JP5805618B2 - ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME - Google Patents

ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME Download PDF

Info

Publication number
JP5805618B2
JP5805618B2 JP2012282161A JP2012282161A JP5805618B2 JP 5805618 B2 JP5805618 B2 JP 5805618B2 JP 2012282161 A JP2012282161 A JP 2012282161A JP 2012282161 A JP2012282161 A JP 2012282161A JP 5805618 B2 JP5805618 B2 JP 5805618B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
organic light
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012282161A
Other languages
Japanese (ja)
Other versions
JP2014127302A (en
Inventor
米田 清
清 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBC Co Ltd
Original Assignee
CBC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CBC Co Ltd filed Critical CBC Co Ltd
Priority to JP2012282161A priority Critical patent/JP5805618B2/en
Publication of JP2014127302A publication Critical patent/JP2014127302A/en
Application granted granted Critical
Publication of JP5805618B2 publication Critical patent/JP5805618B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は有機発光素子およびこれを用いた照明装置に係り、特に演色性の高い白色光を高い外部量子効率で放出可能な有機発光素子およびこれを用いた照明装置に関する。   The present invention relates to an organic light-emitting element and a lighting device using the same, and more particularly to an organic light-emitting element capable of emitting white light having high color rendering properties with high external quantum efficiency and a lighting device using the same.

有機発光素子(有機エレクトロルミネッセンス(Organic Electro-Luminescence)素子)は、適当な直流電流を流すと有機材料が発光するデバイスであり、LCDに変わる次世代ディスプレイとして、あるいは蛍光灯に変わる面発光光源として適用が期待されている。   Organic light-emitting elements (Organic Electro-Luminescence elements) are devices in which organic materials emit light when an appropriate direct current is applied. They are used as next-generation displays that replace LCDs, or as surface-emitting light sources that replace fluorescent lamps. Application is expected.

特に有機発光素子を面発光光源として利用する照明の分野に於いては、環境に配慮した次世代光源として注目されており、電球に匹敵する高い演色性と、蛍光灯および発光ダイオード(Light Emitting Diode:LED)に匹敵する電力効率とを得るべく開発が進められている。   In particular, in the field of lighting that uses organic light-emitting elements as surface-emitting light sources, it is attracting attention as a next-generation light source that is environmentally friendly, with high color rendering properties comparable to those of light bulbs, and fluorescent and light-emitting diodes (Light Emitting Diodes). Development is underway to obtain power efficiency comparable to that of LED).

図7は従来の有機発光素子100の構造(主に発光領域)の一例を示す断面図である。有機発光素子100は、ガラス基板101上にITO(Indium Tin Oxide)膜を所望の形状にパターンニングして第1電極102を設け、その上に、EL層108の各有機薄膜、すなわち正孔注入層(Hole Injection Layer:以下、HIL)103、正孔輸送層(Hole Transfer Layer:以下、HTL)104、発光層(Emitting Material Layer:以下EML)105、電子輸送層(Electron Transport Layer:以下ETL)106を真空蒸着法などで積層し、その上に第2電極(例えばアルミニウム(Al)層)107を真空蒸着法などで積層した構造を有する。EL層108を構成する各有機薄膜が第1電極102と第2電極107とで挟まれた発光領域(図示の領域)においては、各有機薄膜の主面はいずれも略平坦面となっている(例えば特許文献1参照。)。   FIG. 7 is a cross-sectional view showing an example of the structure (mainly light emitting region) of the conventional organic light emitting device 100. In the organic light emitting device 100, an ITO (Indium Tin Oxide) film is patterned on a glass substrate 101 into a desired shape to provide a first electrode 102, and each organic thin film of the EL layer 108, that is, hole injection is formed thereon. Layer (Hole Injection Layer: hereinafter referred to as HIL) 103, Hole Transport Layer (hereinafter referred to as HTL) 104, Emitting Material Layer (hereinafter referred to as EML) 105, Electron Transport Layer (hereinafter referred to as ETL) 106 is stacked by a vacuum deposition method or the like, and a second electrode (for example, an aluminum (Al) layer) 107 is stacked thereon by a vacuum deposition method or the like. In the light emitting region (region shown) in which each organic thin film constituting the EL layer 108 is sandwiched between the first electrode 102 and the second electrode 107, the main surface of each organic thin film is substantially flat. (For example, refer to Patent Document 1).

有機発光素子100をディスプレイに利用する場合、その明るさとして要求される表面輝度は300cd/cm〜500cd/cm程度である。 When using the organic light emitting element 100 on the display, the surface brightness required as the brightness is 300cd / cm 2 ~500cd / cm 2 approximately.

これに対し、有機発光素子100を照明に用いる場合、特に蛍光灯と同じ一般照明として利用するには、9000cd/cmを超える表面輝度が必要になる。つまり、照明用途ではディスプレイ用途に比べると高い表面輝度が要求される。 On the other hand, when the organic light emitting device 100 is used for illumination, a surface brightness exceeding 9000 cd / cm 2 is required in order to use it as general illumination similar to a fluorescent lamp. That is, a higher surface brightness is required for lighting applications than for display applications.

有機発光素子100で明るさを確保する場合、これを駆動する電流密度を高めることが考えられる。しかし、有機発光素子100の寿命はほぼ電流密度の1.5乗に反比例するので、電流密度を極端に高めると劣化が早まる問題がある。   When ensuring brightness with the organic light emitting device 100, it is conceivable to increase the current density for driving the device. However, since the lifetime of the organic light emitting device 100 is almost inversely proportional to the current density to the power of 1.5, there is a problem that deterioration is accelerated when the current density is extremely increased.

近年では、有機発光素子100に用いる有機材料(有機薄膜)の進歩が目覚ましく、従来用いられていた蛍光材料に代わり燐光材料が効率・寿命の面で飛躍的な進歩があり、内部量子効率100%を達成できる燐光材料も開発されている。燐光材料は、有機発光素子100をディスプレイとして用いる場合、コスト面を除けば、要求性能の実現も問題ないレベルに達しており、実用化が加速されつつある。   In recent years, remarkable progress has been made in organic materials (organic thin films) used in the organic light-emitting device 100. Phosphorescent materials have dramatically improved in terms of efficiency and lifetime in place of conventionally used fluorescent materials, and the internal quantum efficiency is 100%. A phosphorescent material capable of achieving the above has also been developed. When the organic light emitting device 100 is used as a display, the phosphorescent material has reached a level where there is no problem in realizing the required performance except for the cost, and its practical use is being accelerated.

つまり、有機発光素子100を照明用途として実用化する場合も燐光材料を使用することで、内部量子効率としては十分な性能が見込まれる。   That is, when the organic light emitting device 100 is put into practical use for illumination, a sufficient performance can be expected as the internal quantum efficiency by using a phosphorescent material.

図7を参照して、矢印の如くEML105で発光した光は、直接ガラス基板101を透過して外部に放出される光と、Al層からなる第2電極107で反射してガラス基板101を介して外部に放出される光の2つの成分に分けられる。そして、内部で発光したこれらの光を効率よくガラス基板101の外部に取り出すことができれば、すなわち外部量子効率を高めれば、電流密度を高めることなく、表面輝度を向上させることができる。   Referring to FIG. 7, the light emitted from the EML 105 as indicated by an arrow is directly transmitted through the glass substrate 101 and emitted to the outside, and is reflected by the second electrode 107 made of an Al layer and passes through the glass substrate 101. Thus, it is divided into two components of light emitted to the outside. If the light emitted inside can be efficiently extracted outside the glass substrate 101, that is, if the external quantum efficiency is increased, the surface luminance can be improved without increasing the current density.

特開2007−36128号公報JP 2007-36128 A

図8は、図7に示す従来構造の有機発光素子100における外部量子効率を説明するための断面概要図ある。   FIG. 8 is a schematic cross-sectional view for explaining the external quantum efficiency in the organic light emitting device 100 having the conventional structure shown in FIG.

一般に、有機発光素子100では外部量子効率を高める目的でEL層108においてそれぞれの有機薄膜の膜厚を最適化して光学調整が行われている。しかしEL層108内で発生した光は第1電極102およびガラス基板101を透過するので、外部に放出されるまでの間にその光の一部は損失する。   In general, in the organic light emitting device 100, optical adjustment is performed by optimizing the thickness of each organic thin film in the EL layer 108 in order to increase the external quantum efficiency. However, since the light generated in the EL layer 108 passes through the first electrode 102 and the glass substrate 101, a part of the light is lost before being emitted to the outside.

一例として、EL層108のトータルの屈折率n=1.7、第1電極(ITO膜)102の屈折率n=1.9〜2.0、ガラス基板101の屈折率n=1.5とすると、それぞれの主面が平坦な場合、有機薄膜108中で発光した全光束の47%は有機薄膜108内で損失し、側面方向に出射される。また、ガラス基板101中では34%の光が損失し、ガラス基板101表面から外部に取り出せる光束は、全光束の高々19%程度に留まる。 As an example, the total refractive index n O = 1.7 of the EL layer 108, the refractive index n T = 1.9 to 2.0 of the first electrode (ITO film) 102, and the refractive index n G = 1 of the glass substrate 101. .5, when each main surface is flat, 47% of the total luminous flux emitted in the organic thin film 108 is lost in the organic thin film 108 and emitted in the lateral direction. Further, 34% of the light is lost in the glass substrate 101, and the luminous flux that can be extracted from the surface of the glass substrate 101 to outside is only about 19% of the total luminous flux.

従って、EL層108の各有機薄膜の膜厚を光学調整し、またEL層108に燐光材料を採用して内部量子効率100%を得た場合であっても、従来構造では外部に取り出せる割合(外部量子効率)は19%以下ということになる。有機薄膜108が蛍光材料の場合には、最大の内部量子効率が25%で有るので、外部量子効率は5%程度と更に低くなる。   Therefore, even when the thickness of each organic thin film of the EL layer 108 is optically adjusted and a phosphorescent material is used for the EL layer 108 to obtain an internal quantum efficiency of 100%, the ratio of the conventional structure that can be extracted outside ( The external quantum efficiency is 19% or less. When the organic thin film 108 is a fluorescent material, since the maximum internal quantum efficiency is 25%, the external quantum efficiency is further lowered to about 5%.

つまりこのような構造では、外部に取りだす全光束には限界があり、すなわち外部量子効率の向上には限界があった。このため高い表面輝度を必要とする一般照明用光源としての有機発光素子の実用化は困難であった。   That is, in such a structure, there is a limit to the total luminous flux extracted outside, that is, there is a limit to improving the external quantum efficiency. For this reason, it has been difficult to put an organic light-emitting element into practical use as a light source for general illumination that requires high surface brightness.

