JP2006155940A - Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics - Google Patents

Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics Download PDF

Info

Publication number
JP2006155940A
JP2006155940A JP2004340960A JP2004340960A JP2006155940A JP 2006155940 A JP2006155940 A JP 2006155940A JP 2004340960 A JP2004340960 A JP 2004340960A JP 2004340960 A JP2004340960 A JP 2004340960A JP 2006155940 A JP2006155940 A JP 2006155940A
Authority
JP
Japan
Prior art keywords
organic
light
light source
source device
sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004340960A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ide
伸弘 井出
Osamu Tanahashi
理 棚橋
Yosuke Kondo
陽介 近藤
Masahito Onishi
雅人 大西
Takuya Komoda
卓哉 菰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004340960A priority Critical patent/JP2006155940A/en
Publication of JP2006155940A publication Critical patent/JP2006155940A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/901Assemblies of multiple devices comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a light source to emit light with satisfactory luminance, achieve a longer life, and allow the color of the emitted light to be adjusted or changed as necessary in an organic electroluminescent (EL) light source device and a lighting system. <P>SOLUTION: The organic EL light source device 30 comprises a plurality of organic EL light sources 20 in each of which an organic EL element 10 having at least one light emitting layer 2 between electrodes 1 is formed on a translucent substrate 3. Each of the light sources 20 is subjected to a light extraction treatment performed on some portion thereof, and they are stereoscopically arranged so that light emissions from the respective light sources 20 be available in a mixed form. Since the light emissions from the respective light sources 20 are available in a mixed form, satisfactory luminance as a light source is achieved for the emitted light. Furthermore, the color of the emitted light can be adjusted or changed as necessary by adjusting the light sources 20. Furthermore, each of the light sources 20 is replaceable alone when it has reached the end of its life, and this can prolong the life of the organic EL light source device 30 and the lighting system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶表示機用バックライト、電飾、サイン用光源、発光ポスター、又は照明用光源などに用いることのできる有機EL光源装置、及びそれを用いた前述の品々に例示される照明装置に関するものである。   The present invention relates to an organic EL light source device that can be used for a backlight for liquid crystal display, electrical decoration, a light source for signage, a light emitting poster, or a light source for illumination, and an illumination device exemplified by the above-described products using the same. It is about.

有機EL素子は、一般に、透明電極からなる陽極、ホール輸送層、発光層、電子注入層、及び陰極の各層が、透明基板の片側の表面に、この順で積層した構成で形成される。このような有機EL素子においては、陽極と陰極の間に電圧を印加することによって、陰極側から注入された電子と、陽極側から注入されたホールが発光層内で再結合し、有機発光層で発光した光が透明電極、透明基板を通して取り出される。   In general, an organic EL element is formed by laminating an anode made of a transparent electrode, a hole transport layer, a light emitting layer, an electron injection layer, and a cathode on the surface of one side of a transparent substrate in this order. In such an organic EL element, by applying a voltage between the anode and the cathode, the electrons injected from the cathode side and the holes injected from the anode side recombine in the light emitting layer, and the organic light emitting layer The light emitted at is taken out through the transparent electrode and the transparent substrate.

有機EL素子を光源として用いる場合、用途によって要求される特性は異なるが、概して比較的高輝度で発光することが好まれる。また、高演色性であること、発光輝度を調整できること、発光色を調整できること、光源の器具内の配置によって発光色及び/又は発光輝度を違えることが要求される場合もある。   When an organic EL element is used as a light source, it is generally preferred to emit light with relatively high luminance, although required characteristics differ depending on the application. Further, it may be required to have high color rendering properties, to be able to adjust the emission luminance, to be able to adjust the emission color, and to change the emission color and / or emission luminance depending on the arrangement of the light source in the fixture.

有機EL素子の発光色は、用いる材料を適宜選択することで、比較的任意に調整することが可能である。また、図14に示されるように異なる発光色を発する複数の素子110r,110g,110bを並置、若しくは、図15に示されるように立体的に配置、又は、図16及び図17に示されるように1つの有機EL素子110内の発光層102に、異なる発光を生じる発光材料を積層(発光層102a及び発光層102b)又は混合して備えることで、それらの発光を混色し、様々な色の発光や白色発光を得ることができる。また、図18に示されるように、有機EL素子110を備えた基板103からなる有機EL光源120に、所謂、蛍光材料を含む層107を設けることで波長変換を行い、それらの混合によって、様々な色の発光や白色発光を得る例も知られている。   The light emission color of the organic EL element can be adjusted relatively arbitrarily by appropriately selecting the material to be used. Further, as shown in FIG. 14, a plurality of elements 110r, 110g, 110b emitting different emission colors are juxtaposed or arranged in three dimensions as shown in FIG. 15, or as shown in FIGS. In addition, the light-emitting layer 102 in one organic EL element 110 is provided with a light-emitting material that generates different light emission (a light-emitting layer 102 a and a light-emitting layer 102 b) or a mixture thereof, thereby mixing the light emission and various colors. Light emission and white light emission can be obtained. Further, as shown in FIG. 18, the organic EL light source 120 including the substrate 103 provided with the organic EL element 110 performs wavelength conversion by providing a so-called layer 107 containing a fluorescent material. Examples of obtaining light emission of various colors and white light emission are also known.

しかしながら、図14に示される有機EL発光装置130においては、均一発光を得るためには、それぞれの素子110r,110g,110bのサイズを十分に小さくする必要があり、それらの製造、配線、駆動、及びそれらを実現するためのコスト等の観点で不利である。更に、上記構造の形成には有機EL素子の発光面を区分し配線を設ける必要があるため、必然的に発光可能領域(開口率)が小さくなり、大光束を確保することが望まれる光源用途としては、好ましくない。   However, in the organic EL light emitting device 130 shown in FIG. 14, in order to obtain uniform light emission, it is necessary to sufficiently reduce the size of each element 110r, 110g, 110b. And it is disadvantageous in terms of costs and the like for realizing them. Furthermore, since it is necessary to separate the light emitting surface of the organic EL element and provide wiring for the formation of the above structure, the light emitting area (aperture ratio) is inevitably reduced, and it is desired to secure a large luminous flux. Is not preferred.

また、図15に示される有機EL発光装置130においては、例えば、特許文献1に記載される如く、一枚の基板103上に絶縁膜109を介して複数の陽極/有機層/陰極化からなる有機発光素子110r,110g,110bを積層し、それらを独立に駆動するもの(SOLED)等が知られている。しかし、厚み1μm以下といった薄膜積層体内に複数の電極を作製し、且つ、そこからの配線を取り回す必要があるためその構造は比較的複雑なものとならざるを得ず、信頼性の低下も懸念される。また、最も寿命の短い発光色の素子寿命に光源寿命が規定され、さらに劣化による輝度低下を防止するために通電電流を大きくした場合にはその発光層における発熱が大きくなり積層して形成されている他色の発光層にも悪影響を及ぼすことも問題である。よって、この構造の有機EL発光装置130を照明用途に用いるには、何らかの改良を加えることが必要であると考えられる。   Further, in the organic EL light emitting device 130 shown in FIG. 15, for example, as described in Patent Document 1, a plurality of anodes / organic layers / cathodes are formed on a single substrate 103 via an insulating film 109. There are known organic light emitting devices 110r, 110g, and 110b which are stacked and driven independently (SOLED). However, since it is necessary to fabricate a plurality of electrodes in a thin film stack having a thickness of 1 μm or less and to handle the wiring from there, the structure must be relatively complicated, and the reliability is reduced. Concerned. In addition, the lifetime of the light source is defined as the element lifetime of the light emitting color with the shortest lifetime, and when the energizing current is increased to prevent a decrease in luminance due to deterioration, the heat generation in the light emitting layer increases and is formed by lamination. It also has a problem of adversely affecting the light emitting layers of other colors. Therefore, it is considered that some improvement is necessary to use the organic EL light-emitting device 130 having this structure for illumination.

図16及び図17は簡便な混色法として使用されているが、投入電力密度、すなわち発光強度に応じて発光色が変化する可能性があること、また、色調が固定されることが問題である。図18の場合には、前述の問題である発光色変化は小さいが、色調が固定されることには変わりはない。   16 and 17 are used as a simple color mixing method, but there are problems that the emission color may change according to the input power density, that is, the emission intensity, and that the color tone is fixed. . In the case of FIG. 18, the emission color change which is the above-mentioned problem is small, but the color tone is fixed.

一方、有機EL素子の輝度と寿命は、おおよそ反比例の関係にあるため、前述のような一般的な構造を有する有機EL素子を高輝度で発光させた場合、その寿命が短くなることが技術課題として知られている。近年、高輝度発光で長寿命を達成するために、陽極と陰極の間に複数の有機発光層を積層すると共に、隣り合う各発光層の間に、等電位面を形成する層、もしくは電荷発生層を設けるようにした、いわゆるマルチフォトン素子が提案されている(例えば、特許文献2乃至特許文献4参照)。   On the other hand, since the luminance and lifetime of the organic EL element are approximately inversely proportional, it is a technical problem that when the organic EL element having the general structure as described above emits light with high luminance, the lifetime is shortened. Known as. In recent years, in order to achieve long life with high luminance light emission, a plurality of organic light emitting layers are laminated between the anode and the cathode, and an equipotential surface is formed between adjacent light emitting layers, or charge generation A so-called multiphoton element in which a layer is provided has been proposed (see, for example, Patent Documents 2 to 4).

図19は、このようなマルチフォトン素子として形成される有機EL素子110mの構造の一例を示すものであり、陽極101と陰極101rの間に複数の発光層102を、隣接する発光層102の間に等電位面を形成する層又は電荷発生層105を介在させた状態で積層し、これを透明基板103の表面に積層したものであり、陽極101は光透過性の電極として、陰極101rは光反射性の電極として形成してある。なお、図19において、発光層102の両側にはホール輸送層と電子注入層が設けられているが、ホール輸送層と電子注入層の図示は省略してある。この素子に電圧を印可すると各等電位面を形成する層又は電荷発生層105からも陽極101方向には電子が、陰極101r方向にはホールが注入され、結果複数の発光層102があたかも直列的に接続された状態で同時に発光し、各発光層102からの光が合算されることで、従来型の有機EL素子では実現不可能であった高い電流効率、量子効率を実現することができ、高輝度発光で長寿命を実現可能な構造の一つである。さらに、色調の異なる複数の発光層102を備えることで、それらの発光が混色された発光を得ることができることも特徴である。   FIG. 19 shows an example of the structure of an organic EL element 110m formed as such a multiphoton element. A plurality of light emitting layers 102 are provided between an anode 101 and a cathode 101r, and adjacent light emitting layers 102 are provided. Are laminated with a layer for forming an equipotential surface or a charge generation layer 105 interposed therebetween, and are laminated on the surface of the transparent substrate 103. The anode 101 is a light-transmitting electrode, and the cathode 101r is a light-transmitting electrode. It is formed as a reflective electrode. In FIG. 19, a hole transport layer and an electron injection layer are provided on both sides of the light emitting layer 102, but the hole transport layer and the electron injection layer are not shown. When a voltage is applied to the element, electrons are injected in the direction of the anode 101 and holes are injected in the direction of the cathode 101r from the layers forming the equipotential surfaces or the charge generation layer 105. As a result, the plurality of light emitting layers 102 are as if they are in series. In the state of being connected to each other, the light from each light emitting layer 102 is added together, so that high current efficiency and quantum efficiency that could not be realized with a conventional organic EL element can be realized, It is one of the structures that can achieve long life with high luminance light emission. Further, by providing a plurality of light emitting layers 102 having different color tones, it is possible to obtain light emission in which these light emission colors are mixed.

しかし、この種の有機EL素子は、その発光輝度、発光スペクトルが有機EL素子を構成する有機層等の膜厚に強く依存し、且つ、輝度、発光スペクトルの強い角度依存性を有することが知られている。光源用途として用いる場合、いわゆる均一発光をせず、また生産時の歩留まり低下につながるという欠点を有する可能性があるものである。また、上記の例と同様、駆動時に発光色を任意に変化させることは不可能な構成である。   However, it is known that this type of organic EL element has its emission luminance and emission spectrum strongly dependent on the film thickness of the organic layer and the like constituting the organic EL element, and has a strong angle dependency of the luminance and emission spectrum. It has been. When used as a light source, there is a possibility that it does not emit so-called uniform light and has a disadvantage that it leads to a decrease in yield during production. Further, similarly to the above example, it is impossible to arbitrarily change the emission color during driving.

また、これらの例で示した有機EL素子は、いずれも駆動に伴い色調がずれる問題を有する。白色を得るために用いている各色の発光材料の耐久性が異なるために、駆動と共に一部の色を発する材料が先に劣化することがその理由の一例である。   In addition, the organic EL elements shown in these examples have a problem that the color tone shifts with driving. An example of the reason is that the materials that emit a part of the colors are deteriorated with driving because the light emitting materials of the respective colors used for obtaining the white color have different durability.

