing with water and drying. This MWCNT was dissolved in 15 ml of dimethyl sulfoxide (DMSO), 10 ml / l Wilkinson reagent DMSO solution was added thereto, and heated at 60 ° C. for 72 hours. The reaction mixture was cooled and then filtered, and the residue was washed with DMSO, ethanol, water, and dried to obtain the polymerization catalyst of the present invention.

[実施例3] プロペンオリゴマーよる微細炭素繊維の表面修飾
実施例1で得られた重合触媒10mgを300mlの耐圧容器にてAr雰囲気下、100mlトルエン溶液とし、そこにメチルアルミノキサン1mgを加え室温にて2時間撹拌した後、プロペンを10気圧導入し、さらに室温で1時間撹拌した。圧力を開放した後、反応混合物を濾取し、乾燥させ本発明の重合体を得た。この重合体のTG−DTA分析では420℃で2.1%の重量減少を示した。
[Example 3] Surface modification of fine carbon fiber with propene oligomer 10 mg of the polymerization catalyst obtained in Example 1 was made into a 100 ml toluene solution in an Ar atmosphere in a 300 ml pressure vessel, and 1 mg of methylaluminoxane was added thereto at room temperature. After stirring for 2 hours, propene was introduced at 10 atm and further stirred at room temperature for 1 hour. After releasing the pressure, the reaction mixture was collected by filtration and dried to obtain the polymer of the present invention. TG-DTA analysis of this polymer showed a 2.1% weight loss at 420 ° C.

[実施例4] プロペンオリゴマーで表面修飾された微細炭素繊維の混練
実施例3で得られた微細炭素繊維のプロペンオリゴマー付加体 100gとポリプロピレン 4893gをエクストルーダーを用いて250℃にて混練した。得られた混練物の体積抵抗は860Ω・cmであり、導電性高分子として好適に用いられる。
Example 4 Kneading of Fine Carbon Fiber Surface-Modified with Propene Oligomer 100 g of the fine carbon fiber propene oligomer adduct obtained in Example 3 and 4893 g of polypropylene were kneaded at 250 ° C. using an extruder. The obtained kneaded product has a volume resistance of 860 Ω · cm, and is suitably used as a conductive polymer.

[実施例5] 本発明の重合触媒によるエチレンの重合
実施例2で得られた重合触媒25mgを300mlの耐圧容器にてAr雰囲気下、100mlトルエン溶液とし、そこにメチルアルミノキサン1mgを加え室温にて2時間撹拌した後、エチレンを15気圧導入し、さらに室温で18時間撹拌した。圧力を開放した後、反応混合物を濾取し、乾燥させ本発明の重合体を得た。濃硫酸中で12時間撹拌し、濾過、水洗したこの重合体の140℃におけるオルトジクロロベンゼン可溶部の重量平均分子量は4.2×106であった。
[Example 5] Polymerization of ethylene using the polymerization catalyst of the present invention 25 mg of the polymerization catalyst obtained in Example 2 was made into a 100 ml toluene solution in an Ar atmosphere in a 300 ml pressure vessel, and 1 mg of methylaluminoxane was added thereto at room temperature. After stirring for 2 hours, ethylene was introduced at 15 atm and further stirred at room temperature for 18 hours. After releasing the pressure, the reaction mixture was collected by filtration and dried to obtain the polymer of the present invention. The weight average molecular weight of the soluble part of orthodichlorobenzene at 140 ° C. of this polymer stirred for 12 hours in concentrated sulfuric acid, filtered and washed with water was 4.2 × 10 6 .

本発明の重合体のTG−DTA分析では380℃で重量変化が一定となり、そのときの残存率は4.8%であった。この重合体の体積抵抗は120Ω・cmであり、導電性高分子として好適に用いられる。   In the TG-DTA analysis of the polymer of the present invention, the weight change was constant at 380 ° C., and the residual ratio at that time was 4.8%. This polymer has a volume resistance of 120 Ω · cm and is suitably used as a conductive polymer.

