JP2006169557A - Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method - Google Patents

Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method Download PDF

Info

Publication number
JP2006169557A
JP2006169557A JP2004360472A JP2004360472A JP2006169557A JP 2006169557 A JP2006169557 A JP 2006169557A JP 2004360472 A JP2004360472 A JP 2004360472A JP 2004360472 A JP2004360472 A JP 2004360472A JP 2006169557 A JP2006169557 A JP 2006169557A
Authority
JP
Japan
Prior art keywords
metal
slurry
particle slurry
ultrafine particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004360472A
Other languages
Japanese (ja)
Inventor
Hiroki Sawamoto
裕樹 澤本
Mikimasa Horiuchi
幹正 堀内
Youichi Kamikooriyama
洋一 上郡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004360472A priority Critical patent/JP2006169557A/en
Publication of JP2006169557A publication Critical patent/JP2006169557A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where, from a process of reductively precipitating metal hyperfine particles having primary particle diameters of a nm order, hyperfine particles are consistently treated as a slurry shape, and are finally made into metal slurry. <P>SOLUTION: The invention is a method for producing metal hyperfine particle slurry using metal hyperfine particles produced by heating a metallic compound-containing solution by microwave irradiation. Using a mixed solution obtained by mixing a metallic compound, a solvent having reducibility and a dispersing agent, the mixed solution is rapidly heated by microwave irradiation, and metal hyperfine particles are reductively precipitated, so as to be first slurry comprising the metal hyperfine particles. The metal fine particles comprised in the first slurry are left standing or settled by a centrifugal separator, and the supernatant is discharged, so as to be second slurry. Then, a solvent is added to the secondary slurry. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本件発明は、金属超微粒子スラリーの製造方法に関する。金属超微粒子の中でも、特に銀、パラジウム、及びこれらの合金の金属超微粒子を含むスラリーの製造方法に関する。   The present invention relates to a method for producing a metal ultrafine particle slurry. In particular, the present invention relates to a method for producing a slurry containing metal ultrafine particles of silver, palladium, and alloys thereof.

近年、金属微粒子が、金属インキ、光触媒、燃料電池触媒等の広い分野で使用され、将来的に見て、特に電子材料分の配線回路形成の分野では、イノベーションを引き起こすのではないかと期待されている。   In recent years, metal fine particles have been used in a wide range of fields such as metal inks, photocatalysts, fuel cell catalysts, etc., and in the future, it is expected to cause innovation, especially in the field of wiring circuit formation for electronic materials. Yes.

例えば、従来のプリント配線板に代表される配線回路の殆どは、基材に銅箔を張り合わせて、フォトレジスト法でエッチングパターンを描き、その後エッチングして回路配線の形状を形成してきた。この手法は、伝統的に行われて来た手法であり、その生産技術にも極めて多くのノウハウが蓄積されているが、総じて複雑であり、国際競争を勝ち抜くための生産コストの削減には相当レベルの努力が払われてきた。   For example, most of the wiring circuits typified by conventional printed wiring boards have been formed by pasting a copper foil on a base material, drawing an etching pattern by a photoresist method, and then etching to form a circuit wiring shape. This method is a traditional method, and a great deal of know-how has been accumulated in its production technology, but it is generally complex, and is equivalent to reducing production costs in order to win international competition. Level efforts have been made.

そこで、従来から、各種基板上に直接回路パターンを形成する方法として、特許文献1に開示されているように金属粉を溶剤や樹脂と混練しペースト化した導電性ペーストを用いて、スクリーン印刷により配線や電極パターンを基板表面に直接形成させる方法が検討されてきた。   Therefore, conventionally, as a method for directly forming a circuit pattern on various substrates, as disclosed in Patent Document 1, a conductive paste obtained by kneading metal powder with a solvent or resin to form a paste is used for screen printing. A method of directly forming a wiring or an electrode pattern on the substrate surface has been studied.

そして、近年では、携帯情報機器やTVに代表される薄型ディスプレイ内部の導電性回路パターンは、年々高密度化してきており、配線幅が40μm以下の領域が検討され、フレキシブル樹脂基板への低温焼成による回路パターン形成技術も検討されている。一般的に用いられてきたスクリーン印刷による回路パターン形成では、断線がなく、配線形状に優れる線幅が100μm程度とされているが、これよりも微細な領域、特に線幅が40μm以下となる領域では、実質的な配線形成が困難である。また、多種多様な基板へ低温焼成により回路パターンを形成させる技術としては、特許文献2に示すように銀ナノ粒子を含む銀インクが開示されている。   In recent years, conductive circuit patterns inside thin displays typified by portable information devices and TVs have become denser year by year, and areas with a wiring width of 40 μm or less have been studied, and low-temperature firing on flexible resin substrates A circuit pattern forming technique based on this is also being studied. In circuit pattern formation by screen printing that has been generally used, there is no disconnection and the line width excellent in the wiring shape is about 100 μm. However, the area is finer than this, particularly the area where the line width is 40 μm or less. Then, it is difficult to form a substantial wiring. As a technique for forming a circuit pattern on a wide variety of substrates by low-temperature baking, as shown in Patent Document 2, silver ink containing silver nanoparticles is disclosed.

一方、金属粉を多量の有機溶剤と樹脂類と混合した液状ペースト(以下、単に導電性金属インク)に関しては、ディスペンサー塗布法や、特許文献3に示すように、インクジェット印刷技術を利用した極微細回路パターン形成原料として、種々の導電性インクが提案されている。そして、インクジェット印刷技術においては、インクジェットノズルを通して、導電性インクが吐出されるため、導電性インクに含まれる金属粒子が細かなものである程、ノズルの目詰まりを起こしにくく、微細な回路の形成も容易となる。   On the other hand, for a liquid paste (hereinafter simply referred to as conductive metal ink) in which a metal powder is mixed with a large amount of an organic solvent and a resin, as shown in a dispenser coating method or Patent Document 3, an ultrafine pattern using an inkjet printing technique is used. Various conductive inks have been proposed as circuit pattern forming raw materials. In the ink jet printing technology, since conductive ink is discharged through an ink jet nozzle, the finer the metal particles contained in the conductive ink, the less clogging the nozzle, and the formation of fine circuits. Is also easier.

そして、最近では、金属イオンを加熱還元する際の加熱手段に、特許文献4及び特許文献5に開示されているようなマイクロ波照射による急速加熱を利用することが広く検討されてきた。中でも、金属の微細なナノ粒子を得ることの出来る技術として、特許文献6に開示されているように、少なくとも一種の金属塩を溶媒中に溶解あるいは分散してなる溶液に、マイクロ波を照射することによって、前記金属塩中の金属から構成される超微粒子を製造することを特徴とする超微粒子の製造方法が提唱され、現実に非常に良好なナノ粒子が得られている。   Recently, the use of rapid heating by microwave irradiation as disclosed in Patent Document 4 and Patent Document 5 has been widely studied as a heating means for heating and reducing metal ions. Among them, as disclosed in Patent Document 6, as a technique capable of obtaining fine metal nanoparticles, a solution obtained by dissolving or dispersing at least one metal salt in a solvent is irradiated with microwaves. Thus, a method for producing ultrafine particles, which is characterized by producing ultrafine particles composed of the metal in the metal salt, has been proposed, and very good nanoparticles are actually obtained.