本発明はかかる課題に鑑みてなされ、基板と、該基板上に設けられた中間層と、該中間層上に設けられた第1電極と、該第1電極上に積層された正孔注入層、正孔輸送層、発光層および電子輸送層と、該電子輸送層上に設けられた第2電極と、を具備し、前記基板からの放出光が白色光であり、前記発光層に、それぞれ異なる曲率半径の湾曲面を有する複数の湾曲部を1組とした湾曲部群が複数設けられることにより解決するものであり、外部量子効率を高めることができるので、一般照明に要求される表面輝度・寿命が確保できる有機発光素子およびそれを用いた照明装置を提供するものである。 The present invention has been made in view of such problems, and includes a substrate, an intermediate layer provided on the substrate, a first electrode provided on the intermediate layer, and a hole injection layer stacked on the first electrode. , A hole transport layer, a light emitting layer and an electron transport layer, and a second electrode provided on the electron transport layer, the emitted light from the substrate is white light, The problem is solved by providing a plurality of bending portion groups each having a plurality of bending portions having curved surfaces having different radii of curvature, and the external quantum efficiency can be increased. Provided is an organic light-emitting element capable of ensuring a lifetime and a lighting device using the same.

本発明によれば、蛍光灯・LEDに匹敵する電力効率が得られる有機発光素子を実現でき、水銀の廃棄処理の環境問題を抱える蛍光灯の代替となる面光源としての実用化が可能となる。   According to the present invention, an organic light emitting device capable of obtaining power efficiency comparable to that of a fluorescent lamp / LED can be realized, and can be put to practical use as a surface light source as an alternative to a fluorescent lamp having an environmental problem of disposal of mercury. .

具体的には、発光層に、それぞれ異なる曲率半径の湾曲面を有する複数の湾曲部を1組とした湾曲部群を複数設ける。発光層の湾曲部群は、他の湾曲部群を設けた中間層上に発光層を積層することで実現する。つまり、中間層の他の湾曲部群に沿って、発光層を含むEL層や第1電極、第2電極の主面も湾曲する。これにより発光層を構成する各有機薄膜から出射された光が基板に到達するまでの間でランダムに配置された湾曲部群で反射・散乱される。その結果、光の進行方向がランダムな方向で基板に入射するため、基板から外部の空気中へ出射される光束は増加する。   Specifically, a plurality of curved portion groups each including a plurality of curved portions each having a curved surface having a different curvature radius are provided in the light emitting layer. The curved portion group of the light emitting layer is realized by stacking the light emitting layer on an intermediate layer provided with another curved portion group. That is, the main surface of the EL layer including the light emitting layer, the first electrode, and the second electrode is also curved along the other curved portion group of the intermediate layer. Thereby, the light emitted from each organic thin film constituting the light emitting layer is reflected and scattered by the curved portion group arranged at random until the light reaches the substrate. As a result, the light travels on the substrate in a random direction, so that the luminous flux emitted from the substrate into the outside air increases.

また、EL層で発光した光はEL層と第1電極およびEL層と第2電極の間で反射し収束または散乱して基板から外部に放出される。   Light emitted from the EL layer is reflected between the EL layer and the first electrode, and between the EL layer and the second electrode, and converged or scattered, and is emitted to the outside from the substrate.

これにより従来構造の有機発光素子に比べて、取り出せる光の光束、すなわち外部量子効率を高めることができるので、表面輝度が高められる。   As a result, the light flux that can be extracted, that is, the external quantum efficiency, can be increased as compared with the organic light-emitting element having the conventional structure, so that the surface brightness is increased.

一例として、本発明の有機発光素子は外部量子効率は従来構造と比較して約40%まで高めることが可能であり、表面輝度は従来構造と比較して約2倍程度まで向上できる。   As an example, in the organic light emitting device of the present invention, the external quantum efficiency can be increased up to about 40% as compared with the conventional structure, and the surface luminance can be improved up to about twice as compared with the conventional structure.

また、中間層にインプリントやエッチング(フォトリソグラフィ)などで湾曲部群を形成するのみでよいので、コストの高騰を抑えてデバイスの高性能化を実現できる。   In addition, since it is only necessary to form the curved portion group in the intermediate layer by imprinting or etching (photolithography), it is possible to suppress the increase in cost and realize high performance of the device.

さらに、発光層と基板の間に光散乱粒子層を設けることにより、基板から放射される光の散乱効果を高めることができる。   Furthermore, by providing a light scattering particle layer between the light emitting layer and the substrate, the scattering effect of light emitted from the substrate can be enhanced.

このように本発明では、有機発光素子内にランダムに配置した湾曲部群がレンズあるいはミラーとして機能し、これにより外部量子効率を高めることができる。レンズを用いた外部量子効率の改善は、ディスプレイで使用される有機発光素子と比較して照明に使用される有機発光素子において大きな利点となりうる。例えばディスプレイで使用する有機発光素子内にランダムにレンズが配置されると像を歪める原因となるが、照明に使用する有機発光素子では像の歪みは問題とならず、好適である。   As described above, in the present invention, the curved portion group randomly arranged in the organic light-emitting element functions as a lens or a mirror, thereby increasing the external quantum efficiency. Improving external quantum efficiency using a lens can be a significant advantage in organic light emitting devices used for illumination compared to organic light emitting devices used in displays. For example, when a lens is randomly arranged in an organic light emitting device used in a display, the image may be distorted. However, in an organic light emitting device used for illumination, image distortion does not cause a problem and is preferable.

本発明の第1の実施形態の有機発光素子の構造を説明するための(A)平面図、(B)断面図、(C)断面図である。It is (A) top view, (B) sectional view, (C) sectional view for demonstrating the structure of the organic light emitting element of the 1st Embodiment of this invention. 本発明の第1の実施形態の有機発光素子の構造を説明するための(A)平面図、(B)平面図、(C)斜視図、(D)断面図である。It is (A) top view, (B) top view, (C) perspective view, (D) sectional drawing for demonstrating the structure of the organic light emitting element of the 1st Embodiment of this invention. 本発明の第1の実施形態の有機発光素子の構造を説明するための断面図である。It is sectional drawing for demonstrating the structure of the organic light emitting element of the 1st Embodiment of this invention. 本発明の第2の実施形態の有機発光素子の構造を説明するための断面図である。It is sectional drawing for demonstrating the structure of the organic light emitting element of the 2nd Embodiment of this invention. 本発明の第3の実施形態の有機発光素子の構造を説明するための断面図である。It is sectional drawing for demonstrating the structure of the organic light emitting element of the 3rd Embodiment of this invention. 本発明の実施形態の照明装置を説明するための平面図である。It is a top view for demonstrating the illuminating device of embodiment of this invention. 従来技術を説明する断面図である。It is sectional drawing explaining a prior art. 従来技術を説明する断面図である。It is sectional drawing explaining a prior art.

図1から図6を参照して、本発明の実施の形態について詳細に説明する。まず、図1から図3を参照して本発明の第1の実施形態の有機発光素子10について説明する。   The embodiment of the present invention will be described in detail with reference to FIGS. First, an organic light emitting device 10 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.

図1は第1の実施形態の有機発光素子(有機エレクトロルミネッセンス(Organic Electro-Luminescence)素子)10の構造を説明する図であり、図1(A)が平面図、図1(B)が図1(A)のa−a線断面図、図1(C)が図1(A)のb−b線断面図である。   FIG. 1 is a diagram for explaining the structure of an organic light emitting device (Organic Electro-Luminescence device) 10 according to the first embodiment. FIG. 1 (A) is a plan view and FIG. 1 (B) is a diagram. 1A is a cross-sectional view taken along the line aa, and FIG. 1C is a cross-sectional view taken along the line bb of FIG.

有機発光素子10は、基板1と、中間層8と、第1電極2と、正孔注入層(Hole Injection Layer:以下、HIL)3と、正孔輸送層(Hole Transfer Layer:以下、HTL)4と、発光層(Emissive Layer:以下EML)5と、電子輸送層(Electron Transport Layer:以下ETL)6と、第2電極7とを有する。   The organic light emitting device 10 includes a substrate 1, an intermediate layer 8, a first electrode 2, a hole injection layer (hereinafter referred to as HIL) 3, and a hole transport layer (hereinafter referred to as HTL). 4, a light emitting layer (hereinafter referred to as EML) 5, an electron transport layer (hereinafter referred to as ETL) 6, and a second electrode 7.

図1(A)を参照して、基板1は平面視において矩形状のガラスまたはプラスチックなどの絶縁性の透明基板である。   Referring to FIG. 1A, a substrate 1 is an insulating transparent substrate made of glass or plastic having a rectangular shape in plan view.

基板1の第1主面S1にはほぼ中央に発光領域ERが設けられる。発光領域ERは、基板1上に中間層8、第1電極2、HIL3、HTL4、EML5、HTL6、第2電極7がこの順で積層された領域である。   The first main surface S1 of the substrate 1 is provided with a light emitting region ER substantially at the center. The light emitting region ER is a region in which the intermediate layer 8, the first electrode 2, HIL3, HTL4, EML5, HTL6, and the second electrode 7 are laminated on the substrate 1 in this order.

発光領域ERの周囲には破線の如くシール材21が設けられる。発光領域ER(シール材)の外側の基板1の周辺部には、第1引き出し配線11および第2引き出し配線12が設けられる。第1引き出し配線11は第1電極2と接続してこれを外部電源(不図示)に接続するための配線であり、第2引き出し配線12は第2電極7と接続してこれを外部電源(不図示)に接続するための配線である。第1引き出し配線11および第2引き出し配線12は基板1表面に例えば真空蒸着などにより形成された金属層(例えばアルミニウム(Al)/モリブデン(Mo)層)を所望の形状にパターンニングして設けられる。   A sealing material 21 is provided around the light emitting region ER as shown by a broken line. A first lead-out wiring 11 and a second lead-out wiring 12 are provided in the periphery of the substrate 1 outside the light emitting region ER (sealing material). The first lead wire 11 is a wire for connecting the first electrode 2 and connecting it to an external power source (not shown), and the second lead wire 12 is connected to the second electrode 7 and connecting it to the external power source (not shown). Wiring for connecting to (not shown). The first lead-out wiring 11 and the second lead-out wiring 12 are provided by patterning a metal layer (for example, aluminum (Al) / molybdenum (Mo) layer) formed on the surface of the substrate 1 by, for example, vacuum deposition into a desired shape. .

図1(B)(C)を参照して、基板1の周辺部に設けられた第1引き出し配線11および第2引き出し配線12はシール材21の外側まで延在する。   With reference to FIGS. 1B and 1C, the first lead-out wiring 11 and the second lead-out wiring 12 provided in the peripheral portion of the substrate 1 extend to the outside of the sealing material 21.

