JP2006143535A - Zirconia sol and its manufacturing method - Google Patents

Zirconia sol and its manufacturing method Download PDF

Info

Publication number
JP2006143535A
JP2006143535A JP2004336595A JP2004336595A JP2006143535A JP 2006143535 A JP2006143535 A JP 2006143535A JP 2004336595 A JP2004336595 A JP 2004336595A JP 2004336595 A JP2004336595 A JP 2004336595A JP 2006143535 A JP2006143535 A JP 2006143535A
Authority
JP
Japan
Prior art keywords
zirconia
zirconia sol
sol
dispersion
zirconium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004336595A
Other languages
Japanese (ja)
Other versions
JP4705361B2 (en
Inventor
Yuji Hiyouhaku
祐二 俵迫
Toshiharu Hirai
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2004336595A priority Critical patent/JP4705361B2/en
Publication of JP2006143535A publication Critical patent/JP2006143535A/en
Application granted granted Critical
Publication of JP4705361B2 publication Critical patent/JP4705361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a zirconia sol in a colloid region having a uniform particle size distribution and being excellent in stability. <P>SOLUTION: A method to manufacture the sol in which fine zirconia particles whose mean particle diameter is 5-100 nm are dispersed comprises steps (a)-(e); (a) a step to prepare the dispersion liquid of a zirconium hydroxide gel by adding an alkali aqueous solution in a zirconium compound aqueous solution in the presence of a particle growth regulator, (b) a step to wash the zirconium hydroxide gel, (c) a step to age the dispersion liquid of the washed zirconium hydroxide gel, (d) a step to wash the aged zirconium hydroxide gel and (e) a step to treat the washed dispersion liquid of the zirconium hydroxide gel hydrothermally in the presence of the particle growth regulator. The particle growth regulator is a carboxylic acid or a hydroxycarboxylic acid and the hydrothermal treatment is performed in the range of 100-250°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、安定性に優れたコロイド領域のジルコニアゾルおよび該ジルコニアゾルを製造する方法に関する。   The present invention relates to a colloidal zirconia sol excellent in stability and a method for producing the zirconia sol.

従来、シリカ、アルミナ、チタニア、ジルコニア、酸化亜鉛、五酸化アンチモン、酸化セリウム、酸化スズ、シリカ・アルミナ、シリカ・ジルコニアなどのコロイド粒子が知られており、光学材料として屈折率を調整するために被膜等に配合して用いられている。
例えば、シリカは低屈折材料として、アルミナは中程度の屈折率材料として、チタニア、ジルコニア等は高屈折率材料として用いられている。このとき、チタニアゾルは高屈折率である点では優れているものの、分散安定性や、用法、用途によっては酸化チタンの光触媒活性のために耐光性、耐候性等に問題があった。このため、他の成分、例えばシリカ成分などを複合化することによって分散安定性や、耐光性、耐候性等を向上させることが行われているが、複合化成分によっては屈折率を低下させることになることに加えて、光触媒活性を完全に抑制することが困難で、このため耐光性、耐候性等が不充分となることがあった。
Conventionally, colloidal particles such as silica, alumina, titania, zirconia, zinc oxide, antimony pentoxide, cerium oxide, tin oxide, silica-alumina, silica-zirconia, etc. are known, and to adjust the refractive index as an optical material It is blended and used for coatings.
For example, silica is used as a low refractive index material, alumina is used as a medium refractive index material, and titania, zirconia, and the like are used as high refractive index materials. At this time, although titania sol is excellent in that it has a high refractive index, there are problems in light resistance, weather resistance, and the like due to the dispersion stability, photocatalytic activity of titanium oxide depending on the usage and application. For this reason, it has been attempted to improve dispersion stability, light resistance, weather resistance, etc. by combining other components, such as silica components, but depending on the composite component, the refractive index can be lowered. In addition to this, it is difficult to completely suppress the photocatalytic activity, so that the light resistance, weather resistance, etc. may be insufficient.

一方、ジルコニアゾルは光触媒活性を実質的に持たず、耐光性、耐候性等に優れており、従来より、ジルコニアゾルの製造方法としては、オキシ塩化ジルコニウム等の水溶性ジルコニウム塩を含む水溶液を加水分解させる方法が知られている。
さらに、特開平6−166519号公報(特許文献1)には、水溶性ジルコニウム塩を含む水溶液を陰イオン交換樹脂と接触させて、該ジルコニウム塩の陰イオンを水酸基イオンとイオン交換することにより粘調なゲル状物質を得、得られたゲル状物質を水に分散させると共に酢酸等の有機酸を添加するジルコニアゾルの製造方法が記載されている。
また、特開平5−24844号公報(特許文献2)には、水酸化ジルコニウムと酸とを含むスラリー状の混合物の酸濃度を制御して加熱処理する水和ジルコニアゾルの製造方法が記載され、酸として、塩酸、硝酸、硫酸等の無機酸、酢酸、クエン酸等の有機酸が挙げられている。
しかしながら、特許文献1または特許文献2のように、水酸化ジルコニウムのような加水分解物およびジルコニウム水酸化物ゲルに、酢酸、クエン酸等の有機酸または無機酸を添加してジルコニアゾルを調製しても、均一な粒子径分布を有し、安定性に優れたコロイド領域のジルコニアゾルを得ることは困難であった。
On the other hand, zirconia sol has substantially no photocatalytic activity and is excellent in light resistance, weather resistance and the like. Conventionally, as a method for producing zirconia sol, an aqueous solution containing a water-soluble zirconium salt such as zirconium oxychloride is hydrolyzed. A method of decomposing is known.
Further, JP-A-6-166519 (Patent Document 1) discloses that an aqueous solution containing a water-soluble zirconium salt is brought into contact with an anion exchange resin, and the anion of the zirconium salt is ion-exchanged with a hydroxyl ion. A method for producing a zirconia sol is described, in which a smooth gel-like substance is obtained, and the obtained gel-like substance is dispersed in water and an organic acid such as acetic acid is added.
JP-A-5-24844 (Patent Document 2) describes a method for producing a hydrated zirconia sol in which the acid concentration of a slurry-like mixture containing zirconium hydroxide and an acid is controlled and heat-treated, Examples of the acid include inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as acetic acid and citric acid.
However, as in Patent Document 1 or Patent Document 2, a zirconia sol is prepared by adding an organic acid or inorganic acid such as acetic acid or citric acid to a hydrolyzate such as zirconium hydroxide and a zirconium hydroxide gel. However, it is difficult to obtain a colloidal zirconia sol having a uniform particle size distribution and excellent stability.

特公平6−65610号公報(特許文献3)には、炭酸ジルコニルアンモニウムと特定のキレート化剤とを反応させ、得られる反応生成物を60〜300℃で加熱加水分解してジルコニアゾルを製造する方法が開示されており、得られたpH7付近のジルコニアゾルは長期安定で、pH6〜14の範囲で使用してもゲル化が起きない中性ないし塩基性タイプの無機バインダー等として好適に使用できることが記載されている。特許文献3には、ジルコニアゾル粒子の粒子径および粒子径分布については記載されておらず、如何なる粒子径および粒子径分布を有するものであるか不明であるが、少なくとも酸性域における安定性に優れたコロイド領域のジルコニアゾルではない。
特開平6−166519号公報 特開平5−24844号公報 特公平6−65610号公報
In Japanese Patent Publication No. 6-65610 (Patent Document 3), zirconyl ammonium carbonate and a specific chelating agent are reacted, and the resulting reaction product is heated and hydrolyzed at 60 to 300 ° C. to produce a zirconia sol. The method is disclosed, and the obtained zirconia sol near pH 7 is stable for a long time and can be suitably used as a neutral to basic type inorganic binder that does not cause gelation even when used in the range of pH 6-14. Is described. Patent Document 3 does not describe the particle size and particle size distribution of zirconia sol particles, and it is unclear what particle size and particle size distribution it has, but at least it has excellent stability in the acidic range. Not a colloidal zirconia sol.
JP-A-6-166519 JP-A-5-24844 Japanese Examined Patent Publication No. 6-65610

本発明は、均一な粒子径分布を有し、安定性(特に酸性域における安定性)に優れたコロイド領域のジルコニアゾルおよびこれを製造することを発明が解決しようとする課題とするものである。   The present invention has an object to be solved by the present invention to produce a colloidal zirconia sol having a uniform particle size distribution and excellent stability (especially in the acidic region), and the production thereof. .

本発明に係るジルコニアゾルの製造方法は平均粒子径が5〜100nmの範囲にあるジルコニア微粒子が分散したゾルを製造する方法であって、下記の工程(a)〜(e)からなることを特徴とする。
(a)粒子成長調整剤の存在下、ジルコニウム化合物水溶液にアルカリ水溶液を加えてジルコニウム水酸化物ゲルの分散液を調製する工程
(b)前記ジルコニウム水酸化物ゲルを洗浄する工程
(c)前記洗浄したジルコニウム水酸化物ゲルの分散液を熟成する工程
(d)前記熟成したジルコニウム水酸化物ゲルを洗浄する工程
(e)粒子成長調整剤の存在下、前記洗浄したジルコニウム水酸化物ゲルの分散液を水熱処理する工程
The method for producing a zirconia sol according to the present invention is a method for producing a sol in which zirconia fine particles having an average particle diameter in the range of 5 to 100 nm are dispersed, and comprises the following steps (a) to (e): And
(A) A step of preparing a dispersion of a zirconium hydroxide gel by adding an alkaline aqueous solution to a zirconium compound aqueous solution in the presence of a particle growth regulator (b) a step of washing the zirconium hydroxide gel (c) the washing (D) a step of rinsing the aged zirconium hydroxide gel; (e) a step of washing the aged zirconium hydroxide gel; and (e) a dispersion of the washed zirconium hydroxide gel in the presence of a particle growth regulator. Hydrothermal treatment process

前記ゾルのpHは3〜5の範囲にあることが好ましい。
前記工程(e)で得られたジルコニア微粒子分散ゾルは、濃縮または希釈することができる。
前記粒子成長調整剤はカルボン酸またはヒドロキシカルボン酸であることが好ましい。
前記水熱処理を100〜250℃の温度範囲で行うことが好ましい。
前記工程(e)を繰り返し行うことが好ましく、工程(e)と共に工程(d)を繰り返し行うことが好ましい。
前記(b)工程でジルコニウム水酸化物ゲル分散液の電導度を20μS/cm以下とすることが好ましく、前記(e)工程でジルコニアゾルの電導度を200μS/cm以下とすることが好ましい。
前記工程(e)または前記繰り返し実施した工程(e)の後、ジルコニアゾルを乾燥し、300〜800℃の範囲で焼成し、得られたジルコニア微粉末を再び分散液に分散させることが好ましい。
The pH of the sol is preferably in the range of 3-5.
The zirconia fine particle-dispersed sol obtained in the step (e) can be concentrated or diluted.
The particle growth regulator is preferably a carboxylic acid or a hydroxycarboxylic acid.
The hydrothermal treatment is preferably performed in a temperature range of 100 to 250 ° C.
The step (e) is preferably repeated, and the step (d) is preferably repeated together with the step (e).
In the step (b), the conductivity of the zirconium hydroxide gel dispersion is preferably 20 μS / cm or less, and in the step (e), the conductivity of the zirconia sol is preferably 200 μS / cm or less.
After the step (e) or the repeated step (e), it is preferable that the zirconia sol is dried and fired in the range of 300 to 800 ° C., and the obtained zirconia fine powder is dispersed again in the dispersion.