[実施例6] 本発明の重合触媒によるメチルメタクリレートの重合
実施例1においてチタノセンの代わりにフェロセン210mgを用いた以外は同様の方法により本発明の重合触媒を得た。この触媒2gをメチルメタクリレートに超音波照射により分散させ60℃にて4時間加熱させることで、本発明の重合体を得た。この重合体の引っ張り弾性率およびTgは、52GPa、および114℃であり、純粋ポリメチルメタクリレートのそれら(それぞれ4GPaおよび100℃)と比較し、熱機械特性に優れていた。
[Example 6] Polymerization of methyl methacrylate with the polymerization catalyst of the present invention A polymerization catalyst of the present invention was obtained in the same manner as in Example 1 except that 210 mg of ferrocene was used instead of titanocene. The polymer of the present invention was obtained by dispersing 2 g of this catalyst in methyl methacrylate by ultrasonic irradiation and heating at 60 ° C. for 4 hours. The tensile modulus and Tg of this polymer were 52 GPa and 114 ° C., which were excellent in thermomechanical properties compared to those of pure polymethyl methacrylate (4 GPa and 100 ° C., respectively).

[実施例7] 66ナイロンによる微細炭素繊維の表面修飾
実施例2で得られた重合触媒10mg、1,4−ジシアノブタン 50gおよび1,4−ジアミノブタン 40gを水18mlとダイグライム30mlに懸濁し、アルゴン雰囲気下、120℃にて12時間加熱した。得られた沈殿物をアセトンにて洗浄し、濾取、乾燥後本発明の重合体を得た。この重合体のTG−DTA分析では380℃で4.4%の重量減少を示した。
[Example 7] Surface modification of fine carbon fiber with 66 nylon 10 mg of the polymerization catalyst obtained in Example 2, 50 g of 1,4-dicyanobutane and 40 g of 1,4-diaminobutane were suspended in 18 ml of water and 30 ml of diglyme. The mixture was heated at 120 ° C. for 12 hours under an argon atmosphere. The resulting precipitate was washed with acetone, filtered and dried to obtain the polymer of the present invention. TG-DTA analysis of this polymer showed a weight loss of 4.4% at 380 ° C.

[実施例8] 66ナイロンで表面修飾された微細炭素繊維の混練
実施例7で得られた微細炭素繊維の66ナイロン付加体 100gとポリアクリロニトリル 3182gをエクストルーダーを用いて、340℃にて混練した。得られた混練物は厚み1μmで550nmにおいて91%の光線透過率と146Ω・cmの体積抵抗を示し、透明導電性高分子として好適に用いられる。
[Example 8] Kneading of fine carbon fiber surface-modified with 66 nylon 100 g of fine carbon fiber 66 nylon adduct obtained in Example 7 and 3182 g of polyacrylonitrile were kneaded at 340 ° C using an extruder. . The obtained kneaded material has a thickness of 1 μm, a light transmittance of 91% at 550 nm and a volume resistance of 146 Ω · cm, and is suitably used as a transparent conductive polymer.

[実施例9] 本発明の重合触媒によるノルボルネンの重合
実施例2で得られた重合触媒10mg、ノルボルネン6gをトルエン32mlに懸濁し、室温にて12時間撹拌した。反応混合物を大量のメタノールに投入し沈殿物を濾取し、メタノール洗浄し、乾燥させ、本発明の重合体を得た。濃硫酸中で12時間撹拌し、濾過、水洗したこの重合体のテトラヒドロフラン可溶部の重量平均分子量は1.1×106であった。厚み1μmの成形膜の光線透過率は550nmで89%であり、透明性に優れていた。さらに加熱による線膨張係数は3.8×10-5であったことから、本重合体はポリノルボルネンの微細炭素繊維による複合化効果を発現し、耐熱性の優れた光学材料として好適に用いられる。
[Example 9] Polymerization of norbornene with the polymerization catalyst of the present invention 10 mg of the polymerization catalyst obtained in Example 2 and 6 g of norbornene were suspended in 32 ml of toluene and stirred at room temperature for 12 hours. The reaction mixture was poured into a large amount of methanol, and the precipitate was collected by filtration, washed with methanol, and dried to obtain the polymer of the present invention. The weight average molecular weight of the tetrahydrofuran-soluble part of this polymer stirred for 12 hours in concentrated sulfuric acid, filtered and washed with water was 1.1 × 10 6 . The light transmittance of the molded film having a thickness of 1 μm was 89% at 550 nm, and was excellent in transparency. Furthermore, since the linear expansion coefficient by heating was 3.8 × 10 −5 , the present polymer exhibits a composite effect of polynorbornene by fine carbon fibers and is suitably used as an optical material having excellent heat resistance. .