基板1上には中間層8が設けられる。尚、以下の説明では、図1(図2以降も同様)の断面図で紙面の上端方向を上(方)、下端方向を下(方)として説明する。中間層8は、例えばアクリル樹脂またはポリイミドなどの透明樹脂層である。   An intermediate layer 8 is provided on the substrate 1. In the following description, in the cross-sectional view of FIG. 1 (the same applies to FIG. 2 and subsequent figures), the upper end direction of the paper is described as the upper direction and the lower end direction is defined as the lower direction. The intermediate layer 8 is a transparent resin layer such as an acrylic resin or polyimide.

第1電極2は、中間層8上に設けられ有機発光素子10の陽極となる透明電極(例えばインジウム−スズ酸化物(Indium Tin Oxide:ITO)膜)である。ITO膜は例えば100nmの膜厚に設けられ、所望の形状にパターンニングされる。第1電極2は一部が第1引き出し配線11と重畳してこれと電気的にコンタクトする。   The first electrode 2 is a transparent electrode (for example, an indium tin oxide (ITO) film) provided on the intermediate layer 8 and serving as an anode of the organic light emitting element 10. The ITO film is provided with a film thickness of 100 nm, for example, and is patterned into a desired shape. The first electrode 2 partially overlaps the first lead-out wiring 11 and is in electrical contact therewith.

第1電極2上にはEL層20を構成する複数の有機薄膜が積層される。有機薄膜は、第1電極2側から、HIL3、HTL4、EML5、ETL6である。   A plurality of organic thin films constituting the EL layer 20 are stacked on the first electrode 2. The organic thin films are HIL3, HTL4, EML5, and ETL6 from the first electrode 2 side.

HIL3は、例えばCuPc(copper phthalocyanine)、m−MTDATA(4,4',4''-Tris(N-3-methylphenyl-N-phenylamino)triphenylamine)、DPPD(N,N'-ジフェニル-p-フェニレンジアミン(DPPD))などからなり膜厚は10nm程度である。   HIL3 is, for example, CuPc (copper phthalocyanine), m-MTDATA (4,4 ′, 4 ″ -Tris (N-3-methylphenyl-N-phenylamino) triphenylamine), DPPD (N, N′-diphenyl-p-phenylene). The film thickness is about 10 nm.

HTL4は、NPB(N,N’-diphenyl-N,N’bis(3-methylphenyl)-1.1’-biphenyl-4,4’-diamine),TPD(N,N’-diphenyl-N,N’bis(3-methylphenyl)-1.1’-biphenyl-4,4’-diamine)などからなり、膜厚は70nm程度である。   HTL4 is composed of NPB (N, N'-diphenyl-N, N'bis (3-methylphenyl) -1.1'-biphenyl-4,4'-diamine), TPD (N, N'-diphenyl-N, N'bis (3-methylphenyl) -1.1′-biphenyl-4,4′-diamine) and the like, and the film thickness is about 70 nm.

EML5は、NPB(N,N’-diphenyl-N,N’bis(3-methylphenyl)-1.1’-biphenyl-4,4’-diamine)などの正孔輸送材またはAlq3(tris-(8-hydroxyquinoline)aluminum)などの電子輸送材をホスト材とし、これに所望の色の発光ドーパントを組み合わせたものである。EML5は、詳細は後述するが膜厚はそれぞれ30nm程度の複数の有機薄膜の積層体からなる。   EML5 is a hole transport material such as NPB (N, N′-diphenyl-N, N′bis (3-methylphenyl) -1.1′-biphenyl-4,4′-diamine) or Alq3 (tris- (8-hydroxyquinoline). ) Aluminum) or the like as a host material, and a light emitting dopant of a desired color is combined with the host material. Although details will be described later, the EML 5 is composed of a laminate of a plurality of organic thin films each having a thickness of about 30 nm.

ETL6はEML5上に設けられ例えば、Alq3,オキシジアゾール(OXD)(2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxiazole(PBD)),トライアゾール(TAZ)、フェナンスレン誘導体(BCP,2-Benzylthio-5-phenyl-3,4-disubstituted Thiophenes(BPhene))などからなり膜厚は30nm程度である。   ETL6 is provided on EML5. For example, Alq3, oxydiazole (OXD) (2- (4-Biphenyl) -5- (4-tert-butylphenyl) -1,3,4-oxiazole (PBD)), triazole (TAZ), a phenanthrene derivative (BCP, 2-Benzylthio-5-phenyl-3,4-disubstituted Thiophenes (BPhene)) and the like, and the film thickness is about 30 nm.

有機発光素子10では外部への光取り出し効率(外部量子効率)向上のためHTL4、ETL6の膜厚が最適化され、光学調整されている。ここで、例えばHTL4の膜厚を70nmで最適化するとは、70nmの膜厚を基準として光取り出し効率が最も高くなるように数nmを増減することをいう。   In the organic light emitting device 10, the film thicknesses of the HTL 4 and ETL 6 are optimized and optically adjusted to improve the light extraction efficiency (external quantum efficiency) to the outside. Here, for example, optimizing the film thickness of HTL4 at 70 nm means increasing or decreasing several nm so that the light extraction efficiency becomes the highest with the film thickness of 70 nm as a reference.

EL層20(ETL6)の上には第2電極8が設けられる。第2電極8は有機発光素子10の陰極となり、例えば膜厚150nmのAl層あるいは銀(Ag)−マグネシウム(Mg)合金層である。第2電極8は、周辺部の第2引き出し電極12と電気的に接続する。   A second electrode 8 is provided on the EL layer 20 (ETL6). The second electrode 8 serves as a cathode of the organic light emitting device 10 and is, for example, an Al layer having a thickness of 150 nm or a silver (Ag) -magnesium (Mg) alloy layer. The second electrode 8 is electrically connected to the second lead electrode 12 in the peripheral portion.

第2電極7の上方には基板1に対向する対向基板9が設けられる。基板1と対向基板9とはシール材21にて固着され、これにより発光領域ERが封止される。尚、図示は省略するが、対向基板9のEML5側には吸湿材(乾燥剤)が設けられてもよい。   A counter substrate 9 that opposes the substrate 1 is provided above the second electrode 7. The board | substrate 1 and the opposing board | substrate 9 are fixed by the sealing material 21, and the light emission area | region ER is sealed by this. Although illustration is omitted, a hygroscopic material (drying agent) may be provided on the EML 5 side of the counter substrate 9.

EL層20は、第1電極2から注入されたホールと、第2電極7から注入された電子とがEML5の内部で再結合し、EML5を形成する有機分子を励起して励起子が生じる。この励起子が放射失活する過程でEML5から光が放たれ、この光が矢印の如く透明な第1電極2から基板1を介して外部へ放出されて発光する。本実施形態では一例として、矢印で示す基板1からの放出光は白色である。   In the EL layer 20, holes injected from the first electrode 2 and electrons injected from the second electrode 7 are recombined inside the EML 5 to excite organic molecules forming the EML 5 to generate excitons. Light is emitted from the EML 5 in the process of radiative deactivation of the excitons, and this light is emitted from the transparent first electrode 2 to the outside through the substrate 1 as indicated by an arrow to emit light. In the present embodiment, as an example, the emitted light from the substrate 1 indicated by an arrow is white.

図2は、有機発光素子10をさらに詳細に説明する図であり、図2(A)は図1(A)の平面図においてEL層20を露出させた状態の平面図であり、図2(B)は図2(A)の一部を拡大した平面図である。また図2(C)がEL層20を示す斜視図であり、図2(D)がEL層20の断面概要図である。   2 is a diagram for explaining the organic light emitting element 10 in more detail. FIG. 2A is a plan view in which the EL layer 20 is exposed in the plan view of FIG. FIG. 2B is an enlarged plan view of a part of FIG. 2C is a perspective view showing the EL layer 20, and FIG. 2D is a schematic cross-sectional view of the EL layer 20. As shown in FIG.

図2(A)を参照して、発光領域ERでは、第1電極2およびEL層20の各層の主面に複数の湾曲部群15がランダムに配置されている。   Referring to FIG. 2A, in the light emitting region ER, a plurality of bending portion groups 15 are randomly arranged on the main surfaces of the first electrode 2 and the EL layer 20.

図2(B)を参照して1つの湾曲部群15(破線)は、それぞれ異なる曲率半径の湾曲面を有し近接する4つの湾曲部15a〜15dを1組として構成される。そして複数の湾曲部群15がEL層20にランダムに配置される。尚、ここでは複数の湾曲部群15の間において4つの湾曲部15a〜15dは同じパターン(並び、離間距離)で配置される場合を示しているが、複数の湾曲部群15間において4つの湾曲部15a〜15dが異なるパターンで配置(すなわち例えば隣り合う湾曲部群15を比べたとき湾曲部15a〜15dのパターンが異なるように配置)されていてもよい。また、本実施形態では湾曲部群15がランダムに配置されていればよく、1つの湾曲部群15内で、湾曲部15a〜15dの離間距離が均等に配置されていたり、湾曲部15a〜15dが行列状または直線状に規則的に配置されていてもよい。   Referring to FIG. 2B, one bending portion group 15 (broken line) is configured as a set of four bending portions 15a to 15d which have curved surfaces having different curvature radii, respectively. A plurality of bending portion groups 15 are randomly arranged on the EL layer 20. In addition, although the four bending parts 15a-15d are arrange | positioned by the same pattern (arrangement, separation distance) between the some bending part groups 15 here, four bending part 15 between four bending part groups 15 is shown. The bending portions 15a to 15d may be arranged in different patterns (that is, arranged so that the patterns of the bending portions 15a to 15d are different, for example, when the adjacent bending portion groups 15 are compared). Further, in the present embodiment, it is only necessary that the bending portion group 15 is randomly arranged. In one bending portion group 15, the separation distances of the bending portions 15a to 15d are evenly arranged, or the bending portions 15a to 15d are arranged. May be regularly arranged in a matrix or a straight line.

図2(C)を参照して、発光領域ERでは基板1上に、中間層8、第1電極2およびEL層20が積層される。EL層20は下層からHIL3、HTL4、EML5の積層構造である。   Referring to FIG. 2C, the intermediate layer 8, the first electrode 2, and the EL layer 20 are stacked on the substrate 1 in the light emitting region ER. The EL layer 20 has a stacked structure of HIL3, HTL4, and EML5 from the lower layer.