本発明に係るジルコニアゾルは、平均粒子径が5〜100nmの範囲にあり、結晶子径が5〜40nmの範囲にあるジルコニア粒子が分散したジルコニア酸性ゾルである。
また、本発明に係るジルコニアゾルは、前記したいずれかのジルコニアゾルの製造方法によって得られた、結晶子径が5〜40nmの範囲にあるジルコニア粒子が分散したジルコニア酸性ゾルである。該酸性ゾルのpHは3〜5の範囲にあることが好ましい。
The zirconia sol according to the present invention is a zirconia acidic sol in which zirconia particles having an average particle diameter in the range of 5 to 100 nm and a crystallite diameter in the range of 5 to 40 nm are dispersed.
The zirconia sol according to the present invention is a zirconia acidic sol in which zirconia particles having a crystallite diameter in the range of 5 to 40 nm are dispersed, which is obtained by any one of the above-described zirconia sol production methods. The pH of the acidic sol is preferably in the range of 3-5.

本発明によれば、粒子径が比較的小さく、均一な粒子径分布を有し、非凝集体で、分散性、安定性に優れたジルコニアゾルを製造することができる。また、このジルコニアゾルは、透明性、耐光性、耐候性等に優れるので、光学材料等における、高屈折率材料、屈折率調整剤等として好適である。   According to the present invention, it is possible to produce a zirconia sol having a relatively small particle size, a uniform particle size distribution, a non-aggregate, and excellent dispersibility and stability. Moreover, since this zirconia sol is excellent in transparency, light resistance, weather resistance, etc., it is suitable as a high refractive index material, a refractive index adjusting agent, etc. in optical materials.

以下、本発明のジルコニアゾルの製造方法を工程順に説明する。
工程(a)
本発明に用いるジルコニウム化合物としては塩化ジルコニウム(ZrCl2)、オキシ塩化ジルコニウム(ZrOCl2)、硝酸ジルコニウム、硝酸ジルコニル、硫酸ジルコニウム、炭酸ジルコニウム、酢酸ジルコニウム等の他、ジルコニウムアルコキシド等が挙げられる。
先ず、ジルコニウム化合物の水溶液を調製する。このときのジルコニウム化合物水溶液の濃度は、ZrO2に換算して0.1〜5重量%、さらには0.2〜3重量%の範囲にあることが好ましい。該濃度が0.1重量%未満の場合は、収率、生産効率が低く、一方、該濃度が5重量%を越えると、得られるジルコニアゾルの粒子径が不均一となる傾向がある。
Hereinafter, the manufacturing method of the zirconia sol of this invention is demonstrated in order of a process.
Step (a)
Zirconium compounds used in the present invention include zirconium chloride (ZrCl 2 ), zirconium oxychloride (ZrOCl 2 ), zirconium nitrate, zirconyl nitrate, zirconium sulfate, zirconium carbonate, zirconium acetate and the like, as well as zirconium alkoxides.
First, an aqueous solution of a zirconium compound is prepared. The concentration of the zirconium compound aqueous solution at this time is preferably in the range of 0.1 to 5% by weight, more preferably 0.2 to 3% by weight in terms of ZrO 2 . When the concentration is less than 0.1% by weight, the yield and production efficiency are low. On the other hand, when the concentration exceeds 5% by weight, the particle size of the resulting zirconia sol tends to be non-uniform.

本発明に用いる粒子成長調整剤としては、カルボン酸、カルボン酸塩、またはヒドロキシカルボン酸、ヒドロキシカルボン酸塩が用いられる。
具体的には、蟻酸、酢酸、蓚酸、アクリル酸(不飽和カルボン酸)、グルコン酸等のモノカルボン酸およびモノカルボン酸塩、リンゴ酸、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、などの多価カルボン酸および多価カルボン酸塩等が挙げられる。
また、α−乳酸、β−乳酸、γ−ヒドロキシ吉草酸、グリセリン酸、酒石酸、クエン酸、トロパ酸、ベンジル酸のヒドロキシカルボン酸およびヒドロキシカルボン酸塩が挙げられる。
As the particle growth regulator used in the present invention, carboxylic acid, carboxylate, hydroxycarboxylic acid, or hydroxycarboxylate is used.
Specifically, monocarboxylic acids and monocarboxylic acid salts such as formic acid, acetic acid, succinic acid, acrylic acid (unsaturated carboxylic acid), gluconic acid, malic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid And polyvalent carboxylic acids such as sebacic acid, maleic acid, fumaric acid, and phthalic acid, and polyvalent carboxylic acid salts.
Further, α-lactic acid, β-lactic acid, γ-hydroxyvaleric acid, glyceric acid, tartaric acid, citric acid, tropic acid, hydroxycarboxylic acid and hydroxycarboxylate of benzylic acid can be mentioned.

工程(a)では、ジルコニウム化合物水溶液に前記粒子成長調整剤または粒子成長調整剤の水溶液を混合する。このときのジルコニウム化合物のモル数(Zm)と粒子成長調整剤のモル数(Cm)とのモル比(Cm/Zm)は0.01〜1、さらには0.1〜0.5の範囲にあることが好ましい。モル比が0.01未満の場合は、粗大なジルコニウム水酸化物ヒドロゲルが生成したり、不均一なジルコニウム水酸化物ヒドロゲルが生成し、このため、後述する工程(e)で水熱処理して得られるジルコニアゾルの粒子径が不均一であったり、平均粒子径が100nm以下とならないことがある。一方、前記モル比が1を越えてもさらに粒子径を均一にしたり、平均粒子径を小さく抑制する効果がさらに向上することもなく、加えて経済性が低下する問題がある。   In the step (a), the particle growth regulator or an aqueous solution of the particle growth regulator is mixed with the zirconium compound aqueous solution. At this time, the molar ratio (Cm / Zm) between the number of moles of zirconium compound (Zm) and the number of moles of grain growth regulator (Cm) is in the range of 0.01 to 1, more preferably 0.1 to 0.5. Preferably there is. When the molar ratio is less than 0.01, a coarse zirconium hydroxide hydrogel is formed or a heterogeneous zirconium hydroxide hydrogel is formed. Therefore, it is obtained by hydrothermal treatment in the step (e) described later. The particle diameter of the zirconia sol to be produced may not be uniform or the average particle diameter may not be 100 nm or less. On the other hand, even if the molar ratio exceeds 1, there is a problem that the particle size is not made uniform or the effect of suppressing the average particle size is not further improved, and the economy is lowered.

ついで、粒子成長調整剤を含むジルコニウム化合物水溶液を充分に撹拌しながら、これにアルカリ水溶液を加える。
アルカリ水溶液としては、NaOH水溶液、KOH水溶液等のアルカリ金属塩の水溶液の他、アンモニア水、有機アミン水溶液などの塩基性水溶液を用いることができる。
アルカリ水溶液はジルコニウム化合物水溶液のpHが3〜12、さらには4〜11の範囲となるように添加する。pHが3未満の場合は、ジルコニウム化合物の加水分解が不充分となったり、後述する工程(b)での洗浄が困難となることがあり、一方、pHが12を越えても後述する工程(b)での洗浄が困難となることがある。
なお、アルカリ水溶液を添加する際のジルコニウム化合物水溶液の温度は特に制限はないが、通常10〜50℃、さらには15〜40℃の範囲にあることが好ましい。
Next, an aqueous alkali compound solution is added to the zirconium compound aqueous solution containing the particle growth regulator while sufficiently stirring.
As the alkaline aqueous solution, an aqueous solution of an alkali metal salt such as an aqueous NaOH solution or an aqueous KOH solution, or a basic aqueous solution such as aqueous ammonia or organic amine can be used.
The aqueous alkali solution is added so that the zirconium compound aqueous solution has a pH of 3 to 12, more preferably 4 to 11. When the pH is less than 3, the hydrolysis of the zirconium compound may be insufficient, or washing in the step (b) described later may be difficult. On the other hand, even if the pH exceeds 12, the step described later ( Cleaning in b) may be difficult.
In addition, the temperature of the zirconium compound aqueous solution when adding the alkaline aqueous solution is not particularly limited, but it is usually preferably in the range of 10 to 50 ° C, more preferably 15 to 40 ° C.

工程(b)
次いで、生成したジルコニウム水酸化物ヒドロゲルの分散液を洗浄する。
洗浄方法としては、陽イオン、陰イオン、あるいは塩を除去できれば特に制限はなく、従来公知の方法を採用することができ、例えば、限外濾過膜法、濾過分離法、遠心分離濾過法、イオン交換樹脂法等が挙げられる。
なかでもイオン交換樹脂法は洗浄後のイオン濃度を効果的に低下させることができるので好ましい。この場合、予め限外濾過膜法で洗浄した後、イオン交換樹脂法で洗浄すると効率的である。イオン交換樹脂としては、両イオン交換樹脂を用いるか、陽イオン交換樹脂と陰イオン交換樹脂とを順次用いることができる。
Step (b)
Next, the produced dispersion of zirconium hydroxide hydrogel is washed.
The washing method is not particularly limited as long as it can remove cations, anions, or salts, and a conventionally known method can be adopted. For example, an ultrafiltration membrane method, a filtration separation method, a centrifugal filtration method, an ion Examples include the exchange resin method.
Among these, the ion exchange resin method is preferable because the ion concentration after washing can be effectively reduced. In this case, it is efficient to wash with an ion exchange resin method after washing with an ultrafiltration membrane method in advance. As the ion exchange resin, both ion exchange resins can be used, or a cation exchange resin and an anion exchange resin can be sequentially used.

洗浄後の電導度は20μS/cm以下、さらには10μS/cm以下であることが好ましい。洗浄後の電導度が20μS/cmを越えると、粒子成長調整剤の効果が充分得られないか、得られるジルコニアゾルの粒子径分布が不均一となる傾向がある。
また、このときの洗浄ジルコニウム水酸化物ヒドロゲル分散液のpHは概ね5〜8の範囲である。
The conductivity after washing is preferably 20 μS / cm or less, more preferably 10 μS / cm or less. When the electric conductivity after washing exceeds 20 μS / cm, the effect of the particle growth regulator cannot be obtained sufficiently, or the particle size distribution of the obtained zirconia sol tends to be non-uniform.
Further, the pH of the washed zirconium hydroxide hydrogel dispersion at this time is approximately in the range of 5-8.