一方、両方の電極が透明である複数の有機EL素子を積層して用い、それにより発光色を任意に可変できる構造の器具が提案されている(例えば、特許文献5参照)。しかしながら、特許文献5には、有機ELの構造について透明電極以外の部分に関しては述べられておらず、特に有機ELの発光効率特性に大きな制限をもたらす基板からの光取り出しに関して考慮がなされていないため、この構造の器具の発光効率は素子の本来の効率を生かすことができず、概して低いものとなる。   On the other hand, there has been proposed a device having a structure in which a plurality of organic EL elements in which both electrodes are transparent are stacked and used, whereby the emission color can be arbitrarily changed (for example, see Patent Document 5). However, Patent Document 5 does not describe the structure of the organic EL other than the transparent electrode, and in particular, no consideration is given to light extraction from the substrate that causes a significant limitation on the light emission efficiency characteristics of the organic EL. The luminous efficiency of the device having this structure cannot take advantage of the original efficiency of the device, and is generally low.

また、複数の有機EL素子を積層して配置し、かつ配置する際の素子の順番を規定することで、他の素子からの光を励起光としたフォトルミネセンス光を利用するとした照明装置が提案されている(例えば、特許文献6参照)。しかし、有機EL素子を構成する有機薄膜はその厚みが非常に小さいため、フォトルミネッセンス光の発光強度は必ずしも大きいものではなく、また有機EL素子を積層し、かつ反射部位を設けることによって光路が多重反射に基づき複雑になるため、本公報記載の効果を有効に活用して所望の発光色を得ることは難しい。
米国特許第5707745号明細書 特開平11−329748号公報 特開2003−45676号公報 特開2003−272860号公報 特開2003−288995号公報 特開2002−260859号公報
In addition, an illumination device that uses a plurality of organic EL elements in a stacked manner and uses photoluminescence light that uses light from other elements as excitation light by defining the order of the elements at the time of placement. It has been proposed (see, for example, Patent Document 6). However, since the thickness of the organic thin film constituting the organic EL element is very small, the light emission intensity of the photoluminescence light is not necessarily high, and the optical path is multiplexed by stacking the organic EL elements and providing the reflective portion. Since it becomes complicated based on reflection, it is difficult to obtain a desired light emission color by effectively utilizing the effects described in this publication.
US Pat. No. 5,707,745 Japanese Patent Laid-Open No. 11-329748 JP 2003-45676 A JP 2003-272860 A JP 2003-28895 A JP 2002-260859 A

以上に挙げた問題点は、有機EL素子を光源用途に用いる場合には、必ずしも好ましいものではなく、その解決が望まれている。   The above-mentioned problems are not necessarily preferable when the organic EL element is used for a light source, and the solution is desired.

本発明は上記の点に鑑みてなされたものであり、光源として十分な輝度で発光させることができ、同時に長寿命を実現し、また、必要に応じて発光色を調整、可変させることも可能であり、更に、発光特性に問題が生じた場合又は発光色を変化させたいときに簡便に対処することが可能な構造を有する有機EL光源装置及び照明装置を提供することを目的とする。   The present invention has been made in view of the above points, and can emit light with sufficient luminance as a light source, at the same time achieve a long life, and can also adjust and vary the emission color as necessary. Furthermore, it is an object of the present invention to provide an organic EL light source device and a lighting device having a structure that can easily cope with a problem in light emission characteristics or when it is desired to change a light emission color.

上記目的を達成するために請求項1の発明は、陽極と陰極の間に一層以上の発光層を有する有機EL素子が光透過性の基板上に形成された有機EL光源を複数備えた有機EL光源装置であって、前記複数の有機EL光源は、各有機EL光源のいずれかの部位に光取り出し処理が施され、且つ、各有機EL光源からの発光が混合して得られるように立体的に配置され、これら各有機EL光源の発光を独立又は連動して制御することにより、発光の強度及び/又は色調を変化させることが可能なことを特徴とする。   In order to achieve the above object, the invention of claim 1 is an organic EL device comprising a plurality of organic EL light sources in which an organic EL element having one or more light emitting layers between an anode and a cathode is formed on a light-transmitting substrate. In the light source device, the plurality of organic EL light sources are three-dimensional so that light extraction processing is performed on any part of each organic EL light source and light emission from each organic EL light source is mixed. The light emission intensity and / or color tone can be changed by controlling the light emission of each of these organic EL light sources independently or in conjunction with each other.

請求項2は、請求項1に記載の有機EL光源装置において、前記複数の有機EL光源は、各有機EL光源が積層された位置関係にあり、これら有機EL光源のうち、光取り出し側から最も遠くに位置する有機EL光源の、光取り出し側から遠い側に位置する電極は光反射性の電極であり、且つ、この有機EL光源の光取り出し側から近い側に位置する電極は光透過性の電極であり、他の有機EL光源の陽極及び陰極が全て光透過性の電極であることを特徴とする。   According to a second aspect of the present invention, in the organic EL light source device according to the first aspect, the plurality of organic EL light sources are in a positional relationship in which each organic EL light source is stacked, and among these organic EL light sources, the most from the light extraction side. The electrode located on the far side from the light extraction side of the organic EL light source located far away is a light reflective electrode, and the electrode located on the side closer to the light extraction side of this organic EL light source is light transmissive. It is an electrode, and the anode and cathode of another organic EL light source are all light-transmitting electrodes.

請求項3は、請求項1に記載の有機EL光源装置において、前記複数の有機EL光源は、各有機EL光源が積層された位置関係にあり、前記有機EL光源を構成する陽極と陰極の全てが、光透過性の電極であることを特徴とする。   According to a third aspect of the present invention, in the organic EL light source device according to the first aspect, the plurality of organic EL light sources are in a positional relationship in which the organic EL light sources are stacked, and all of the anode and the cathode constituting the organic EL light source. Is a light-transmitting electrode.

請求項4は、請求項3に記載の有機EL光源装置において、前記複数の有機EL光源のうち、光取り出し側から最も遠くに位置する有機EL光源の、光取り出し側から遠い側に位置する前記電極と対向する位置に、これら有機EL光源が発した光を反射する光反射部を備えたことを特徴とする。   According to a fourth aspect of the present invention, in the organic EL light source device according to the third aspect, the organic EL light source located farthest from the light extraction side among the plurality of organic EL light sources is located on the far side from the light extraction side. A light reflecting portion that reflects light emitted from these organic EL light sources is provided at a position facing the electrode.

請求項5は、請求項1乃至請求項4の何れかに記載の有機EL光源装置において、前記複数の有機EL光源は、発光色が異なる有機EL光源を含み、これら各有機EL光源の発光を独立又は連動して制御することにより、発光色を変化させることが可能なことを特徴とする。   A fifth aspect of the present invention provides the organic EL light source device according to any one of the first to fourth aspects, wherein the plurality of organic EL light sources include organic EL light sources having different emission colors, and emits light from each of the organic EL light sources. The light emission color can be changed by independent or interlocking control.

請求項6は、請求項1乃至請求項5の何れかに記載の有機EL光源装置において、前記有機EL素子は、陽極と陰極の間に複数の発光層を備えると共に、これら発光層の間に、少なくとも1層の電荷発生層又は等電位面形成層を備えたことを特徴とする。   A sixth aspect of the present invention is the organic EL light source device according to any one of the first to fifth aspects, wherein the organic EL element includes a plurality of light emitting layers between an anode and a cathode, and between the light emitting layers. And at least one charge generation layer or equipotential surface forming layer.

請求項7は、請求項1乃至請求項6の何れかに記載の有機EL光源装置において、複数の前記有機EL素子及び/又は前記有機EL光源が直列に接続されていることを特徴とする。   A seventh aspect of the present invention is the organic EL light source device according to any one of the first to sixth aspects, wherein a plurality of the organic EL elements and / or the organic EL light source are connected in series.

請求項8は、請求項1乃至請求項7の何れかに記載の有機EL光源装置において、前記有機EL光源のいずれかの部位に、反射防止処理が施されていることを特徴とする。   An eighth aspect of the present invention is the organic EL light source device according to any one of the first to seventh aspects, wherein an antireflection treatment is applied to any part of the organic EL light source.

請求項9は、請求項1乃至請求項8の何れかに記載の有機EL光源装置において、前記有機EL光源が発した光が通過するいずれかの部位に、該有機EL光源が発した光の波長を変換する波長変換層を備えたことを特徴とする。   A ninth aspect of the present invention provides the organic EL light source device according to any one of the first to eighth aspects, wherein the light emitted from the organic EL light source is emitted to any part through which the light emitted from the organic EL light source passes. A wavelength conversion layer for converting the wavelength is provided.

請求項10は、請求項1乃至請求項9の何れかに記載の有機EL光源装置において、前記有機EL光源が発した光を屈折及び/又は反射することにより、前記有機EL光源が発した光に指向性を付与する指向性制御部材を備えたことを特徴とする。   A tenth aspect of the present invention is the organic EL light source device according to any one of the first to ninth aspects, wherein the light emitted from the organic EL light source is refracted and / or reflected by the light emitted from the organic EL light source. A directivity control member for imparting directivity to the head is provided.

請求項11は、請求項1乃至請求項10の何れかに記載の有機EL光源装置において、前記有機EL光源の駆動回路が、該有機EL光源の基板上に設けられていることを特徴とする。   An eleventh aspect of the present invention is the organic EL light source device according to any one of the first to tenth aspects, wherein a drive circuit for the organic EL light source is provided on a substrate of the organic EL light source. .

請求項12は、請求項1乃至請求項11の何れかに記載の有機EL光源装置において、駆動電圧が20V以上であることを特徴とする。   A twelfth aspect is the organic EL light source device according to any one of the first to eleventh aspects, wherein the drive voltage is 20 V or more.

請求項13は、請求項1乃至請求項12の何れかに記載の有機EL光源装置を備えたことを特徴とする照明装置である。   A thirteenth aspect of the present invention is an illumination device comprising the organic EL light source device according to any one of the first to twelfth aspects.

本発明によれば、複数の有機EL光源を備え、各有機EL光源は光取り出し処理が施されると共に、各有機EL光源からの発光が混合して得られるように立体的に配置されているので、光源として十分な輝度で発光させることができ、また、各有機EL光源を調整することにより、必要に応じて発光色を調整、可変させることも可能である。また、各有機EL光源を独立して交換することにより、発光特性に問題が生じた場合(例えば、一部の有機EL光源が寿命に達した場合)、又は発光色を変化させたいときに簡便に対処することができ、寿命に達した有機EL光源のみを交換することで有機EL光源装置及び照明装置としての寿命を伸ばすことが可能である。   According to the present invention, a plurality of organic EL light sources are provided, and each organic EL light source is subjected to a light extraction process and is three-dimensionally arranged so as to be obtained by mixing light emitted from each organic EL light source. Therefore, it is possible to emit light with sufficient brightness as a light source, and it is also possible to adjust and vary the emission color as necessary by adjusting each organic EL light source. In addition, when each organic EL light source is replaced independently, there is a problem in light emission characteristics (for example, when some organic EL light sources have reached the end of their life) or when it is desired to change the light emission color. It is possible to extend the lifetime of the organic EL light source device and the lighting device by replacing only the organic EL light source that has reached the end of its lifetime.

以下、本発明の一実施形態に係る有機EL光源装置及び照明装置について説明する。本発明の有機EL光源装置は、複数の有機EL光源を立体的に配置することで、液晶表示機用バックライト、電飾、サイン用光源、発光ポスター、又は照明用光源などに好適に用いることができるものである。なお、以下においては、陽極と陰極との間に一層以上の発光層を有し、陽極と陰極との間に電圧を印加することによって発光を生じるものを有機EL素子といい、有機EL素子が光透過性の基板上に形成されたものを有機EL光源という。また、有機EL光源を複数まとめて一つの光源装置としたものを有機EL光源装置といい、有機EL光源装置を備える照明装置を照明装置と称する。   Hereinafter, an organic EL light source device and an illumination device according to an embodiment of the present invention will be described. The organic EL light source device of the present invention is suitably used for a backlight for liquid crystal display, electrical decoration, a light source for signage, a light emitting poster, or a light source for illumination by arranging a plurality of organic EL light sources in a three-dimensional manner. It is something that can be done. In the following, an element having one or more light-emitting layers between an anode and a cathode and generating light when a voltage is applied between the anode and the cathode is referred to as an organic EL element. What is formed on a light-transmitting substrate is called an organic EL light source. A plurality of organic EL light sources combined into one light source device is referred to as an organic EL light source device, and an illumination device including the organic EL light source device is referred to as an illumination device.

有機EL素子を構成する電極のうち、少なくとも1方の電極には光透過性の電極が用いられ、必要に応じて両方の電極に光透過性の電極が用いられる。なお、このように両方の電極に光透過性の電極が用いられた有機EL素子として、公知の任意の構成のものを使用することができる。光透過性の電極としては、本発明の効果の妨げにならない限り任意のものを用いることができ、例えば、インジウム−錫酸化物(ITO)、インジウム−亜鉛酸化物(IZO)、錫酸化物、Au等の金属の極薄膜、導電性高分子、導電性の有機材料、ドーパント(ドナー又はアクセプタ)含有有機層、導電体と導電性有機材料(高分子含む)の混合物、及びこれらの積層体等が挙げられる。   A light transmissive electrode is used for at least one of the electrodes constituting the organic EL element, and a light transmissive electrode is used for both electrodes as necessary. In addition, a well-known arbitrary structure can be used as an organic EL element by which the transparent electrode was used for both electrodes in this way. As the light transmissive electrode, any electrode can be used as long as the effect of the present invention is not hindered. For example, indium-tin oxide (ITO), indium-zinc oxide (IZO), tin oxide, Ultra-thin metal such as Au, conductive polymer, conductive organic material, organic layer containing dopant (donor or acceptor), mixture of conductor and conductive organic material (including polymer), and laminates thereof Is mentioned.