そして本実施形態のEML5は、それぞれ異なる波長の光を発光する複数の有機薄膜を積層してなる。具体的には、第1電極2側から、第1波長(例えば570nm〜590nm程度、ピーク波長:例えば580nm)の赤色(R)光を発光する第1有機薄膜5a、第2波長(例えば495nm〜540nm程度、ピーク波長:例えば530nm)の緑色(G)光を発光する第2有機薄膜5b、第4波長(例えば550nm〜570nm程度、ピーク波長:例えば550nm)の黄色(Y)光を発光する第4有機薄膜5dおよび第3波長(例えば450nm〜470nm程度、ピーク波長:例えば450nm)の青色(B)光を発光する第3有機薄膜5cである。   The EML 5 of this embodiment is formed by laminating a plurality of organic thin films that emit light having different wavelengths. Specifically, from the first electrode 2 side, a first organic thin film 5a that emits red (R) light having a first wavelength (for example, about 570 nm to 590 nm, peak wavelength: 580 nm), a second wavelength (for example, 495 nm to 495 nm). The second organic thin film 5b that emits green (G) light having a wavelength of about 540 nm and a peak wavelength: 530 nm, for example, and the second organic thin film 5b that emits yellow (Y) light having a fourth wavelength (for example, about 550 nm to 570 nm, peak wavelength: 550 nm). A fourth organic thin film 5d and a third organic thin film 5c that emits blue (B) light having a third wavelength (for example, about 450 nm to 470 nm, peak wavelength: 450 nm, for example).

これらの積層順は、第1電極2側から1有機薄膜5a(R)、第2有機薄膜5b(G)、第4有機薄膜5d(Y)、第3有機薄膜5c(B)とすると高い外部量子効率が得られ、好適である。   The order of stacking is high when the first organic thin film 5a (R), the second organic thin film 5b (G), the fourth organic thin film 5d (Y), and the third organic thin film 5c (B) are arranged from the first electrode 2 side. Quantum efficiency is obtained and suitable.

EML5を構成するそれぞれの有機薄膜5a〜5dはホストの有機材料にR,G,B,Yのそれぞれの発光ドーパントが含まれ、膜厚が30nm程度に形成される。   Each of the organic thin films 5a to 5d constituting the EML 5 includes a light emitting dopant of R, G, B, and Y in the host organic material, and is formed to a thickness of about 30 nm.

第1有機薄膜5a〜第4有機薄膜5dを基板1の主面に対して縦方向に積層してEML5を形成することにより、各有機薄膜で発光した赤(R),緑(G),青(B),黄(Y)の幅のある波長の光を分布させることができる。すなわち、基板1からの放出光としては可視領域にまんべんなく分布したスペクトルを持つ演色性の高い白色光が得られる。   The first organic thin film 5a to the fourth organic thin film 5d are stacked in the vertical direction with respect to the main surface of the substrate 1 to form the EML 5, whereby red (R), green (G), blue emitted from each organic thin film. (B) Light having a wide wavelength range of yellow (Y) can be distributed. That is, as the emitted light from the substrate 1, white light with high color rendering properties having a spectrum evenly distributed in the visible region is obtained.

そしてEML5(第1有機薄膜5a〜第4有機薄膜5d)の主面にも湾曲部群15がランダムに配置される。   And the bending part group 15 is arrange | positioned at random also on the main surface of EML5 (1st organic thin film 5a-4th organic thin film 5d).

図2(D)を参照して、EL層20の各層の主面の湾曲部群15は、中間層8によって形成される。すなわちEL層20の成膜より先の工程で形成される中間層8の主面に予め複数の他の湾曲部群15A(湾曲部15Aa、15Ab、15Ac、15Ad)をランダムに形成しておく。尚図2(D)では湾曲面の状態を示すために湾曲部群15(湾曲部15a、15b、15c、15d)および他の湾曲部群15A(湾曲部15Aa、15Ab、15Ac、15Ad)を一列の横並びに示している。   Referring to FIG. 2D, the curved portion group 15 on the main surface of each layer of the EL layer 20 is formed by the intermediate layer 8. That is, a plurality of other bending portion groups 15A (curving portions 15Aa, 15Ab, 15Ac, and 15Ad) are randomly formed in advance on the main surface of the intermediate layer 8 formed in a process prior to the formation of the EL layer 20. In FIG. 2D, the bending portion group 15 (curving portions 15a, 15b, 15c, 15d) and the other bending portion group 15A (curving portions 15Aa, 15Ab, 15Ac, 15Ad) are arranged in a row in order to show the state of the curved surface. Is shown next to each other.

中間層8は薄膜でも絶縁耐量の高い透明樹脂が好適である。例えばアクリル樹脂などの紫外線硬化樹脂、ポリイミド、フッ素樹脂(例えばポリテトラフルオロエチレン(polytetrafluoroethylene:PTFE)、ポリパラキシレン樹脂などである。   The intermediate layer 8 is preferably a transparent resin having a high insulation resistance even if it is a thin film. For example, ultraviolet curable resin such as acrylic resin, polyimide, fluorine resin (for example, polytetrafluoroethylene (PTFE), polyparaxylene resin, etc.).

また、中間層8は、基板1の屈折率より大きく、第1電極2(ITO膜)屈折率(1.8〜2.0)より小さい屈折率を有すると好適である。ここでは中間層8の屈折率を例えば1.7〜1.8とする。   The intermediate layer 8 preferably has a refractive index larger than the refractive index of the substrate 1 and smaller than the first electrode 2 (ITO film) refractive index (1.8 to 2.0). Here, the refractive index of the intermediate layer 8 is set to 1.7 to 1.8, for example.

この層にフォトリソグラフィ工程によるエッチングやインプリントを行うなどして他の湾曲部群15Aを形成する。   Another curved portion group 15A is formed on this layer by etching or imprinting by a photolithography process.

そして中間層8の上に第1電極2が積層される。第2電極2はスパッタにより形成されたITO膜であり、その主面は中間層8の他の湾曲部群15Aの形状を反映し、これらに沿った湾曲面が形成される。   Then, the first electrode 2 is laminated on the intermediate layer 8. The second electrode 2 is an ITO film formed by sputtering, and its main surface reflects the shape of the other curved portion group 15A of the intermediate layer 8, and a curved surface along these is formed.

そして、第2電極2上に積層されるEL層20の各層もそれぞれ中間層8の他の湾曲部群15Aの形状を反映し、これらに沿った湾曲面が形成される。   Each layer of the EL layer 20 laminated on the second electrode 2 also reflects the shape of the other bending portion group 15A of the intermediate layer 8, and a curved surface along these is formed.

また第2電極2上に設けられるEL層20も、各有機薄膜の主面はそれぞれ、中間層8の他の湾曲部群15Aの形状を反映し、これらに沿った湾曲面が形成される。   Further, in the EL layer 20 provided on the second electrode 2, the main surface of each organic thin film reflects the shape of the other bending portion group 15A of the intermediate layer 8, and a curved surface is formed along these.

つまり、図2(B)(C)で示した湾曲部群15は、それらの湾曲面を積層方向に重ねるようにして(同じ配置で)第1電極2、HIL3、HTL4、EML5および不図示のETL6のそれぞれの主面に形成されている(図2(D))。   That is, the bending portion group 15 shown in FIGS. 2B and 2C has the first electrode 2, the HIL3, the HTL4, the EML5, and the unshown so that their curved surfaces are stacked in the stacking direction (in the same arrangement). It is formed on each main surface of the ETL 6 (FIG. 2D).

そして、EML5に形成された第1湾曲部15a〜第4湾曲部15dの湾曲面(ハッチングで示す)はそれぞれ、第1有機薄膜5a〜第4有機薄膜5dから発光する光の波長に対応した曲率半径を有する。すなわち、EML5の第1湾曲部15aは、第1波長(例えばピーク波長:580nm(R))の整数倍の曲率半径を有する半球状であり、第2湾曲部15bは、第2波長(例えばピーク波長:530nm(G))の整数倍の曲率半径を有する半球状であり、第3湾曲部15cは第3波長(例えばピーク波長:450nm(B))の整数倍の曲率半径を有する半球状であり、第4湾曲部15dは第4波長(例えばピーク波長:550nm(Y))の整数倍の曲率半径を有する半球状である。尚、ここでは各湾曲部が半球状の場合を例に説明したので、それらの深さも対応する波長の整数倍である。ここで整数倍とは具体的には2倍以上とし、好適には5倍から20倍程度とする。また、各湾曲部の形状は半球状でなくてもよく、波長の整数倍の曲率半径の半球の一部を湾曲面に含む形状であってもよい。   The curved surfaces (shown by hatching) of the first curved portion 15a to the fourth curved portion 15d formed in the EML 5 are curvatures corresponding to the wavelengths of light emitted from the first organic thin film 5a to the fourth organic thin film 5d, respectively. Has a radius. That is, the first curved portion 15a of the EML 5 is a hemisphere having a radius of curvature that is an integral multiple of the first wavelength (for example, peak wavelength: 580 nm (R)), and the second curved portion 15b is configured to have the second wavelength (for example, the peak). The third curved portion 15c is a hemisphere having a radius of curvature that is an integral multiple of the third wavelength (for example, peak wavelength: 450 nm (B)). The fourth curved portion 15d is hemispherical having a radius of curvature that is an integral multiple of the fourth wavelength (for example, peak wavelength: 550 nm (Y)). In addition, since the case where each curved part was hemispherical was demonstrated here as an example, those depths are also integral multiples of the corresponding wavelength. Here, the integer multiple is specifically set to 2 times or more, preferably about 5 to 20 times. Moreover, the shape of each curved part may not be a hemisphere, and the curved surface may include a part of a hemisphere having a radius of curvature that is an integral multiple of the wavelength.

また、各波長の整数倍とは、各波長のピーク波長の整数倍に限らず、所定の波長帯域(バンド幅)を有する第1波長、第2波長、第3波長および第4波長の整数倍を意味する。従って、第1湾曲部15a〜第4湾曲部15dの曲率半径もそれぞれの波長帯域(の整数倍)の範囲に対応した所定の範囲を持った値となる。   Further, the integral multiple of each wavelength is not limited to the integral multiple of the peak wavelength of each wavelength, but is an integral multiple of the first wavelength, the second wavelength, the third wavelength, and the fourth wavelength having a predetermined wavelength band (bandwidth). Means. Accordingly, the radii of curvature of the first bending portion 15a to the fourth bending portion 15d are also values having a predetermined range corresponding to the range of each wavelength band (an integral multiple thereof).

つまり、EML5に設けられる第1湾曲部15a〜第4湾曲部15dが、それぞれ赤(R),緑(G),青(B),黄(Y)の波長の整数倍の曲率半径を有する湾曲面を形成するように、各層の成膜厚みを考慮して、中間層8の他の湾曲部群15Aを形成する。   In other words, the first bending portion 15a to the fourth bending portion 15d provided in the EML 5 each have a curvature radius that is an integral multiple of the wavelengths of red (R), green (G), blue (B), and yellow (Y). Another curved portion group 15A of the intermediate layer 8 is formed in consideration of the film thickness of each layer so as to form a surface.