工程(c)
ついで、前記洗浄したジルコニウム水酸化物ゲルを熟成する。
工程(b)で得た洗浄ジルコニウム水酸化物ヒドロゲル分散液の濃度はZrO2に換算して0.1〜20重量%、さらには0.2〜15重量%、特に0.5〜10重量%の範囲に調整することが好ましい。この濃度が0.1重量%未満の場合は、粒子径分布は均一になるものの収率、生産効率が低下する問題がある。一方、濃度が20重量%を越えると、得られるジルコニアゾルに凝集体が生成することがある。
この濃度を調整したジルコニウム水酸化物ヒドロゲル分散液を充分に撹拌しながら昇温して熟成する。該分散液は昇温する前または昇温中に超音波を照射するなどしてジルコニウム水酸化物ヒドロゲルの凝集体をできるだけ分散させておくことが好ましい。ジルコニウム水酸化物ヒドロゲルの凝集体を分散させておくと、得られるジルコニアゾルに粗大粒子が存在することがなく、また粒子径分布がより均一なジルコニアゾルが得られる傾向がある。
Step (c)
Next, the washed zirconium hydroxide gel is aged.
The concentration of the washed zirconium hydroxide hydrogel dispersion obtained in step (b) is 0.1 to 20% by weight, more preferably 0.2 to 15% by weight, especially 0.5 to 10% by weight in terms of ZrO 2. It is preferable to adjust to the range. When this concentration is less than 0.1% by weight, the particle size distribution becomes uniform, but there is a problem that the yield and production efficiency are lowered. On the other hand, if the concentration exceeds 20% by weight, aggregates may be formed in the resulting zirconia sol.
The zirconium hydroxide hydrogel dispersion having this concentration adjusted is aged by heating while sufficiently stirring. It is preferable to disperse the zirconium hydroxide hydrogel aggregate as much as possible by irradiating ultrasonic waves before or during the temperature rise. When the aggregate of the zirconium hydroxide hydrogel is dispersed, coarse particles are not present in the obtained zirconia sol, and a zirconia sol having a more uniform particle size distribution tends to be obtained.

熟成温度は100〜250℃、さらには120〜200℃の範囲にあることが好ましい。100℃未満の場合は、粒子成長に長時間を要したり、所望の屈折率あるいは所望の粒子径のジルコニアゾルを得ることが困難となることがある。熟成温度が250℃を越えても粒子成長時間がさらに短くなる効果は小さく、場合によっては粒子径分布が不均一になったり、粗大な粒子が生成することがある。
なお、熟成時間は特に制限はなく、熟成温度によって異なるが、通常0.5〜12時間である。
The aging temperature is preferably 100 to 250 ° C, more preferably 120 to 200 ° C. When the temperature is lower than 100 ° C., it may take a long time for particle growth, or it may be difficult to obtain a zirconia sol having a desired refractive index or a desired particle diameter. Even if the aging temperature exceeds 250 ° C., the effect of further shortening the particle growth time is small, and in some cases, the particle size distribution may be non-uniform or coarse particles may be generated.
The aging time is not particularly limited and varies depending on the aging temperature, but is usually 0.5 to 12 hours.

工程(d)
ついで、工程(c)で得られた熟成したジルコニウム水酸化物ヒドロゲルの分散液を洗浄する。洗浄方法としては、限外濾過膜法が好ましい。また、必要に応じて限外濾過膜法による洗浄の前および/または後にイオン交換樹脂による洗浄を行うこともできる。イオン交換樹脂法は洗浄後のイオン濃度を効果的に低下させることができるので好ましい。
ここで得られるゲル分散液の電導度は概ね200μS/cm以下であることが好ましい。また、ゲル分散液のpHは概ね3〜5の範囲であることが好ましい。電導度およびpHが前記範囲にあるとゲル分散液は安定性に優れている。
Step (d)
Next, the aged dispersion of zirconium hydroxide hydrogel obtained in step (c) is washed. As a washing method, an ultrafiltration membrane method is preferable. Further, if necessary, washing with an ion exchange resin can be performed before and / or after washing by the ultrafiltration membrane method. The ion exchange resin method is preferable because the ion concentration after washing can be effectively reduced.
The electric conductivity of the gel dispersion obtained here is preferably about 200 μS / cm or less. Further, the pH of the gel dispersion is preferably in the range of 3 to 5. When the electrical conductivity and pH are in the above ranges, the gel dispersion is excellent in stability.

工程(e)
ついで、粒子成長調整剤の存在下、前記洗浄したジルコニウム水酸化物ゲルの分散液を水熱処理する。
洗浄したジルコニウム水酸化物ヒドロゲル分散液に粒子成長調整剤または粒子成長調整剤水溶液を添加する。粒子成長調整剤としては前記したと同様のものを用いることができる。
このときの粒子成長調整剤の添加量は、ジルコニウム水酸化物ヒドロゲル分散液中のZrO2のモル数(Zmc)と粒子成長調整剤のモル数(Cmc)とのモル比Cmc/Zmcは0.05〜0.8、さらには0.1〜0.5の範囲にあることが好ましい。前記モル比Cmc/Zmcが0.05未満の場合は、得られるジルコニアゾル中に凝集体が生成したり、平均粒子径が100nm以下のジルコニアゾルを得るのが困難となることがある。前記モル比Cmc/Zmcが0.8を越えると、粒子成長あるいは結晶化が大きく抑制されるために所望の粒子径に成長させるのに長時間を要したり、結晶化(結晶子径の成長)が不充分なためか所望の屈折率あるいは所望の粒子径のジルコニアゾルを得ることが困難となることがある。
Step (e)
Next, the washed zirconium hydroxide gel dispersion is hydrothermally treated in the presence of a particle growth regulator.
A particle growth regulator or a particle growth regulator aqueous solution is added to the washed zirconium hydroxide hydrogel dispersion. As the particle growth regulator, the same ones as described above can be used.
The amount of the particle growth regulator added at this time is such that the molar ratio Cmc / Zmc between the number of moles of ZrO 2 in the zirconium hydroxide hydrogel dispersion (Zmc) and the number of moles of the grain growth regulator (Cmc) is 0. It is preferably in the range of 05 to 0.8, more preferably 0.1 to 0.5. When the molar ratio Cmc / Zmc is less than 0.05, aggregates may be generated in the obtained zirconia sol, or it may be difficult to obtain a zirconia sol having an average particle size of 100 nm or less. If the molar ratio Cmc / Zmc exceeds 0.8, particle growth or crystallization is greatly suppressed, so that it takes a long time to grow to a desired particle size or crystallization (growth of crystallite size). ) Is insufficient, it may be difficult to obtain a zirconia sol having a desired refractive index or a desired particle size.

ついで、粒子成長調整剤を含む洗浄したジルコニウム水酸化物ヒドロゲル分散液を充分に撹拌しながら昇温して、水熱処理をする。
水熱処理温度は100〜250℃、さらには120〜200℃の範囲にあることが好ましい。水熱処理温度が100℃未満の場合は、結晶化および粒子成長に長時間を要したり、屈折率の高いジルコニア粒子の分散したゾルを得ることが困難となることがある。水熱処理温度が250℃を越えても結晶化および粒子成長時間がさらに短くなる効果は小さく、場合によっては粒子径分布が不均一になったり、粗大な粒子が生成することがある。
なお、水熱処理時間は特に制限はなく、処理温度によって異なるが、通常0.5〜12時間である。
Next, the washed zirconium hydroxide hydrogel dispersion containing the particle growth regulator is heated with sufficient agitation to perform hydrothermal treatment.
The hydrothermal treatment temperature is preferably in the range of 100 to 250 ° C, more preferably 120 to 200 ° C. When the hydrothermal treatment temperature is less than 100 ° C., it may take a long time for crystallization and particle growth, or it may be difficult to obtain a sol in which zirconia particles having a high refractive index are dispersed. Even if the hydrothermal treatment temperature exceeds 250 ° C., the effect of further shortening the crystallization and particle growth time is small, and in some cases, the particle size distribution may be non-uniform or coarse particles may be generated.
The hydrothermal treatment time is not particularly limited and is usually 0.5 to 12 hours, although it varies depending on the treatment temperature.

工程(e)で得られたジルコニアゾルは、そのまま用いることもできるが、必要に応じて、濃縮または希釈して用いることができる。
濃縮する方法として、従来公知の方法を採用することができ、例えば、ロータリーエバポレーター等で加熱濃縮してもよく、さらには減圧下で加熱濃縮してもよく、限外濾過膜法で濃縮することもできる。
このようにして得られたジルコニアゾルの電導度は200μS/cm以下、さらには100μS/cm以下であることが好ましい。ジルコニアゾルの電導度が200μS/cmを越えると、安定性が不充分となることがある。また、このときのジルコニアゾルのpHは概ね3〜5の範囲である。
Although the zirconia sol obtained in the step (e) can be used as it is, it can be concentrated or diluted as necessary.
As a method of concentration, a conventionally known method can be employed. For example, it may be concentrated by heating with a rotary evaporator or the like, or further concentrated under reduced pressure, or concentrated by an ultrafiltration membrane method. You can also.
The conductivity of the zirconia sol thus obtained is preferably 200 μS / cm or less, more preferably 100 μS / cm or less. When the conductivity of the zirconia sol exceeds 200 μS / cm, the stability may be insufficient. Further, the pH of the zirconia sol at this time is approximately in the range of 3 to 5.

本発明のジルコニアゾルの製造方法では、前記工程(e)の後、工程(d)および/または工程(e)を繰り返し実施することができる。
繰り返し行う工程(d)の洗浄方法と工程(e)の熟成方法とは、前記したと同様に行うことができる。工程(d)を繰り返し行うことによって安定性が向上し、工程(e)を繰り返し行うことによって結晶性の向上、結晶子径の成長効果が得られる。
前記工程(d)および/または(e)工程を繰り返し実施した後のジルコニアゾルの電導度は100μS/cm以下、pHは概ね3〜4の範囲であることが好ましい。ジルコニアゾルの電導度およびpHがこの範囲にあるとジルコニアゾルはさらに安定性に優れている。
In the manufacturing method of the zirconia sol of this invention, a process (d) and / or a process (e) can be repeatedly implemented after the said process (e).
The washing method in the repeated step (d) and the aging method in the step (e) can be performed in the same manner as described above. By repeating the step (d), the stability is improved, and by repeating the step (e), the crystallinity is improved and the effect of growing the crystallite diameter is obtained.
It is preferable that the electric conductivity of the zirconia sol after repeating the step (d) and / or the step (e) is 100 μS / cm or less, and the pH is approximately in the range of 3-4. When the conductivity and pH of the zirconia sol are in this range, the zirconia sol is further excellent in stability.

さらに、本発明のジルコニアゾルの製造方法では、前記工程(e)または前記繰り返し実施した工程(e)の後、ジルコニアゾルを乾燥し、300〜800℃、より好ましくは500〜700℃の範囲で焼成し、微粉末を再び分散液に分散させてジルコニアゾルとすることができる。
乾燥方法としては従来公知の方法を採用することができ、例えば、ロータリーエバポレーターを用いて、あるいは加熱して濃縮し、通常100℃〜200℃で乾燥して分散媒を除去する。
乾燥したジルコニア微粉末の焼成温度が300℃未満の場合は、前記工程(e)、必要に応じて工程(e)を繰り返した場合と結晶度があまり変わらない。焼成温度が800℃を超えると、結晶度は高くなるが粒子径、結晶子径が大きくなり過ぎて用途が限定される。例えば、分散安定性、透明性等が低下し、被膜の強度あるいは透明性を必要とする被膜の形成には不向きである。
Furthermore, in the manufacturing method of the zirconia sol of this invention, after the said process (e) or the said repeatedly implemented process (e), a zirconia sol is dried, 300-800 degreeC, More preferably, it is the range of 500-700 degreeC. After baking, the fine powder can be dispersed again in the dispersion to form a zirconia sol.
As a drying method, a conventionally known method can be employed. For example, the solution is concentrated by using a rotary evaporator or by heating, and usually dried at 100 ° C. to 200 ° C. to remove the dispersion medium.
When the calcination temperature of the dried zirconia fine powder is less than 300 ° C., the crystallinity is not so different from the case where the step (e) and the step (e) are repeated as necessary. If the firing temperature exceeds 800 ° C., the crystallinity increases, but the particle diameter and crystallite diameter become too large, limiting the application. For example, the dispersion stability, transparency and the like are lowered, and it is not suitable for forming a film that requires the strength or transparency of the film.