また、これらの電極と有機層の間に、電極からのキャリア注入性を向上させるためのバッファ層、又は電極成膜時のダメージを低減するための層を形成してもよく、例えば、アルカリ金属ドープ有機層、銅フタロシアニン層、アクセプタドープ有機層等を形成してもよい。   Further, a buffer layer for improving the carrier injecting property from the electrode or a layer for reducing damage at the time of forming the electrode may be formed between these electrodes and the organic layer. A doped organic layer, a copper phthalocyanine layer, an acceptor-doped organic layer, or the like may be formed.

有機EL素子の発光層を構成する有機材料としては、例えば、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8−ヒドロキシキノリナート)アルミニウム錯体、トリス(4−メチル−8−キノリナート)アルミニウム錯体、トリス(5−フェニル−8−キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ−(p−ターフェニル−4−イル)アミン、ピラン、キナクリドン、ルブレン、及びこれらの誘導体、あるいは、1−アリール−2,5−ジ(2−チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、及び、これらの発光性化合物からなる基を分子内の一部分に有する化合物あるいは高分子等が挙げられる。   Examples of the organic material constituting the light emitting layer of the organic EL element include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, Bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex, aminoquinoline metal Complexes, benzoquinoline metal complexes, tri- (p-terphenyl-4-yl) amine, pyran, quinacridone, rubrene, and derivatives thereof, or 1-aryl-2,5-di (2-thienyl) Pyrrole derivative, distyryl benzene derivative, styryl arylene derivatives, styrylamine derivatives, and compounds having a group consisting of luminescent compounds in a part of the molecule or a polymer, and the like.

また、上記化合物に代表される蛍光色素由来の化合物のみならず、いわゆるリン光発光材料、一部の例を列記するならば、Ir錯体、Os錯体、Pt錯体、ユーロピウム錯体、等々の発光材料、又はそれらを分子内に有する化合物若しくは高分子も好適に用いることができる。これらの材料は、必要に応じて適宜選択して用いることができる。   Further, not only compounds derived from fluorescent dyes typified by the above-mentioned compounds, but also so-called phosphorescent materials, and some examples of light emitting materials such as Ir complexes, Os complexes, Pt complexes, europium complexes, etc. Alternatively, a compound or polymer having them in the molecule can also be suitably used. These materials can be appropriately selected and used as necessary.

有機EL光源には、光透過性の任意の基板を用いることができる。具体的には、ガラス、樹脂フィルム、樹脂板、ガラスと樹脂の複合板、樹脂上に無機薄膜層を形成したもの、屈折率の異なる原料が混合していることにより散乱性を有しているガラス若しくは樹脂基板、表面を粗面化若しくは表面に光散乱剤を塗布することによってヘーズ値の上昇したガラス若しくは樹脂基板、又は、低屈折率層を積層した樹脂若しくは樹脂基板等が例として挙げられる。   As the organic EL light source, any light-transmitting substrate can be used. Specifically, glass, a resin film, a resin plate, a glass-resin composite plate, an inorganic thin film layer formed on a resin, and materials having different refractive indexes are mixed to have scattering properties. Examples include a glass or resin substrate, a glass or resin substrate whose surface is roughened or whose haze value is increased by applying a light scattering agent to the surface, or a resin or resin substrate on which a low refractive index layer is laminated. .

本発明の有機EL光源は、そのいずれかの部位に光取り出し処理がなされていることが必要である。光取り出し処理とは、例えば、基板表面の粗面化、上記の光散乱性を有する基板の使用、拡散フィルム等、光散乱性を有する部材の基板表面上又は透明電極(光透過性の電極)上への光学的接合、有機EL素子を構成する電極それ自体が凹凸構造、回折格子構造を有するもの、あるいは電極が形成される基板が凹凸構造、回折格子構造を有するためにそれ上に形成された電極もそれに準じた構造を有するもの、有機EL素子を構成する薄膜の一部が光散乱能を有するもの、などを例として挙げることができる。   The organic EL light source of the present invention needs to be subjected to light extraction processing at any part thereof. The light extraction process is, for example, roughening the surface of the substrate, using the substrate having the light scattering property described above, on the substrate surface of the light scattering member, such as a diffusion film, or a transparent electrode (light transmissive electrode). Optical bonding to the top, the electrode constituting the organic EL element itself has a concavo-convex structure and a diffraction grating structure, or the substrate on which the electrode is formed has a concavo-convex structure and a diffraction grating structure. Examples of the electrode also include those having a structure conforming thereto, and those in which a part of the thin film constituting the organic EL element has light scattering ability.

なお、ここで挙げた凹凸構造、回折格子構造とは、必ずしもその形状が凹凸又は回折格子状である必要はなく、屈折率がそれに準じるプロファイルを有するものなども好適に用いることが可能である。また、いずれかの部位とは、光取り出し処理法によって異なるが、基板の表面、若しくは基板そのもの、透明電極の表面、若しくは透明電極そのもの、又は有機EL素子の内部などが挙げられる。   Note that the concavo-convex structure and diffraction grating structure mentioned here do not necessarily have to have a concavo-convex shape or a diffraction grating shape, and those having a refractive index corresponding to the shape can also be suitably used. In addition, although it differs depending on the light extraction method, it may be the surface of the substrate, the substrate itself, the surface of the transparent electrode, the transparent electrode itself, or the inside of the organic EL element.

光取り出し処理により、有機EL光源の発光特性が向上するのはもちろんであるが、同時に各有機EL光源の発光色調、スペクトルのムラ及び角度依存性が低減されたものとなり、結果としてこれら有機EL光源を用いた有機EL光源装置及び照明装置として、発光品位が向上したものを得ることができる。   Of course, the light extraction process improves the light emission characteristics of the organic EL light source, but at the same time, the light emission color tone, spectrum unevenness and angle dependency of each organic EL light source are reduced, and as a result, these organic EL light sources. As an organic EL light source device and an illuminating device using the above, those with improved light emission quality can be obtained.

また、有機EL光源は、その封止に光透過性の封止部材を用いることが好ましい。光透過性の封止部材とは、例えば、ガラス缶、ガラス板、SiON、SiN、SiO、アルミナ等の無機膜、及び前述の無機膜と有機膜の複合体、石英板、バリア性フィルム、バリア性樹脂板、低吸湿・低ガス透過性樹脂(接着剤、シール剤なども含む)等が挙げられる。また、非発光点の発生及び成長を防ぐために通常何らかの乾燥剤を封止部材の内部に含有させることがあるが、これについても、光透過性のものが好ましく用いられる。但し、光非透過性のものでも、その大きさ或は配置場所によっては、特にその使用を制限するものではない。 The organic EL light source preferably uses a light-transmitting sealing member for sealing. Examples of the light-transmitting sealing member include glass cans, glass plates, inorganic films such as SiON, SiN, SiO 2 , and alumina, and composites of the aforementioned inorganic films and organic films, quartz plates, barrier films, Examples thereof include barrier resin plates and low moisture absorption / low gas permeability resins (including adhesives and sealants). In addition, in order to prevent the generation and growth of non-light emitting points, some desiccant is usually included in the sealing member, and a light transmissive material is also preferably used. However, the use of the non-light-transmitting material is not particularly limited depending on the size or the arrangement location.

本発明の有機EL光源装置及び照明装置では,上記の有機EL光源を立体的に配置して用いる。配置方法は特に限定はしないが、複数の有機EL光源を積層する方法、縦、斜め、水平等、種々の向きに設定した小型有機EL光源を貼り合わせ、敷き詰め等の任意の方法によって組み合わせる方法などが使用可能である。これらの立体的配置によって、各有機EL光源が発する光を混合して、あるいは複合して用いることが可能となる。   In the organic EL light source device and the illumination device of the present invention, the above organic EL light source is three-dimensionally arranged and used. The arrangement method is not particularly limited, but a method of laminating a plurality of organic EL light sources, a method of bonding small organic EL light sources set in various directions such as vertical, diagonal, horizontal, etc., and combining them by any method such as laying, etc. Can be used. With these three-dimensional arrangements, the light emitted from each organic EL light source can be mixed or combined.

本発明の有機EL光源装置及び照明装置では、上述の有機EL光源を積層して用いることが好ましい。積層数は特に限定されることはなく,必要に応じて適宜選択される。図1は,同一の発光色を有する有機EL光源20,20rを3層、積層した場合の例である。これら有機EL光源20,20rのうち、光取り出し側(同図において下側)から最も遠くに位置する有機EL光源20rの、光取り出し側から遠い側に位置する電極は反射電極(光反射性の電極)1rであり、且つ、この有機EL光源20rの光取り出し側から近い側に位置する電極は光透過性の電極1であり、他の有機EL光源20の陽極及び陰極は、全て光透過性の電極1である。なお、同図において、2は発光層、3は基板、10及び10rは有機EL素子、20及び20rは有機EL光源を示している。   In the organic EL light source device and the illumination device of the present invention, it is preferable to use the above-mentioned organic EL light source in a stacked manner. The number of stacked layers is not particularly limited, and is appropriately selected as necessary. FIG. 1 shows an example in which three layers of organic EL light sources 20 and 20r having the same emission color are stacked. Of these organic EL light sources 20 and 20r, the electrode located farthest from the light extraction side of the organic EL light source 20r located farthest from the light extraction side (lower side in the figure) is a reflective electrode (light reflective). Electrode) 1r and the electrode located on the side closer to the light extraction side of the organic EL light source 20r is the light transmissive electrode 1, and the anodes and cathodes of the other organic EL light sources 20 are all light transmissive. Electrode 1. In the figure, 2 is a light emitting layer, 3 is a substrate, 10 and 10r are organic EL elements, and 20 and 20r are organic EL light sources.

この構成において、片側の電極が反射電極1rである有機EL光源20rでは、透明電極1側、すなわち光取り出し側に生じた光は直接、電極1を透過し、また反射電極1r側に生じた光は反射電極1rで反射されることにより透明電極1側に出射する。一方、両電極が透明電極1である有機EL光源20で生じた光は、両電極1を透過し、有機EL光源20の両側に出射する。このうち光取り出し側と反対側に出射した光は、他の有機EL光源20,20r中を透過し、光取り出し側から最も遠くに位置する有機EL光源20rの反射電極1rで反射され、最終的には、全ての光が一方向に出射する。   In this configuration, in the organic EL light source 20r in which the electrode on one side is the reflective electrode 1r, the light generated on the transparent electrode 1 side, that is, the light extraction side is directly transmitted through the electrode 1 and the light generated on the reflective electrode 1r side. Is emitted to the transparent electrode 1 side by being reflected by the reflective electrode 1r. On the other hand, light generated by the organic EL light source 20 whose both electrodes are the transparent electrodes 1 passes through both electrodes 1 and is emitted to both sides of the organic EL light source 20. Of these, the light emitted to the side opposite to the light extraction side is transmitted through the other organic EL light sources 20 and 20r, and is reflected by the reflective electrode 1r of the organic EL light source 20r farthest from the light extraction side. All light is emitted in one direction.

図2は、全ての有機EL光源20の電極を透明なものとし,両側に光を発することができる構成である。このとき、上記構成のものと同様、各有機EL光源20で発した光は、他の有機EL光源20中を透過し、両方向にそれぞれ合わさって観測される。   FIG. 2 shows a configuration in which all the electrodes of the organic EL light source 20 are transparent and can emit light to both sides. At this time, the light emitted from each organic EL light source 20 is transmitted through the other organic EL light sources 20 and observed together in both directions, as in the above configuration.

図3は、図2の片側の面(光取り出し側から最も遠くに位置する有機EL光源20の、光取り出し側から遠い側に位置する電極1と対向する位置)に、これら有機EL光源20が発した光を反射する光反射部4を配置して、光取り出し側に光を反射させ,片側にのみ光を出射させる構成である。なお、光反射部4の配置は、有機EL光源20の背面でもよいし、有機EL光源装置30の所定の場所、又は、照明装置の所定の位置であっても良く、必要に応じて適宜選定されるものである。   FIG. 3 shows the organic EL light source 20 on one side of FIG. 2 (a position of the organic EL light source 20 farthest from the light extraction side facing the electrode 1 located far from the light extraction side). The light reflecting portion 4 that reflects the emitted light is disposed, the light is reflected on the light extraction side, and the light is emitted only on one side. The arrangement of the light reflecting section 4 may be on the back surface of the organic EL light source 20, or may be a predetermined location of the organic EL light source device 30 or a predetermined position of the lighting device, and is selected as necessary. It is what is done.