特開平6−209152JP-A-6-209152 特開2002−334618号公報JP 2002-334618 A 特開2004−247572JP-A-2004-247572 特開2003−13105JP 2003-13105 A 特開2003−286509JP 2003-286509 A 特開2000−256707JP 2000-256707 A

しかしながら、特許文献5に開示の発明は、実験室レベルでの再現性は得られても、工業的な大量生産に向くものではなく、その製造コストが高く、大量生産規模での製造安定性に欠け品質バラツキの大きな製品が得られ、市場に商品としてのナノ粒子を含んだ製品を供給出来るレベルではなかった。   However, the invention disclosed in Patent Document 5 is not suitable for industrial mass production, even if reproducibility at the laboratory level is obtained, its production cost is high, and production stability at the mass production scale is high. Products with large chip quality variation were obtained, and it was not at a level where products containing nanoparticles as a product could be supplied to the market.

従って、本件発明では、上述の如き問題の解決可能な導電性ペースト、導電性インクを製造するための原料として用いることのできる金属超微粒子スラリーの製造方法であって、製造安定性に優れ、且つ工業的生産規模への拡大の容易な、マイクロ波照射加熱による金属超微粒子スラリーの製造方法を提供する。   Therefore, the present invention is a method for producing a metal ultrafine particle slurry that can be used as a raw material for producing a conductive paste and a conductive ink that can solve the above-described problems, and has excellent production stability. Provided is a method for producing a metal ultrafine particle slurry by microwave irradiation heating, which can be easily expanded to an industrial production scale.

本件発明に係る製造方法は、nmオーダーの一次粒子径を持つ金属超微粒子を含む金属超微粒子スラリーの製造方法である。このような金属超微粒子は、超微粒子となるほど、大気との接触により酸化が容易となり、粉塵爆発の危険性もあることや、粉末化すると粒子同士が強固な凝集体を形成し、一次粒子までの解砕が不可能であるため、粉体として市場に供給することは殆ど考えられない。そこで、本件発明者等は、金属超微粒子を還元析出する過程から、一貫して超微粒子をスラリー状として取扱、最終的に金属スラリーとする方法が最良と考え、以下の発明に想到したのである。   The production method according to the present invention is a method for producing a metal ultrafine particle slurry containing metal ultrafine particles having a primary particle size of the order of nm. Such ultrafine metal particles become easier to oxidize by contact with the atmosphere as they become ultrafine particles, and there is a risk of dust explosion, and when pulverized, the particles form strong aggregates, up to the primary particles. Since it cannot be crushed, it is almost impossible to supply it to the market as a powder. Therefore, the inventors of the present invention have consistently handled ultrafine particles as a slurry from the process of reducing and precipitating ultrafine metal particles, and finally considered the method to obtain a metal slurry, and have arrived at the following invention. .

本件発明に係る金属超微粒子スラリーの製造方法は、金属化合物を含む溶液をマイクロ波照射により加熱して製造した金属超微粒子を用いて金属超微粒子を製造する方法であって、還元能を有する溶媒に金属化合物と分散剤とを混入させた混合溶液を用いて、この混合溶液をマイクロ波照射により急速加熱し、金属超微粒子を還元析出させ金属超微粒子を含む第1スラリーとし、この第1スラリーを静置又は遠心分離して金属微粒子を沈降させ、その上澄み液を廃棄し第2スラリーとし、この第2スラリーに有機剤⇒溶媒を添加することを特徴としたものである。   The method for producing a metal ultrafine particle slurry according to the present invention is a method for producing metal ultrafine particles using metal ultrafine particles produced by heating a solution containing a metal compound by microwave irradiation, and having a reducing ability. Using this mixed solution in which a metal compound and a dispersant are mixed together, this mixed solution is rapidly heated by microwave irradiation to reduce and precipitate metal ultrafine particles to form a first slurry containing metal ultrafine particles. This first slurry Is settled or centrifuged to precipitate the metal fine particles, the supernatant liquid is discarded to form a second slurry, and an organic agent ⇒ solvent is added to the second slurry.

そして、本件発明に係る上記金属超微粒子スラリーの製造方法において、前記混合溶液で用いる金属化合物は、硝酸銀、硝酸パラジウム又はこれらの混合化合物であり、混合溶液中の含有量が溶媒の量を基準として、銀量又はパラジウム量又は銀とパラジウムとのトータル量が0.1wt%〜20wt%である事が好ましい。   And in the manufacturing method of the metal ultrafine particle slurry according to the present invention, the metal compound used in the mixed solution is silver nitrate, palladium nitrate or a mixed compound thereof, and the content in the mixed solution is based on the amount of the solvent. The total amount of silver or palladium or the total amount of silver and palladium is preferably 0.1 wt% to 20 wt%.

また、本件発明に係る上記金属超微粒子スラリーの製造方法において、混合溶液を構成する還元能を有する溶媒は、溶媒の構造中に水酸基を一つ以上有し、かつ誘電率と損失角の積である誘電損失係数が1.5以上であるものを用いることが好ましい。   Further, in the method for producing a metal ultrafine particle slurry according to the present invention, the solvent having a reducing ability constituting the mixed solution has one or more hydroxyl groups in the structure of the solvent, and a product of a dielectric constant and a loss angle. It is preferable to use one having a certain dielectric loss coefficient of 1.5 or more.

更に、還元能を有する溶媒は、常温常圧での沸点が120℃以上であることを特徴とする1,5−ペンタンジオール、ジプロピレングリコール、1,4−ブタンジオール、プロピレングリコール、エチレングリコールのいずれか一種又はこれらの混合溶液を用いることが好ましい。   Further, the solvent having a reducing ability is a 1,5-pentanediol, dipropylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol having a boiling point of 120 ° C. or higher at normal temperature and pressure. It is preferable to use any one or a mixed solution thereof.

更に、本件発明に係る上記金属超微粒子スラリーの製造方法において、混合溶液に混入する分散剤は、ポリビニルピロリドンを用い、前記金属量を基準として、0.1wt%〜100wt%を含有させる事が好ましい。   Furthermore, in the method for producing the metal ultrafine particle slurry according to the present invention, it is preferable that the dispersant mixed in the mixed solution is polyvinyl pyrrolidone and contains 0.1 wt% to 100 wt% based on the amount of the metal. .

また、本件発明に係る上記金属超微粒子スラリーの製造方法において、マイクロ波照射を行った後、更に他の加熱手段により、金属成分の還元率が95%以上となるまで加熱継続する事もできる。   Moreover, in the manufacturing method of the said metal ultrafine particle slurry which concerns on this invention, after performing microwave irradiation, it can also continue heating until the reduction rate of a metal component becomes 95% or more by another heating means.

また、本件発明に係る上記金属超微粒子スラリーの製造方法において、第1スラリーを静置して金属超微粒子を沈降させる際に、金属超微粒子の沈降を助長させるため、沈降助長剤としてトルエン、アセトン、メチルエチルケトン、キシレンを添加する事が好ましい。   In addition, in the method for producing a metal ultrafine particle slurry according to the present invention, when the first slurry is allowed to settle and the metal ultrafine particles are allowed to settle, toluene and acetone are used as a settling aid in order to promote sedimentation of the metal ultrafine particles. It is preferable to add methyl ethyl ketone and xylene.

また、第2スラリーに添加する溶媒は、アルコール類、グリコール類、水のいずれか一種若しくは二種以上の混合溶剤を用いることが好ましい。   Moreover, it is preferable that the solvent added to a 2nd slurry uses any 1 type, or 2 or more types of mixed solvents, such as alcohol, glycols, and water.