焼成したジルコニア微粉末は分散媒に分散させ、必要に応じて分散機にて分散させて、ジルコニアゾルを得ることができる。
分散媒としては、水および/または有機溶媒を用いることができ、有機溶媒としてはアルコール類、グリコール類、エステル類、エーテル類、ケトン類等が挙げられる。
焼成したジルコニア微粉末の分散液の濃度は所望の濃度に調整することができるが、通常5〜30重量%の範囲で用いられる。
また、必要に応じて分散機にて分散させる場合、ジルコニア微粉末の分散液の濃度は、分散機の種類によっても異なるが、5〜30重量%、さらには10〜25重量%の範囲にあることが好ましい。分散液の濃度が5重量%未満の場合は、分散効率が悪くなり、場合によっては未分散の凝集物が残ることがある。一方、分散液の濃度が30重量%を超えると、分散した粒子が再凝集を起こすことがあり、高分散のジルコニアゾルが得られない場合がある。
The calcined zirconia fine powder can be dispersed in a dispersion medium and dispersed with a disperser as necessary to obtain a zirconia sol.
As the dispersion medium, water and / or an organic solvent can be used. Examples of the organic solvent include alcohols, glycols, esters, ethers, and ketones.
Although the density | concentration of the dispersion liquid of the baked zirconia fine powder can be adjusted to a desired density | concentration, it is normally used in 5-30 weight%.
Moreover, when it disperse | distributes with a disperser as needed, although the density | concentration of the dispersion liquid of a zirconia fine powder changes also with the kind of disperser, it exists in the range of 5-30 weight%, Furthermore, 10-25 weight%. It is preferable. When the concentration of the dispersion is less than 5% by weight, the dispersion efficiency is deteriorated, and in some cases, undispersed aggregates may remain. On the other hand, when the concentration of the dispersion exceeds 30% by weight, the dispersed particles may reaggregate, and a highly dispersed zirconia sol may not be obtained.

このようにして得られたジルコニアゾルの平均粒子径は5〜100nm、さらには10〜50nmの範囲にあることが好ましい。平均粒子径が5nm未満の場合は、ジルコニアの結晶化が不充分なためか屈折率が低下する傾向にある。平均粒子径が100nmを越えるものは得たとしても、ジルコニアゾルが白濁したり透明性が低く、用途に制限がある。
なお、上記ジルコニアゾルの平均粒子径は、透過型電子顕微鏡写真(TEM)を撮影し、50個の粒子について粒子径を測定し、これを平均して求めることができる。
The average particle diameter of the zirconia sol thus obtained is preferably 5 to 100 nm, more preferably 10 to 50 nm. When the average particle diameter is less than 5 nm, the refractive index tends to decrease because of insufficient crystallization of zirconia. Even if an average particle diameter exceeding 100 nm is obtained, the zirconia sol becomes cloudy or has low transparency, and there is a limit to applications.
The average particle size of the zirconia sol can be determined by taking a transmission electron micrograph (TEM), measuring the particle size of 50 particles, and averaging the particle sizes.

ジルコニアゾルの分散質であるジルコニア粒子の結晶子径は5〜40nm、さらには10〜30nmの範囲にあることが好ましい。結晶子径が5nm未満の場合は、結晶化、屈折率共に不充分であり、また、分散安定性も不充分となることがある。結晶子径が40nmを超えるものは、得られるゾルの透明性が低下し、用途に制限がある。
なお、結晶子径は、X線回折により、メインピーク(ミラー指数h=−1、k=1 、l=1 )の半価幅(β)より、Scherrerの式D=λ/βcosθ(D:結晶子径(Å)、λ=X線波長(Å)、θ=反射角)より求めることができる。
The crystallite diameter of the zirconia particles that are the dispersoid of the zirconia sol is preferably in the range of 5 to 40 nm, more preferably 10 to 30 nm. When the crystallite diameter is less than 5 nm, crystallization and refractive index are insufficient, and dispersion stability may be insufficient. When the crystallite diameter exceeds 40 nm, the transparency of the obtained sol is lowered, and the use is limited.
The crystallite diameter is determined by X-ray diffraction from the half width (β) of the main peak (Miller index h = −1, k = 1, 1 = 1), Scherrer's formula D = λ / βcos θ (D: It can be determined from the crystallite diameter (Å), λ = X-ray wavelength (Å), and θ = reflection angle).

本発明で得られた上記水を分散媒とするジルコニアゾルは、必要に応じてアルコール、グリコール、エステル、エーテル、ケトン等の有機溶媒に置換してジルコニアオルガノゾルとすることもできる。このようなジルコニアオルガノゾルは、例えば、樹脂基材あるいは光学材料として、樹脂レンズ基材等のハードコート膜の屈折率調整剤、反射防止膜等に好適に用いることができる。
本発明係るジルコニアゾルの製造方法で得られたジルコニアゾルは、標準屈折率液法で測定した屈折率が1.7〜2.2の範囲にある。
The zirconia sol using the water as a dispersion medium obtained in the present invention may be substituted with an organic solvent such as alcohol, glycol, ester, ether, ketone or the like as necessary to obtain a zirconia organosol. Such a zirconia organosol can be suitably used, for example, as a resin base material or an optical material, for a refractive index adjuster of a hard coat film such as a resin lens base material, an antireflection film, or the like.
The zirconia sol obtained by the method for producing a zirconia sol according to the present invention has a refractive index measured by a standard refractive index liquid method in the range of 1.7 to 2.2.

つぎに、本発明に係るジルコニアゾルは、平均粒子径が5〜100nmの範囲にあり、結晶子径が5〜40nmの範囲にあるジルコニア粒子が分散したものである。ジルコニア粒子の平均粒子径および結晶子径が前記範囲にあれば、ジルコニア粒子の粒子径分布が均一で、分散安定性に優れ、結晶性が高く高屈折率である。
平均粒子径のより好ましい範囲は10〜50nmであり、結晶子径のより好ましい範囲は10〜30nmである。このようなジルコニアゾルは、前記した本発明に係るジルコニアゾルの製造方法により得られる。
Next, the zirconia sol according to the present invention is obtained by dispersing zirconia particles having an average particle diameter in the range of 5 to 100 nm and a crystallite diameter in the range of 5 to 40 nm. If the average particle diameter and crystallite diameter of the zirconia particles are within the above ranges, the particle size distribution of the zirconia particles is uniform, excellent in dispersion stability, high in crystallinity and high refractive index.
A more preferable range of the average particle diameter is 10 to 50 nm, and a more preferable range of the crystallite diameter is 10 to 30 nm. Such a zirconia sol can be obtained by the above-described method for producing a zirconia sol according to the present invention.

ジルコニアゾル(1)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解し、これにリンゴ酸2.7g(Cm/Zm=0.1)を添加し、ついで、濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は10μS/cm、pHは6であった。
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間熟成した。このとき、電導度は640μS/cm、pHは2.53であった。
Preparation of zirconia sol (1) 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) was dissolved in 2432 g of pure water, and 2.7 g of malic acid (Cm / Zm = 0.1) was added thereto. Then, 313 g of a 10 wt% KOH aqueous solution was added to prepare a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%). At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1 wt%) had an electric conductivity of 10 μS / cm and a pH of 6.
Subsequently, the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%) was irradiated with ultrasonic waves for 1 hour to disperse the hydrogel, then filled in an autoclave and aged at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.

ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は16μS/cm、pHは3.9であった。
ついで、上記熟成し、洗浄した分散液をZrO2濃度1重量%に調整し、これに濃度2重量%のリンゴ酸水溶液134g(Cmc/Zmc=0.10)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は640μS/cm、pHは2.53であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は47μS/cm、pHは3.4であった。
その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(1)を調製した。得られたジルコニアゾル(1)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(1)の平均粒子径、結晶子径、pHおよび電導度を測定し、調製条件と共に結果を表1〜表3に示した。また、屈折率を以下の方法で測定し、結果を表3に示した。
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. The electric conductivity at this time was 16 μS / cm, and the pH was 3.9.
Next, the above ripened and washed dispersion was adjusted to a ZrO 2 concentration of 1% by weight, 134 g of malic acid aqueous solution having a concentration of 2% by weight (Cmc / Zmc = 0.10) was added thereto, and ultrasonic waves were irradiated for 1 hour. After the hydrogel was dispersed, the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.
110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion for deionization, followed by washing with ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 47 μS / cm, and the pH was 3.4.
Thereafter, it was concentrated to prepare a zirconia sol (1) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (1), coarse particles and fine particles were not observed. The average particle diameter, crystallite diameter, pH and conductivity of zirconia sol (1) were measured, and the results are shown in Tables 1 to 3 together with the preparation conditions. The refractive index was measured by the following method, and the results are shown in Table 3.

屈折率の測定
(1)ジルコニアゾルをエバポレーターに採り、分散媒を蒸発させる。
(2)120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折率液を2,3滴ガラス基板状に滴下し、これにジルコニア粉末を混合する。
(4)上記(3)の操作を種々の標準屈折率液で行い、混合液が透明になったときの標準屈折率液の屈折率をジルコニア粒子の屈折率とする。
Refractive index measurement (1) A zirconia sol is taken in an evaporator and the dispersion medium is evaporated.
(2) Dry at 120 ° C. to obtain a powder.
(3) A standard refractive index liquid having a known refractive index is dropped in the form of a few drops of glass substrate, and zirconia powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive index liquids, and the refractive index of the standard refractive index liquid when the mixed liquid becomes transparent is set as the refractive index of the zirconia particles.

(特徴:工程(e)のモル比0.05)
ジルコニアゾル(2)の調製
実施例1と同様にして熟成し、洗浄したZrO2濃度1重量%の分散液を調整し、これに濃度2重量%のリンゴ酸水溶液67g(Cmc/Zmc=0.05)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は400μS/cm、pHは3.60であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は30μS/cm、pHは4,2であった。
その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(2)を調製した。得られたジルコニアゾル(2)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(2)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
(Feature: molar ratio of step (e) 0.05)
Preparation of zirconia sol (2) A dispersion of 1% by weight of ZrO 2 ripened and washed in the same manner as in Example 1 was prepared, and 67 g of malic acid aqueous solution having a concentration of 2% by weight (Cmc / Zmc = 0. 05) was added and ultrasonic waves were applied for 1 hour to disperse the hydrogel, and then the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 400 μS / cm and the pH was 3.60.
110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion for deionization, followed by washing with ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 30 μS / cm and the pH was 4,2.
Thereafter, it was concentrated to prepare a zirconia sol (2) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (2), coarse particles and fine particles were not observed. The average particle diameter, refractive index, crystallite diameter, pH and conductivity of zirconia sol (2) were measured, and the results are shown in Table 3.