これらのことから、中間層8の他の湾曲部群15Aを構成する湾曲部15Aa〜15Adの曲率半径は、一例として2μm〜10μm程度の範囲で適宜選択される。また当然ながら中間層8の厚みは、形成される他の湾曲部群15Aの曲率半径を考慮して選択される。   From these things, the curvature radius of curved part 15Aa-15Ad which comprises other curved part group 15A of the intermediate | middle layer 8 is suitably selected in the range of about 2 micrometers-10 micrometers as an example. Naturally, the thickness of the intermediate layer 8 is selected in consideration of the curvature radius of the other curved portion group 15A to be formed.

ただし、他の湾曲部群15Aの形状は半球状でなく半球の一部を含む湾曲面であってもよく、その場合は、中間層8の膜厚は、半球の曲率半径より小さい膜厚であってもよい。   However, the shape of the other bending portion group 15A may be a curved surface including a part of a hemisphere instead of a hemisphere, and in this case, the thickness of the intermediate layer 8 is smaller than the radius of curvature of the hemisphere. There may be.

有機発光素子10を構成するEL層20の有機材料(EML5の有機材料)は有機溶剤や水に溶融する。従って、EML5を蒸着で成膜した後、蒸着装置から大気(空気)中に取り出して、湾曲部群15を形成するなどの工程を行うことは出来ない。   The organic material (organic material of EML5) of the EL layer 20 constituting the organic light emitting element 10 is melted in an organic solvent or water. Therefore, after the EML 5 is formed by vapor deposition, it is not possible to perform a process such as forming the curved portion group 15 by taking it out from the vapor deposition apparatus into the atmosphere (air).

従って、EML5に湾曲部群15を形成するには、予め第1電極2の形成までに所望の形状を有する下地を形成し、その上に有機材料を積層する必要がある。本実施形態ではこの下地となるものが所望の形状(他の湾曲部群15A)を形成した中間層8である。中間層8の樹脂材料はいわばフォトレジストのように空気中に取り出して、エッチング等の加工工程を行うことができ、これを用いることでEML5に所望の湾曲面を形成できる。   Therefore, in order to form the bending portion group 15 in the EML 5, it is necessary to form a base having a desired shape before forming the first electrode 2 and to stack an organic material thereon. In the present embodiment, the underlying layer is the intermediate layer 8 in which a desired shape (another curved portion group 15A) is formed. The resin material of the intermediate layer 8 can be taken out into the air like a photoresist and subjected to a processing step such as etching, and a desired curved surface can be formed on the EML 5 by using this.

図3は、有機発光素子10断面図である。尚図3においても湾曲部群15、15Aは一列に横並びに配置した状態で示すが、実際には図2(B)(C)の如く一列の横並びとは限らない。また、この図において各層の厚みは実際の厚みの比を示すものではない。   FIG. 3 is a cross-sectional view of the organic light emitting device 10. In FIG. 3, the bending portion groups 15 and 15A are shown in a state where they are arranged side by side in a row, but in reality, they are not necessarily arranged in a row as shown in FIGS. In this figure, the thickness of each layer does not indicate the actual thickness ratio.

既述の如く、湾曲部群15は、EML5と中間層8の間のHTL4、HIL3および第1電極2の主面にもランダムに配置される。更に、ETL6の主面も湾曲部群15が形成されるので、この上に設けられた第2電極7もETL6の影響でEL層20側が湾曲面となる。   As described above, the bending portion group 15 is also randomly arranged on the main surfaces of the HTL 4, the HIL 3, and the first electrode 2 between the EML 5 and the intermediate layer 8. Further, since the curved surface group 15 is formed on the main surface of the ETL 6, the EL layer 20 side also has a curved surface in the second electrode 7 provided thereon due to the influence of the ETL 6.

有機発光素子10は、基板1から外部に放出光が白色であるので、光取り出し効率(外部量子効率)を高めるために、白色光を生成する赤(R),緑(G),青(B),黄(Y)の各波長に対応した適切な形状の第1湾曲部15a〜第4湾曲部15dが設けられる。具体的にはELM5の第1湾曲部15a〜第4湾曲部15dはそれぞれ、R,G,B,Yの各波長の整数倍の曲率半径の曲面を有する。ELM5以外の層にも相応の湾曲面が形成される。そして各層において近接し異なる曲率半径の4つ第1湾曲部15a〜第4湾曲部15dを1組として、湾曲部群15を構成し、(1組の中のパターンは同じ)湾曲部群15をランダムに配置する。   Since the organic light emitting device 10 emits white light from the substrate 1 to the outside, red (R), green (G), and blue (B) that generate white light in order to increase light extraction efficiency (external quantum efficiency). ) And yellow (Y), the first curved portion 15a to the fourth curved portion 15d having appropriate shapes corresponding to the respective wavelengths are provided. Specifically, the first bending portion 15a to the fourth bending portion 15d of the ELM 5 each have a curved surface having a radius of curvature that is an integral multiple of each wavelength of R, G, B, and Y. Corresponding curved surfaces are also formed in layers other than ELM5. The four first curved portions 15a to 15d having different curvature radii that are adjacent to each other in each layer are used as one set to form the curved portion group 15, and the curved portion group 15 is the same (the pattern in the set is the same). Arrange at random.

一例として1つの湾曲部群15(図2(A)(B)の破線の領域)のサイズを例えば10μm×20μm程度の面積とし、1つの有機発光素子10の面積を10mm×20mmとすると、発光領域ER内の湾曲部群15の数は平均して1000個程度配置される。   As an example, when the size of one bending portion group 15 (the broken line region in FIGS. 2A and 2B) is, for example, an area of about 10 μm × 20 μm, and the area of one organic light emitting element 10 is 10 mm × 20 mm, light emission The number of the bending portion groups 15 in the region ER is about 1000 on average.

赤(R),緑(G),青(B),黄(Y)の波長の整数倍からなる曲率半径の異なる第1湾曲部15a〜第4湾曲部15dを1つの湾曲部群15(1セット)として、当該湾曲部群15が有機発光素子10の各有機薄膜および電極の主面にランダムに配置されてあると、EML5の各有機薄膜5a〜5dで発光した光は散乱・反射され、指向性の低い幅広い方向性を持つ光となる。このような光が基板1を介して外部に放出されることで、有機発光素子10のを高めることができる。   The first bending portion 15a to the fourth bending portion 15d having different curvature radii composed of integer multiples of wavelengths of red (R), green (G), blue (B), and yellow (Y) are combined into one bending portion group 15 (1 As a set), when the bending portion group 15 is randomly arranged on the main surfaces of the organic thin films and electrodes of the organic light emitting element 10, the light emitted from the organic thin films 5a to 5d of the EML 5 is scattered and reflected, Light with a wide directivity with low directivity. Such light is emitted to the outside through the substrate 1, whereby the organic light emitting device 10 can be increased.

加えて湾曲部群15は第1電極2ではレンズ(凹レンズまたは凸レンズ)と同様に、また第2電極7ではミラー(凹面鏡または凸面鏡)と同様に作用する。   In addition, the bending portion group 15 acts in the same manner as a lens (concave lens or convex lens) in the first electrode 2 and in the same manner as a mirror (concave mirror or convex mirror) in the second electrode 7.

つまり、凹レンズ、凸レンズにより効果は異なるが、EML5で発光した光の内、直接第1電極2(ITO膜)を透過するものは、第1電極2の形状がレンズ状になっているため、発光した光は収束するか、発散する。   That is, although the effect differs depending on the concave lens and the convex lens, among the light emitted by the EML 5, the light that directly passes through the first electrode 2 (ITO film) is light-emitting because the shape of the first electrode 2 is a lens shape. The converged light converges or diverges.

また、第2電極7(Al層)に向かう光はミラー状の第2電極7により反射される。その時凸面鏡、凹面鏡かによって反射した光の方向は異なるが、平行光線または、収束した光のいずれかとなる。   The light traveling toward the second electrode 7 (Al layer) is reflected by the mirror-like second electrode 7. At that time, the direction of the light reflected by the convex mirror or the concave mirror is different, but it is either a parallel light beam or a converged light beam.

つまり、EML5で発光した光は第1電極2と第2電極7間間で多重反射し、収束した平行光線(定在波に近い光)または散乱光として第1電極2から基板1を介して外部に放出される。   That is, the light emitted from the EML 5 is multiple-reflected between the first electrode 2 and the second electrode 7 and converged from the first electrode 2 through the substrate 1 as a collimated light beam (light near a standing wave) or scattered light. Released to the outside.

放出光が収束した平行光線か散乱光のいずれかになるかは、湾曲部群15を構成する各湾曲部15a〜15dの曲率半径と、それらのEML5、第1電極2および第2電極7上における配置によって変化するが、いずれの場合も従来構造の有機発光素子100に比べて、取り出せる光の光束、つまり表面輝度が高められる。   Whether the emitted light is converged parallel light or scattered light depends on the radius of curvature of each of the bending portions 15a to 15d constituting the bending portion group 15 and on the EML 5, the first electrode 2, and the second electrode 7. In any case, the light flux of light that can be extracted, that is, the surface brightness is enhanced as compared with the organic light emitting device 100 having the conventional structure.

湾曲部群15の湾曲面の曲率半径が各発光色の波長の整数倍でなく、例えば波長の2分の1の場合、湾曲面によって光は損失してしまう。従って、EML5の湾曲部群15の湾曲面は第1有機薄膜5a〜第4有機薄膜5dのそれぞれの波長の整数倍の曲率半径を有し、且つ積層される各層においても光を減衰させない範囲を適宜選択して、中間層8の他の湾曲部群15Aを形成する。   When the curvature radius of the curved surface of the curved portion group 15 is not an integral multiple of the wavelength of each emission color, for example, half the wavelength, light is lost by the curved surface. Therefore, the curved surface of the curved portion group 15 of the EML 5 has a radius of curvature that is an integral multiple of the wavelength of each of the first organic thin film 5a to the fourth organic thin film 5d, and has a range in which light is not attenuated in each layer to be laminated. The other curved part group 15A of the intermediate layer 8 is formed by selecting as appropriate.