有機EL光源20の光反射部4側に発された光は、光反射部4によって反射され、光取り出し側に合算されて観測される。ここで、光反射部4は、鏡面反射面でもよいし、光散乱性の反射面、あるいは回折格子を備えた反射面でもよく、必要に応じて適宜選定することができる。この光反射部4を備えることで、有機EL素子10の発光強度、発光スペクトルの角度依存性を上述の反射電極1rを用いたものよりも低減することが可能である。すなわち、反射電極1rの代わりに透明電極1を設け、光反射部4を形成した場合、有機EL光源20の発光部位から反射面までの距離が長くなり、この距離が光学波長よりも十分に大きなオーダになり易いため、発光部位から直接、有機EL素子10外に出射する光と反射面で反射された光の干渉を抑制することができ、有機EL素子10の発光強度、発光スペクトルの角度依存性を低減することができる。   The light emitted to the light reflection part 4 side of the organic EL light source 20 is reflected by the light reflection part 4 and added to the light extraction side and observed. Here, the light reflecting portion 4 may be a specular reflecting surface, a light scattering reflecting surface, or a reflecting surface provided with a diffraction grating, and can be appropriately selected as necessary. By providing this light reflecting portion 4, it is possible to reduce the light emission intensity of the organic EL element 10 and the angle dependency of the light emission spectrum from those using the reflective electrode 1r described above. That is, when the transparent electrode 1 is provided in place of the reflective electrode 1r and the light reflecting portion 4 is formed, the distance from the light emitting portion of the organic EL light source 20 to the reflecting surface becomes long, and this distance is sufficiently larger than the optical wavelength. Since it tends to be ordered, interference between the light emitted from the light emitting portion directly to the outside of the organic EL element 10 and the light reflected by the reflecting surface can be suppressed, and the light emission intensity of the organic EL element 10 and the angle dependence of the light emission spectrum. Can be reduced.

図4は、図19の構造と図3の構造を組み合わせたものであり、陽極と陰極の間に複数の有機発光層2を積層すると共に、隣り合う各発光層2の間に、等電位面を形成する層(等電位面形成層)、又は電荷発生層5を設けたものであり、1つの有機EL光源20の発することができる光量を増大させた構成である。この構成を取るときの透明電極1、反射電極1r、又は光反射部4の設け方は、上記の例に基づき任意のものを採用することができる。この場合にも、光反射部4を設けることによって、透明電極1のみを用いた有機EL素子10を用いる構成の有機EL光源装置30及び照明装置は、上記の反射電極1rを備えた有機EL光源20rを用いたものよりも、有機EL素子10の発光強度、発光スペクトルの角度依存性を低減することができる。   FIG. 4 is a combination of the structure of FIG. 19 and the structure of FIG. 3, in which a plurality of organic light emitting layers 2 are stacked between an anode and a cathode, and equipotential surfaces are formed between adjacent light emitting layers 2. The layer for forming the surface (equipotential surface forming layer) or the charge generation layer 5 is provided, and the amount of light that can be emitted from one organic EL light source 20 is increased. As the method of providing the transparent electrode 1, the reflective electrode 1 r, or the light reflecting portion 4 when taking this configuration, any method can be adopted based on the above example. Also in this case, the organic EL light source device 30 and the illuminating device having the configuration using the organic EL element 10 using only the transparent electrode 1 by providing the light reflecting portion 4 is the organic EL light source including the reflective electrode 1r. The angle dependency of the emission intensity and emission spectrum of the organic EL element 10 can be reduced as compared with the case using 20r.

なお、有機EL光源20,20rに用いられる有機EL素子10,10rの構造、形状は、特に限定されるものではなく、例えば、有機EL素子10,10rの発光層2は単一の発光層2からなるものでも良いし、複数の発光層2からなるものであっても構わない。また、有機EL光源20,20rは単独の有機EL素子10,10rで形成されるもの、複数の有機EL素子10,10rで形成されるものいずれも使用可能である。あるいは発光層2内に複数の発光材料を有し、それらが混合された発光を示すものも使用可能である。   The structure and shape of the organic EL elements 10 and 10r used in the organic EL light sources 20 and 20r are not particularly limited. For example, the light emitting layer 2 of the organic EL elements 10 and 10r is a single light emitting layer 2. It may be composed of a plurality of light emitting layers 2. As the organic EL light sources 20 and 20r, either one formed by a single organic EL element 10, 10r or one formed by a plurality of organic EL elements 10, 10r can be used. Alternatively, it is also possible to use a material having a plurality of light emitting materials in the light emitting layer 2 and showing light emission in which they are mixed.

また、本発明で用いる有機EL光源20,20rの発光色は、それぞれが同一のものであっても良いし、また必要に応じて異なるものを用いても構わない。例えば、白色発光を示す有機EL光源20,20rを複数積層する方法、補色関係にある2色を積層する方法、三原色を積層する方法、白色に加えて三原色を積層する方法など、任意の組み合わせを用いることができる。また1つの有機EL光源20,20r中に複数の発光層2を設けた構造の有機EL光源20,20rを用いる場合も然りである。更に、有機EL光源20,20rとして、上記の、異なる発光色を有する複数の有機EL素子10,10rを並置したもの、波長変換層を備えたもの、有機EL素子10,10rを積層したもの、例えば、上記の絶縁層、電荷発生層、等電位面を形成する層などを含む構造の有機EL光源20,20rなども用いることが可能である。   In addition, the emission colors of the organic EL light sources 20 and 20r used in the present invention may be the same or different as required. For example, a method of stacking a plurality of organic EL light sources 20 and 20r that emit white light, a method of stacking two complementary colors, a method of stacking three primary colors, a method of stacking three primary colors in addition to white, etc. Can be used. It is also the case when the organic EL light sources 20 and 20r having a structure in which a plurality of light emitting layers 2 are provided in one organic EL light source 20 and 20r are used. Further, as the organic EL light sources 20 and 20r, the above-described organic EL elements 10 and 10r having different emission colors are juxtaposed, a wavelength conversion layer is provided, and the organic EL elements 10 and 10r are stacked. For example, the organic EL light sources 20 and 20r having the structure including the insulating layer, the charge generation layer, the layer forming the equipotential surface, and the like can be used.

発光色が同一の有機EL光源20,20rを用いた場合、有機EL光源20,20rの配置数、又は積層数を増やすことにより、有機EL光源装置30の光量を増大させることが可能である。本発明の構成からなる有機EL光源装置30は、発光強度・色度の視野角依存性が小さいことが特徴であり、照明光源としての品位に優れたものとなる。特に、同色のものを複数枚積層して有機EL光源装置30を構成する場合、各有機EL光源20,20rに若干の色ばらつきが存在していたとしても有機EL光源装置30としての発光色は平均化されるため、結果として有機EL光源20,20rの色ばらつきに関する歩留まりを向上させる効果も現れる。   When the organic EL light sources 20 and 20r having the same emission color are used, the light quantity of the organic EL light source device 30 can be increased by increasing the number of the organic EL light sources 20 and 20r or the number of stacked layers. The organic EL light source device 30 having the configuration of the present invention is characterized by small viewing angle dependency of light emission intensity and chromaticity, and has excellent quality as an illumination light source. In particular, when the organic EL light source device 30 is configured by stacking a plurality of the same color, even if there is a slight color variation in each of the organic EL light sources 20 and 20r, the emission color as the organic EL light source device 30 is As a result, an effect of improving the yield regarding the color variation of the organic EL light sources 20 and 20r also appears.

また、発光色が異なる有機EL光源20,20rを含む場合、光量増大の効果に加え、個々の有機EL光源20の発光強度を制御することで発光色を変化させることが可能である。発光色は特に限定するものではないが、いわゆる白色光源と橙色光源との組み合わせでは、橙色光源の発光強度の調整により、例えば、昼白色光から電球色の範囲での発光色調整が可能である。   When the organic EL light sources 20 and 20r having different emission colors are included, the emission color can be changed by controlling the emission intensity of each organic EL light source 20 in addition to the effect of increasing the light amount. The emission color is not particularly limited, but in the combination of a so-called white light source and an orange light source, the emission color can be adjusted, for example, in the range from daylight white light to a bulb color by adjusting the emission intensity of the orange light source. .

また、各有機EL光源20の発光色を、例えば三原色、あるいは補色の関係にある任意の組み合わせとすることで、白色発光する有機EL光源装置30を得ることができる。発光色は必要に応じて選定することができ、演色性を重視する組み合わせとなる発光色を選定すること、あるいはその他の目的に応じた発光色を選定することなど、任意に設定可能である。特に、本発明に示す、積層して混色を行う有機EL光源装置30においては、積層方向に異なる位置で発光した光が混合されるため、その混合は、特に光源のサイズが大きい場合には、例えば、複数の異なる発光色の光源を並置した場合などに比して格段に良く、結果として得られる光の品位は高いものとなる。   In addition, the organic EL light source device 30 that emits white light can be obtained by setting the emission colors of the respective organic EL light sources 20 to, for example, any combination having a relationship of three primary colors or complementary colors. The luminescent color can be selected as necessary, and can be arbitrarily set such as selecting a luminescent color that is a combination that emphasizes color rendering or selecting a luminescent color according to other purposes. In particular, in the organic EL light source device 30 that performs color mixing by stacking as shown in the present invention, since light emitted at different positions in the stacking direction is mixed, the mixing is particularly when the size of the light source is large. For example, it is much better than a case where a plurality of light sources of different emission colors are juxtaposed, and the resulting light quality is high.

本発明の有機EL光源装置30及び照明装置は、各有機EL光源20を独立に組み合わせ可能な構造であってもよい。例えば、n層からなる有機EL光源装置30の場合、1層が破損あるいは特性が低下した際に、該当する有機EL光源20のみを交換することによって他の有機EL光源20をそのまま用い続けることができる。また、発光色を変更したい場合、必要な有機EL光源20のみ変更することで対応が可能である。このとき、有機EL光源20の交換は、全有機EL光源20の1/nに留まるため、非破損光源の有効活用の観点で有利である。   The organic EL light source device 30 and the illumination device of the present invention may have a structure in which the organic EL light sources 20 can be combined independently. For example, in the case of an organic EL light source device 30 composed of n layers, when one layer is damaged or its characteristics are deteriorated, it is possible to continue using other organic EL light sources 20 by replacing only the corresponding organic EL light source 20. it can. Moreover, when it is desired to change the emission color, it can be dealt with by changing only the necessary organic EL light source 20. At this time, since the replacement of the organic EL light source 20 remains at 1 / n of the total organic EL light source 20, it is advantageous from the viewpoint of effective use of the non-damaged light source.

図5は,有機EL光源20上の有機EL素子10を複数に分割し、それらを電気的に接続した構成を示している。この構成を採ることにより、一部の有機EL素子10pが短絡等の欠陥を起こした場合にも、その部分のみを切り離すことにより、他の部位の有機EL素子10pに与える影響を極小に抑えることができる。なお、欠陥検出のために、駆動回路に異常電流検出部及び電流遮断部等を設けることも可能である。また、有機EL光源20は複数の基板3にまたがっていても構わない。複数の基板3を並置することにより1つの有機EL光源20とすることは、有機EL光源装置30の歩留まりその他の観点で有効な手段である。   FIG. 5 shows a configuration in which the organic EL element 10 on the organic EL light source 20 is divided into a plurality of parts and these are electrically connected. By adopting this configuration, even when a part of the organic EL element 10p has a defect such as a short circuit, the influence on the organic EL element 10p in other parts is minimized by separating only that part. Can do. Note that an abnormal current detector, a current interrupter, and the like can be provided in the drive circuit for defect detection. Further, the organic EL light source 20 may extend over a plurality of substrates 3. Making one organic EL light source 20 by juxtaposing a plurality of substrates 3 is an effective means from the viewpoint of the yield of the organic EL light source device 30 and other aspects.

更に、図6は,図5に示される構成において、複数に分割されている有機EL素子10pを、接続部6を介して直列に接続したものである。有機EL素子10pを直列に接続する利点としては,例えば,Applied Physics Letters 82, 2580 (2003)に報告されているものの如く、1素子の欠陥による光源全体への影響(全体が非点灯となること)、1素子が非点灯となった場合にも有機EL光源20全体が与える光量の低下が極小化されること等がある。しかし、実際に、非点灯部が生じた場合には,その部分が、例えば、矩形状の発光欠陥として視認されるため、有機EL光源装置30として品位に劣ることが問題であった。図6に示される構成の場合,任意の1層の有機EL光源20に欠陥が生じた場合にも、他の層の有機EL光源20の発光が該欠陥部でも視認されるため、上記の品位低下を非常に小さいものとすることができる。また、図6では1つの有機EL光源20内での直列接続のみ図示したが,複数の有機EL光源20を同様に直列接続することもやはり好ましい。この場合にも、いずれかの有機EL光源20に短絡欠陥が生じたときにも有機EL光源20全体が非発光となることを避けることが可能である。   Furthermore, FIG. 6 shows a configuration in which the organic EL elements 10p divided into a plurality of parts in the configuration shown in FIG. As an advantage of connecting the organic EL elements 10p in series, for example, as reported in Applied Physics Letters 82, 2580 (2003), the influence on the entire light source due to the defect of one element (the entire light is turned off) ) When one element is not lit, the decrease in the amount of light given by the entire organic EL light source 20 may be minimized. However, when a non-lighting portion is actually generated, the portion is visually recognized as, for example, a rectangular light-emitting defect, so that the quality of the organic EL light source device 30 is inferior. In the case of the configuration shown in FIG. 6, even when a defect occurs in any one layer of the organic EL light source 20, the light emission of the organic EL light source 20 of the other layer is visually recognized even in the defective portion. The drop can be very small. In FIG. 6, only the series connection in one organic EL light source 20 is shown, but it is also preferable to connect a plurality of organic EL light sources 20 in the same manner. Also in this case, it is possible to avoid the entire organic EL light source 20 from emitting no light even when a short circuit defect occurs in any one of the organic EL light sources 20.