(特徴:工程(e)のモル比0.50)
ジルコニアゾル(3)の調製
実施例1と同様にして熟成し、洗浄したZrO2濃度1重量%の分散液を調整し、これに濃度2重量%のリンゴ酸水溶液670g(Cmc/Zmc=0.5)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は2200μS/cm、pHは2.10であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は180μS/cm、pHは2.9であった。
その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(3)を調製した。得られたジルコニアゾル(3)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(3)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
(Feature: molar ratio of step (e) 0.50)
Preparation of zirconia sol (3) A matured and washed dispersion of ZrO 2 having a concentration of 1% by weight was prepared in the same manner as in Example 1, and 670 g of a malic acid aqueous solution having a concentration of 2% by weight (Cmc / Zmc = 0. 5) was added and ultrasonic waves were applied for 1 hour to disperse the hydrogel, and then the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 2200 μS / cm and the pH was 2.10.
110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion for deionization, followed by washing with ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 180 μS / cm and the pH was 2.9.
Thereafter, it was concentrated to prepare a zirconia sol (3) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (3), coarse particles and fine particles were not observed. The average particle diameter, refractive index, crystallite diameter, pH and conductivity of zirconia sol (3) were measured, and the results are shown in Table 3.

(特徴:工程(a)のモル比0.05)
ジルコニアゾル(4)の調製
実施例1において、リンゴ酸1.4g(Cm/Zm=0.05)を添加した以外は同様にしてジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは11、温度は19℃であった。
ついで、限外濾過膜法での洗浄、陽イオン交換樹脂による脱イオン、陰イオン交換樹脂による脱イオンを行った。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.0μS/cm、pHは7.0であった。
ついで、実施例1と同様にして熟成した。熟成により得られたジルコニアゾルは、電導度は320μS/cm、pHは3.2であった。
ついで、陰イオン交換樹脂による脱イオンと限外濾過膜法による洗浄を行った。このときの電導度は45μS/cm、pHは4.3であった。
(Feature: molar ratio of step (a) 0.05)
Preparation of zirconia sol (4) In Example 1, a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%) was prepared in the same manner except that 1.4 g of malic acid (Cm / Zm = 0.05) was added. Prepared. The pH of the dispersion at this time was 11, and the temperature was 19 ° C.
Subsequently, washing with an ultrafiltration membrane method, deionization with a cation exchange resin, and deionization with an anion exchange resin were performed. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1% by weight) had an electric conductivity of 3.0 μS / cm and a pH of 7.0.
Subsequently, aging was carried out in the same manner as in Example 1. The zirconia sol obtained by aging had an electric conductivity of 320 μS / cm and a pH of 3.2.
Subsequently, deionization with an anion exchange resin and washing by an ultrafiltration membrane method were performed. At this time, the conductivity was 45 μS / cm and the pH was 4.3.

ついで、実施例1と同様にして熟成し、洗浄したZrO2濃度1重量%の分散液を調整し、これに濃度2重量%のリンゴ酸水溶液134g(Cmc/Zmc=0.10)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は630μS/cm、pHは2.58であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は42μS/cm、pHは3.6であった。
その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(4)を調製した。得られたジルコニアゾル(4)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(4)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
Next, a ripened and washed ZrO 2 concentration 1 wt% dispersion was prepared in the same manner as in Example 1, and 134 g of a 2 wt% malic acid aqueous solution (Cmc / Zmc = 0.10) was added thereto. After the hydrogel was dispersed by irradiating with ultrasonic waves for 1 hour, it was filled in an autoclave and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 630 μS / cm and the pH was 2.58.
110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion for deionization, followed by washing with ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 42 μS / cm, and the pH was 3.6.
Thereafter, it was concentrated to prepare a zirconia sol (4) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (4), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (4) were measured, and the results are shown in Table 3.

(特徴:工程(a)のモル比0.5)
ジルコニアゾル(5)の調製
実施例1において、リンゴ酸13.4g(Cm/Zm=0.5)を添加した以外は同様にしてジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは8.0、温度は20℃であった。
ついで、限外濾過膜法での洗浄、陽イオン交換樹脂による脱イオン、陰イオン交換樹脂による脱イオンを行った。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は20μS/cm、pHは5.5であった。
ついで、実施例1と同様にして熟成し、洗浄したZrO2濃度1重量%の分散液を調整し、これに濃度2重量%のリンゴ酸水溶液134g(Cmc/Zmc=0.10)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は690μS/cm、pHは2.41であった。
(Feature: molar ratio of step (a) 0.5)
Preparation of zirconia sol (5) In Example 1, except that 13.4 g of malic acid (Cm / Zm = 0.5) was added, a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) was prepared. Prepared. At this time, the pH of the dispersion was 8.0, and the temperature was 20 ° C.
Subsequently, washing with an ultrafiltration membrane method, deionization with a cation exchange resin, and deionization with an anion exchange resin were performed. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1% by weight) had an electric conductivity of 20 μS / cm and a pH of 5.5.
Next, a matured and washed dispersion of ZrO 2 concentration 1 wt% was prepared in the same manner as in Example 1, and 134 g of a 2 wt% malic acid aqueous solution (Cmc / Zmc = 0.10) was added thereto. After the hydrogel was dispersed by irradiating with ultrasonic waves for 1 hour, it was filled in an autoclave and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 690 μS / cm, and the pH was 2.41.

水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は60μS/cm、pHは3.1であった。
その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(5)を調製した。得られたジルコニアゾル(5)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(5)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion for deionization, followed by washing with ultrafiltration membrane method while supplying 3750 g of pure water. The electric conductivity at this time was 60 μS / cm, and the pH was 3.1.
Thereafter, it was concentrated to prepare a zirconia sol (5) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (5), coarse particles and fine particles were not observed. The average particle diameter, refractive index, crystallite diameter, pH and conductivity of zirconia sol (5) were measured, and the results are shown in Table 3.

(特徴:工程(a)の調整剤はクエン酸)
ジルコニアゾル(6)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解し、これにクエン酸酸一水和物7.7g(Cm/Zm=0.1)を添加し、ついで、濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は15μS/cm、pHは5.8であった。
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間熟成した。このとき、電導度は660μS/cm、pHは2.45であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は19μS/cm、pHは3.8であった。
(Characteristic: The adjusting agent in step (a) is citric acid)
Preparation of Zirconia Sol (6) 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) was dissolved in 2432 g of pure water, and 7.7 g of citric acid monohydrate (Cm / Zm = 0) 0.1) was added, and then 313 g of a 10 wt% KOH aqueous solution was added to prepare a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%). At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1 wt%) had an electric conductivity of 15 μS / cm and a pH of 5.8.
Subsequently, the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%) was irradiated with ultrasonic waves for 1 hour to disperse the hydrogel, then filled in an autoclave and aged at 200 ° C. for 2 hours. At this time, the conductivity was 660 μS / cm, and the pH was 2.45.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 19 μS / cm and the pH was 3.8.

ついで、実施例1と同様にして熟成し、洗浄したZrO2濃度1重量%の分散液を調整し、これに濃度2重量%のクエン酸水溶液210g(Cmc/Zmc=0.10)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は640μS/cm、pHは2.53であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は50μS/cm、pHは3.4であった。
その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(6)を調製した。得られたジルコニアゾル(6)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(6)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
Next, an aged and washed dispersion of ZrO 2 having a concentration of 1% by weight was prepared in the same manner as in Example 1, and 210 g of an aqueous citric acid solution having a concentration of 2% by weight (Cmc / Zmc = 0.10) was added thereto. After the hydrogel was dispersed by irradiating with ultrasonic waves for 1 hour, it was filled in an autoclave and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.
110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion for deionization, followed by washing with ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 50 μS / cm and the pH was 3.4.
Thereafter, it was concentrated to prepare a zirconia sol (6) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (6), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (6) were measured, and the results are shown in Table 3.

(特徴:工程(a)の調整剤は酒石酸)
ジルコニアゾル(7)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解し、これに酒石酸3g(Cm/Zm=0.1)を添加し、ついで、濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.6μS/cm、pHは7.0であった。
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間熟成した。このとき、電導度は655μS/cm、pHは2.50であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は20μS/cm、pHは3.7であった。
(Characteristic: The regulator in step (a) is tartaric acid)
Preparation of zirconia sol (7) 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) was dissolved in 2432 g of pure water, and 3 g of tartaric acid (Cm / Zm = 0.1) was added thereto. Then, 313 g of a 10 wt% KOH aqueous solution was added to prepare a zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%). At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The conductivity of the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) thus obtained was 3.6 μS / cm, and the pH was 7.0.
Subsequently, the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%) was irradiated with ultrasonic waves for 1 hour to disperse the hydrogel, then filled in an autoclave and aged at 200 ° C. for 2 hours. At this time, the conductivity was 655 μS / cm and the pH was 2.50.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 20 μS / cm and the pH was 3.7.

ついで、実施例1と同様にして熟成し、洗浄したZrO2濃度1重量%の分散液を調整し、これに濃度2重量%の酒石酸水溶液150g(Cmc/Zmc=0.10)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は640μS/cm、pHは2.53であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は54μS/cm、pHは3.3であった。
その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(7)を調製した。得られたジルコニアゾル(7)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(7)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
Next, an aged and washed dispersion of ZrO 2 having a concentration of 1% by weight was prepared in the same manner as in Example 1, and 150 g of an aqueous tartaric acid solution having a concentration of 2% by weight (Cmc / Zmc = 0.10) was added thereto. The hydrogel was dispersed by sonication for 1 hour, then filled in an autoclave, and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.
110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion for deionization, followed by washing with ultrafiltration membrane method while supplying 3750 g of pure water. The electric conductivity at this time was 54 μS / cm, and the pH was 3.3.
Thereafter, it was concentrated to prepare a zirconia sol (7) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (7), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (7) were measured, and the results are shown in Table 3.

(特徴:実施例1で工程(d)、工程(e)の反復)
ジルコニアゾル(8)の調製
実施例1と同様にしてジルコニアゾル(1)を調製した。ついで、ジルコニアゾル(1)をZrO2濃度1重量%に希釈し、これに濃度2重量%のリンゴ酸水溶液134g(Cmc/Zmc=0.10)を加え、オートクレーブに充填し、200℃で2時間水熱処理した。このときの電導度は700μS/cm、pHは2.42であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は52μS/cm、pHは3.6であった。その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(8)を調製した。得られたジルコニアゾル(8)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(8)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
(Feature: Repeating steps (d) and (e) in Example 1)
Preparation of zirconia sol (8) A zirconia sol (1) was prepared in the same manner as in Example 1. Next, zirconia sol (1) was diluted to a ZrO 2 concentration of 1% by weight, and 134 g of malic acid aqueous solution (Cmc / Zmc = 0.10) having a concentration of 2% by weight was added thereto. Hydrothermal treatment was performed for an hour. At this time, the electric conductivity was 700 μS / cm and the pH was 2.42.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 52 μS / cm and the pH was 3.6. Thereafter, it was concentrated to prepare a zirconia sol (8) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (8), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (8) were measured, and the results are shown in Table 3.