[比較例1]
アゾビスジメチルバレロニトリル 0.5%を含有するメチルメタクリレート100gと微細炭素繊維2gの混合物を40℃から120℃まで20時間かけて重合させた。得られた重合体は部分的に塊状の微細炭素繊維を有していた。その体積抵抗は7.3×104Ω・cmであり、微細炭素繊維の導電性を活かした複合体は得られなかった。
[Comparative Example 1]
A mixture of 100 g of methyl methacrylate containing 0.5% of azobisdimethylvaleronitrile and 2 g of fine carbon fibers was polymerized from 40 ° C. to 120 ° C. over 20 hours. The resulting polymer had partially fine carbon fibers. The volume resistance was 7.3 × 10 4 Ω · cm, and a composite utilizing the conductivity of fine carbon fibers was not obtained.

[比較例2]
実施例2に従い、酸化処理した微細炭素繊維 1gを塩化スルフリル100gと48時間還流し、生成した酸クロライドとオクタデシルアミン20gをトルエン中で12時間還流し、微細炭素繊維上にオクタデシル基を導入した。この改質微細炭素繊維のTG−DTA分析では280℃で重量変化が一定となり、そのときの残存率は99.2%であり、わずかにアルキル化された。この改質微細炭素繊維1gとポリエチレン50gをエクストルーダーにて混練し、複合体を得た。この複合体の体積抵抗は8.1×106Ω・cmであり、微細炭素繊維の導電性を活かした複合体は得られなかった。
[Comparative Example 2]
In accordance with Example 2, 1 g of oxidized fine carbon fiber was refluxed with 100 g of sulfuryl chloride for 48 hours, and the resulting acid chloride and 20 g of octadecylamine were refluxed in toluene for 12 hours to introduce octadecyl groups onto the fine carbon fiber. In the TG-DTA analysis of this modified fine carbon fiber, the weight change was constant at 280 ° C., and the residual rate at that time was 99.2%, which was slightly alkylated. 1 g of this modified fine carbon fiber and 50 g of polyethylene were kneaded with an extruder to obtain a composite. The volume resistance of this composite was 8.1 × 10 6 Ω · cm, and a composite utilizing the conductivity of fine carbon fibers was not obtained.

[比較例3]
微細炭素繊維0.5g、アンチモンドープ酸化スズ66g、ポリエチレンテレフターレート100gをメチルエチルケトン350gとシクロヘキサノン50gの溶媒に混合し、得られた懸濁液をガラス平板上に塗布し、乾燥後に1μmの膜を形成させた。この膜の光線透過率は550nmで88%であったが、表面抵抗が109Ωと高いものであった。
[Comparative Example 3]
Fine carbon fiber 0.5g, antimony-doped tin oxide 66g, polyethylene terephthalate 100g are mixed with 350g of methyl ethyl ketone and 50g of cyclohexanone, and the resulting suspension is coated on a glass plate and dried to form a 1µm film. Formed. The light transmittance of this film was 88% at 550 nm, but the surface resistance was as high as 10 9 Ω.