そして、本件発明に係る上記金属超微粒子スラリーの製造方法を採用することで、工業的規模で銀超微粒子スラリー、パラジウム超微粒子スラリー、銀−パラジウム超微粒子スラリーの製造が可能となる。そして、これらのスラリーを用いて、ディスペンサー塗布やスクリーン印刷やインクジェットプリンタでの使用に好適な銀超微粒子インク、パラジウム超微粒子インク、銀−パラジウム超微粒子インク、上記金属超微粒子を含有した高品質の導電性金属ペースト等の製造が可能となる。   And by employ | adopting the manufacturing method of the said metal ultrafine particle slurry which concerns on this invention, manufacture of a silver ultrafine particle slurry, a palladium ultrafine particle slurry, and a silver-palladium ultrafine particle slurry is attained on an industrial scale. And using these slurries, high quality silver ultrafine particle ink, palladium ultrafine particle ink, silver-palladium ultrafine particle ink suitable for use in dispenser coating, screen printing and ink jet printer, and the above-mentioned metal ultrafine particles are used. A conductive metal paste or the like can be manufactured.

本件発明に係る上記金属超微粒子スラリーの製造方法は、工業的生産性を十分に備え、且つ、粒度分布に優れた超微粒子を還元析出させることが出来るため、高品質の銀超微粒子インク、パラジウム超微粒子インク、銀−パラジウム超微粒子インク、これら金属を含有した導電性金属ペーストの製造が可能となる。しかも、これらの金属超微粒子インクは、ディスペンサー塗布法やインクジェット法での使用に好適であり、又これらの導電性金属ペーストはスクリーン印刷に好適なものである。   The method for producing the metal ultrafine particle slurry according to the present invention has sufficient industrial productivity and can reduce and deposit ultrafine particles with excellent particle size distribution. Ultrafine ink, silver-palladium ultrafine ink, and conductive metal paste containing these metals can be produced. Moreover, these ultrafine metal inks are suitable for use in a dispenser coating method or an ink jet method, and these conductive metal pastes are suitable for screen printing.

以下に実施の形態に関して説明する。本件発明に係る金属超微粒子スラリーの製造方法は、金属化合物を含む溶液をマイクロ波照射により加熱して製造した金属超微粒子を用いて金属超微粒子を製造する方法であって、金属化合物と還元能を有する溶媒と分散剤とを混合した混合溶液を用いて、この混合溶液をマイクロ波照射により急速加熱し、金属超微粒子を還元析出させ金属超微粒子を含む第1スラリーとし、この第1スラリーを静置又は遠心分離して金属微粒子を沈降させ、その上澄み液を廃棄し第2スラリーとし、この第2スラリーに溶媒を添加し、金属超微粒子スラリーとすることを特徴とするものである。   The embodiment will be described below. The method for producing a metal ultrafine particle slurry according to the present invention is a method for producing metal ultrafine particles using metal ultrafine particles produced by heating a solution containing a metal compound by microwave irradiation, wherein the metal compound and reducing ability are produced. This mixed solution is rapidly heated by microwave irradiation using a mixed solution obtained by mixing a solvent having a dispersant and a dispersing agent to reduce and precipitate metal ultrafine particles to form a first slurry containing metal ultrafine particles. The metal fine particles are settled by standing or centrifuging, the supernatant liquid is discarded to form a second slurry, and a solvent is added to the second slurry to form a metal ultrafine particle slurry.

最初に混合溶液に関して説明する。本件発明に言う混合溶液は、「金属化合物」、「還元能を有する溶媒」、「分散剤」のそれぞれを混合したものである。従って、これらに関して、順次説明する事とする。   First, the mixed solution will be described. The mixed solution referred to in the present invention is a mixture of “metal compound”, “solvent having reducing ability”, and “dispersant”. Therefore, these will be described sequentially.

本件発明に係る上記金属超微粒子スラリーの製造方法において、前記混合溶液で用いる「金属化合物」は、硝酸銀、硝酸パラジウム又はこれらの混合化合物を用いるのである。従って、銀超微粒子スラリーを製造する場合には硝酸銀を単独で、パラジウム超微粒子スラリーを製造する場合には硝酸パラジウムを単独で、銀−パラジウム合金超微粒子スラリーを製造する場合には硝酸銀と硝酸パラジウムとを混合して用いるのである。   In the method for producing a metal ultrafine particle slurry according to the present invention, the “metal compound” used in the mixed solution uses silver nitrate, palladium nitrate or a mixed compound thereof. Therefore, silver nitrate alone is used to produce a silver ultrafine particle slurry, palladium nitrate alone is produced to produce a palladium ultrafine particle slurry, and silver nitrate and palladium nitrate are produced to produce a silver-palladium alloy ultrafine particle slurry. Are mixed and used.

そして、それぞれの場合において、混合溶液中の金属成分の含有量は、混合溶液の量を基準として、銀量、パラジウム量、銀とパラジウムとのトータル量のそれぞれが0.1wt%〜20wt%となるように調製する事が好ましい。混合溶液中の金属成分量が0.1wt%未満の濃度では、工業的に必要な生産効率を得ることが出来ない。一方、当該濃度が20wt%を超えると、還元析出する金属粒子が凝集することによって粒径が大きくなる傾向にあり、本来目的とするところである平均一次粒径が微細な金属粒子が得られなくなるのである。   In each case, the content of the metal component in the mixed solution is 0.1 wt% to 20 wt% of the silver amount, the palladium amount, and the total amount of silver and palladium, respectively, based on the amount of the mixed solution. It is preferable to prepare such that If the concentration of the metal component in the mixed solution is less than 0.1 wt%, industrially necessary production efficiency cannot be obtained. On the other hand, when the concentration exceeds 20 wt%, the metal particles that are reduced and precipitated tend to agglomerate and the particle size tends to increase, and metal particles with an average primary particle size that is originally intended cannot be obtained. is there.

また、本件発明に係る上記金属超微粒子スラリーの製造方法において、混合溶液を構成する「還元能を有する溶媒」は、上記金属化合物に対し還元能力をもつ官能基として、溶媒の構造に必ず一つ以上の水酸基を含有しており、又マイクロ波による急速な加熱を可能とするために、溶媒の誘電率と損失角の積である誘電損失係数が1.5以上のものが好ましい。損失係数が1.5以下のものは急速加熱ができず、急速加熱により還元反応を一瞬で終わらせ上記金属粒子を微粒化させる用途には適さない。又上記金属粒子の微粒化のためには還元反応速度が高いほどよいため、還元反応速度を高く出きる高温の反応場が必要となる。高温での反応場を提供するためには、還元性溶媒の常温常圧での沸点が120℃以上であることが好ましい。特に上記金属化合物の微粒化の還元反応場としては、常温常圧での沸点が150℃以上の還元性溶媒を使用することが好ましい。常温常圧での沸点が120℃未満の還元性溶媒では、反応温度が低い為反応速度が遅くなり、結果的に反応を一瞬で終了させることができないため上記金属粒子の微粒化が達成できない。   Further, in the method for producing the ultrafine metal particle slurry according to the present invention, the “solvent having a reducing ability” constituting the mixed solution must be one in the structure of the solvent as a functional group having a reducing ability for the metal compound. In order to enable rapid heating by microwaves, it is preferable that the dielectric loss coefficient, which is the product of the dielectric constant of the solvent and the loss angle, is 1.5 or more. Those having a loss factor of 1.5 or less cannot be rapidly heated, and are not suitable for applications in which the reduction reaction is completed instantaneously by rapid heating to atomize the metal particles. In addition, a higher reduction reaction rate is better for atomization of the metal particles, and therefore a high-temperature reaction field that can increase the reduction reaction rate is required. In order to provide a reaction field at a high temperature, it is preferable that the boiling point of the reducing solvent at normal temperature and pressure is 120 ° C. or higher. In particular, as a reduction reaction field for atomization of the metal compound, it is preferable to use a reducing solvent having a boiling point of 150 ° C. or higher at normal temperature and pressure. In a reducing solvent having a boiling point of less than 120 ° C. at normal temperature and pressure, the reaction rate is low because the reaction temperature is low, and as a result, the reaction cannot be completed in an instant, so that the metal particles cannot be atomized.