(特徴:実施例5で工程(d)、工程(e)の反復)
ジルコニアゾル(9)の調製
実施例5と同様にしてジルコニアゾル(5)を調製した。ついで、ジルコニアゾル(5)をZrO2濃度1重量%に希釈し、これに濃度2重量%のリンゴ酸水溶液134g(Cmc/Zmc=0.10)を加え、オートクレーブに充填し、200℃で2時間水熱処理した。このときの電導度は730μS/cm、pHは2.35であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は65μS/cm、pHは3.0であった。その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(9)を調製した。得られたジルコニアゾル(9)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(9)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
(Feature: Repeating step (d) and step (e) in Example 5)
Preparation of zirconia sol (9) A zirconia sol (5) was prepared in the same manner as in Example 5. Next, the zirconia sol (5) was diluted to a ZrO 2 concentration of 1% by weight, 134 g of malic acid aqueous solution having a concentration of 2% by weight (Cmc / Zmc = 0.10) was added to the zirconia sol (5), and the autoclave was filled. Hydrothermal treatment was performed for an hour. At this time, the electric conductivity was 730 μS / cm and the pH was 2.35.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 65 μS / cm and the pH was 3.0. Thereafter, it was concentrated to prepare a zirconia sol (9) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (9), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (9) were measured, and the results are shown in Table 3.

(特徴:実施例1で焼成工程実施)
ジルコニアゾル(10)の調製
実施例1と同様にしてジルコニアゾル(1)を調製した。ついで、ジルコニアゾル(1)をロータリーエバポレーターを用いて濃縮し、120℃で2時間乾燥してジルコニア微粉末を得た。
ついで、ジルコニア微粉末を650℃で2時間焼成した。焼成したジルコニア微粉末を水に分散させ、ZrO2濃度15重量%の分散液とし、分散機(カンペ(株)製:BATCH SAND)にて分散させ、ついで、希釈してZrO2濃度2.9重量%のジルコニアゾル(10)を調製した。得られたジルコニアゾル(10)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(10)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
(Feature: Implementation of firing process in Example 1)
Preparation of zirconia sol (10) A zirconia sol (1) was prepared in the same manner as in Example 1. Subsequently, the zirconia sol (1) was concentrated using a rotary evaporator and dried at 120 ° C. for 2 hours to obtain a fine zirconia powder.
Next, the zirconia fine powder was fired at 650 ° C. for 2 hours. The calcined zirconia fine powder is dispersed in water to form a dispersion having a ZrO 2 concentration of 15% by weight, dispersed in a disperser (manufactured by Campe Co., Ltd .: BATCH SAND), and then diluted to obtain a ZrO 2 concentration of 2.9. A weight percent zirconia sol (10) was prepared. In TEM observation of the obtained zirconia sol (10), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (10) were measured, and the results are shown in Table 3.

(特徴:実施例7で焼成工程実施)
ジルコニアゾル(11)の調製
実施例7と同様にしてジルコニアゾル(7)を調製した。ついで、ジルコニアゾル(7)をロータリーエバポレーターを用いて濃縮し、120℃で2時間乾燥してジルコニア微粉末を得た。
ついで、ジルコニア微粉末を650℃で2時間焼成した。焼成したジルコニア微粉末を水に分散させ、ZrO2濃度15重量%の分散液とし、分散機(カンペ(株)製:BATCH SAND)にて分散させ、ついで、希釈してZrO2濃度2.9重量%のジルコニアゾル(11)を調製した。得られたジルコニアゾル(11)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(11)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
(Feature: Implementation of firing process in Example 7)
Preparation of zirconia sol (11) A zirconia sol (7) was prepared in the same manner as in Example 7. Subsequently, the zirconia sol (7) was concentrated using a rotary evaporator and dried at 120 ° C. for 2 hours to obtain a fine zirconia powder.
Next, the zirconia fine powder was fired at 650 ° C. for 2 hours. The calcined zirconia fine powder is dispersed in water to form a dispersion having a ZrO 2 concentration of 15% by weight, dispersed in a disperser (manufactured by Campe Co., Ltd .: BATCH SAND), and then diluted to obtain a ZrO 2 concentration of 2.9. A weight percent zirconia sol (11) was prepared. In TEM observation of the obtained zirconia sol (11), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (11) were measured, and the results are shown in Table 3.

(特徴:実施例8で焼成工程実施)
ジルコニアゾル(12)の調製
実施例8と同様にしてジルコニアゾル(8)を調製した。ついで、ジルコニアゾル(8)をロータリーエバポレーターを用いて濃縮し、120℃で2時間乾燥してジルコニア微粉末を得た。
ついで、ジルコニア微粉末を650℃で2時間焼成した。焼成したジルコニア微粉末を水に分散させ、ZrO2濃度15重量%の分散液とし、分散機(カンペ(株)製:BATCH SAND)にて分散させ、ついで、希釈してZrO2濃度2.9重量%のジルコニアゾル(12)を調製した。得られたジルコニアゾル(12)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(12)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
(Feature: Implementation of firing process in Example 8)
Preparation of zirconia sol (12) A zirconia sol (8) was prepared in the same manner as in Example 8. Subsequently, the zirconia sol (8) was concentrated using a rotary evaporator and dried at 120 ° C. for 2 hours to obtain a fine zirconia powder.
Next, the zirconia fine powder was fired at 650 ° C. for 2 hours. The calcined zirconia fine powder is dispersed in water to form a dispersion having a ZrO 2 concentration of 15% by weight, dispersed in a disperser (manufactured by Campe Co., Ltd .: BATCH SAND), and then diluted to obtain a ZrO 2 concentration of 2.9. A weight percent zirconia sol (12) was prepared. In TEM observation of the obtained zirconia sol (12), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (12) were measured, and the results are shown in Table 3.

比較例1Comparative Example 1

(特徴:実施例1で粒子成長調整剤無添加)
ジルコニアゾル(R1)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解した水溶液に濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは12.0、温度は20℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.5μS/cm、pHは7.3であった。
(Feature: No grain growth regulator added in Example 1)
Preparation of zirconia sol (R1)
Zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1) was added to an aqueous solution prepared by dissolving 65.5 g of zirconium oxychloride octahydrate (ZrOCl 2 .8H 2 O) in 2432 g of pure water. % By weight) was prepared. At this time, the pH of the dispersion was 12.0, and the temperature was 20 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1% by weight) had an electric conductivity of 3.5 μS / cm and a pH of 7.3.

ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は200μS/cm、pHは4.8であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は1μS/cm、pHは6.8であった。その後、濃縮してジルコニアゾル(R1)を調製した。得られたジルコニアゾル(R1)のTEM観察では約40nmの一次粒子が凝集した平均粒子径が115nmの二次粒子であった。
ジルコニアゾル(R1)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
Next, the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) was irradiated with ultrasonic waves for 1 hour to disperse the hydrogel, then filled in an autoclave, and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 200 μS / cm and the pH was 4.8.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 1 μS / cm and the pH was 6.8. Thereafter, it was concentrated to prepare zirconia sol (R1). In the TEM observation of the obtained zirconia sol (R1), it was secondary particles having an average particle diameter of 115 nm in which primary particles of about 40 nm were aggregated.
The average particle diameter, refractive index, crystallite diameter, pH and conductivity of zirconia sol (R1) were measured, and the results are shown in Table 3.

比較例2Comparative Example 2

(特徴:実施例1で熟成工程だけ粒子成長調整剤を添加)
ジルコニアゾル(R2)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解した水溶液に濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは12.0、温度は20℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は3.5μS/cm、pHは7.3であった。
(Characteristic: Addition of particle growth regulator only in the aging step in Example 1)
Preparation of zirconia sol (R2) Zirconium hydroxide hydrogel was prepared by adding 313 g of 10 wt% KOH aqueous solution to an aqueous solution in which 65.5 g of zirconium oxychloride octahydrate ( ZrOCl 2 .8H 2 O) was dissolved in 2432 g of pure water. A dispersion (ZrO 2 concentration 1% by weight) was prepared. At this time, the pH of the dispersion was 12.0, and the temperature was 20 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1% by weight) had an electric conductivity of 3.5 μS / cm and a pH of 7.3.

ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に濃度2重量%のリンゴ酸水溶液134g(Cmc/Zmc=0.10)を加え、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理した。水熱処理によりジルコニアゾルが得られたが、電導度は650μS/cm、pHは2.65であった。
ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は50μS/cm、pHは3.45であった。その後、濃縮してジルコニアゾル(R2)を調製した。得られたジルコニアゾル(R2)のTEM観察では約25nmの一次粒子が凝集した平均粒子径が105nmの二次粒子であった。
ジルコニアゾル(R2)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
Next, 134 g of malic acid aqueous solution (Cmc / Zmc = 0.10) having a concentration of 2% by weight was added to the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight), and ultrasonic waves were irradiated for 1 hour to After the dispersion treatment, the autoclave was filled and hydrothermally treated at 200 ° C. for 2 hours. A zirconia sol was obtained by hydrothermal treatment, but the conductivity was 650 μS / cm and the pH was 2.65.
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the electric conductivity was 50 μS / cm and the pH was 3.45. Thereafter, it was concentrated to prepare zirconia sol (R2). In the TEM observation of the obtained zirconia sol (R2), it was secondary particles having an average particle diameter of 105 nm in which primary particles of about 25 nm were aggregated.
The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (R2) were measured, and the results are shown in Table 3.

比較例3Comparative Example 3

(特徴:特許文献3の実施例1を追試)
ジルコニアゾル(R3)の調製
炭酸ジルコニウムアンモニウム水溶液(ZrO2濃度13重量%)1300gを調製し、これに、撹拌下グリコール酸1040gを徐々に添加した。ついで、徐々に昇温し、100℃で15時間維持し、ついで常温に冷却した。このときジルコニア微粒子分散液のpHは7であった。ついで、希釈してZrO2濃度2.9重量%のジルコニアゾル(R3)を調製した。
得られたジルコニアゾル(R3)のTEM観察では、2〜8nm程度の微粒子が2〜4個連結し、かつ粗大な凝集体が観察された。
ジルコニアゾル(R3)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
(Feature: Reexamination of Example 1 of Patent Document 3)
Preparation of Zirconia Sol (R3) 1300 g of ammonium zirconium carbonate aqueous solution (ZrO 2 concentration 13 wt%) was prepared, and 1040 g of glycolic acid was gradually added thereto with stirring. Then, the temperature was gradually raised, maintained at 100 ° C. for 15 hours, and then cooled to room temperature. At this time, the pH of the zirconia fine particle dispersion was 7. Subsequently, it was diluted to prepare a zirconia sol (R3) having a ZrO 2 concentration of 2.9% by weight.
In TEM observation of the obtained zirconia sol (R3), 2 to 4 fine particles of about 2 to 8 nm were linked and coarse aggregates were observed.
The average particle diameter, refractive index, crystallite diameter, pH and conductivity of zirconia sol (R3) were measured, and the results are shown in Table 3.