[比較例4]
実施例2において酸化処理しない微細炭素繊維を用いてロジウム担持触媒を調製した。この触媒を用いてスチレンを重合させた。得られた重合体のGPCによる重量平均分子量は5400であり、重合触媒としての活性が十分得られなかった。さらにこの重合生成物を室温にてテトラヒドロフランで洗浄したところ、微細炭素繊維上にはもはやスチレン重合体の存在しないことがTG−DTAで示された。
[Comparative Example 4]
In Example 2, a rhodium-supported catalyst was prepared using fine carbon fibers that were not oxidized. Styrene was polymerized using this catalyst. The weight average molecular weight of the obtained polymer by GPC was 5400, and the activity as a polymerization catalyst was not sufficiently obtained. Furthermore, when this polymerization product was washed with tetrahydrofuran at room temperature, it was shown by TG-DTA that styrene polymer was no longer present on the fine carbon fibers.

[比較例5]
実施例2に従い酸化処理された微細炭素繊維5gを700℃にて2時間、水素ガスにて還元した。この還元生成物を乾燥テトラヒドロフラン300mlに懸濁させ、そこへ1.6mol/l−nBuLi 40mlを滴下し、室温にて4時間撹拌した。この反応混合物を−30℃に冷却しメチルメタクリレート5mlを滴下した。この温度を維持しながら6時間撹拌し、反応混合物を大量のメタノールに投入し、沈殿を濾取、メタノール洗浄、そして乾燥させた。生成した重合体2gとポリメチルメタクリレート100gを250℃にて混練した。得られた複合体の引っ張り弾性率とガラス転移温度はそれぞれ1.1GPa、および102℃であり、微細炭素繊維を複合化した効果が全く得られなかった。生成した重合体をTG−MSで分析したところ220℃で解重合による重量減少が始まり250℃で残存量48%の恒量に達したことから、上記混練過程における熱で微細炭素繊維上に結合したポリメチルメタクリレートが脱離したことが示唆される。
[Comparative Example 5]
5 g of fine carbon fibers oxidized according to Example 2 were reduced with hydrogen gas at 700 ° C. for 2 hours. This reduced product was suspended in 300 ml of dry tetrahydrofuran, and 40 ml of 1.6 mol / l-nBuLi was added dropwise thereto, followed by stirring at room temperature for 4 hours. The reaction mixture was cooled to −30 ° C. and 5 ml of methyl methacrylate was added dropwise. The mixture was stirred for 6 hours while maintaining this temperature, the reaction mixture was poured into a large amount of methanol, the precipitate was collected by filtration, washed with methanol, and dried. 2 g of the produced polymer and 100 g of polymethyl methacrylate were kneaded at 250 ° C. The resulting composite had a tensile modulus of elasticity and a glass transition temperature of 1.1 GPa and 102 ° C., respectively, and no effect of combining fine carbon fibers was obtained. Analysis of the polymer produced by TG-MS revealed that weight loss due to depolymerization began at 220 ° C. and reached a constant weight of 48% at 250 ° C., so that it was bonded onto fine carbon fibers by heat in the kneading process. This suggests that polymethylmethacrylate has been eliminated.

Claims (7)