本実施形態のEML5は、第1有機薄膜5a〜第4有機薄膜5dの積層構造であるので、これらの膜厚を考慮すると、EML5内においても各層ごとに発光する波長の整数倍の曲率半径の湾曲面(湾曲部群15)をそれぞれ厳密に選択すること(全てをR,G,Y,Bの各波長の整数倍にすること)は困難である。また、EML5の各層で湾曲部群15(4つの湾曲部)の湾曲面を厳密に波長の整数倍に選択できても、EML5の上下の層(ETL6、第1電極2および第2電極7)では厳密には波長の整数倍になるとは限らない。   Since the EML 5 of the present embodiment has a laminated structure of the first organic thin film 5a to the fourth organic thin film 5d, considering these film thicknesses, the EML 5 has a radius of curvature that is an integral multiple of the wavelength emitted for each layer even in the EML 5. It is difficult to select each curved surface (curved portion group 15) strictly (making all of them an integer multiple of each wavelength of R, G, Y, and B). In addition, even if the curved surface of the curved portion group 15 (four curved portions) can be strictly selected to be an integral multiple of the wavelength in each layer of EML5, the upper and lower layers (ETL6, first electrode 2 and second electrode 7) of EML5 However, strictly speaking, it is not always an integer multiple of the wavelength.

しかし、有機発光素子10内の各層に設けられた全ての湾曲部(第1湾曲部15a〜第4湾曲部15d)で光が(損失せずに)反射・散乱する必要はない。本実施形態では、EML5内のいずれかの湾曲部でR,G,B,Yの光が効率よく散乱・反射すれば、外部量子効率を高めることができる。   However, it is not necessary for light to be reflected and scattered (without loss) by all the curved portions (the first curved portion 15a to the fourth curved portion 15d) provided in each layer in the organic light emitting element 10. In the present embodiment, the external quantum efficiency can be increased if R, G, B, and Y light are efficiently scattered and reflected by any one of the curved portions in the EML 5.

これに加えて、EML5内の湾曲部と第1電極2との間で凹(凸)レンズが形成されるかあるいはEML5内の湾曲部と第2電極7との間で凹(凸)面鏡が形成されることで同じく効率よく収束・散乱が起これば、外部量子効率をより高めることができる。   In addition, a concave (convex) lens is formed between the curved portion in the EML 5 and the first electrode 2 or a concave (convex) surface mirror between the curved portion in the EML 5 and the second electrode 7. If the converging and scattering occur efficiently by the formation of, the external quantum efficiency can be further increased.

また、EML5の湾曲部群15の湾曲面の曲率半径を各波長の10倍〜20倍とすることで、すなわちその形状となるように中間層8の他の湾曲部群15Aの湾曲面を例えば2μm〜15μm程度(好適には5μm〜10μm程度)の範囲で選択することで、中間層8の上に積層される各層の膜厚(EL層20のトータルとしても350nm程度)は誤差範囲ということができ、反射・散乱の効果に対する影響はほとんどないといえる。   Further, by setting the curvature radius of the curved surface of the curved portion group 15 of the EML 5 to 10 to 20 times the respective wavelengths, that is, the curved surface of the other curved portion group 15A of the intermediate layer 8 so as to have the shape, for example, By selecting in the range of about 2 μm to 15 μm (preferably about 5 μm to 10 μm), the film thickness of each layer stacked on the intermediate layer 8 (the total of the EL layer 20 is about 350 nm) is an error range. It can be said that there is almost no influence on the effect of reflection / scattering.

HTL4およびETL6の膜厚を最適化して(上記の膜厚とする)光学調整し、更に有機発光素子10内に湾曲部群15をランダムに配置することにより、赤(R),緑(G),青(B)、黄(Y)の単色波長をもつ本実施形態の有機発光素子10では、EL層の主面が平坦な従来構造(図7、図8)と比較して、表面輝度を高めることができる。具体的には実験用に作成した有機発光素子10では表面輝度は約2倍程度まで向上でき、外部量子効率は約40%まで高めることが可能であった。   Optimizing the film thicknesses of HTL4 and ETL6 (with the above film thickness) and further arranging the curved portion group 15 in the organic light emitting element 10 at random allows red (R), green (G) , Blue (B), yellow (Y) of the organic light emitting device 10 of the present embodiment has a surface brightness higher than that of the conventional structure (FIGS. 7 and 8) in which the main surface of the EL layer is flat. Can be increased. Specifically, in the organic light emitting device 10 prepared for the experiment, the surface luminance can be improved up to about twice, and the external quantum efficiency can be increased up to about 40%.

また、EL層20に設けられた湾曲部群15は、従来のEL層が平坦な有機発光素子100と比較して、発光面の面積を増加させる。従ってその分、表面輝度の向上が図れ、それと同時に電力効率(lm/W)も高くなる。   Further, the bending portion group 15 provided in the EL layer 20 increases the area of the light emitting surface as compared with the organic light emitting device 100 having a flat conventional EL layer. Therefore, the surface brightness can be improved correspondingly, and at the same time, the power efficiency (lm / W) is increased.

このように、有機発光素子10の内部の層に湾曲面を形成し、レンズやミラーと同様に作用させることで外部量子効率の改善を達成できる。特にこのような手法は、ディスプレイで使用される有機発光素子と比較して照明で使用される有機発光素子10において大きな利点がありうる。例えばディスプレイで使用する有機発光素子内にランダムにレンズが配置されると像を歪める原因となるが、照明に使用する有機発光素子では像の歪みは問題とならず、好適である。   As described above, the external quantum efficiency can be improved by forming a curved surface in the inner layer of the organic light emitting element 10 and causing it to act in the same manner as a lens or a mirror. In particular, such a technique may have a great advantage in the organic light emitting device 10 used in illumination as compared to the organic light emitting device used in the display. For example, when a lens is randomly arranged in an organic light emitting device used in a display, the image may be distorted. However, in an organic light emitting device used for illumination, image distortion does not cause a problem and is preferable.

図4を参照して、本発明の第2の実施形態の有機発光素子10aについて説明する。図4は有機発光素子10aの構造を示す断面図である。   With reference to FIG. 4, the organic light emitting element 10a of the 2nd Embodiment of this invention is demonstrated. FIG. 4 is a cross-sectional view showing the structure of the organic light emitting device 10a.

有機発光素子10aは、EML5と基板1の間に、光散乱粒子層17が設けられてもよい。   In the organic light emitting device 10 a, a light scattering particle layer 17 may be provided between the EML 5 and the substrate 1.

光散乱粒子層17は、ポリイミド等の透明樹脂材の樹脂層に光散乱粒子(例えば酸化チタン(Ti)など)17pを含有(点在)させた層である。   The light scattering particle layer 17 is a layer in which light scattering particles (for example, titanium oxide (Ti)) 17p are contained (spotted) in a resin layer made of a transparent resin material such as polyimide.

EML5と基板1の間に、光散乱粒子層17を設けることで光取り出し効果は更に大きくなる。すなわち、EL層20から出射された光が、光散乱粒子層17を通過するときに予め埋め込まれた散乱粒子に反射・散乱される。この結果、光の方向が指向性の低い、幅広い方向性を持って、すなわちランダムな方向を持って基板1に入射される。基板1の主面に入射する光が散乱し、ランバート反射するため、外部の空気中へ出射される光による表面の輝度は、視点の角度によらず略一定になる。つまり、観察者から見た基板1の放出面の明るさが、観察者の視点の角度にかかわらず略一定になり、また光束を増加させることができる。   By providing the light scattering particle layer 17 between the EML 5 and the substrate 1, the light extraction effect is further increased. That is, the light emitted from the EL layer 20 is reflected and scattered by the scattering particles embedded in advance when passing through the light scattering particle layer 17. As a result, the direction of light is incident on the substrate 1 with a low directivity and a wide direction, that is, with a random direction. Since the light incident on the main surface of the substrate 1 is scattered and reflected by Lambert, the luminance of the surface due to the light emitted to the outside air becomes substantially constant regardless of the angle of the viewpoint. That is, the brightness of the emission surface of the substrate 1 viewed from the observer becomes substantially constant regardless of the angle of the viewpoint of the observer, and the luminous flux can be increased.

このように光散乱粒子層17による効果を利用し、光取り出し効率を向上させることは、有機発光素子を照明装置に用いる場合に効果が大きい。これにより例えば、一般照明用途にも適用できる表面輝度9000cd/cmを確保し、寿命2万時間の性能を実現することも可能となる。 Thus, using the effect of the light-scattering particle layer 17 to improve the light extraction efficiency is significant when the organic light-emitting element is used in a lighting device. Thereby, for example, it is possible to secure a surface brightness of 9000 cd / cm 2 that can be applied to general lighting applications, and to realize a performance of 20,000 hours.

尚、他の湾曲部群15Aを有する中間層8に光散乱粒子17pを点在または密集させて中間層8を光散乱粒子層17としてもよい。   The intermediate layer 8 may be used as the light scattering particle layer 17 by interspersing or concentrating the light scattering particles 17p on the intermediate layer 8 having the other curved portion group 15A.

更に、図示は省略するが、基板1の光の放出面にマイクロフイルムを貼り付けることにより、基板1での損失(従来構造では34%)を更に小さくすることが出来、表面輝度の向上を図ることができる。   Further, although not shown in the drawings, by attaching a microfilm to the light emission surface of the substrate 1, the loss (34% in the conventional structure) in the substrate 1 can be further reduced, and the surface luminance is improved. be able to.

図5を参照して本発明の第3の実施形態の有機発光素子10bについて説明する。図5は有機発光素子10bの構造を示す断面図である。   With reference to FIG. 5, the organic light emitting element 10b of the 3rd Embodiment of this invention is demonstrated. FIG. 5 is a cross-sectional view showing the structure of the organic light emitting device 10b.

第1および第2の実施形態の第1湾曲部15a〜第4湾曲部15dの形状は例えば凹状であったが、これに限らない。すなわち図5の如く、第1湾曲部15a〜第4湾曲部15dの形状はこれを逆にした凸状であってもよく、同様の効果が得られる。   Although the shape of the 1st curved part 15a-the 4th curved part 15d of 1st and 2nd embodiment was concave shape, for example, it is not restricted to this. That is, as shown in FIG. 5, the shapes of the first bending portion 15a to the fourth bending portion 15d may be convex shapes obtained by reversing the shapes, and the same effect can be obtained.

図6を参照して、本発明の第4の実施形態として上記の有機発光素子を用いた照明装置50について説明する。   With reference to FIG. 6, the illuminating device 50 using said organic light emitting element is demonstrated as the 4th Embodiment of this invention.