上述の特性を有する還元性溶媒としては、グリコール類、水酸基含有有機アミン類等の有機溶媒を用いることができる。中でも、1,5−ペンタンジオール、ジプロピレングリコール、1,4−ブタンジオール、プロピレングリコール、エチレングリコールのいずれか一種又はこれらの混合溶液として用いることが好ましい。 As the reducing solvent having the above-mentioned characteristics, organic solvents such as glycols and hydroxyl group-containing organic amines can be used. Among these, it is preferable to use any one of 1,5-pentanediol, dipropylene glycol, 1,4-butanediol, propylene glycol, and ethylene glycol, or a mixed solution thereof.

当該混合溶液の量に対して、この「還元能を有する溶媒」をどの程度混合するかは、混合溶液中の金属化合物の量(金属としての量)によって定まるものである。従って、混合溶液中に含まれる上述の金属化合物量の範囲が0.1wt%〜20wt%であることを前提として、混合液中の還元能を有する溶媒量は、80wt%〜99.9wt%となるように添加することが好ましい。80wt%未満の濃度では、金属濃度が高くなり析出粒子の凝集が起こり、金属粒子の微粒化ができない。そして、上記金属化合物量の上限濃度99.9wt%を超えると、著しく生産性に劣り工業的な生産ができない。   The amount of the “solvent having a reducing ability” to be mixed with the amount of the mixed solution is determined by the amount of metal compound (amount as metal) in the mixed solution. Accordingly, assuming that the range of the amount of the metal compound contained in the mixed solution is 0.1 wt% to 20 wt%, the amount of the solvent having the reducing ability in the mixed solution is 80 wt% to 99.9 wt%. It is preferable to add so that it becomes. If the concentration is less than 80 wt%, the metal concentration becomes high and the precipitated particles agglomerate, and the metal particles cannot be atomized. When the upper limit concentration of the metal compound exceeds 99.9 wt%, the productivity is remarkably inferior and industrial production cannot be performed.

更に、本件発明に係る上記金属超微粒子スラリーの製造方法において、混合溶液に混入する分散剤を当初より含ませることが好ましい。この分散剤は、還元析出した金属微粒子の適度な成長速度を維持して微細な粒径を作り出し、還元析出した粒子同士の凝集を防止する効果があるのである。更に、本件発明に係る上記金属超微粒子スラリーの製造方法において、混合溶液に混入する分散剤は、ポリビニルピロリドンを用い、前記金属量を基準として、0.1wt%〜100wt%を含有させる事が好ましい。ポリビニルピロリドンの含有量が、前記金属量を基準として、0.1wt%未満の場合には、還元析出した金属微粒子の凝集が起こり、金属粒子の微粒化を達成できない。一方、ポリビニルピロリドンの含有量が、前記金属量を基準として、100wt%を超えるようにしても、還元析出する金属粒子の微細化には寄与し得ないのである。   Furthermore, in the manufacturing method of the said metal ultrafine particle slurry which concerns on this invention, it is preferable to contain the dispersing agent mixed in a mixed solution from the beginning. This dispersant has the effect of maintaining an appropriate growth rate of the reduced and precipitated metal fine particles to create a fine particle size and preventing aggregation of the reduced and precipitated particles. Furthermore, in the method for producing the metal ultrafine particle slurry according to the present invention, it is preferable that the dispersant mixed in the mixed solution is polyvinyl pyrrolidone and contains 0.1 wt% to 100 wt% based on the amount of the metal. . When the content of polyvinyl pyrrolidone is less than 0.1 wt% based on the amount of the metal, agglomeration of the reduced and precipitated metal fine particles occurs and the metal particles cannot be atomized. On the other hand, even if the content of polyvinylpyrrolidone exceeds 100 wt% based on the amount of the metal, it cannot contribute to the refinement of metal particles that are reduced and precipitated.

そして、マイクロ波を照射する時間は、特に限定を要するものではない。しかしながら、0.5分〜30分の範囲での照射時間を選択することが好ましい。照射時間が、0.5分未満の場合には、十分な還元反応を起こし得ない。一方、照射時間を30分以上として、それ以上に還元反応を継続すると、混合溶液中の還元溶媒と分散剤の分解や分解物のさらなる分解や二次反応がおこり、結果的に複雑な副反応が多く発生することにより、目的ではない多くの有機化合物が生成してしまう。これら目的としない副生成物には、ゲル状物質や高分子物質が含まれ、金属微粒子の表面を汚染してしまい、後工程で取り除く事が困難であり、金属の電気特性を著しく低下させてしまう。従って、マイクロ波を照射する時間は、0.5分〜30分の範囲で、工業的生産性の上で最大効率を得られる時間を選択的に使用することが好ましい。   The time for irradiating the microwave is not particularly limited. However, it is preferable to select an irradiation time in the range of 0.5 to 30 minutes. When the irradiation time is less than 0.5 minutes, a sufficient reduction reaction cannot be caused. On the other hand, if the irradiation time is set to 30 minutes or longer and the reduction reaction is continued further, decomposition of the reducing solvent and dispersant in the mixed solution and further decomposition and secondary reaction of the decomposition products occur, resulting in complicated side reactions. When many are generated, many organic compounds that are not the purpose are generated. These non-target by-products include gel substances and polymer substances, which contaminate the surface of the metal fine particles and are difficult to remove in a later process, and significantly reduce the electrical properties of the metal. End up. Therefore, it is preferable to selectively use the time for obtaining the maximum efficiency in terms of industrial productivity, in the time of microwave irradiation in the range of 0.5 to 30 minutes.

上述のようにマイクロ波照射を行っても、その適正な照射時間があるが為に、マイクロ波照射後の金属超微粒子が還元析出した混合溶液であっても、その混合溶液中に未還元の金属成分が残留していることがある。そこで、本件発明に係る上記金属超微粒子スラリーの製造方法においては、マイクロ波照射を行った後、更に他の加熱手段により、金属成分の還元率が95%以上となるまで加熱継続する事もできる。マイクロ波の照射時間を延ばし還元率を95wt%以上とすることも可能だが、副生成物が多く発生してしまう混合溶液組成の場合には、エネルギー添加効率がマイクロ波よりも低い他の加熱方法を併用することは、副生成物の生成を抑制しながら還元率を向上させるのに都合が良い。しかも、この事後的な加熱手段を設け、その加熱時間を変動させることで、還元析出した金属超微粒子の一定レベルでの粒径制御も容易となる。   Even if microwave irradiation is performed as described above, there is an appropriate irradiation time. Therefore, even in a mixed solution in which ultrafine metal particles after microwave irradiation are reduced and precipitated, unreduced in the mixed solution. Metal components may remain. Therefore, in the method for producing the ultrafine metal particle slurry according to the present invention, after the microwave irradiation, the heating can be continued by another heating means until the reduction rate of the metal component becomes 95% or more. . Although it is possible to extend the microwave irradiation time and reduce the reduction rate to 95 wt% or more, in the case of a mixed solution composition in which a large amount of by-products are generated, other heating methods having lower energy addition efficiency than microwaves It is convenient to improve the reduction rate while suppressing the formation of by-products. Moreover, by providing this post-heating means and changing the heating time, it is easy to control the particle size of the reduced ultrafine metal particles at a certain level.