直径0.5〜200nm、アスペクト比(長さ/直径)5以上の炭素繊維の表面に、金属を金属錯体として担持させたことを特徴とする重合触媒。   A polymerization catalyst characterized in that a metal is supported as a metal complex on the surface of a carbon fiber having a diameter of 0.5 to 200 nm and an aspect ratio (length / diameter) of 5 or more. 金属の担持は、当該炭素繊維を構成するグラファイト構造に金属原子が直接配位してなることを特徴とする請求項1に記載の重合触媒。   The polymerization catalyst according to claim 1, wherein the metal is supported by a metal atom directly coordinated to a graphite structure constituting the carbon fiber. 当該炭素繊維を酸化することで生成した酸素含有基に金属原子が配位結合していることを特徴とする請求項1に記載の重合触媒。   The polymerization catalyst according to claim 1, wherein a metal atom is coordinated to an oxygen-containing group generated by oxidizing the carbon fiber. 当該重合触媒が不飽和結合を有するモノマーの重合に用いられることを特徴とする請求項1〜3のいずれか1つに記載の重合触媒。   The polymerization catalyst according to any one of claims 1 to 3, wherein the polymerization catalyst is used for polymerization of a monomer having an unsaturated bond. 当該重合触媒が加水分解および脱水をともなう重縮合に用いられることを特徴とする請求項1〜3のいずれか1つに記載の重合触媒。   The polymerization catalyst according to any one of claims 1 to 3, wherein the polymerization catalyst is used for polycondensation involving hydrolysis and dehydration. 下記一般式(1)で示された構造を特徴とする重合体。
Figure 2006176601
(但し、式中、CNTは炭素繊維を表し、Pは前記炭素繊維の表面に担持させた金属錯体からなる当該炭素繊維表面に配された重合触媒構造により重合ないし重縮合された重合体であって、CNTとPとはこの重合触媒を介して、相互に結合されている。nは当該重合体の重合度を示し3〜107、およびmはCNTの表面を構成する炭素一つ当りのPの結合数であり0.5〜0.001である。)。
A polymer characterized by a structure represented by the following general formula (1).
Figure 2006176601
(However, in the formula, CNT represents a carbon fiber, and P is a polymer polymerized or polycondensed by a polymerization catalyst structure arranged on the surface of the carbon fiber consisting of a metal complex supported on the surface of the carbon fiber. Thus, CNT and P are bonded to each other through this polymerization catalyst, n represents the degree of polymerization of the polymer, 3 to 10 7 , and m represents the amount per carbon constituting the surface of the CNT. The number of bonds of P, which is 0.5 to 0.001.)
請求項6に記載の重合体を少なくとも一種以上を含有することを特徴とする高分子複合体。   A polymer composite comprising at least one polymer according to claim 6.
JP2004370073A 2004-12-21 2004-12-21 Polymerization catalyst, polymer obtained by using the same, and its polymer complex Pending JP2006176601A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004370073A JP2006176601A (en) 2004-12-21 2004-12-21 Polymerization catalyst, polymer obtained by using the same, and its polymer complex
PCT/JP2005/023266 WO2006068090A1 (en) 2004-12-21 2005-12-19 Polymerization catalyst, polymer obtained by using the same, and polymer composite thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370073A JP2006176601A (en) 2004-12-21 2004-12-21 Polymerization catalyst, polymer obtained by using the same, and its polymer complex

Publications (1)

Publication Number Publication Date
JP2006176601A true JP2006176601A (en) 2006-07-06

Family

ID=36601690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370073A Pending JP2006176601A (en) 2004-12-21 2004-12-21 Polymerization catalyst, polymer obtained by using the same, and its polymer complex

Country Status (2)

Country Link
JP (1) JP2006176601A (en)
WO (1) WO2006068090A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545639A (en) * 2006-08-01 2009-12-24 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing carbon nanotube / polymer mixture by gas phase polymerization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508455A (en) * 1992-05-22 1995-09-21 ハイピリオン カタリシス インターナショナル インコーポレイテッド Catalyst carrier, supported catalyst, method for producing the same and method for using the same
JP2000086217A (en) * 1998-09-05 2000-03-28 Agency Of Ind Science & Technol Production of carbon nanotube
JP2002013025A (en) * 2000-06-28 2002-01-18 Toray Ind Inc Method for producing polyester fiber
WO2005012170A1 (en) * 2003-08-05 2005-02-10 S.A. Nanocyl Polymer-based composites comprising carbon nanotubes as a filler, method for producing said composites, and associated uses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU39635A1 (en) * 1960-01-18
JPS60106808A (en) * 1983-11-14 1985-06-12 Idemitsu Kosan Co Ltd Production of polyethylene composition
JP2004183127A (en) * 2002-12-02 2004-07-02 Achilles Corp Modified carbon nanofiber, and resin composition and coating material containing the same
JP4129209B2 (en) * 2003-07-04 2008-08-06 株式会社Gsiクレオス Carbon nanomaterial
JP2005281464A (en) * 2004-03-29 2005-10-13 Toho Tenax Co Ltd Polyamide-coated carbon fiber and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508455A (en) * 1992-05-22 1995-09-21 ハイピリオン カタリシス インターナショナル インコーポレイテッド Catalyst carrier, supported catalyst, method for producing the same and method for using the same
JP2000086217A (en) * 1998-09-05 2000-03-28 Agency Of Ind Science & Technol Production of carbon nanotube
JP2002013025A (en) * 2000-06-28 2002-01-18 Toray Ind Inc Method for producing polyester fiber
WO2005012170A1 (en) * 2003-08-05 2005-02-10 S.A. Nanocyl Polymer-based composites comprising carbon nanotubes as a filler, method for producing said composites, and associated uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545639A (en) * 2006-08-01 2009-12-24 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing carbon nanotube / polymer mixture by gas phase polymerization