照明装置50は、図1に示す有機発光素子10を複数配列してなる。図1(A)は1つの(要素単位の)有機発光素子10を示している。この要素単位をセルと称する場合もある。1つの有機発光素子(セル)10の面積は例えば10mm×20mm程度であるが、これを複数個(例えば行列状)に配置し、シール材の外側まで延在するそれぞれの第1引き出し配線11同士、および第2引き出し配線12同士を互いに電気的に接続し、外部電源(不図示)と接続することにより、広い(例えば室内の天井と同程度の)面積で面発光する照明装置50が構成される。   The lighting device 50 is formed by arranging a plurality of the organic light emitting elements 10 shown in FIG. FIG. 1A shows one (element unit) organic light-emitting element 10. This element unit may be referred to as a cell. The area of one organic light emitting element (cell) 10 is, for example, about 10 mm × 20 mm, but a plurality (for example, a matrix) of these are arranged, and the first lead wires 11 extending to the outside of the sealing material are connected to each other. And the second lead-out wirings 12 are electrically connected to each other and connected to an external power source (not shown), so that a lighting device 50 that emits light with a large area (for example, the same level as an indoor ceiling) is configured. The

大型の白色照明装置50(パネル)を得るには、光源、すなわち有機発光素子10の(発光領域ERの)面積を広げる必要が有る。有機発光素子10では第1電極2であるITO膜の抵抗成分があるため、第1電極2の面積、すなわち発光領域ERの面積を広げすぎると発光領域ER内の輝度が不均一になる。つまり1つの有機発光素子10は、発光領域ERの輝度の均一性が維持できる限界の面積があり、これが1つの有機発光素子10(セルのサイズとなる。本実施形態ではこれが例えば10mm×20mm程度であるので、有機発光素子10を、複数直列または並列に電気的に接続することで、大型の照明装置50を実現できる。   In order to obtain a large white illumination device 50 (panel), it is necessary to increase the area of the light source, that is, the organic light emitting element 10 (of the light emitting region ER). In the organic light emitting element 10, since there is a resistance component of the ITO film that is the first electrode 2, if the area of the first electrode 2, that is, the area of the light emitting region ER is excessively widened, the luminance in the light emitting region ER becomes non-uniform. That is, one organic light emitting element 10 has a limit area that can maintain the luminance uniformity of the light emitting region ER, and this is one organic light emitting element 10 (cell size. In the present embodiment, this is, for example, about 10 mm × 20 mm. Therefore, the large illuminating device 50 can be realized by electrically connecting a plurality of organic light emitting elements 10 in series or in parallel.

再び図1および図3を参照して第1の実施形態の有機発光素子10の製造方法を説明する。   With reference to FIGS. 1 and 3 again, a method for manufacturing the organic light emitting device 10 of the first embodiment will be described.

図3を参照して、0.5mm程度の厚みのガラスあるいはプラスチックの基板1を準備し、その基板1上に、透明な中間層8を形成する。中間層8は例えば例えばアクリル樹脂などの紫外線硬化樹脂、ポリイミド、フッ素樹脂(例えばポリテトラフルオロエチレン(polytetrafluoroethylene:PTFE)、ポリパラキシレン樹脂などであり、一例として数μm〜十数μm程度の膜厚に塗布する。中間層8の上記樹脂をスピンコートで形成する場合は、その厚みは2μm〜3μm程度とする。他の湾曲部群15Aの湾曲面が半球状でない(半球の一部を湾曲面に含む)場合は、湾曲部の曲率半径より小さい膜厚に形成されてもよい。   Referring to FIG. 3, a glass or plastic substrate 1 having a thickness of about 0.5 mm is prepared, and a transparent intermediate layer 8 is formed on the substrate 1. The intermediate layer 8 is, for example, an ultraviolet curable resin such as an acrylic resin, polyimide, a fluororesin (for example, polytetrafluoroethylene (PTFE), polyparaxylene resin, etc.), and has a film thickness of about several μm to several tens of μm as an example. When the resin of the intermediate layer 8 is formed by spin coating, the thickness is about 2 μm to 3 μm The curved surface of the other curved portion group 15A is not hemispherical (a part of the hemisphere is curved surface) In this case, the film thickness may be smaller than the radius of curvature of the curved portion.

その後、フォトリソグラフィ工程によって中間層8をエッチングして発光領域ERに複数の他の湾曲部群15A(第1湾曲部15Aa〜第4湾曲部15Ad)を形成する。第1湾曲部15a〜第4湾曲部15dはあるいは金型に刻み込んだ凹凸を中間層8の主面に押し付けて形状を転写する技術(インプリント)を用いて形成してもよい。   Thereafter, the intermediate layer 8 is etched by a photolithography process to form a plurality of other bending portion groups 15A (first bending portion 15Aa to fourth bending portion 15Ad) in the light emitting region ER. Alternatively, the first bending portion 15a to the fourth bending portion 15d may be formed by using a technique (imprint) for transferring the shape by pressing the unevenness cut into the mold against the main surface of the intermediate layer 8.

他の湾曲部群15Aの各湾曲部の形状は、後に形成されるEMLの主面に反映される湾曲面がEMLで発光されるR,G,B,Yの各波長の整数倍の曲率半径となるように適宜選択される。   The shape of each bending portion of the other bending portion group 15A is a curvature radius that is an integral multiple of each wavelength of R, G, B, and Y in which the bending surface reflected on the main surface of the EML formed later is emitted by the EML. It chooses suitably so that it may become.

そして、それぞれ異なる曲率半径の湾曲面を有して近接する4つの湾曲部15Aa〜15Adを1組として他の湾曲部群15Aを構成し、複数の湾曲部群15Aがランダムに発光領域ER内に配置されるようなパターンで中間層8の主面を加工する。   Then, the four curved portions 15Aa to 15Ad that have curved surfaces with different radii of curvature are adjacent to each other to form another curved portion group 15A, and a plurality of curved portion groups 15A are randomly placed in the light emitting region ER. The main surface of the intermediate layer 8 is processed with a pattern as arranged.

その後、基板1の主面に膜厚300nmのAl/Moの積層金属膜を例えばスパッタ等により形成する。その後、フォトリソグラフィ工程によって積層金属膜を第1引き出し配線11および第2引き出し配線12の形状にパターンニングする(図1)。   Thereafter, an Al / Mo laminated metal film having a film thickness of 300 nm is formed on the main surface of the substrate 1 by, for example, sputtering. Thereafter, the laminated metal film is patterned into the shape of the first lead wiring 11 and the second lead wiring 12 by a photolithography process (FIG. 1).

また、中間層8の上に例えばITO膜をスパッタにより100nmの膜厚に形成し、フォトリソグラフィ工程によって所望の形状(1セルの面積分)にパターンニングし、第1電極2を形成する。この時のサイズは、ITO膜の抵抗成分を考慮して発光領域ER内の輝度の均一性が維持できるサイズとする(図1参照)。   Further, an ITO film, for example, is formed on the intermediate layer 8 to a thickness of 100 nm by sputtering, and is patterned into a desired shape (one cell area) by a photolithography process, thereby forming the first electrode 2. The size at this time is set to a size that can maintain the uniformity of luminance in the light emitting region ER in consideration of the resistance component of the ITO film (see FIG. 1).

他の湾曲部群15Aがランダムに配列された中間層8の上にスパッタによって形成されたITO膜主面は下地の他の湾曲部群15Aの形状を反映した形状を有する。   The main surface of the ITO film formed by sputtering on the intermediate layer 8 in which the other bending portion group 15A is randomly arranged has a shape reflecting the shape of the other bending portion group 15A.

その上に、膜厚10nmのHIL3、膜厚70nmのHTL4をそれぞれ真空蒸着して形成する。引き続き赤(R)、緑(G)、黄(Y)、青(B)の発光ドーパントをそれぞれ含む第1有機薄膜5a、第2有機薄膜5b、第4有機薄膜5d、第3有機薄膜5cをそれぞれの膜厚が30nmとなるように真空蒸着により順次成膜してEML5を形成し(図2(C)参照)、さらに膜厚30nmのETL6を真空蒸着してEML5上に積層してEL層20を形成する。   On top of this, HIL3 with a thickness of 10 nm and HTL4 with a thickness of 70 nm are formed by vacuum deposition. Subsequently, a first organic thin film 5a, a second organic thin film 5b, a fourth organic thin film 5d, and a third organic thin film 5c each containing red (R), green (G), yellow (Y), and blue (B) light emitting dopants are formed. EML5 is formed by sequential deposition by vacuum vapor deposition so that each film thickness is 30 nm (see FIG. 2C), and further, ETL6 having a film thickness of 30 nm is vacuum vapor deposited and laminated on EML5 to form an EL layer. 20 is formed.

HTL4とETL6は外部への光取り出し量を向上させるため膜厚が最適化され、光学調整されている。   The film thicknesses of the HTL 4 and the ETL 6 are optimized and optically adjusted in order to improve the light extraction amount to the outside.

EL層20の各層の主面は、中間層8の他の湾曲部群15Aに沿った湾曲面が形成される。特に、EML5では、第1湾曲部15aはたとえば赤(R)の波長の整数倍の曲率半径の湾曲面を有し、第2湾曲部15bはたとえば緑(G)の波長の整数倍の曲率半径の湾曲面を有し、第3湾曲部15cはたとえば青(B)の波長の整数倍の曲率半径の湾曲面を有し、第4湾曲部15dはたとえば黄(Y)の波長の整数倍の曲率半径の湾曲面を有する。   The main surface of each layer of the EL layer 20 is formed with a curved surface along the other curved portion group 15 </ b> A of the intermediate layer 8. In particular, in the EML 5, the first curved portion 15a has a curved surface with a radius of curvature that is an integral multiple of the wavelength of red (R), for example, and the second curved portion 15b is a curvature radius of an integral multiple of the wavelength of green (G), for example. The third curved portion 15c has a curved surface with a radius of curvature that is an integral multiple of the wavelength of blue (B), for example, and the fourth curved portion 15d is an integral multiple of the wavelength of yellow (Y), for example. It has a curved surface with a radius of curvature.

その後、膜厚150nmのAl層あるいはAg−Mg合金層を蒸着およびスパッタ形成する。これにより、図1および図3に示す有機発光素子10が得られる。   Thereafter, an Al layer or an Ag—Mg alloy layer having a thickness of 150 nm is deposited and sputtered. Thereby, the organic light emitting element 10 shown in FIG. 1 and FIG. 3 is obtained.

また図4に示す第2の実施形態の有機発光素子10aの場合は、基板1上に予め光散乱粒子(たとえば酸化Ti)を埋め込んだ樹脂層(光散乱樹脂層)17を形成し、その上に既述の方法で中間層8を形成する。   In the case of the organic light emitting device 10a of the second embodiment shown in FIG. 4, a resin layer (light scattering resin layer) 17 in which light scattering particles (for example, Ti oxide) are embedded in advance is formed on the substrate 1, and then The intermediate layer 8 is formed by the method described above.