本発明の有機EL光源装置30及び照明装置では、有機EL素子10の直列接続、有機EL光源20の直列接続、及び図19の如く有機EL素子10の積層を任意に組み合わせ、駆動電圧を20V以上にすることが好ましい。有機EL光源装置30には、その使用用途を考えると、例えば家庭用の100Vの交流電力が供給されるが、このとき、有機EL光源装置30の駆動電圧が供給電圧に比して極端に小さい場合、電圧降下回路での電力ロスが生じ、結果として有機EL光源装置30の効率を低下させることになる。上記構造の組み合わせにより、駆動電圧を20V以上とすることで,電力ロスを低減することが可能である。   In the organic EL light source device 30 and the illuminating device of the present invention, a series connection of the organic EL elements 10, a series connection of the organic EL light sources 20, and a lamination of the organic EL elements 10 as shown in FIG. It is preferable to make it. Considering the usage of the organic EL light source device 30, for example, 100V AC power for home use is supplied. At this time, the driving voltage of the organic EL light source device 30 is extremely small compared to the supply voltage. In this case, power loss occurs in the voltage drop circuit, and as a result, the efficiency of the organic EL light source device 30 is reduced. By combining the above structures, the power loss can be reduced by setting the drive voltage to 20 V or higher.

本発明の有機EL光源装置30及び照明装置は、その任意の部位に反射防止処理を行うことが好ましい。有機EL光源装置30は、複数の有機EL光源20を積層する構成であるため、ある有機EL光源20から生じた光の一部が他の有機EL光源20を透過する際にロスする光の割合を極小化することで、有機EL光源装置30の効率を向上させることが可能である。反射防止処理方法は、公知の任意の方法を利用することができ、特に限定はしないが、例えば、多層膜による反射防止膜、低屈折率膜、屈折率傾斜膜による反射防止膜、微細凹凸による反射防止膜などを好適に用いることができる。反射防止処理は有機EL素子10を備える基板3のみならず、封止板、その他この後に記す光学部材など、必要に応じてその場所を選定して行うことができる。   It is preferable that the organic EL light source device 30 and the illumination device of the present invention perform an antireflection treatment on any part thereof. Since the organic EL light source device 30 has a configuration in which a plurality of organic EL light sources 20 are stacked, a ratio of light lost when a part of light generated from one organic EL light source 20 passes through another organic EL light source 20. It is possible to improve the efficiency of the organic EL light source device 30 by minimizing. Any known method can be used as the antireflection treatment method, and is not particularly limited. For example, the antireflection film using a multilayer film, the low refractive index film, the antireflection film using a refractive index gradient film, or the fine unevenness is used. An antireflection film or the like can be preferably used. The antireflection treatment can be performed by selecting not only the substrate 3 including the organic EL element 10 but also the sealing plate and other optical members described later, if necessary.

本発明の有機EL光源装置30及び照明装置は、その任意の部位に波長変換層を設けることができる。たとえば、図7の如く、光取り出し側に最も近い基板3に波長変換層7を設ける方法、あるいは図8に示すように、別基板13に波長変換層7を設けて光取り出し側に配置する方法等が挙げられる。そのほか、基板3内に色変換層を配設する方法、各有機EL光源20に波長変換層7を設ける方法、あるいは、有機EL光源装置30を備える照明装置側に設ける場合など、任意の方法を用いることができる。波長変換層7に用いる材料としては、特に限定はしないが、例えば、YAG系蛍光体など無機系の蛍光体、ペリレン誘導体、あるいは、例えば有機EL素子10に用いる材料として列記した類の有機の蛍光体、及びその他の蛍光体が挙げられ、それらを塗布、焼成、バインダーに混合しての成膜、セルに封じた溶液状態での配置等の方法によって波長変換層7として用いることができる。波長変換層7が光散乱性の場合、有機EL光源20に直接形成することで、光取り出し効率を向上させることも同時に実現できる。また、波長変換層7の上部に光散乱層を設けることで、有機EL光源装置30の発光色の角度依存性を低減することも可能である。外光による波長変換層7からの発光を抑えるためには、光取り出し側の最表面以外の部位に設けることが考えられるが、外光入射防止等の手段を講じる場合にはこの限りではない。   The organic EL light source device 30 and the illuminating device of the present invention can be provided with a wavelength conversion layer at any part thereof. For example, a method of providing the wavelength conversion layer 7 on the substrate 3 closest to the light extraction side as shown in FIG. 7, or a method of providing the wavelength conversion layer 7 on another substrate 13 and arranging it on the light extraction side as shown in FIG. Etc. In addition, an arbitrary method such as a method of disposing a color conversion layer in the substrate 3, a method of providing the wavelength conversion layer 7 in each organic EL light source 20, or a case of providing the organic EL light source device 30 on the illumination device side is used. Can be used. The material used for the wavelength conversion layer 7 is not particularly limited. For example, an inorganic fluorescent material such as a YAG fluorescent material, a perylene derivative, or an organic fluorescent material listed as a material used for the organic EL element 10, for example. And other phosphors can be used as the wavelength conversion layer 7 by a method such as coating, baking, film formation by mixing with a binder, or arrangement in a solution state sealed in a cell. When the wavelength conversion layer 7 is light-scattering, it is possible to improve the light extraction efficiency by forming it directly on the organic EL light source 20 at the same time. In addition, by providing a light scattering layer on the wavelength conversion layer 7, it is possible to reduce the angle dependency of the emission color of the organic EL light source device 30. In order to suppress light emission from the wavelength conversion layer 7 due to external light, it may be provided in a portion other than the outermost surface on the light extraction side, but this is not the case when measures such as external light incidence prevention are taken.

本発明の有機EL光源装置30及び照明装置は、プリズムシート、マイクロレンズ、反射コーン(指向性制御部材)等の屈折・反射機能を有する部位を備え、発光に指向性を付与することも可能である。プリズムシートとしては、例えば、住友3M製のBEFシリーズ、三菱レイヨン製のプリズムシートその他のものが例として挙げられ、これらを有機EL光源20の光取り出し面側に配置することで、特定方向への集光が可能になるものである。マイクロレンズも特にその構造は規定しないが、同様に光に指向性を与えることができるものを用いることができる。また反射コーンとは、例えば四角錐の頂点部を底面に対して平行あるいは非平行に切り落とし、その内部を反射性に加工したものであり、その形状(長さ・角度)を所定に設計することで、ある特定方向への集光が可能となるものである。ここでは集光部材の例としていくつかのものを挙げたが、これ以外の集光部材、例えば凹面鏡、U字型反射面、V字型反射面、プリズム、レンズ等々、その他任意の反射・屈折部材を用いることももちろん可能である。これらの部位を備えることで、たとえば照明装置正面方向のみを集中的に照らす照明装置、照明装置の正面以外を照らす照明装置、一方向だけを線状に照らす光源装置など、特殊な配光分布をもった光源装置を実現することも可能となる。これらの部材にも必要に応じて反射防止処理、場合によっては増反射処理等を施すことができる。   The organic EL light source device 30 and the illuminating device of the present invention include a part having a refraction / reflection function such as a prism sheet, a microlens, a reflection cone (directivity control member), etc., and can impart directivity to light emission. is there. As the prism sheet, for example, the BEF series made by Sumitomo 3M, the prism sheet made by Mitsubishi Rayon and others can be cited as examples. By arranging these on the light extraction surface side of the organic EL light source 20, the prism sheet can be directed in a specific direction. Condensation is possible. The structure of the microlens is not particularly limited, but a microlens that can give directivity to light can be used as well. The reflection cone is, for example, the top of a quadrangular pyramid cut off parallel or non-parallel to the bottom, and the inside is processed to be reflective, and its shape (length and angle) is designed to a predetermined value. Thus, the light can be condensed in a specific direction. Here, some examples of the condensing member are given, but other condensing members such as a concave mirror, a U-shaped reflecting surface, a V-shaped reflecting surface, a prism, a lens, etc., and any other reflection / refraction. Of course, it is also possible to use a member. By providing these parts, a special light distribution such as a lighting device that illuminates only the front direction of the lighting device in a concentrated manner, a lighting device that illuminates other than the front of the lighting device, and a light source device that illuminates only one direction in a line shape, etc. It is also possible to realize a light source device with. These members can also be subjected to antireflection treatment, and in some cases increased reflection treatment, if necessary.

本発明の有機EL光源装置30は、その駆動回路が有機EL光源20の基板3上に設けられていても良い。有機EL光源20は比較的薄く形成することができるため、基板3上に薄型化した回路を設けることで、回路一体型薄型光源の実現が可能である。一方、別体化した回路を有機EL光源20横に配置した場合、有機EL光源20の薄さという特長が失われ、また、設置面積の観点でも不利となる場合がある。有機EL光源20の基板3上に回路を配置した場合、その取り扱いも容易であり、また、場合によってはその回路の発する熱で有機EL光源20を加熱することで効率向上、輝度向上させ、消費電力を低減することも可能である。本回路は、有機EL光源20に一体化していてもよいし、また必要に応じて取り外すことができるようにすることで、有機EL光源20の交換に対応できるようにしてもよい。   The drive circuit of the organic EL light source device 30 of the present invention may be provided on the substrate 3 of the organic EL light source 20. Since the organic EL light source 20 can be formed relatively thin, a circuit-integrated thin light source can be realized by providing a thin circuit on the substrate 3. On the other hand, when the separated circuit is arranged beside the organic EL light source 20, the characteristic that the organic EL light source 20 is thin is lost, and it may be disadvantageous in terms of installation area. When the circuit is arranged on the substrate 3 of the organic EL light source 20, the handling is easy. In some cases, the organic EL light source 20 is heated by the heat generated by the circuit, thereby improving the efficiency, the luminance, and the consumption. It is also possible to reduce power. This circuit may be integrated with the organic EL light source 20, or may be removed as necessary, so that the organic EL light source 20 can be replaced.

以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。まず、実施例及び比較例に使用される有機EL光源の製造方法について説明する。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples at all. First, the manufacturing method of the organic EL light source used for an Example and a comparative example is demonstrated.

(参考例1)
ガラス厚み0.7mmのITO付きガラス基板(ITO膜厚1100Å、シート抵抗12Ω/□)を、図9(a)に示す形にエッチング(同図においてIがITOが形成された部分)、切断した後、純水、アセトン、イソプロピルアルコールで各10分間超音波洗浄、イソプロピルアルコール蒸気で2分間蒸気洗浄、乾燥し、さらに30分間、UVオゾン洗浄した。
(Reference Example 1)
A glass substrate with ITO having a glass thickness of 0.7 mm (ITO film thickness 1100 mm, sheet resistance 12 Ω / □) was etched into the shape shown in FIG. 9A (I is the portion where ITO was formed) and cut. Thereafter, ultrasonic cleaning was performed with pure water, acetone, and isopropyl alcohol for 10 minutes each, steam cleaning with isopropyl alcohol vapor was performed for 2 minutes, drying, and UV ozone cleaning was further performed for 30 minutes.

続いて、上記基板を真空蒸着装置にセットし、図9(b)に示す開口A1を有するマスクM1を用いて、5×10-5Paの減圧下、4,4’−ビス[N−(ナフチル)−N−フェニル−アミノ]ビフェニル(以下α−NPDと略称)(ケミプロ化成株式会社製)を、1Å/sの蒸着速度で800Å厚に蒸着して、陽極の上にホール輸送層を形成した。次に、ホール輸送層の上に、青色発光層としてジナフチルアントラセン誘導体(コダック製「BH−2」)に、ジスチリルアリーレン誘導体を4質量%ドープした層を500Å厚積層することによって、有機発光層を設けた。 Subsequently, the substrate was set in a vacuum deposition apparatus, and 4,4′-bis [N- (N) was used under a reduced pressure of 5 × 10 −5 Pa using a mask M1 having an opening A1 shown in FIG. Naphthyl) -N-phenyl-amino] biphenyl (hereinafter abbreviated as α-NPD) (manufactured by Chemipro Kasei Co., Ltd.) is deposited to a thickness of 800 mm at a deposition rate of 1 mm / s to form a hole transport layer on the anode. did. Next, an organic light-emitting layer is formed by laminating a layer of 4% by mass of a distyrylarylene derivative on a dinaphthylanthracene derivative (“BH-2” manufactured by Kodak) as a blue light-emitting layer on the hole transport layer to a thickness of 500 mm. A layer was provided.

次に、有機発光層の上に、バソクプロイン(BCP:(株)同仁化学研究所製)とLiをモル比1:1で200Å厚に共蒸着して電子注入層を設けた。最後に陰極としてアルミニウムを図10(a)に示す開口A2を有するマスクM2を用いて4Å/sの成膜速度で800Å積層し、青色有機EL素子を得た。得られた素子は、図10(b)に示すガラス封止板P及び、エポキシ系接着剤を用いて封止し、さらにガラス基板の表面を#120のサンドブラスト処理によって粗面化し、光取り出し処理とした。本参考例で得られた素子からなる光源を以後、反射型青色光源と称する。   Next, on the organic light-emitting layer, bathocuproin (BCP: manufactured by Dojindo Laboratories) and Li were co-evaporated in a molar ratio of 1: 1 to a thickness of 200 to provide an electron injection layer. Finally, 800 Å of aluminum was laminated as a cathode at a film formation rate of 4 Å / s using a mask M2 having an opening A2 shown in Fig. 10A to obtain a blue organic EL element. The obtained element is sealed with a glass sealing plate P and an epoxy adhesive shown in FIG. 10B, and the surface of the glass substrate is roughened by sandblasting # 120, and light extraction processing is performed. It was. The light source composed of the element obtained in this reference example is hereinafter referred to as a reflective blue light source.