Also Published As

Publication number Publication date
WO2006068090A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
Qiu et al. Self-standing cuprous oxide nanoparticles on silica@ polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect
JP4608490B2 (en) Polymer-based composites containing carbon nanotubes as fillers, methods for their production and related uses
Zhu et al. In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites
Kang et al. Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites
JP4308527B2 (en) Method for derivatizing carbon nanotubes using diazonium species and composition thereof
Roy et al. Modifications of carbon for polymer composites and nanocomposites
Abdolmaleki et al. Preparation, characterization and surface morphology of novel optically active poly (ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process
JP5152716B2 (en) Chemically modified carbon nanotube and method for producing the same
Allahbakhsh et al. 3-Aminopropyl-triethoxysilane-functionalized rice husk and rice husk ash reinforced polyamide 6/graphene oxide sustainable nanocomposites
JPWO2009069344A1 (en) Carbon nanotube aggregate and method for producing the same
Rahmanian et al. The influence of multiscale fillers on the rheological and mechanical properties of carbon-nanotube–silica-reinforced epoxy composite
Rajender et al. Surface‐initiated atom transfer radical polymerization (SI‐ATRP) from graphene oxide: effect of functionalized graphene sheet (FGS) on the synthesis and material properties of PMMA nanocomposites
WO2008048349A2 (en) Depositing nanometer-sized metal particles onto substrates
JP2006241248A (en) Polymer complex
Kheradmand et al. Effects of nano graphene oxide as support on the product properties and performance of Ziegler–Natta catalyst in production of UHMWPE
Wang et al. Application of carbon nanotubes from waste plastics as filler to epoxy resin composite
WO2006093147A1 (en) Reactive carbon nanotube, polymer-coated carbon nanotube, and process for production of the same
Wang et al. In-situ nanocomposite synthesis: arylcarbonylation and grafting of primary diamond nanoparticles with a poly (ether− ketone) in polyphosphoric acid
Keller et al. Ferrocenylethynylbenzenes as precursors to in situ synthesis of carbon nanotube and Fe nanoparticle compositions
Dintcheva et al. Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable Ultra-High Molecular Weight Polyethylene-based nanocomposites
Farzi et al. Effect of radical grafting of tetramethylpentadecane and polypropylene on carbon nanotubes' dispersibility in various solvents and polypropylene matrix
Zhang et al. Polymer nanocomposites using urchin‐shaped carbon nanotube‐silica hybrids as reinforcing fillers
Bogdal et al. Microwave-assisted synthesis of hybrid polymer materials and composites
JP2006176601A (en) Polymerization catalyst, polymer obtained by using the same, and its polymer complex
JP4953224B2 (en) Composite particle-containing slurry and method for producing composite particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20080208

Free format text: JAPANESE INTERMEDIATE CODE: A711

A711 Notification of change in applicant

Effective date: 20080828

Free format text: JAPANESE INTERMEDIATE CODE: A711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A02 Decision of refusal

Effective date: 20110712

Free format text: JAPANESE INTERMEDIATE CODE: A02