比較例4Comparative Example 4

(特徴:実施例1で工程(a)だけ粒子成長調整剤を添加)
ジルコニアゾル(R4)の調製
純水2432gにオキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)65.5gを溶解し、これにリンゴ酸2.7g(Cm/Zm=0.1)を添加し、ついで、濃度10重量%のKOH水溶液313gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)95gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)50gを加え脱イオンした。このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は10μS/cm、pHは6であった。
ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間熟成した。このとき、電導度は640μS/cm、pHは2.53であった。
(Characteristic: Addition of particle growth regulator only in step (a) in Example 1)
Preparation of zirconia sol (R4)
Dissolve 65.5 g of zirconium oxychloride octahydrate (ZrOCl 2 .8H 2 O) in 2432 g of pure water, add 2.7 g of malic acid (Cm / Zm = 0.1), and then add a concentration of 10 wt. A zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) was prepared by adding 313 g of an aqueous KOH solution. At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.
Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 95 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) for deionization. Next, after the cation exchange resin was separated, 50 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization. The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1 wt%) had an electric conductivity of 10 μS / cm and a pH of 6.
Subsequently, the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%) was irradiated with ultrasonic waves for 1 hour to disperse the hydrogel, then filled in an autoclave and aged at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.

ついで、陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は47μS/cm、pHは3.4であった。
ついで、熟成し、洗浄した分散液をZrO2濃度1重量%に調整し、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は640μS/cm、pHは2.53であった。
水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)110gを加えて脱イオンを行い、ついで純水3750gを供給しながら限外濾過膜法で洗浄した。このときの電導度は47μS/cm、pHは3.4であった。
その後、濃縮してZrO2濃度2.9重量%のジルコニアゾル(R4)を調製した。得られたジルコニアゾル(R4)のTEM観察では粗大粒子および微細粒子が認められなかった。ジルコニアゾル(R4)の平均粒子径、屈折率、結晶子径、pHおよび電導度を測定し、結果を表3に示した。
Next, 110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added for deionization, followed by washing with an ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 47 μS / cm, and the pH was 3.4.
Next, the aged and washed dispersion was adjusted to a ZrO 2 concentration of 1% by weight, subjected to ultrasonic treatment for 1 hour to disperse the hydrogel, filled in an autoclave, and hydrothermally treated at 200 ° C. for 2 hours. . At this time, the conductivity was 640 μS / cm and the pH was 2.53.
110 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to the hydrothermally treated dispersion for deionization, followed by washing with ultrafiltration membrane method while supplying 3750 g of pure water. At this time, the conductivity was 47 μS / cm, and the pH was 3.4.
Thereafter, it was concentrated to prepare a zirconia sol (R4) having a ZrO 2 concentration of 2.9% by weight. In TEM observation of the obtained zirconia sol (R4), coarse particles and fine particles were not observed. The average particle size, refractive index, crystallite size, pH and conductivity of zirconia sol (R4) were measured, and the results are shown in Table 3.

Figure 2006143535
Figure 2006143535

Figure 2006143535
Figure 2006143535

Figure 2006143535
Figure 2006143535

Claims (13)

下記の工程(a)〜(e)からなることを特徴とする、平均粒子径が5〜100nmの範囲にあるジルコニア微粒子が分散したゾルの製造方法。
(a)粒子成長調整剤の存在下、ジルコニウム化合物水溶液にアルカリ水溶液を加えてジルコニウム水酸化物ゲルの分散液を調製する工程
(b)前記ジルコニウム水酸化物ゲルを洗浄する工程
(c)前記洗浄したジルコニウム水酸化物ゲルの分散液を熟成する工程
(d)前記熟成したジルコニウム水酸化物ゲルを洗浄する工程
(e)粒子成長調整剤の存在下、前記洗浄したジルコニウム水酸化物ゲルの分散液を水熱処理する工程
A method for producing a sol in which zirconia fine particles having an average particle diameter in the range of 5 to 100 nm are dispersed, comprising the following steps (a) to (e).
(A) A step of preparing a dispersion of a zirconium hydroxide gel by adding an alkaline aqueous solution to a zirconium compound aqueous solution in the presence of a particle growth regulator (b) a step of washing the zirconium hydroxide gel (c) the washing (D) a step of rinsing the aged zirconium hydroxide gel; (e) a step of washing the aged zirconium hydroxide gel; and (e) a dispersion of the washed zirconium hydroxide gel in the presence of a particle growth regulator. Hydrothermal treatment process
ゾルのpHが3〜5の範囲にある請求項1記載のジルコニアゾルの製造方法。   The method for producing a zirconia sol according to claim 1, wherein the pH of the sol is in the range of 3 to 5. 前記工程(e)で得られたジルコニア微粒子分散ゾルを濃縮または希釈する請求項1記載のジルコニアゾルの製造方法。   The method for producing a zirconia sol according to claim 1, wherein the zirconia fine particle-dispersed sol obtained in the step (e) is concentrated or diluted. 前記粒子成長調整剤がカルボン酸またはヒドロキシカルボン酸である請求項1記載のジルコニアゾルの製造方法。   The method for producing a zirconia sol according to claim 1, wherein the particle growth regulator is a carboxylic acid or a hydroxycarboxylic acid. 前記水熱処理を100〜250℃の温度範囲で行う請求項1記載のジルコニアゾルの製造方法。   The method for producing a zirconia sol according to claim 1, wherein the hydrothermal treatment is performed in a temperature range of 100 to 250 ° C. 前記工程(e)を繰り返し行う請求項1記載のジルコニアゾルの製造方法。   The method for producing a zirconia sol according to claim 1, wherein the step (e) is repeated. 前記工程(e)と共に工程(d)を繰り返し行う請求項1記載のジルコニアゾルの製造方法。   The manufacturing method of the zirconia sol of Claim 1 which repeats a process (d) with the said process (e). 前記(b)工程でジルコニウム水酸化物ゲル分散液の電導度を20μS/cm以下とする請求項1記載のジルコニアゾルの製造方法。   The method for producing a zirconia sol according to claim 1, wherein the conductivity of the zirconium hydroxide gel dispersion is set to 20 µS / cm or less in the step (b). 前記(e)工程でジルコニアゾルの電導度を200μS/cm以下とする請求項1記載のジルコニアゾルの製造方法。   The manufacturing method of the zirconia sol of Claim 1 which sets the electric conductivity of a zirconia sol to 200 microsiemens / cm or less at the said (e) process. 前記工程(e)または前記繰り返し実施した工程(e)の後、ジルコニアゾルを乾燥し、300〜800℃の範囲で焼成し、得られたジルコニア微粉末を再び分散液に分散させることを特徴とする請求項1〜9のいずれかに記載のジルコニアゾルの製造方法。   After the step (e) or the repeated step (e), the zirconia sol is dried and calcined in the range of 300 to 800 ° C., and the obtained zirconia fine powder is dispersed again in the dispersion. The manufacturing method of the zirconia sol in any one of Claims 1-9. 平均粒子径が5〜100nmの範囲にあり、結晶子径が5〜40nmの範囲にあるジルコニア粒子が分散したジルコニア酸性ゾル。   A zirconia acidic sol in which zirconia particles having an average particle diameter in the range of 5 to 100 nm and a crystallite diameter in the range of 5 to 40 nm are dispersed. 請求項1〜10のいずれかに記載のジルコニアゾルの製造方法によって得られた、結晶子径が5〜40nmの範囲にあるジルコニア粒子が分散したジルコニア酸性ゾル。   A zirconia acidic sol in which zirconia particles having a crystallite diameter in the range of 5 to 40 nm are dispersed, obtained by the method for producing a zirconia sol according to claim 1. ゾルのpHが3〜5の範囲にある請求項11または12記載のジルコニア酸性ゾル。

The zirconia acidic sol according to claim 11 or 12, wherein the sol has a pH of 3 to 5.

JP2004336595A 2004-11-19 2004-11-19 Method for producing zirconia sol Active JP4705361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336595A JP4705361B2 (en) 2004-11-19 2004-11-19 Method for producing zirconia sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336595A JP4705361B2 (en) 2004-11-19 2004-11-19 Method for producing zirconia sol

Publications (2)

Publication Number Publication Date
JP2006143535A true JP2006143535A (en) 2006-06-08
JP4705361B2 JP4705361B2 (en) 2011-06-22

Family

ID=36623653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336595A Active JP4705361B2 (en) 2004-11-19 2004-11-19 Method for producing zirconia sol

Country Status (1)

Country Link
JP (1) JP4705361B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182604A (en) * 2004-12-28 2006-07-13 Catalysts & Chem Ind Co Ltd Method for producing metal oxide sol and metal oxide sol
JP2007070212A (en) * 2005-09-02 2007-03-22 Daiichi Kigensokagaku Kogyo Co Ltd SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME
JP2008031023A (en) * 2006-07-28 2008-02-14 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia sol and method for producing the same
JP2008081325A (en) * 2006-09-25 2008-04-10 Tosoh Corp Zirconia fine powder and its manufacturing method
JP2008290896A (en) * 2007-05-23 2008-12-04 Nissan Chem Ind Ltd Producing method of zirconia sol
JP2009114008A (en) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd Zirconium oxide fine powder, method for producing the same, and resin composition comprising the same
JP2009132819A (en) * 2007-11-30 2009-06-18 Jgc Catalysts & Chemicals Ltd Process for producing modified zirconia fine particles, coating liquid for forming transparent film containing modified zirconia fine particles and substrate with transparent film
JP2009167085A (en) * 2007-12-20 2009-07-30 Jgc Catalysts & Chemicals Ltd Method for producing zirconia sol
WO2010064664A1 (en) 2008-12-04 2010-06-10 堺化学工業株式会社 Zirconium oxide dispersion, process for production thereof, and resin compositions containing same
WO2010074105A1 (en) 2008-12-24 2010-07-01 堺化学工業株式会社 Zirconium oxide dispersion and manufacturing method therefor
US7829061B2 (en) 2007-07-06 2010-11-09 Hitachi Maxwell, Ltd. Zirconium oxide hydrate particles and method for producing the same
JP2010270094A (en) * 2008-06-09 2010-12-02 Sumitomo Chemical Co Ltd Zirconium oxalate sol
CN102531053A (en) * 2011-12-30 2012-07-04 创兴精细化学(上海)有限公司 Composition of nano-zirconia particles and nano-zirconia particles, as well as monodisperse hydrosol of nano-zirconia particles and preparation method thereof
JP2013139378A (en) * 2012-01-03 2013-07-18 Eternal Chemical Co Ltd Zirconium oxide nanoparticles and hydrosol of the same and composition and method for manufacturing zirconium oxide nanoparticles
US8748001B2 (en) 2007-08-31 2014-06-10 Jgc Catalysts And Chemicals Ltd. Substrate with hard coat film and coating solution for forming hard coat film comprising core-shell composite oxide surface-treated with an organic silicon compound
KR20140078995A (en) 2012-12-18 2014-06-26 니끼 쇼꾸바이 카세이 가부시키가이샤 Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method
KR101517369B1 (en) 2007-12-20 2015-05-15 니끼 쇼꾸바이 카세이 가부시키가이샤 Process for preparing zirconia sol
US9254651B2 (en) 2012-03-27 2016-02-09 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, and methods of manufacturing liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
JP2020033194A (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
WO2020045165A1 (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
JP2020033195A (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
JP2021191728A (en) * 2015-10-27 2021-12-16 マグネシウム エレクトロン リミテッド Acid zirconium hydroxide
WO2023013289A1 (en) * 2021-08-04 2023-02-09 三井金属鉱業株式会社 Zirconic acid solution, method for producing same, zirconium oxide powder, and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116809A (en) * 1984-07-03 1986-01-24 新技術事業団 Method of adjusting grain size of ceramic raw material
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation
JPS6325205A (en) * 1986-07-14 1988-02-02 コ−ニング グラス ワ−クス Manufacture of metallic oxide particle
JPH02137730A (en) * 1988-11-16 1990-05-28 Toray Ind Inc Production of organic solvent-based crystallized zirconia-based sol
JPH05139704A (en) * 1991-11-19 1993-06-08 Teika Corp Production of fine particle-shaped metal oxide
JPH06166519A (en) * 1992-11-27 1994-06-14 Mitsubishi Materials Corp Production of zirconia sol
JPH09235119A (en) * 1996-03-04 1997-09-09 Nissan Chem Ind Ltd Aqueous sol of low-active zirconia and production thereof
JP2003206475A (en) * 2001-09-26 2003-07-22 Hitachi Maxell Ltd Nonmagnetic platy particle, method for producing the same and abrasive, polishing material and polishing liquid using the particle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116809A (en) * 1984-07-03 1986-01-24 新技術事業団 Method of adjusting grain size of ceramic raw material
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation
JPS6325205A (en) * 1986-07-14 1988-02-02 コ−ニング グラス ワ−クス Manufacture of metallic oxide particle
JPH02137730A (en) * 1988-11-16 1990-05-28 Toray Ind Inc Production of organic solvent-based crystallized zirconia-based sol
JPH05139704A (en) * 1991-11-19 1993-06-08 Teika Corp Production of fine particle-shaped metal oxide
JPH06166519A (en) * 1992-11-27 1994-06-14 Mitsubishi Materials Corp Production of zirconia sol
JPH09235119A (en) * 1996-03-04 1997-09-09 Nissan Chem Ind Ltd Aqueous sol of low-active zirconia and production thereof
JP2003206475A (en) * 2001-09-26 2003-07-22 Hitachi Maxell Ltd Nonmagnetic platy particle, method for producing the same and abrasive, polishing material and polishing liquid using the particle