(参考例2)
陰極として対向スパッタ装置でITOを4Å/sのレートにて1000Å厚に形成したこと以外は参考例1と同様にして有機EL素子を得た。本参考例で得られた素子からなる光源を以後、透過型青色光源と称する。
(Reference Example 2)
An organic EL device was obtained in the same manner as in Reference Example 1 except that ITO was formed to a thickness of 1000 に て at a rate of 4 Å / s using a counter sputtering apparatus as a cathode. The light source composed of the element obtained in this reference example is hereinafter referred to as a transmissive blue light source.

(参考例3)
緑色発光層として、Alq3にクマリン545Tを1質量%ドープした層を200Å、Alq3単独の層を300Å設けたこと以外は参考例1と同様にして、緑色有機EL素子を得た。本参考例で得られた素子からなる光源を以後、反射型緑色光源と称する。
(Reference Example 3)
A green organic EL device was obtained in the same manner as in Reference Example 1 except that 200 cm of a layer in which 1% by mass of coumarin 545T was doped in Alq3 and 300 of Alq3 alone were provided as a green light emitting layer. The light source composed of the elements obtained in this reference example is hereinafter referred to as a reflective green light source.

(参考例4)
陰極として、対向ターゲット式スパッタにより4Å/sのレートにて1000Å厚のITO膜を形成したこと以外は参考例3と同様にして、緑色有機EL素子を得た。本参考例で得られた素子からなる光源を以後、透過型緑色光源と称する。
(Reference Example 4)
A green organic EL element was obtained in the same manner as in Reference Example 3 except that a 1000 Å thick ITO film was formed as a cathode at a rate of 4 Å / s by facing target sputtering. The light source composed of the element obtained in this reference example is hereinafter referred to as a transmissive green light source.

(参考例5)
赤色発光層として、Alq3にDCJTBを1重量%ドープした層を500Å設けたこと、及び光取り出し処理として、きもと製散乱シート100GM2を基板上に屈折率1.51の光学接着剤で貼付したこと以外は参考例1と同様にして、赤色有機EL素子を得た。本参考例で得られた素子からなる光源を以後、反射型赤色光源と称する。
(Reference Example 5)
As a red light-emitting layer, except that 500 mm of a layer in which 1% by weight of DCJTB is doped to Alq3 is provided as a red light-emitting layer, and Kimoto-made scattering sheet 100GM2 is attached to a substrate with an optical adhesive having a refractive index of 1.51 as a light extraction process Obtained a red organic EL device in the same manner as in Reference Example 1. The light source composed of the element obtained in this reference example is hereinafter referred to as a reflective red light source.

(参考例6)
陰極として、対向ターゲット式スパッタにより4Å/sのレートにて1000Å厚のITO膜を形成したこと以外は参考例5と同様にして、赤色有機EL素子を得た。本参考例で得られた素子からなる光源を以後、透過型赤色光源と称する。
(Reference Example 6)
A red organic EL element was obtained in the same manner as in Reference Example 5 except that an ITO film having a thickness of 1000 Å was formed at a rate of 4 Å / s as a cathode by facing target sputtering. The light source composed of the element obtained in this reference example is hereinafter referred to as a transmissive red light source.

(参考例7)
参考例1に記した基板を用い、800Å厚のα-NPDからなるホール輸送層、BH−2にジスチリルアリーレン誘導体を4質量%ドープした層からなる500Å厚の発光層、BCPとLiをモル比1:1で200Å厚に共蒸着した電子注入層を形成した。次いで、酸化バナジウム(V)を成膜速度2Å/sで100Å厚に蒸着し、電荷発生層を形成した。この後、α-NPDを700Å、Alq3にクマリン545Tを1質量%ドープした層を200Å、Alq3単独の層を300Å設け、BCPとLiからなる電子注入層を200Å積層した。最後に陰極として対向ターゲット式スパッタにより4Å/sのレートにて1000Å厚のITO膜を形成し、2層の発光層を備えた青緑色発光有機発光素子を得た。以後、本参考例で得られた素子からなる光源を、透過型青緑色光源と称する。
(Reference Example 7)
Using the substrate described in Reference Example 1, a hole transport layer made of α-NPD having a thickness of 800 mm, a light-emitting layer having a thickness of 500 mm, consisting of a layer in which 4% by mass of a distyrylarylene derivative is doped in BH-2, and BCP and Li in moles An electron injection layer co-deposited at a ratio of 1: 1 to a thickness of 200 mm was formed. Next, vanadium oxide (V 2 O 5 ) was deposited to a thickness of 100 mm at a film formation rate of 2 mm / s to form a charge generation layer. After that, α-NPD was added to 700 kg, Alq3 doped with 1% by mass of coumarin 545T was added to 200 kg, Alq3 alone layer was provided to 300 kg, and an electron injection layer made of BCP and Li was laminated to 200 kg. Finally, an ITO film having a thickness of 1000 Å was formed as a cathode by facing target sputtering at a rate of 4 対 向 / s to obtain a blue-green light-emitting organic light-emitting device having two light-emitting layers. Hereinafter, the light source composed of the element obtained in this reference example is referred to as a transmissive blue-green light source.

(参考例8)
図11(a)(b)に示す構造を有する青色発光素子を作製した。発光面は9つのセグメントSとして区切って形成され、また、図11(b)の断面図に示すように基板3側に形成されている電極1aと、有機EL素子の反対面に位置する電極1bとが非発光部位で接続されており、各セグメントSが直列接続されている構造を有するものである。所定の電流値を、セグメント1つに通電するときの電圧をVsとしたとき、本参考例で得られた9セグメントが接続された有機EL光源は同一電流通電に9Vsの電圧を要することを確認した。以下本参考例で得られた素子からなる光源を、透過型青色光源(直列)と称する。
(Reference Example 8)
A blue light emitting device having the structure shown in FIGS. 11A and 11B was produced. The light emitting surface is divided into nine segments S, and as shown in the sectional view of FIG. 11B, the electrode 1a formed on the substrate 3 side and the electrode 1b located on the opposite surface of the organic EL element Are connected at a non-light emitting part, and each segment S has a structure connected in series. It is confirmed that the organic EL light source connected to the 9 segments obtained in this reference example requires a voltage of 9 Vs for the same current application, assuming that the voltage when energizing one segment is Vs. did. Hereinafter, the light source composed of the element obtained in this reference example is referred to as a transmissive blue light source (in series).

透過型青緑色光源とその背面側にアルミニウムを1500Å厚に蒸着して作製した反射面を配置したもの20a、及び、反射型赤色光源20bを図12に示すように配置して有機EL光源装置を作製した。用いた両光源20a,20bの数はそれぞれ18である。光源装置を目視すると、2色の発光が見られるが、光源装置から約1m離れた場所への投影光は白色に近いものであった。またその照度は、比較例1に示した光源装置のそれの1.4倍程度であった。   An organic EL light source device having a transmissive blue-green light source and a reflective surface 20a formed by depositing aluminum on the back side with a thickness of 1500 mm and a reflective red light source 20b as shown in FIG. Produced. The number of both light sources 20a and 20b used is eighteen. When the light source device is visually observed, two colors of light emission are seen, but the projected light to a place about 1 m away from the light source device is almost white. The illuminance was about 1.4 times that of the light source device shown in Comparative Example 1.

観測面側から、透過型青色光源、透過型青色光源、反射型青色光源の順に積層して配置した有機EL光源装置を作製した。得られた光源装置からの発光強度は、反射型青色光源のそれの約3倍であった。   From the observation surface side, an organic EL light source device was fabricated in which a transmissive blue light source, a transmissive blue light source, and a reflective blue light source were stacked in this order. The emission intensity from the obtained light source device was about three times that of the reflective blue light source.

観測面側から、透過型青色光源、透過型緑色光源、反射型赤色光源の順に積層して配置した有機EL光源装置を作製した。得られた光源装置からの発光強度は、各光源から発する強度の合算値とほぼ一致し、かつ発光色は白色に近いものであった。   From the observation surface side, an organic EL light source device was fabricated in which a transmissive blue light source, a transmissive green light source, and a reflective red light source were stacked in this order. The light emission intensity from the obtained light source device almost coincided with the total value of the intensity emitted from each light source, and the light emission color was close to white.

実施例3において、透過型緑色光源の発光強度を通電電流値を減少させることにより半減させた。その結果、光源装置からの発光強度は緑色光源からの発光強度減少分程度低下し、かつ発光色は赤紫色味を増した。   In Example 3, the emission intensity of the transmissive green light source was halved by decreasing the energization current value. As a result, the light emission intensity from the light source device decreased by the amount corresponding to the decrease in the light emission intensity from the green light source, and the light emission color increased to magenta.

実施例3において、反射型赤色光源の発光強度を1.5倍程度に増大させた。その結果、光源装置の発光色は赤みを増し、いわゆる電球色に近い色度の光が得られた。   In Example 3, the emission intensity of the reflective red light source was increased to about 1.5 times. As a result, the light emission color of the light source device increased red, and light having a chromaticity close to the so-called light bulb color was obtained.

観測面側から、透過型緑色光源、透過型赤色光源、透過型青色光源の順に積層して配置した有機EL光源装置を作製した。この光源を発光させたときの観測面側の発光強度をL1とする。さらに透過型青色光源の背面側に1000Å厚のアルミニウムを蒸着して作製したミラーを配置したところ、観測面側の発光強度は、1.9L1に増大した。またこのとき発光色の変化はほとんど見られなかった。さらに、発光色の角度依存性もほとんどなく、ほぼ全方位から白色発光が観測された。   From the observation surface side, an organic EL light source device was fabricated in which a transmissive green light source, a transmissive red light source, and a transmissive blue light source were stacked in this order. Let L1 be the light emission intensity on the observation surface side when this light source emits light. Furthermore, when a mirror produced by depositing 1000-thick aluminum on the back side of the transmissive blue light source was placed, the emission intensity on the observation side increased to 1.9L1. At this time, almost no change in emission color was observed. Furthermore, there was almost no angle dependency of the luminescent color, and white luminescence was observed from almost all directions.

実施例3で作製した有機EL光源装置を常時点灯させたところ、赤色光源の劣化が他色光源に比して早く、発光色は次第に青緑色に近づいた。ここで、赤色光源への通電量を増大させ、赤色光源からの発光強度を増大させたところ、発光色を初期の色に復元することができた。   When the organic EL light source device produced in Example 3 was always turned on, the red light source deteriorated faster than the other color light sources, and the emission color gradually approached blue-green. Here, when the amount of current supplied to the red light source was increased and the emission intensity from the red light source was increased, the emission color could be restored to the initial color.

実施例7において、赤色光源への通電量を増大させるかわりに、反射型赤色光源を新しいものにとりかえたところ、発光色を初期の色に復元することが可能であった。   In Example 7, instead of increasing the amount of energization to the red light source, the reflection type red light source was replaced with a new one, and the emission color could be restored to the initial color.

実施例3において、光源の配置順を観測面側から、透過型赤色光源、透過型青色光源、反射型緑色光源の順に変更した。得られた発光色は実施例2のそれと同等のものであった。また、透過型赤色光源と透過型青色光源の間に、0.3重量部のLumogenF Rot305(BASF社製;蛍光発光波長の極大値〜600nm)、バイロン29SS(東洋紡績製)330重量部、メチルエチルケトン150重量部、トルエン150重量部からなる液状組成物を塗布して形成した、厚み0.15mmの赤色変換層を備えたガラス基板を挿入した。このとき、光源の発光色は赤みを増し、いわゆる電球色に近いものとなった。   In Example 3, the arrangement order of the light sources was changed from the observation surface side in the order of transmissive red light source, transmissive blue light source, and reflective green light source. The obtained emission color was equivalent to that of Example 2. Further, between the transmissive red light source and the transmissive blue light source, 0.3 parts by weight of LumogenF Rot305 (manufactured by BASF; maximum fluorescent emission wavelength to 600 nm), Byron 29SS (manufactured by Toyobo), 330 parts by weight, methyl ethyl ketone A glass substrate provided with a red conversion layer having a thickness of 0.15 mm formed by applying a liquid composition comprising 150 parts by weight of toluene and 150 parts by weight of toluene was inserted. At this time, the light emission color of the light source increased red and became close to the so-called light bulb color.

観測面側から、透過型青緑色光源、反射型赤色光源を積層することで、白色発光有機EL光源装置を得た。またこのとき、透過型青緑色光源の表裏面及び反射型赤色光源の光取り出し側の面に、帝人株式会社製反射防止フィルムオプトファインを光学接着剤で貼付した。2つの光源の積層であるが、その発光強度は実施例3で得られた光源装置のそれとほぼ同等であった。   A white light emitting organic EL light source device was obtained by laminating a transmissive blue-green light source and a reflective red light source from the observation surface side. At this time, an antireflection film Optfine manufactured by Teijin Limited was attached to the front and back surfaces of the transmissive blue-green light source and the light extraction side surface of the reflective red light source with an optical adhesive. Although it was a laminate of two light sources, the light emission intensity was almost the same as that of the light source device obtained in Example 3.

有機EL光源の表裏面、及び封止板の両面を反射防止処理した各種光源を用い、観測面側から透過型青色光源(直列)、透過型青色光源(直列)、1000Å厚のアルミニウムを蒸着して作製したミラーの順に積層して有機EL光源装置を作製した。透過型青色光源(直列)を輝度1000cd/mで発光させたときの電圧は37Vであった。75Vの電圧を本有機EL光源装置に印加したときの発光輝度は約2000cd/mであった。また、点灯中に図11(a)中に示した位置xの有機EL素子が短絡したが、その他の8箇所の有機EL素子はその後も点灯し、また、本実施例の有機EL光源装置を見たときには若干の輝度ムラが感じられるものの、観測面全体が発光することが確認できた。 Using various light sources with anti-reflection treatment on the front and back surfaces of the organic EL light source and both sides of the sealing plate, a transmissive blue light source (series), a transmissive blue light source (series), and 1000 mm thick aluminum are deposited from the observation surface side. The organic EL light source device was produced by laminating the produced mirrors in this order. The voltage when the transmissive blue light source (series) was caused to emit light at a luminance of 1000 cd / m 2 was 37V. The emission luminance when a voltage of 75 V was applied to the organic EL light source device was about 2000 cd / m 2 . Further, the organic EL element at the position x shown in FIG. 11A was short-circuited during lighting, but the other eight organic EL elements were also lit after that, and the organic EL light source device of this example was It was confirmed that the entire observation surface emits light, although a slight luminance unevenness is felt when viewed.

(実施例12)
実施例11で作製した有機EL光源装置の光取り出し側の表面に、住友スリーエム製プリズムシートThinBEFをそのプリズムの向きが直交するように2枚重ねて配置した。このとき、正面輝度は、元の光源装置に対して約3倍、また45°方向から光源装置を見たときの発光輝度は正面方向への輝度の約10分の1であり、正面方向への集光が可能となった。
(Example 12)
Two prism sheets ThinBEF made by Sumitomo 3M were placed on the surface on the light extraction side of the organic EL light source device produced in Example 11 so that the directions of the prisms were orthogonal to each other. At this time, the front luminance is about three times that of the original light source device, and the light emission luminance when the light source device is viewed from the 45 ° direction is about one-tenth of the luminance in the front direction. It became possible to collect light.

AC100VからDC50Vへの変換回路を透過型青色光源(直列)の基板上に作製した。この透過型青色光源(直列)に、透過型青緑色光源、透過型赤色光源を積層し、また直列接続した。このとき、基板外に駆動回路を持たない形状とすることができ、また光源装置の厚みは有機EL光源3枚分とほぼ同等のものであった。   A conversion circuit from AC 100 V to DC 50 V was produced on a substrate of a transmissive blue light source (series). A transmissive blue-green light source and a transmissive red light source were stacked on this transmissive blue light source (in series) and connected in series. At this time, the shape could be such that there was no drive circuit outside the substrate, and the thickness of the light source device was almost the same as that of three organic EL light sources.

(比較例1)
透過型青緑色光源とその背面側にアルミニウムを1500Å厚に蒸着して作製した反射面を配置したもの20a、及び、反射型赤色光源20bを図13に示すように配置して有機EL光源装置を作製した。用いた両光源20a,20bの数はそれぞれ12である。なお、光源装置の設置面積は、実施例1に示すものと同等としたため、使用した光源数は実施例1よりも少ない。光源装置を目視すると、2色の発光が見られるが、光源装置から約1m離れた場所への投影光は白色に近いものであった。またその照度は、実施例1に示した光源装置のそれの1.4分の1程度であった。
(Comparative Example 1)
An organic EL light source device is formed by arranging a transmissive blue-green light source and a reflective surface 20a formed by vapor-depositing aluminum with a thickness of 1500 mm on the back side, and a reflective red light source 20b as shown in FIG. Produced. The number of both light sources 20a and 20b used is twelve. Since the installation area of the light source device is the same as that shown in the first embodiment, the number of used light sources is smaller than that in the first embodiment. When the light source device is visually observed, two colors of light emission are seen, but the projected light to a place about 1 m away from the light source device is almost white. The illuminance was about 1.4 times that of the light source device shown in Example 1.

(比較例2)
観測面側から、反射型青色光源を3枚積層して有機EL光源装置を作製した。本光源装置の発光強度は、反射型青色光源のそれと同一であり、3枚積層したことによる発光強度の増大は全く見られなかった。
(Comparative Example 2)
From the observation surface side, three reflective blue light sources were stacked to produce an organic EL light source device. The light emission intensity of this light source device was the same as that of the reflective blue light source, and no increase in the light emission intensity due to the lamination of three sheets was observed.

(比較例3)
参考例7で作製した青緑色光源を常時点灯させたところ、青色発光強度が次第に低下し、発光色は緑色に近づいた。通電量を適宜変化させたが元の発光色を得ることはできなかった。
(Comparative Example 3)
When the blue-green light source produced in Reference Example 7 was constantly turned on, the blue emission intensity gradually decreased and the emission color approached green. Although the energization amount was appropriately changed, the original emission color could not be obtained.

本発明の一実施形態に係る有機EL光源装置の断面図であって、有機EL光源のうち1つが反射電極を備える場合の構成を示す図。It is sectional drawing of the organic electroluminescent light source device which concerns on one Embodiment of this invention, Comprising: The figure which shows a structure in case one of organic electroluminescent light sources is provided with a reflective electrode. 同有機EL光源装置の断面図であって、全ての有機EL光源が両電極として透明電極を備える場合の構成を示す図。It is sectional drawing of the organic EL light source device, Comprising: The figure which shows a structure in case all the organic EL light sources are provided with a transparent electrode as both electrodes. 同有機EL光源装置の断面図であって、光反射部を備える場合の構成を示す図。It is sectional drawing of the organic EL light source device, Comprising: The figure which shows a structure in the case of providing a light reflection part. 同有機EL光源装置の断面図であって、等電位面又は電荷発生層を備える場合の構成を示す図。It is sectional drawing of the organic electroluminescent light source device, Comprising: The figure which shows a structure in the case of providing an equipotential surface or a charge generation layer. 同有機EL光源装置の断面図であって、分割された複数の有機EL素子を有する有機EL光源を備える場合の構成を示す図。It is sectional drawing of the organic EL light source device, Comprising: The figure which shows a structure in the case of providing the organic EL light source which has the some organic EL element divided | segmented. 同有機EL光源装置の断面図であって、直列接続された複数の有機EL素子を有する有機EL光源を備える場合の構成を示す図。It is sectional drawing of the organic EL light source device, Comprising: The figure which shows a structure in the case of providing the organic EL light source which has the some organic EL element connected in series. 同有機EL光源装置の断面図であって、有機EL光源の基板に波長変換層を備える場合の構成を示す図。It is sectional drawing of the same organic EL light source device, Comprising: The figure which shows a structure in case the wavelength conversion layer is provided in the board | substrate of an organic EL light source. 同有機EL光源装置の断面図であって、有機EL光源以外の別基板に波長変換層を備える場合の構成を示す図。It is sectional drawing of the organic EL light source device, Comprising: The figure which shows a structure in the case of providing a wavelength conversion layer in another board | substrates other than an organic EL light source. (a)は実施例及び比較例において有機EL光源装置の製造に用いられるITO付きガラス基板の正面図、(b)は同有機EL光源装置の製造に用いられるマスクの正面図。(A) is a front view of the glass substrate with ITO used for manufacture of an organic electroluminescent light source device in an Example and a comparative example, (b) is a front view of the mask used for manufacture of the organic electroluminescent light source device. (a)は同有機EL光源装置の製造に用いられるマスクの正面図、(b)は同有機EL光源装置の製造に用いられるガラス封止板の正面図。(A) is a front view of the mask used for manufacture of the organic EL light source device, (b) is a front view of a glass sealing plate used for manufacture of the organic EL light source device. (a)は同有機EL光源装置に用いられる青色発光素子の正面図、(b)は同青色発光素子の断面図。(A) is a front view of the blue light emitting element used for the organic EL light source device, and (b) is a cross-sectional view of the blue light emitting element. 実施例1の有機EL光源装置の正面図及び上面図。The front view and top view of the organic electroluminescent light source device of Example 1. FIG. 比較例1の有機EL光源装置の正面図及び上面図。The front view and top view of the organic electroluminescent light source device of the comparative example 1. FIG. 従来例に係る有機EL光源装置の断面図。Sectional drawing of the organic electroluminescent light source device which concerns on a prior art example. 従来例に係る有機EL光源装置の断面図。Sectional drawing of the organic electroluminescent light source device which concerns on a prior art example. 従来例に係る有機EL光源装置の断面図。Sectional drawing of the organic electroluminescent light source device which concerns on a prior art example. 従来例に係る有機EL光源装置の断面図。Sectional drawing of the organic electroluminescent light source device which concerns on a prior art example. 従来例に係る有機EL光源装置の断面図。Sectional drawing of the organic electroluminescent light source device which concerns on a prior art example. 従来例に係る有機EL光源装置の断面図。Sectional drawing of the organic electroluminescent light source device which concerns on a prior art example.

符号の説明Explanation of symbols

1 透明電極
1r 反射電極
2 発光層
3 基板
4 光反射部
5 等電位面を形成する層又は電荷発生層
6 波長変換層
10,10r 有機EL素子
20,20r 有機EL光源
30 有機EL光源装置
DESCRIPTION OF SYMBOLS 1 Transparent electrode 1r Reflective electrode 2 Light emitting layer 3 Substrate 4 Light reflection part 5 Layer which forms equipotential surface or charge generation layer 6 Wavelength conversion layer 10, 10r Organic EL element 20, 20r Organic EL light source 30 Organic EL light source device

Claims (13)

陽極と陰極の間に一層以上の発光層を有する有機EL素子が光透過性の基板上に形成された有機EL光源を複数備えた有機EL光源装置であって、
前記複数の有機EL光源は、各有機EL光源のいずれかの部位に光取り出し処理が施され、且つ、各有機EL光源からの発光が混合して得られるように立体的に配置され、これら各有機EL光源の発光を独立又は連動して制御することにより、発光の強度及び/又は色調を変化させることが可能なことを特徴とする有機EL光源装置。
An organic EL light source device including a plurality of organic EL light sources in which an organic EL element having one or more light emitting layers between an anode and a cathode is formed on a light-transmitting substrate,
The plurality of organic EL light sources are arranged in a three-dimensional manner so that light extraction processing is performed on any part of each organic EL light source and light emission from each organic EL light source is obtained by mixing. An organic EL light source device capable of changing light emission intensity and / or color tone by controlling light emission of an organic EL light source independently or in conjunction with each other.
請求項1に記載の有機EL光源装置において、
前記複数の有機EL光源は、各有機EL光源が積層された位置関係にあり、
これら有機EL光源のうち、光取り出し側から最も遠くに位置する有機EL光源の、光取り出し側から遠い側に位置する電極は光反射性の電極であり、且つ、この有機EL光源の光取り出し側から近い側に位置する電極は光透過性の電極であり、他の有機EL光源の陽極及び陰極が全て光透過性の電極であることを特徴とする有機EL光源装置。
The organic EL light source device according to claim 1,
The plurality of organic EL light sources are in a positional relationship in which each organic EL light source is laminated,
Of these organic EL light sources, the electrode located farthest from the light extraction side of the organic EL light source located farthest from the light extraction side is a light reflective electrode, and the light extraction side of this organic EL light source The organic EL light source device is characterized in that the electrode located on the side closer to the light source is a light transmissive electrode, and the anode and cathode of the other organic EL light source are all light transmissive electrodes.
請求項1に記載の有機EL光源装置において、
前記複数の有機EL光源は、各有機EL光源が積層された位置関係にあり、
前記有機EL光源を構成する陽極と陰極の全てが、光透過性の電極であることを特徴とする有機EL光源装置。
The organic EL light source device according to claim 1,
The plurality of organic EL light sources are in a positional relationship in which each organic EL light source is laminated,
An organic EL light source device characterized in that all of the anode and the cathode constituting the organic EL light source are light transmissive electrodes.
請求項3に記載の有機EL光源装置において、
前記複数の有機EL光源のうち、光取り出し側から最も遠くに位置する有機EL光源の、光取り出し側から遠い側に位置する前記電極と対向する位置に、これら有機EL光源が発した光を反射する光反射部を備えたことを特徴とする有機EL光源装置。
The organic EL light source device according to claim 3.
Of the plurality of organic EL light sources, the light emitted from these organic EL light sources is reflected at a position facing the electrode located farthest from the light extraction side of the organic EL light source located farthest from the light extraction side. An organic EL light source device comprising a light reflecting portion.
請求項1乃至請求項4の何れかに記載の有機EL光源装置において、
前記複数の有機EL光源は、発光色が異なる有機EL光源を含み、これら各有機EL光源の発光を独立又は連動して制御することにより、発光色を変化させることが可能なことを特徴とする有機EL光源装置。
The organic EL light source device according to any one of claims 1 to 4,
The plurality of organic EL light sources include organic EL light sources having different emission colors, and the emission colors can be changed by controlling the emission of these organic EL light sources independently or in conjunction with each other. Organic EL light source device.
請求項1乃至請求項5の何れかに記載の有機EL光源装置において、
前記有機EL素子は、陽極と陰極の間に複数の発光層を備えると共に、これら発光層の間に、少なくとも1層の電荷発生層又は等電位面形成層を備えたことを特徴とする有機EL光源装置。
The organic EL light source device according to any one of claims 1 to 5,
The organic EL device includes a plurality of light emitting layers between an anode and a cathode, and at least one charge generation layer or equipotential surface forming layer between the light emitting layers. Light source device.
請求項1乃至請求項6の何れかに記載の有機EL光源装置において、
複数の前記有機EL素子及び/又は前記有機EL光源が直列に接続されていることを特徴とする有機EL光源装置。
The organic EL light source device according to any one of claims 1 to 6,
A plurality of the organic EL elements and / or the organic EL light sources are connected in series.
請求項1乃至請求項7の何れかに記載の有機EL光源装置において、
前記有機EL光源のいずれかの部位に、反射防止処理が施されていることを特徴とする有機EL光源装置。
The organic EL light source device according to any one of claims 1 to 7,
An organic EL light source device, wherein any part of the organic EL light source is subjected to an antireflection treatment.
請求項1乃至請求項8の何れかに記載の有機EL光源装置において、
前記有機EL光源が発した光が通過するいずれかの部位に、該有機EL光源が発した光の波長を変換する波長変換層を備えたことを特徴とする有機EL光源装置。
The organic EL light source device according to any one of claims 1 to 8,
An organic EL light source device comprising a wavelength conversion layer for converting a wavelength of light emitted from the organic EL light source at any part through which light emitted from the organic EL light source passes.
請求項1乃至請求項9の何れかに記載の有機EL光源装置において、
前記有機EL光源が発した光を屈折及び/又は反射することにより、前記有機EL光源が発した光に指向性を付与する指向性制御部材を備えたことを特徴とする有機EL光源装置。
The organic EL light source device according to any one of claims 1 to 9,
An organic EL light source device comprising a directivity control member that imparts directivity to light emitted from the organic EL light source by refracting and / or reflecting light emitted from the organic EL light source.
請求項1乃至請求項10の何れかに記載の有機EL光源装置において、
前記有機EL光源の駆動回路が、該有機EL光源の基板上に設けられていることを特徴とする有機EL光源装置。
The organic EL light source device according to any one of claims 1 to 10,
An organic EL light source device, wherein a drive circuit for the organic EL light source is provided on a substrate of the organic EL light source.
請求項1乃至請求項11の何れかに記載の有機EL光源装置において、
駆動電圧が20V以上であることを特徴とする有機EL光源装置。
The organic EL light source device according to any one of claims 1 to 11,
An organic EL light source device having a drive voltage of 20 V or more.
請求項1乃至請求項12の何れかに記載の有機EL光源装置を備えたことを特徴とする照明装置。   An illumination device comprising the organic EL light source device according to any one of claims 1 to 12.
JP2004340960A 2004-11-25 2004-11-25 Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics Pending JP2006155940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340960A JP2006155940A (en) 2004-11-25 2004-11-25 Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340960A JP2006155940A (en) 2004-11-25 2004-11-25 Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics

Publications (1)

Publication Number Publication Date
JP2006155940A true JP2006155940A (en) 2006-06-15

Family

ID=36633993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340960A Pending JP2006155940A (en) 2004-11-25 2004-11-25 Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics

Country Status (1)

Country Link
JP (1) JP2006155940A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043299A1 (en) * 2005-09-22 2007-04-19 Matsushita Electric Works, Ltd. Organic light emitting element and its fabrication method
JP2008077987A (en) * 2006-09-21 2008-04-03 Matsushita Electric Works Ltd Light-emitting element and its manufacturing method
JP2008117742A (en) * 2006-11-07 2008-05-22 Micro System:Kk Cylindrical organic el illuminator
WO2008149617A1 (en) * 2007-06-04 2008-12-11 Konica Minolta Holdings, Inc. Organic electroluminescence device and lighting apparatus
JP2009048944A (en) * 2007-08-22 2009-03-05 Panasonic Electric Works Co Ltd Illumination device
EP2067191A2 (en) * 2006-09-29 2009-06-10 OSRAM Opto Semiconductors GmbH Organic lighting device and lighting equipment
KR20120063594A (en) * 2010-12-08 2012-06-18 엘지디스플레이 주식회사 Organic light emitting diode display device
JP2012199098A (en) * 2011-03-22 2012-10-18 Dainippon Printing Co Ltd Sealing glass, organic el display device provided with the same, and method for manufacturing organic el display device
US8487332B2 (en) 2010-04-27 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
WO2013168212A1 (en) * 2012-05-07 2013-11-14 パイオニア株式会社 Organic electroluminescent device
WO2013168210A1 (en) * 2012-05-07 2013-11-14 パイオニア株式会社 Organic electroluminescence device
WO2013168215A1 (en) * 2012-05-07 2013-11-14 パイオニア株式会社 Organic electroluminescence device
WO2014109159A1 (en) * 2013-01-11 2014-07-17 Necライティング株式会社 Organic el light emitting device
JP2014182998A (en) * 2013-03-21 2014-09-29 Kaneka Corp Organic EL module
US9577206B2 (en) 2013-03-13 2017-02-21 Panasonic Corporation Organic electroluminescence element and lighting device using same
US9620740B2 (en) 2012-10-11 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescence element and lighting device
KR20190073979A (en) * 2017-12-19 2019-06-27 엘지디스플레이 주식회사 Two-way organic light emitting diodes
JP2020113770A (en) * 2010-11-19 2020-07-27 株式会社半導体エネルギー研究所 Lighting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116686A (en) * 1996-10-09 1998-05-06 Casio Comput Co Ltd Display device
JPH11329748A (en) * 1998-05-20 1999-11-30 Idemitsu Kosan Co Ltd Organic el(electroluminescent) element and light emitting device using it
JP2002260859A (en) * 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd Illumination device
JP2003029240A (en) * 2001-07-16 2003-01-29 Matsushita Electric Ind Co Ltd Image display device, driving method therefor and selective display method therefor
JP2004139979A (en) * 2002-09-27 2004-05-13 Fuji Photo Film Co Ltd Electroluminescent element
JP2004213909A (en) * 2002-12-26 2004-07-29 Nippon Sheet Glass Co Ltd Substrate for surface light emitting body, and el element using the same
WO2004086823A1 (en) * 2003-03-26 2004-10-07 Philips Intellectual Property & Standards Gmbh Electroluminescent device with improved light decoupling
JP2004296429A (en) * 2003-03-07 2004-10-21 Nitto Denko Corp Organic electroluminescent element and surface light source and display using it
JP2005317296A (en) * 2004-04-28 2005-11-10 Fujitsu Ltd Lighting system
JP2007525706A (en) * 2004-02-09 2007-09-06 株式会社豊田自動織機 Transflective display with full color OLED backlight

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116686A (en) * 1996-10-09 1998-05-06 Casio Comput Co Ltd Display device
JPH11329748A (en) * 1998-05-20 1999-11-30 Idemitsu Kosan Co Ltd Organic el(electroluminescent) element and light emitting device using it
JP2002260859A (en) * 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd Illumination device
JP2003029240A (en) * 2001-07-16 2003-01-29 Matsushita Electric Ind Co Ltd Image display device, driving method therefor and selective display method therefor
JP2004139979A (en) * 2002-09-27 2004-05-13 Fuji Photo Film Co Ltd Electroluminescent element
JP2004213909A (en) * 2002-12-26 2004-07-29 Nippon Sheet Glass Co Ltd Substrate for surface light emitting body, and el element using the same
JP2004296429A (en) * 2003-03-07 2004-10-21 Nitto Denko Corp Organic electroluminescent element and surface light source and display using it
WO2004086823A1 (en) * 2003-03-26 2004-10-07 Philips Intellectual Property & Standards Gmbh Electroluminescent device with improved light decoupling
JP2007525706A (en) * 2004-02-09 2007-09-06 株式会社豊田自動織機 Transflective display with full color OLED backlight
JP2005317296A (en) * 2004-04-28 2005-11-10 Fujitsu Ltd Lighting system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829907B2 (en) 2005-09-22 2010-11-09 Panasonic Electric Works Co., Ltd. Organic light emitting element and method of manufacturing the same
WO2007043299A1 (en) * 2005-09-22 2007-04-19 Matsushita Electric Works, Ltd. Organic light emitting element and its fabrication method
JP2008077987A (en) * 2006-09-21 2008-04-03 Matsushita Electric Works Ltd Light-emitting element and its manufacturing method
US8946986B2 (en) 2006-09-29 2015-02-03 Osram Opto Semiconductors Gmbh Organic lighting device and lighting equipment
EP2067191B1 (en) * 2006-09-29 2020-06-17 Osram Oled Gmbh Lighting equipment
EP2067191A2 (en) * 2006-09-29 2009-06-10 OSRAM Opto Semiconductors GmbH Organic lighting device and lighting equipment
US9312308B2 (en) 2006-09-29 2016-04-12 Osram Oled Gmbh Organic lighting device and lighting equipment
US9829192B2 (en) 2006-09-29 2017-11-28 Osram Oled Gmbh Organic lighting device and lighting equipment
US10267507B2 (en) 2006-09-29 2019-04-23 Osram Oled Gmbh Organic lighting device and lighting equipment
JP2008117742A (en) * 2006-11-07 2008-05-22 Micro System:Kk Cylindrical organic el illuminator
WO2008149617A1 (en) * 2007-06-04 2008-12-11 Konica Minolta Holdings, Inc. Organic electroluminescence device and lighting apparatus
JP2009048944A (en) * 2007-08-22 2009-03-05 Panasonic Electric Works Co Ltd Illumination device
US8487332B2 (en) 2010-04-27 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2016122659A (en) * 2010-04-27 2016-07-07 株式会社半導体エネルギー研究所 Light-emitting device
JP2020113770A (en) * 2010-11-19 2020-07-27 株式会社半導体エネルギー研究所 Lighting device
KR101706238B1 (en) 2010-12-08 2017-02-15 엘지디스플레이 주식회사 Organic light emitting diode display device
KR20120063594A (en) * 2010-12-08 2012-06-18 엘지디스플레이 주식회사 Organic light emitting diode display device
JP2012199098A (en) * 2011-03-22 2012-10-18 Dainippon Printing Co Ltd Sealing glass, organic el display device provided with the same, and method for manufacturing organic el display device
WO2013168215A1 (en) * 2012-05-07 2013-11-14 パイオニア株式会社 Organic electroluminescence device
WO2013168210A1 (en) * 2012-05-07 2013-11-14 パイオニア株式会社 Organic electroluminescence device
WO2013168212A1 (en) * 2012-05-07 2013-11-14 パイオニア株式会社 Organic electroluminescent device
US9620740B2 (en) 2012-10-11 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescence element and lighting device
US9508682B2 (en) 2013-01-11 2016-11-29 Nec Lighting, Ltd. Organic EL luminescent device
WO2014109159A1 (en) * 2013-01-11 2014-07-17 Necライティング株式会社 Organic el light emitting device
US9577206B2 (en) 2013-03-13 2017-02-21 Panasonic Corporation Organic electroluminescence element and lighting device using same
JP2014182998A (en) * 2013-03-21 2014-09-29 Kaneka Corp Organic EL module
KR20190073979A (en) * 2017-12-19 2019-06-27 엘지디스플레이 주식회사 Two-way organic light emitting diodes
CN109950276A (en) * 2017-12-19 2019-06-28 乐金显示有限公司 Two-way organic LED display device
KR102402173B1 (en) 2017-12-19 2022-05-25 엘지디스플레이 주식회사 Two-way organic light emitting diodes

Similar Documents

Publication Publication Date Title
JP4951130B2 (en) ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
JP4758889B2 (en) Organic light emitting device
KR101135541B1 (en) Organic light emitting diode device
JP2006155940A (en) Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics
JP5452853B2 (en) Organic electroluminescence device
JP4769068B2 (en) ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
JP4966176B2 (en) Organic electroluminescence device
US8823030B2 (en) Light-emitting device and lighting device
WO2011074633A1 (en) Organic electroluminescent element
JP2011065927A (en) Light-emitting device
JP2010033780A (en) Organic electroluminescent element, and luminescent color adjusting method for the organic electroluminescent element
JP4310995B2 (en) Organic electroluminescence device
WO2018147416A1 (en) Organic electroluminescent device, display device, and illumination device
JP4432299B2 (en) Planar light emitter
JP5857006B2 (en) Organic electroluminescent device and lighting device
JP3967946B2 (en) Organic electroluminescence device
KR20040044066A (en) Organic Electroluminescence Device And Light-Emitting Apparatus
JP2004152699A (en) Light emitting device and lighting device
JP6151874B1 (en) Organic electroluminescent device and lighting device
JP2004079421A (en) Organic el element
JP4104339B2 (en) LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
JP2010033973A (en) Organic electroluminescent element
JP4726411B2 (en) Light emitting element substrate and light emitting element using the same
JP2004146121A (en) Organic electroluminescent element
JP5805618B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120330