ここで言う他の加熱手段とは、ヒーター加熱、サーマルバス加熱等である。これらの方法を採用するかぎり、マイクロ波照射のように急激な温度上昇を引き起こすこともなく、エネルギー添加効率が低い為、還元溶媒や分散剤の分解や副反応を抑制することができ、かつ析出した金属粒子の形状維持と還元率の向上を同時に達成することができる。このような他の加熱手段は、マイクロ波照射後に、80℃〜還元溶媒の沸点未満の温度範囲で行うことが好ましい。加熱時間は混合溶液組成により大幅にことなる為、特に限定はないが、逐次還元率を測定し還元率が95%以上となったところで終了させることが好ましい。還元反応の促進は、加熱温度と加熱時間に相関関係を持っており、加熱温度が高いほど加熱時間は少なくてすむ。そこで、80℃未満の温度の場合には、工業的生産性を考慮しての還元反応速度を得ることが困難であり、還元溶媒の沸点では、混合溶液自体の品質劣化を起こしやすく、副生成物が増えてしまい、金属の抵抗特性が悪くなる。   The other heating means mentioned here is heater heating, thermal bath heating, or the like. As long as these methods are used, the energy addition efficiency is low without causing a rapid temperature rise as in microwave irradiation, so that decomposition and side reactions of the reducing solvent and dispersant can be suppressed, and precipitation It is possible to simultaneously maintain the shape of the metal particles and improve the reduction rate. Such other heating means is preferably performed in the temperature range of 80 ° C. to less than the boiling point of the reducing solvent after microwave irradiation. The heating time varies greatly depending on the composition of the mixed solution, and is not particularly limited. However, it is preferable to measure the sequential reduction rate and terminate when the reduction rate reaches 95% or more. The promotion of the reduction reaction has a correlation between the heating temperature and the heating time, and the higher the heating temperature, the less the heating time. Therefore, when the temperature is less than 80 ° C., it is difficult to obtain a reduction reaction rate in consideration of industrial productivity. At the boiling point of the reducing solvent, the quality of the mixed solution itself is easily deteriorated, and a by-product is generated. Things increase and the resistance characteristics of the metal deteriorate.

以上に述べてきた「金属化合物」と「還元能を有する溶媒」と「分散剤」とを混合した混合溶液を用いて、この混合溶液を上述のようにマイクロ波照射により急速加熱し、金属超微粒子を還元析出させ金属超微粒子を含む第1スラリーとするのである。   Using the mixed solution in which the above-mentioned “metal compound”, “reducing solvent” and “dispersing agent” are mixed, this mixed solution is rapidly heated by microwave irradiation as described above, and the metal super The fine particles are reduced and precipitated to form a first slurry containing metal ultrafine particles.

そして、この第1スラリーを静置又は遠心分離して、金属超微粒子を沈降させるのであるが、この際に金属超微粒子の沈降を助長させるため、沈降助長剤としてトルエン、アセトン、メチルエチルケトン、キシレンを添加する事が好ましい。還元析出した粒子がnmオーダーの超微粒子であるため、通常であれば、沈降までの時間を長く要する。従って、金属超微粒子スラリーの製造時間を短縮するためである。ここで、沈降助長剤として一般的な凝集剤ではなく、トルエン、アセトン、メチルエチルケトン、キシレンを用いたのは、後の溶媒置換が容易であり、且つ、粒子表面の無用な汚染を最小限に出来るからである。   Then, the first slurry is allowed to stand or be centrifuged to precipitate the ultrafine metal particles. In this case, in order to promote the precipitation of the ultrafine metal particles, toluene, acetone, methyl ethyl ketone, and xylene are used as a settling aid. It is preferable to add. Since the particles that have been reduced and deposited are ultrafine particles of the order of nm, it usually takes a long time to settle. Therefore, it is for shortening the manufacturing time of a metal ultrafine particle slurry. Here, the use of toluene, acetone, methyl ethyl ketone, and xylene instead of a general flocculant as a settling aid facilitates subsequent solvent replacement and minimizes unnecessary contamination of the particle surface. Because.

第1スラリーを静置して金属超微粒子を沈降させると、次に、その上澄み液を廃棄し、第2スラリーとする。この方法に関しては、特に限定はなく、可能な限り、残留溶媒を捨てることの出来る方法であれば、その手段を問わない。ここで、濾過法を採用しなかったのは、還元析出させた金属超微粒子がnmオーダーであるため、効率よく濾過の出来るフィルターを見出せないためである。従って、濾過法が使用出来るのであれば、濾過法に置き換えても何ら問題はない。なお、ここで上澄み液を廃棄しても、その残部には一定量の混合溶液の残留があるため、第2スラリーと称しているのである。   When the first slurry is allowed to stand and the ultrafine metal particles are allowed to settle, the supernatant liquid is then discarded to form a second slurry. This method is not particularly limited, and any means can be used as long as it can discard the residual solvent as much as possible. Here, the reason why the filtration method was not adopted is that the ultrafine metal particles reduced and deposited are on the order of nm, and thus a filter capable of efficient filtration cannot be found. Therefore, if the filtration method can be used, there is no problem even if it is replaced with the filtration method. Note that even if the supernatant is discarded here, a certain amount of the mixed solution remains in the remaining portion, and is therefore referred to as the second slurry.

続いて、以上のようにして得られた第2スラリーに溶媒を添加し、金属スラリーとすることを特徴とするものである。ここで第2スラリーに、新たに添加する溶媒は、アルコール類、グリコール類、有機アミン類、水等のいずれか一種若しくは二種以上の混合溶剤を用いることが好ましい。本件発明に係る金属超微粒子スラリーは、必要に応じて濃縮や、溶媒置換を行い、目的のインクやペーストとするときの組成調製を行うものであるから、上述の溶媒を用いることで組成調整が容易となるからである。   Subsequently, a solvent is added to the second slurry obtained as described above to form a metal slurry. Here, the solvent to be newly added to the second slurry is preferably one or a mixed solvent of two or more of alcohols, glycols, organic amines, water and the like. Since the metal ultrafine particle slurry according to the present invention is a composition prepared by concentrating or replacing the solvent as necessary to obtain a target ink or paste, the composition adjustment can be performed by using the above-mentioned solvent. This is because it becomes easy.

そして、本件発明に係る上記金属超微粒子スラリーの製造方法を採用することで、工業的規模で銀超微粒子インク、パラジウム超微粒子インク、銀−パラジウム超微粒子インクの製造原料となる金属超微粒子スラリーの製造が容易となる。しかも、これらの金属超微粒子インクは、ディスペンサー塗布法やインクジェット法での使用に好適なものである。   And by adopting the method for producing the metal ultrafine particle slurry according to the present invention, the metal ultrafine particle slurry that is a raw material for producing silver ultrafine particle ink, palladium ultrafine particle ink, and silver-palladium ultrafine particle ink on an industrial scale. Manufacturing is easy. Moreover, these metal ultrafine particle inks are suitable for use in a dispenser coating method or an ink jet method.

金属化合物として硝酸銀0.785gを0.468gの水に溶解させた溶液と、分散剤としてのポリビニルピロリドン(K−30)0.2gとを、構造中に水酸基を持ち、誘電損失係数が1.5以上であり、常温常圧での沸点が120℃以上である還元能を有する溶媒としてのジプロピレングリコール100gに添加し、これを3分間混合攪拌し混合溶液とした。   A solution prepared by dissolving 0.785 g of silver nitrate in 0.468 g of water as a metal compound and 0.2 g of polyvinylpyrrolidone (K-30) as a dispersant has a hydroxyl group in the structure and a dielectric loss factor of 1. It was added to 100 g of dipropylene glycol as a solvent having a reducing ability having a boiling point of 120 ° C. or higher at room temperature and normal pressure, and this was mixed and stirred for 3 minutes to obtain a mixed solution.

そして、当該混合溶液を冷却管を取り付けたガラス容器に移し、簡易型マイクロ波反応装置(四国計測鉱業株式会社製)にて、照射強度650Wで1分間照射し、160℃まで昇温させた後、照射強度を制御して5分間、当該温度を維持し銀超微粒子の還元析出を行い第1スラリーを得た。   And after moving the said mixed solution to the glass container which attached the cooling pipe, and irradiating with irradiation intensity 650W for 1 minute with a simple microwave reactor (made by Shikoku Measurement Mining Co., Ltd.), and heating up to 160 degreeC Then, the irradiation intensity was controlled and the temperature was maintained for 5 minutes, and silver ultrafine particles were reduced and precipitated to obtain a first slurry.

この段階で、第1スラリーの残存銀イオン濃度を、銀イオンメータにて測定したところ、加熱前の1%未満であり、得られた銀超微粒子の平均一次粒径を透過型電子顕微鏡で測定すると40nmであった。   At this stage, when the residual silver ion concentration of the first slurry was measured with a silver ion meter, it was less than 1% before heating, and the average primary particle size of the obtained silver ultrafine particles was measured with a transmission electron microscope. Then, it was 40 nm.

続いて、第1スラリーに、沈降助長剤としての300gのトルエンを加えて、遠心沈降により、銀超微粒子を沈降させ、上澄み液を廃棄し、銀超微粒子を濃縮した第2スラリーとした。   Subsequently, 300 g of toluene as a settling aid was added to the first slurry, the ultrafine silver particles were precipitated by centrifugal sedimentation, the supernatant was discarded, and a second slurry in which the ultrafine silver particles were concentrated was obtained.

続いて、第2スラリーに1gのエタノールを加え、銀濃度20wt%の目的の銀超微粒子スラリーを得た。   Subsequently, 1 g of ethanol was added to the second slurry to obtain a target silver ultrafine particle slurry having a silver concentration of 20 wt%.

更に、本件発明者等は、当該銀超微粒子スラリーを用いてガラス基板上に塗布し、水素濃度1wt%の窒素還元雰囲気下で、300℃×1時間の焼成を施したところ、導通の取れる焼成膜を得た。   Furthermore, the present inventors applied the silver ultrafine particle slurry on a glass substrate and performed baking at 300 ° C. for 1 hour in a nitrogen reducing atmosphere with a hydrogen concentration of 1 wt%. A membrane was obtained.

混合溶液を調製する際の還元能を有する溶媒を1,5−ペンタンジオール100gとした以外は、実施例1と同様にして、第1スラリーを得た。   A first slurry was obtained in the same manner as in Example 1 except that 100 g of 1,5-pentanediol was used as the solvent having the reducing ability when preparing the mixed solution.

この実施例の、第1スラリーの残存銀イオン濃度を、銀イオンメータにて測定したところ、加熱前の8%であり、得られた銀超微粒子の平均一次粒径を透過型電子顕微鏡で測定すると30nmであった。   When the residual silver ion concentration of the first slurry of this example was measured with a silver ion meter, it was 8% before heating, and the average primary particle size of the obtained silver ultrafine particles was measured with a transmission electron microscope. Then, it was 30 nm.

更に、本件発明者等は、当該銀超微粒子スラリーを用いてガラス基板上に塗布し、水素濃度1wt%の窒素還元雰囲気下で、300℃×1時間の焼成を施したところ、導通の取れる焼成膜を得た。   Furthermore, the present inventors applied the silver ultrafine particle slurry on a glass substrate and performed baking at 300 ° C. for 1 hour in a nitrogen reducing atmosphere with a hydrogen concentration of 1 wt%. A membrane was obtained.

この実施例は、実施例2の第1スラリーの残存銀イオン濃度が8%あったため、第1スラリーを、140℃のオイルバス加熱を60分間おこなった。オイルバス加熱後の残存銀イオン濃度は1%未満で有り得られた銀超微粒子の平均一次粒径を透過型電子顕微鏡で測定すると40nmであった。以下、実施例1と同様にして、銀濃度20wt%の目的の銀超微粒子スラリーを得た。   In this example, since the residual silver ion concentration of the first slurry of Example 2 was 8%, the first slurry was heated in an oil bath at 140 ° C. for 60 minutes. The residual silver ion concentration after oil bath heating was less than 1%, and the average primary particle size of the obtained silver ultrafine particles was 40 nm as measured with a transmission electron microscope. Thereafter, in the same manner as in Example 1, a target silver ultrafine particle slurry having a silver concentration of 20 wt% was obtained.

更に、本件発明者等は、当該銀超微粒子スラリーを用いてガラス基板上に塗布し、水素濃度1wt%の窒素還元雰囲気下で、300℃×1時間の焼成を施したところ、導通の取れる焼成膜を得た。   Furthermore, the present inventors applied the silver ultrafine particle slurry on a glass substrate and performed baking at 300 ° C. for 1 hour in a nitrogen reducing atmosphere with a hydrogen concentration of 1 wt%. A membrane was obtained.

比較例Comparative example

(比較例1)
金属化合物として硝酸銀0.785gを0.468gの水に溶解させた溶液と、分散剤としてのポリビニルピロリドン(K−30)0.2gとを、構造中に水酸基を持ち、誘電損失係数が1.5以上であり、常温常圧での沸点が120℃未満である還元能を有する溶媒としてのエタノール100gに添加し、これを3分間混合攪拌し混合溶液とした。
(Comparative Example 1)
A solution prepared by dissolving 0.785 g of silver nitrate in 0.468 g of water as a metal compound and 0.2 g of polyvinylpyrrolidone (K-30) as a dispersant has a hydroxyl group in the structure and a dielectric loss factor of 1. It was 5 or more and added to 100 g of ethanol as a solvent having a reducing ability having a boiling point of less than 120 ° C. at normal temperature and pressure, and this was mixed and stirred for 3 minutes to obtain a mixed solution.

そして、当該混合溶液を冷却管を取り付けたガラス容器に移し、簡易型マイクロ波反応装置(四国計測鉱業株式会社製)にて、照射強度650Wで30秒間照射し、エタノールの沸点近傍の76℃まで昇温させた後、照射強度を制御して5分間、当該温度を維持し銀超微粒子の還元析出を行おうとしたが、粒子の析出が遅い為、さらに30分間当該温度を維持し銀超微粒子の還元析出を促したものを、第1スラリーとして回収した。この第1スラリーの残存銀イオン濃度を、銀イオンメータにて測定したところ、加熱前の98%であり、反応は殆ど進行していなかったため、これ以上の試験を行うことを中止した。   Then, the mixed solution is transferred to a glass container equipped with a cooling tube, and irradiated with an irradiation intensity of 650 W for 30 seconds with a simple microwave reactor (manufactured by Shikoku Measurement Mining Co., Ltd.) to 76 ° C. near the boiling point of ethanol. After raising the temperature, the irradiation intensity was controlled and the temperature was maintained for 5 minutes to reduce the ultrafine silver particles. However, since the precipitation of the particles was slow, the temperature was maintained for another 30 minutes and the ultrafine silver particles were maintained. What promoted the reduction precipitation of was recovered as a first slurry. When the residual silver ion concentration of the first slurry was measured with a silver ion meter, it was 98% before heating, and the reaction was hardly proceeding. Therefore, the further test was stopped.

(比較例2)
金属化合物として硝酸銀0.785gを0.468gの水に溶解させた溶液と、分散剤としてのポリビニルピロリドン(K−30)0.2gとを、構造中に水酸基を持ち、誘電損失係数が1.5以上であり、常温常圧での沸点が120℃未満である還元能を有する溶媒としてのn−プロパノール100gに添加し、これを3分間混合攪拌し混合溶液とした。
(Comparative Example 2)
A solution prepared by dissolving 0.785 g of silver nitrate in 0.468 g of water as a metal compound and 0.2 g of polyvinylpyrrolidone (K-30) as a dispersant has a hydroxyl group in the structure and a dielectric loss factor of 1. It was 5 or more and added to 100 g of n-propanol as a solvent having a reducing ability having a boiling point of less than 120 ° C. at ordinary temperature and pressure, and this was mixed and stirred for 3 minutes to obtain a mixed solution.

そして、当該混合溶液を冷却管を取り付けたガラス容器に移し、簡易型マイクロ波反応装置(四国計測鉱業株式会社製)にて、照射強度650Wで40秒間照射し、n−プロパノールの沸点近傍の94℃まで昇温させた後、照射強度を制御して5分間、当該温度を維持し銀超微粒子の還元析出を行おうとしたが、粒子の析出が遅い為、さらに30分間当該温度を維持し銀超微粒子の還元析出を促したものを、第1スラリーとして回収した。この第1スラリーの残存銀イオン濃度を、銀イオンメータにて測定したところ、加熱前の95%であり、反応は殆ど進行していなかったため、これ以上の試験を行うことを中止した。   Then, the mixed solution is transferred to a glass container equipped with a cooling tube, and irradiated with a simple microwave reactor (manufactured by Shikoku Measurement Mining Co., Ltd.) at an irradiation intensity of 650 W for 40 seconds. After raising the temperature to 0 ° C., the irradiation intensity was controlled and the temperature was maintained for 5 minutes to reduce the ultrafine silver particles. However, since the precipitation of the particles was slow, the temperature was maintained for another 30 minutes. What promoted the reduction precipitation of ultrafine particles was recovered as a first slurry. When the residual silver ion concentration of the first slurry was measured with a silver ion meter, it was 95% before heating, and the reaction was hardly progressing. Therefore, further testing was stopped.

本件発明に係る上記金属超微粒子スラリーの製造方法は、従来実験室レベルでしか行えなかったマイクロ波加熱による金属超微粒子の製造を、工業的生産性を十分に備え、且つ、粒度分布に優れた超微粒子を還元析出させることが出来るものとした。そのため、本件発明に係る金属超微粒子スラリーの製造方法を採用することで、安価で高品質な金属超微粒子スラリーの製造が可能となり、このスラリーを用いて製造される高品質の銀超微粒子スラリー、パラジウム超微粒子スラリー、銀−パラジウム超微粒子スラリーは、従来の導電性インク用原料としての欠点を解消出来る製品となる。しかも、これらの金属超微粒子インクは、将来的に有望な技術となりうるディスペンサー塗布法やインクジェット法での回路等の導体形成に好適なものである。   The manufacturing method of the metal ultrafine particle slurry according to the present invention has sufficient industrial productivity and excellent particle size distribution for the production of metal ultrafine particles by microwave heating, which has been conventionally performed only at the laboratory level. The ultrafine particles can be reduced and precipitated. Therefore, by adopting the method for producing a metal ultrafine particle slurry according to the present invention, it becomes possible to produce an inexpensive and high quality metal ultrafine particle slurry, and a high quality silver ultrafine particle slurry produced using this slurry, The palladium ultrafine particle slurry and the silver-palladium ultrafine particle slurry are products that can eliminate the drawbacks of conventional raw materials for conductive ink. Moreover, these ultrafine metal inks are suitable for forming conductors such as circuits by a dispenser coating method or an ink jet method, which can be a promising technology in the future.

Claims (11)

金属化合物を含む溶液をマイクロ波照射により加熱して製造した金属超微粒子を用いて金属超微粒子スラリーを製造する方法であって、
金属化合物と還元能を有する溶媒と分散剤とを混合した混合溶液を用いて、この混合溶液をマイクロ波照射により急速加熱し、金属超微粒子を還元析出させ金属超微粒子を含む第1スラリーとし、
この第1スラリーに含有される金属微粒子を静置又は遠心分離機にて沈降させ、その上澄み液を廃棄し第2スラリーとし、
この第2スラリーに溶媒を添加することを特徴とした金属超微粒子スラリーの製造方法。
A method of producing a metal ultrafine particle slurry using metal ultrafine particles produced by heating a solution containing a metal compound by microwave irradiation,
Using a mixed solution in which a metal compound, a solvent having a reducing ability, and a dispersant are mixed, this mixed solution is rapidly heated by microwave irradiation to reduce and precipitate metal ultrafine particles to form a first slurry containing metal ultrafine particles,
The fine metal particles contained in the first slurry are allowed to settle or settle in a centrifuge, and the supernatant is discarded as a second slurry.
A method for producing a metal ultrafine particle slurry, which comprises adding a solvent to the second slurry.
請求項1に記載の金属超微粒子スラリーの製造方法において、前記混合溶液で用いる金属化合物は、硝酸銀、硝酸パラジウム、又はこれらの混合化合物であり、混合溶液中の含有量が溶媒の量を基準として、銀量又はパラジウム量又は銀とパラジウムとのト−タル量が0.1wt%〜20wt%である金属超微粒子スラリーの製造方法。 2. The method for producing a metal ultrafine particle slurry according to claim 1, wherein the metal compound used in the mixed solution is silver nitrate, palladium nitrate, or a mixed compound thereof, and the content in the mixed solution is based on the amount of the solvent. The manufacturing method of the metal ultrafine particle slurry whose silver amount or palladium amount, or the total amount of silver and palladium is 0.1 wt%-20 wt%. 混合溶液を構成する還元能を有する溶媒は、溶媒の構造中に水酸基を一つ以上有し、かつ誘電率と損失角の積である誘電損失係数が1.5以上であることを特徴とする請求項1又は請求項2に記載の金属超微粒子スラリーの製造方法。 The solvent having the reducing ability constituting the mixed solution has one or more hydroxyl groups in the structure of the solvent, and a dielectric loss coefficient which is a product of a dielectric constant and a loss angle is 1.5 or more. The manufacturing method of the metal ultrafine particle slurry of Claim 1 or Claim 2. 還元能を有する溶媒は、常温常圧での沸点が120℃以上であることを特徴とする1,5−ペンタンジオール、ジプロピレングリコール、1,4−ブタンジオール、プロピレングリコール、エチレングリコールのいずれか一種又はこれらの混合溶液である請求項3に記載の金属超微粒子スラリーの製造方法。 The solvent having the reducing ability is any one of 1,5-pentanediol, dipropylene glycol, 1,4-butanediol, propylene glycol, and ethylene glycol having a boiling point of 120 ° C. or higher at normal temperature and pressure. The method for producing a metal ultrafine particle slurry according to claim 3, which is a single type or a mixed solution thereof. 混合溶液に混入する分散剤は、ポリビニルピロリドンであり、前記金属量を基準として、0.1wt%〜100wt%を含有させるものである請求項1〜請求項4のいずれかに記載の金属超微粒子スラリーの製造方法。 The metal ultrafine particles according to any one of claims 1 to 4, wherein the dispersant mixed in the mixed solution is polyvinylpyrrolidone, and contains 0.1 wt% to 100 wt% based on the amount of the metal. A method for producing a slurry. マイクロ波照射を行った後、更に他の加熱手段により、金属成分の還元率が95%以上となるまで加熱継続する請求項1〜請求項5のいずれかに記載の金属超微粒子スラリーの製造方法。 The method for producing a metal ultrafine particle slurry according to any one of claims 1 to 5, wherein after the microwave irradiation, the heating is continued by another heating means until the reduction rate of the metal component reaches 95% or more. . 第1スラリーを静置又は遠心分離して金属超微粒子を沈降させる際に、金属超微粒子の沈降を助長させるため、沈降助長剤としてトルエン、アセトン、メチルエチルケトン、キシレンを添加するものである請求項1〜請求項6のいずれかに記載の金属超微粒子スラリーの製造方法。 2. Toluene, acetone, methyl ethyl ketone, and xylene are added as settling aids to promote settling of ultrafine metal particles when the first slurry is allowed to stand or be centrifuged to precipitate ultrafine metal particles. The manufacturing method of the metal ultrafine particle slurry in any one of -6. 第2スラリーに添加する溶媒は、アルコール類、グリコール類、有機アミン類、水のいずれか一種若しくは二種以上の混合溶剤である請求項1〜請求項7のいずれかに記載の金属超微粒子スラリーの製造方法。 The solvent added to the second slurry is a mixed solvent of any one or two or more of alcohols, glycols, organic amines, and water. The metal ultrafine particle slurry according to any one of claims 1 to 7. Manufacturing method. 請求項1〜請求項8のいずれかに記載の金属超微粒子スラリーの製造方法により得られた銀超微粒子スラリー。 A silver ultrafine particle slurry obtained by the method for producing a metal ultrafine particle slurry according to any one of claims 1 to 8. 請求項1〜請求項8のいずれかに記載の金属超微粒子スラリーの製造方法により得られたパラジウム超微粒子スラリー。 A palladium ultrafine particle slurry obtained by the method for producing a metal ultrafine particle slurry according to any one of claims 1 to 8. 請求項1〜請求項8のいずれかに記載の金属超微粒子スラリーの製造方法により得られた銀−パラジウム超微粒子スラリー。 A silver-palladium ultrafine particle slurry obtained by the method for producing a metal ultrafine particle slurry according to any one of claims 1 to 8.
JP2004360472A 2004-12-13 2004-12-13 Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method Pending JP2006169557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360472A JP2006169557A (en) 2004-12-13 2004-12-13 Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360472A JP2006169557A (en) 2004-12-13 2004-12-13 Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method

Publications (1)

Publication Number Publication Date
JP2006169557A true JP2006169557A (en) 2006-06-29

Family

ID=36670617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360472A Pending JP2006169557A (en) 2004-12-13 2004-12-13 Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method

Country Status (1)

Country Link
JP (1) JP2006169557A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050691A (en) * 2006-07-28 2008-03-06 Furukawa Electric Co Ltd:The Method for producing fine particle, fine particle obtained by using the production method, method for producing fine particle dispersion, fine particle dispersion obtained by using the production method, and conductive material
JP2009062570A (en) * 2007-09-05 2009-03-26 Mitsubishi Materials Corp Method for producing dispersion of high concentration of metal nanoparticle
JP2009246213A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Method for manufacturing semiconductor base material
JP2010209455A (en) * 2009-03-12 2010-09-24 Tokyo Univ Of Science Method of preparing metal nanoparticle and method of preparing metal nanoparticle dispersion solution
WO2020075331A1 (en) * 2018-10-12 2020-04-16 花王株式会社 Fine metal particle dispersion production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256707A (en) * 1999-03-05 2000-09-19 Univ Osaka Production of hyperfine particle and hyperfine particle
JP2004051997A (en) * 2002-07-16 2004-02-19 Ulvac Japan Ltd Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor
WO2004070067A2 (en) * 2003-01-31 2004-08-19 Bruce Ralph W Microwave assisted continuous synthesis of manocrystalline powders and coatings using the polyol process
JP2004292948A (en) * 2003-03-05 2004-10-21 Fuji Photo Film Co Ltd Method for manufacturing magnetic particle, magnetic particle and magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256707A (en) * 1999-03-05 2000-09-19 Univ Osaka Production of hyperfine particle and hyperfine particle
JP2004051997A (en) * 2002-07-16 2004-02-19 Ulvac Japan Ltd Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor
WO2004070067A2 (en) * 2003-01-31 2004-08-19 Bruce Ralph W Microwave assisted continuous synthesis of manocrystalline powders and coatings using the polyol process
JP2004292948A (en) * 2003-03-05 2004-10-21 Fuji Photo Film Co Ltd Method for manufacturing magnetic particle, magnetic particle and magnetic recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050691A (en) * 2006-07-28 2008-03-06 Furukawa Electric Co Ltd:The Method for producing fine particle, fine particle obtained by using the production method, method for producing fine particle dispersion, fine particle dispersion obtained by using the production method, and conductive material
JP2009062570A (en) * 2007-09-05 2009-03-26 Mitsubishi Materials Corp Method for producing dispersion of high concentration of metal nanoparticle
JP2009246213A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Method for manufacturing semiconductor base material
JP2010209455A (en) * 2009-03-12 2010-09-24 Tokyo Univ Of Science Method of preparing metal nanoparticle and method of preparing metal nanoparticle dispersion solution
WO2020075331A1 (en) * 2018-10-12 2020-04-16 花王株式会社 Fine metal particle dispersion production method
JP2020063507A (en) * 2018-10-12 2020-04-23 花王株式会社 Method of producing fine metal particle dispersion
JP7278861B2 (en) 2018-10-12 2023-05-22 花王株式会社 Method for producing fine metal particle dispersion

Similar Documents

Publication Publication Date Title
US7749300B2 (en) Photochemical synthesis of bimetallic core-shell nanoparticles
EP2123723B1 (en) Photochemical synthesis of metallic nanoparticles for ink applications
JP2010043350A (en) Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
WO2011040521A1 (en) Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
JP2008214695A (en) Method for producing ultra-fine particle of silver
JP2009120949A (en) Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP2011236453A (en) Silver particulate and method for producing the same, conductive paste containing the silver particulates, conductive film, and electronic device
JP2008169474A (en) Copper powder having excellent dispersibility in liquid and corrosion resistance, and method for producing the same
JP5924481B2 (en) Method for producing silver fine particles, silver fine particles obtained by the method for producing silver fine particles, and conductive paste containing the silver fine particles
JP5326317B2 (en) COMPOSITE MATERIAL LIQUID FOR FORMING METAL FILM AND METAL COMPOUND FILM, METAL / METAL COMPOUND FILM USING THE SAME, AND COMPOSITE MATERIAL
JP2005247905A (en) Metallic inkjet ink
KR20140125366A (en) Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
TW201509820A (en) Method for manufacturing cuprous oxide particles, cuprous oxide particles, and method for manufacturing conductive film
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP5176060B2 (en) Method for producing silver particle dispersion
KR101655365B1 (en) Conductive Metal Nano Particle Ink and Manufacturing Method thereof
JP6784436B2 (en) A method for producing a copper nanometal powder having a uniform oxygen passivation layer using thermal plasma and an apparatus for producing the same.
JP2006169557A (en) Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method
TW201719678A (en) Nickel powder and nickel paste
Zhao et al. Preparation of silver nanoparticles and application in water-based conductive inks
JP7208842B2 (en) Easily crushable copper powder and its production method
JPWO2008084558A1 (en) Silver particle dispersion and process for producing the same
WO2020059291A1 (en) Easily-crushable copper powder and manufacturing method therefor
JP6118193B2 (en) Method for producing dispersible nickel fine particle slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622