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182604A (en) * 2004-12-28 2006-07-13 Catalysts & Chem Ind Co Ltd Method for producing metal oxide sol and metal oxide sol
JP2007070212A (en) * 2005-09-02 2007-03-22 Daiichi Kigensokagaku Kogyo Co Ltd SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME
JP2008031023A (en) * 2006-07-28 2008-02-14 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia sol and method for producing the same
JP2008081325A (en) * 2006-09-25 2008-04-10 Tosoh Corp Zirconia fine powder and its manufacturing method
KR101444949B1 (en) * 2007-05-23 2014-09-26 닛산 가가쿠 고교 가부시키 가이샤 Process for production of zirconia sol
CN101311121B (en) * 2007-05-23 2012-07-04 日产化学工业株式会社 Preparation of zirconia sol
JP2008290896A (en) * 2007-05-23 2008-12-04 Nissan Chem Ind Ltd Producing method of zirconia sol
US7829061B2 (en) 2007-07-06 2010-11-09 Hitachi Maxwell, Ltd. Zirconium oxide hydrate particles and method for producing the same
US8748001B2 (en) 2007-08-31 2014-06-10 Jgc Catalysts And Chemicals Ltd. Substrate with hard coat film and coating solution for forming hard coat film comprising core-shell composite oxide surface-treated with an organic silicon compound
JP2009114008A (en) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd Zirconium oxide fine powder, method for producing the same, and resin composition comprising the same
JP2009132819A (en) * 2007-11-30 2009-06-18 Jgc Catalysts & Chemicals Ltd Process for producing modified zirconia fine particles, coating liquid for forming transparent film containing modified zirconia fine particles and substrate with transparent film
JP2009167085A (en) * 2007-12-20 2009-07-30 Jgc Catalysts & Chemicals Ltd Method for producing zirconia sol
KR101517369B1 (en) 2007-12-20 2015-05-15 니끼 쇼꾸바이 카세이 가부시키가이샤 Process for preparing zirconia sol
JP2010270094A (en) * 2008-06-09 2010-12-02 Sumitomo Chemical Co Ltd Zirconium oxalate sol
AU2009331269B2 (en) * 2008-12-04 2013-10-03 Sakai Chemical Industry Co., Ltd. Zirconium oxide dispersion and manufacturing method therefor
WO2010064664A1 (en) 2008-12-04 2010-06-10 堺化学工業株式会社 Zirconium oxide dispersion, process for production thereof, and resin compositions containing same
US20110245397A1 (en) * 2008-12-04 2011-10-06 Kenichi Nakagawa Dispersion of zirconium oxide, process for producing the same, and resin composition containing the same
US9751776B2 (en) 2008-12-04 2017-09-05 Sakai Chemical Industry Co., Ltd. Dispersion of zirconium oxide, process for producing the same, and resin composition containing the same
KR20110098746A (en) 2008-12-04 2011-09-01 사까이가가꾸고오교가부시끼가이샤 Dispersion of zirconium oxide, process for producing the same, and resin composition containing the same
KR101647167B1 (en) 2008-12-04 2016-08-09 사까이가가꾸고오교가부시끼가이샤 Dispersion of zirconium oxide, process for producing the same, and resin composition containing the same
EP2371768A4 (en) * 2008-12-04 2012-09-05 Sakai Chemical Industry Co Zirconium oxide dispersion, process for production thereof, and resin compositions containing same
EP2371768A1 (en) * 2008-12-04 2011-10-05 Sakai Chemical Industry Co., Ltd. Zirconium oxide dispersion, process for production thereof, and resin compositions containing same
JP2010132494A (en) * 2008-12-04 2010-06-17 Sakai Chem Ind Co Ltd Zirconium oxide dispersion, method for producing the same and resin composition containing the same
AU2009323304B2 (en) * 2008-12-04 2013-09-05 Sakai Chemical Industry Co., Ltd. Zirconium oxide dispersion, process for production thereof, and resin compositions containing same
US20130333592A1 (en) * 2008-12-24 2013-12-19 Sakai Chemical Industry Co., Ltd. Dispersion of zirconium oxide and process for producing the same
WO2010074105A1 (en) 2008-12-24 2010-07-01 堺化学工業株式会社 Zirconium oxide dispersion and manufacturing method therefor
US20110260122A1 (en) * 2008-12-24 2011-10-27 Kenichi Nakagawa Dispersion of zirconium oxide and process for producing the same
US8524124B2 (en) * 2008-12-24 2013-09-03 Sakai Chemical Industry Co., Ltd. Dispersion of zirconium oxide and process for producing the same
RU2529219C2 (en) * 2008-12-24 2014-09-27 Сакай Кемикал Индастри Ко., Лтд. Zirconium oxide dispersion and method of obtaining it
JP2010150066A (en) * 2008-12-24 2010-07-08 Sakai Chem Ind Co Ltd Zirconium oxide dispersion and method for producing the same
US9416244B2 (en) * 2008-12-24 2016-08-16 Sakai Chemical Industry Co., Ltd. Dispersion of zirconium oxide and process for producing the same
KR101592624B1 (en) 2008-12-24 2016-02-05 사까이가가꾸고오교가부시끼가이샤 Zirconium oxide dispersion and manufacturing method therefor
CN102531053A (en) * 2011-12-30 2012-07-04 创兴精细化学(上海)有限公司 Composition of nano-zirconia particles and nano-zirconia particles, as well as monodisperse hydrosol of nano-zirconia particles and preparation method thereof
KR101482176B1 (en) 2012-01-03 2015-01-14 이터널 머티리얼스 씨오., 엘티디. Zirconium oxide nanoparticles and hydrosol of the same and composition and method for manufacturing zirconium oxide nanoparticles
JP2013139378A (en) * 2012-01-03 2013-07-18 Eternal Chemical Co Ltd Zirconium oxide nanoparticles and hydrosol of the same and composition and method for manufacturing zirconium oxide nanoparticles
US9254651B2 (en) 2012-03-27 2016-02-09 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, and methods of manufacturing liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
KR20140078995A (en) 2012-12-18 2014-06-26 니끼 쇼꾸바이 카세이 가부시키가이샤 Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method
JP2021191728A (en) * 2015-10-27 2021-12-16 マグネシウム エレクトロン リミテッド Acid zirconium hydroxide
US11760653B2 (en) 2015-10-27 2023-09-19 Magnesium Elektron Limited Acidic zirconium hydroxide
JP7291179B2 (en) 2015-10-27 2023-06-14 マグネシウム エレクトロン リミテッド acid zirconium hydroxide
JP2020033194A (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
WO2020045163A1 (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
WO2020045164A1 (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
JP2020033195A (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
JP2020033196A (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
WO2020045165A1 (en) * 2018-08-27 2020-03-05 堺化学工業株式会社 Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
WO2023013289A1 (en) * 2021-08-04 2023-02-09 三井金属鉱業株式会社 Zirconic acid solution, method for producing same, zirconium oxide powder, and method for producing same
JP7345078B2 (en) 2021-08-04 2023-09-14 三井金属鉱業株式会社 Zirconium acid solution and its manufacturing method, zirconium oxide powder and its manufacturing method

Also Published As

Publication number Publication date
JP4705361B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4705361B2 (en) Method for producing zirconia sol
JP5013671B2 (en) Method for producing metal oxide sol and metal oxide sol
JP5253095B2 (en) Method for producing zirconia sol
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
JP2005179111A (en) Method for manufacturing zirconia sol
US6884406B2 (en) Process for preparing an alumina composition
JP4171850B2 (en) Modified titanium oxide-zirconium oxide-stannic oxide composite sol and method for producing the same
KR20110082625A (en) Titanium oxide sol manufacturing method
JP2013119131A (en) Silica-based composite particle and production method thereof
JP5356639B2 (en) Zirconia fine powder and method for producing the same
EP2969957A2 (en) Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same
JP2008031023A (en) Zirconia sol and method for producing the same
JP4891021B2 (en) Method for producing niobium oxide fine particles
JPWO2012023621A1 (en) Method for producing dispersion of rutile titanium oxide particles
EP2380851B1 (en) Method for producing yttrium oxide-stabilized zirconium oxide sol
JP5223828B2 (en) Anatase type ultrafine particle titanium oxide, dispersion containing anatase type ultrafine particle titanium oxide, and method for producing the titanium oxide
JP2007332026A (en) Zirconia sintered compact
JP6198379B2 (en) Modified zirconia fine particle powder, modified zirconia fine particle dispersed sol and method for producing the same
JP2004203729A (en) Method for manufacturing silica sol and silica sol
CN107108372A (en) The manufacture method of β eucryptite particulates
KR101517369B1 (en) Process for preparing zirconia sol
JP2000178020A (en) High purity silica aqueous sol and its production
JP6052780B2 (en) Method for producing alumina hydrate fine particle powder and alumina hydrate fine particle powder
JP6300313B2 (en) Rutile-type titanium oxide sol and method for producing the same
JP5108279B2 (en) Method for producing aqueous dispersion containing chain silica-based fine particle group, aqueous dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250