あるいは光散乱粒子を埋め込んだ中間層8を形成し、その主面に湾曲部群15をパターンニングしてもよい。   Alternatively, the intermediate layer 8 in which the light scattering particles are embedded may be formed, and the curved portion group 15 may be patterned on the main surface.

更に、図示は省略するが、基板1の光の放出面にマイクロフイルムを貼り付けてもよい。これにより、基板1での損失を更に小さくすることが出来、表面輝度の向上を図ることができる。   Further, although not shown, a microfilm may be attached to the light emission surface of the substrate 1. Thereby, the loss in the substrate 1 can be further reduced, and the surface brightness can be improved.

尚、上記の実施形態では赤(R),緑(G),青(B)、黄(Y)の各色を発光する有機薄膜を積層したEML5の場合を例に示したが、他の発光色の組合せによって基板1からの放出光が白色光となる場合、またEML5が白色発光する場合であっても同様に実施でき、同様に表面輝度の向上が見込める。   In the above embodiment, the case of EML5 in which organic thin films that emit red (R), green (G), blue (B), and yellow (Y) are laminated is shown as an example. Even if the light emitted from the substrate 1 becomes white light or the EML 5 emits white light by the combination of the above, it can be implemented in the same manner, and the improvement of the surface luminance can be expected similarly.

また、EML5において第4有機薄膜5d(Y)を配置しなくてもよく、その場合は湾曲部群15は、赤(R)の波長の整数倍の曲率を有する第1湾曲部15a、緑(G)の波長の整数倍の曲率を有する第2湾曲部15bおよび青(B)の波長の整数倍の曲率を有する第3湾曲部15cを1組として構成する。但し第4有機薄膜5d(Y)を配置することで有機発光素子10からの放出光がより演色性の高い白色光となり、好適である。   Further, the fourth organic thin film 5d (Y) may not be disposed in the EML 5, and in this case, the bending portion group 15 includes the first bending portion 15a having a curvature that is an integral multiple of the wavelength of red (R), green ( The second bending portion 15b having a curvature that is an integral multiple of the wavelength of G) and the third bending portion 15c having a curvature that is an integral multiple of the wavelength of blue (B) are configured as one set. However, the arrangement of the fourth organic thin film 5d (Y) is preferable because the emitted light from the organic light emitting element 10 becomes white light with higher color rendering properties.

1 基板
2 第1電極
3 正孔注入層(HIL)
4 正孔輸送層(HTL)
5 発光層(EML)
5a 第1有機薄膜
5b 第2有機薄膜
5c 第3有機薄膜
5d 第4有機薄膜
6 電子輸送層(ETL)
7 第2電極
8 中間層
9 対向基板
10 有機発光素子
15、15A 湾曲部群
15a 第1湾曲部
15b 第2湾曲部
15c 第3湾曲部
15d 第4湾曲部
1 Substrate
2 First electrode
3 Hole injection layer (HIL)
4 Hole transport layer (HTL)
5 Emission layer (EML)
5a First organic thin film
5b Second organic thin film
5c 3rd organic thin film
5d 4th organic thin film
6 Electron transport layer (ETL)
7 Second electrode
8 Middle class
9 Counter substrate
10 Organic light emitting devices
15, 15A Bending group
15a 1st bending part
15b 2nd bending part
15c 3rd bending part
15d 4th bending part

Claims (10)

基板と、
該基板上に設けられた中間層と、
該中間層上に設けられた第1電極と、
該第1電極上に積層された正孔注入層、正孔輸送層、発光層および電子輸送層と、
該電子輸送層上に設けられた第2電極と、を具備し、
前記基板からの放出光が白色光であり、前記発光層に、それぞれ異なる曲率半径の湾曲面を有する複数の湾曲部を1組とした湾曲部群が複数設けられることを特徴とする有機発光素子。
A substrate,
An intermediate layer provided on the substrate;
A first electrode provided on the intermediate layer;
A hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer laminated on the first electrode;
A second electrode provided on the electron transport layer,
The organic light emitting device characterized in that the light emitted from the substrate is white light, and the light emitting layer is provided with a plurality of curved portion groups each having a plurality of curved portions each having a curved surface having a different curvature radius. .
前記発光層は、それぞれ異なる波長の光を発光する複数の有機薄膜を積層してなることを特徴とする請求項1に記載の有機発光素子。   The organic light emitting device according to claim 1, wherein the light emitting layer is formed by laminating a plurality of organic thin films that emit light having different wavelengths. 1つの前記湾曲部群を構成する前記湾曲面はそれぞれ前波長の整数倍に対応した曲率半径を有することを特徴とする請求項2に記載の有機発光素子。 3. The organic light emitting device according to claim 2 , wherein each of the curved surfaces constituting one curved portion group has a radius of curvature corresponding to an integral multiple of the previous wavelength. 前記発光層は、第1波長の色を発光する第1有機薄膜、第2波長の色を発光する第2有機薄膜および第3波長の色を発光する第3有機薄膜を含み、
1つの前記湾曲部群は、前記第1波長の整数倍の曲率半径の湾曲面を有する第1湾曲部、前記第2波長の整数倍の曲率半径の湾曲面を有する第2湾曲部および前記第3波長の整数倍の曲率半径の湾曲面を有する第3湾曲部を含み、
複数の前記湾曲部群が前記中間層にランダムに配置されたことを特徴とする請求項1から請求項3のいずれかに記載の有機発光素子。
The light emitting layer includes a first organic thin film that emits a first wavelength color, a second organic thin film that emits a second wavelength color, and a third organic thin film that emits a third wavelength color,
One bending portion group includes a first bending portion having a curved surface having a radius of curvature that is an integral multiple of the first wavelength, a second curved portion having a curved surface having a radius of curvature that is an integral multiple of the second wavelength, and the first curved portion. A third curved portion having a curved surface with a radius of curvature that is an integral multiple of three wavelengths;
The organic light-emitting device according to claim 1, wherein a plurality of the bending portion groups are randomly arranged in the intermediate layer.
前記発光層は、第4波長の色を発光する第4有機薄膜を含み、前記1つの湾曲部群は、前記第4波長の整数倍の曲率半径の湾曲面を有する第4湾曲部を含むことを特徴とする請求項4に記載の有機発光素子。   The light emitting layer includes a fourth organic thin film that emits a color having a fourth wavelength, and the one curved portion group includes a fourth curved portion having a curved surface having a radius of curvature that is an integral multiple of the fourth wavelength. The organic light-emitting device according to claim 4. 前記基板と前記第1電極の間に前記中間層が設けられ、該中間層の主面に複数の他の湾曲部群が配置され、前記複数の湾曲部群は前記中間層の他の湾曲部群に沿って設けられることを特徴とする請求項1から請求項5のいずれかに記載の有機発光素子。   The intermediate layer is provided between the substrate and the first electrode, and a plurality of other bending portion groups are disposed on a main surface of the intermediate layer, and the plurality of bending portion groups are other bending portions of the intermediate layer. The organic light-emitting element according to claim 1, wherein the organic light-emitting element is provided along a group. 前記中間層は透明樹脂層であることを特徴とする請求項1から請求項6のいずれかに記載の有機発光素子。   The organic light-emitting element according to claim 1, wherein the intermediate layer is a transparent resin layer. 前記発光層と前記基板の間に光散乱粒子層が設けられることを特徴とする請求項1から請求項7のいずれかに記載の有機発光素子。   The organic light-emitting device according to claim 1, wherein a light scattering particle layer is provided between the light-emitting layer and the substrate. 請求項1から請求項8のいずれかに記載の有機発光素子を用いた照明装置。   The illuminating device using the organic light emitting element in any one of Claims 1-8. 前記有機発光素子を複数配置し、前記第1電極および前記第2電極をそれぞれ互いに電気的に接続したことを特徴とする請求項9に記載の照明装置。   The lighting device according to claim 9, wherein a plurality of the organic light emitting elements are arranged, and the first electrode and the second electrode are electrically connected to each other.
JP2012282161A 2012-12-26 2012-12-26 ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME Expired - Fee Related JP5805618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282161A JP5805618B2 (en) 2012-12-26 2012-12-26 ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012282161A JP5805618B2 (en) 2012-12-26 2012-12-26 ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2014127302A JP2014127302A (en) 2014-07-07
JP5805618B2 true JP5805618B2 (en) 2015-11-04

Family

ID=51406645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282161A Expired - Fee Related JP5805618B2 (en) 2012-12-26 2012-12-26 ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP5805618B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106717121B (en) * 2014-09-16 2019-01-15 夏普株式会社 The manufacturing method of Organnic electroluminescent device and Organnic electroluminescent device
EP3884532A4 (en) * 2018-11-20 2022-06-29 BOE Technology Group Co., Ltd. Pixel structure, display apparatus, and method of fabricating pixel structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005107327A1 (en) * 2004-04-30 2008-03-21 三洋電機株式会社 Luminous display
JP2010097883A (en) * 2008-10-17 2010-04-30 Suiko Yoshihara Organic electroluminescent device and manufacturing method therefor
JP5659677B2 (en) * 2010-10-12 2015-01-28 大日本印刷株式会社 Organic EL element and organic EL lighting device

Also Published As

Publication number Publication date
JP2014127302A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
US6984934B2 (en) Micro-lens arrays for display intensity enhancement
JP5731830B2 (en) Planar light emitting device
TWI699022B (en) Light-emitting device, display apparatus, and illumination apparatus
JP2011507196A (en) Improved external efficiency of light emitting diodes
US8823030B2 (en) Light-emitting device and lighting device
EP2884555B1 (en) OLED on curved substrate
US11362311B2 (en) Sub-electrode microlens array for organic light emitting devices
KR20120137264A (en) Lighting device and method for manufacturing the same
KR20120041138A (en) Lighting device
JP5297399B2 (en) Light emitting device
JP5334888B2 (en) Light emitting device
JP2011204645A (en) Light-emitting device
JP2006155940A (en) Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics
JP2012532410A (en) OLED-based light-emitting device
JP2017091695A (en) Organic electroluminescent element, lighting system, surface light source, and display device
JP2012178279A (en) Organic electroluminescent element
WO2014119052A1 (en) Organic electroluminescent element, lighting apparatus, and lighting system
JP5805618B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE SAME
JP2014103008A (en) Container for liquid, lighting device for container, member for container, and container lighting system
JP5723344B2 (en) Organic electroluminescent device and light emitting device
JP5107930B2 (en) Luminous element
WO2015125308A1 (en) Organic electroluminescent element, lighting apparatus, and lighting system
JP6151874B1 (en) Organic electroluminescent device and lighting device
JP2003234178A (en) Light-emitting element, its manufacturing method, and display equipment
JP2014127303A (en) Method of manufacturing organic el device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees