JP6286852B2 - Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles - Google Patents

Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles Download PDF

Info

Publication number
JP6286852B2
JP6286852B2 JP2013076382A JP2013076382A JP6286852B2 JP 6286852 B2 JP6286852 B2 JP 6286852B2 JP 2013076382 A JP2013076382 A JP 2013076382A JP 2013076382 A JP2013076382 A JP 2013076382A JP 6286852 B2 JP6286852 B2 JP 6286852B2
Authority
JP
Japan
Prior art keywords
particles
conductive
plating layer
mother
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013076382A
Other languages
Japanese (ja)
Other versions
JP2014203546A (en
Inventor
邦彦 赤井
邦彦 赤井
英介 羽場
英介 羽場
格 山浦
格 山浦
俊輔 上田
俊輔 上田
渡辺 靖
靖 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013076382A priority Critical patent/JP6286852B2/en
Publication of JP2014203546A publication Critical patent/JP2014203546A/en
Application granted granted Critical
Publication of JP6286852B2 publication Critical patent/JP6286852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電粒子、異方導電性接着剤及び導電粒子の製造方法に関する。   The present invention relates to a conductive particle, an anisotropic conductive adhesive, and a method for producing a conductive particle.

近年、液晶やPDP等のフラットパネルディスプレイの発展が著しい。これらフラットパネルディスプレイの画像を制御するために、多数の集積回路(IC)が使用されており、パネル側の電極とIC側の電極の接続には、異方導電性接着剤(ACF)が使用されている。異方導電性接着剤は、液体又はペースト状の異方導電ペーストと、フィルム状の異方導電フィルムとに大別される。   In recent years, the development of flat panel displays such as liquid crystal and PDP has been remarkable. Many integrated circuits (ICs) are used to control the images of these flat panel displays, and anisotropic conductive adhesive (ACF) is used to connect the electrodes on the panel side and the electrodes on the IC side. Has been. The anisotropic conductive adhesive is roughly classified into a liquid or paste-like anisotropic conductive paste and a film-like anisotropic conductive film.

異方導電性接着剤をパネル側の電極とICとの間に挟み、パネル側の電極とIC側の電極とが対向する方向において異方導電性接着剤を加圧しながら加熱することにより、接着剤が硬化して、パネル上にICが実装される。このとき、加圧方向において対向する電極間には異方導電性接着剤中に分散した導電粒子が介在して、電極間の導通が確保される。非加圧方向(加圧方向に垂直な方向)において隣接する電極間には接着剤が満たされて、電極間の絶縁が確保される。このように、異方導電性接着剤には、加圧方向において対向する電極間の導通性(低い導通抵抗)と、非加圧方向において隣接する電極間の絶縁性(絶縁信頼性)との2つの特性が要求される。   Adhesion by sandwiching an anisotropic conductive adhesive between the panel side electrode and the IC, and heating while pressing the anisotropic conductive adhesive in the direction in which the panel side electrode and the IC side electrode face each other. The agent is cured and the IC is mounted on the panel. At this time, conductive particles dispersed in the anisotropic conductive adhesive are interposed between the electrodes facing each other in the pressurizing direction, so that conduction between the electrodes is ensured. Adhesives are filled between adjacent electrodes in the non-pressurizing direction (direction perpendicular to the pressurizing direction), and insulation between the electrodes is ensured. As described above, the anisotropic conductive adhesive has a conductivity between the electrodes facing each other in the pressurizing direction (low conduction resistance) and an insulating property between the adjacent electrodes in the non-pressurizing direction (insulation reliability). Two characteristics are required.

近年、電極間の狭ピッチ化が進み、隣接電極間の絶縁性の確保がより強く求められており、導電粒子の小径化が進んでいる。しかし、導電粒子の小径化が進むと、実装後の対向電極間の距離が短くなり、実装後の温度環境変化に伴って対向電極間の距離が変化したとき、接続安定性(対向電極間の導通抵抗の安定性)が損なわれることがあった。そこで、実装時に導電粒子を大きく変形させて、導電粒子の金属層を電極表面に密着させることにより、接続安定性の確保することが検討された。しかし、金属層を備える導電粒子を大きく変形させた場合、金属層の破損(亀裂又は割れ等)が発生し、異方導電性接着剤の接続安定性及び絶縁信頼性を低下させるおそれがあった。特に、低価格であり製造が容易であることから金属層として多用されるNiめっき層では、その厚さが20〜300nm程度であることにも起因して、金属層の破損が発生しやすい傾向があった。   In recent years, the pitch between electrodes has been reduced, and insulation between adjacent electrodes has been strongly demanded, and the diameter of conductive particles has been reduced. However, as the diameter of the conductive particles becomes smaller, the distance between the opposing electrodes after mounting becomes shorter, and when the distance between the opposing electrodes changes along with the temperature environment change after mounting, the connection stability (between the opposing electrodes) The stability of the conduction resistance) may be impaired. Therefore, it has been studied to ensure connection stability by greatly deforming the conductive particles during mounting and bringing the metal layer of the conductive particles into close contact with the electrode surface. However, if the conductive particles provided with the metal layer are greatly deformed, the metal layer may be damaged (cracked or cracked), which may reduce the connection stability and insulation reliability of the anisotropic conductive adhesive. . In particular, Ni plating layers that are frequently used as metal layers because they are inexpensive and easy to manufacture tend to cause damage to the metal layers due to the thickness being about 20 to 300 nm. was there.

上記のような金属層の変形時の破損を抑制する技術として、特許文献1及び2には、延性に優れるAu又はCuからなる金属層を樹脂微粒子の表面に形成する技術が開示されている。しかしながら、Auは高価であるため金属層に用い難い。また、Cuはマイグレーションを起こし易く、ショート不良を発生させてしまう。   As techniques for suppressing breakage of the metal layer as described above, Patent Documents 1 and 2 disclose techniques for forming a metal layer made of Au or Cu having excellent ductility on the surface of resin fine particles. However, since Au is expensive, it is difficult to use it for the metal layer. Further, Cu is liable to cause migration and cause a short circuit defect.

下記特許文献3には、結晶性の異なるNiめっき層を、樹脂微粒子の表面に順次積層することにより、割れ難い導電層を形成する技術が開示されている。下記特許文献4には、粒界の配向方向が互いに異なる2つのNi層から金属層から導電層を構成することにより、衝撃による導電層の破損を抑制する技術が開示されている。下記特許文献5は、金属層の最外殻をNi−Pd合金から形成することにより、金属層の導通性と延性を向上させる技術が開示されている。しかしながら、特許文献3〜5に開示された技術は、いずれも無電解めっきを用いた手法であるため、これらの技術によって、金属層の耐久性(破壊強度)、異方導電性接着剤の導通性を改善することには限界があった。   Patent Document 3 below discloses a technique for forming a conductive layer that is difficult to break by sequentially laminating Ni plating layers having different crystallinity on the surface of resin fine particles. Patent Document 4 listed below discloses a technique for suppressing damage to a conductive layer due to impact by forming a conductive layer from a metal layer from two Ni layers having different grain boundary orientation directions. Patent Document 5 below discloses a technique for improving the conductivity and ductility of a metal layer by forming the outermost shell of the metal layer from a Ni-Pd alloy. However, since all the techniques disclosed in Patent Documents 3 to 5 are techniques using electroless plating, the durability (breaking strength) of the metal layer and the conduction of the anisotropic conductive adhesive are achieved by these techniques. There was a limit to improving the sex.

特開2003−157717号公報JP 2003-157717 A 特開2008−101260号公報JP 2008-101260 A 特許第4235227号公報Japanese Patent No. 4235227 特開2004−197160号公報Japanese Patent Laid-Open No. 2004-197160 特開2010−027569号公報JP 2010-027569 A

本発明は、めっき層の破損を抑制することができる導電粒子、当該導電粒子を含み、接続安定性に優れ、十分な絶縁信頼性を有する、異方導電性接着剤、及び当該導電粒子の製造方法を提供することを目的とする。   The present invention provides an anisotropic conductive adhesive including conductive particles capable of suppressing breakage of a plating layer, the conductive particles, excellent connection stability, and sufficient insulation reliability, and manufacture of the conductive particles. It aims to provide a method.

本発明に係る導電粒子の一態様は、球状のコア粒子と、コア粒子を被覆するめっき層と、を備え、めっき層がカーボンナノチューブを含有する。   One aspect of the conductive particles according to the present invention includes spherical core particles and a plating layer that covers the core particles, and the plating layer contains carbon nanotubes.

上記本発明の一態様では、めっき層中のカーボンナノチューブの含有量は、導電粒子全体の質量に対して、0.0000001〜1.0質量%であることが好ましく、0.0000005〜0.5質量%であることがより好ましい。   In one embodiment of the present invention, the content of carbon nanotubes in the plating layer is preferably 0.0000001 to 1.0% by mass with respect to the total mass of the conductive particles, and is preferably 0.0000005 to 0.5. More preferably, it is mass%.

上記本発明の一態様では、導電粒子の断面を電子顕微鏡で観察したとき、めっき層中にカーボンナノチューブが存在することが好ましい。   In one embodiment of the present invention, it is preferable that carbon nanotubes exist in the plating layer when the cross section of the conductive particles is observed with an electron microscope.

上記本発明の一態様では、めっき層表面のラマンスペクトルは、ピークの波数が1560〜1610cm−1であるGバンドと、ピークの波数が1335〜1375cm−1であるDバンドとを有していてよい。 In one aspect of the present invention, the Raman spectrum of the plating layer surface, have a G band wavenumber peak is 1560~1610Cm -1, wave number of peaks and a D band is 1335~1375Cm -1 Good.

上記本発明の一態様では、めっき層に含まれるカーボンナノチューブ及び金属のうち、金属のみが前記めっき層の表面に露出していてもよい。   In the above aspect of the present invention, only the metal may be exposed on the surface of the plating layer among the carbon nanotubes and the metal included in the plating layer.

上記本発明の一態様は、めっき層を被覆する導電層を備えてもよい。   One embodiment of the present invention may include a conductive layer that covers the plating layer.

本発明に係る異方導電性接着剤の一態様は、上記導電粒子を含む。   One aspect of the anisotropic conductive adhesive according to the present invention includes the conductive particles.

本発明に係る導電粒子の製造方法の一態様は、めっき成分、カーボンナノチューブ及び球状のコア粒子を含む混合液中で、コア粒子を被覆するめっき層を形成する工程を備える。   One aspect of the method for producing conductive particles according to the present invention includes a step of forming a plating layer covering the core particles in a mixed solution containing a plating component, carbon nanotubes, and spherical core particles.

本発明に係る導電粒子の製造方法の一態様は、球状のコア粒子を含有する液体に、カーボンナノチューブの分散液及びめっき液を同時に又は交互に加えて、コア粒子を被覆するめっき層を形成する工程を備える。   In one embodiment of the method for producing conductive particles according to the present invention, a dispersion containing carbon nanotubes and a plating solution are added simultaneously or alternately to a liquid containing spherical core particles to form a plating layer covering the core particles. A process is provided.

上記本発明に係る導電粒子の製造方法の一態様では、コア粒子を含有する液体に、めっき液を加えた後、さらにめっき液及びカーボンナノチューブの分散液を同時に加えて、めっき層を形成してもよい。   In one aspect of the method for producing conductive particles according to the present invention, after adding a plating solution to a liquid containing core particles, a plating solution and a dispersion of carbon nanotubes are added simultaneously to form a plating layer. Also good.

上記本発明に係る導電粒子の製造方法の一態様では、コア粒子を含有する液体に、カーボンナノチューブの分散液及びめっき液を同時に加えた後、さらにめっき液のみを加えて、めっき層を形成してもよい。   In one aspect of the method for producing conductive particles according to the present invention, a dispersion liquid of carbon nanotubes and a plating solution are simultaneously added to a liquid containing core particles, and then only a plating solution is added to form a plating layer. May be.

上記本発明に係る導電粒子の製造方法の一態様では、めっき層中のカーボンナノチューブの含有量を、導電粒子全体の質量に対して、好ましくは0.0000001〜1.0質量%、より好ましくは0.0000005〜0.5質量%に調整する。   In one aspect of the method for producing conductive particles according to the present invention, the content of carbon nanotubes in the plating layer is preferably 0.0000001 to 1.0% by mass, more preferably, relative to the mass of the entire conductive particles. It adjusts to 0.0000005-0.5 mass%.

上記本発明に係る導電粒子の製造方法の一態様は、めっき層の表面を被覆する導電層を形成する工程を備えてもよい。   One aspect of the method for producing conductive particles according to the present invention may include a step of forming a conductive layer that covers the surface of the plating layer.

本発明によれば、めっき層の破損を抑制することができる導電粒子、当該導電粒子を含み、接続安定性に優れ、十分な絶縁信頼性を有する、異方導電性接着剤、及び当該導電粒子の製造方法を提供することができる。   According to the present invention, the anisotropic conductive adhesive including the conductive particles capable of suppressing the breakage of the plating layer, the conductive particles, having excellent connection stability and sufficient insulation reliability, and the conductive particles The manufacturing method of can be provided.

図1は、本発明の第一実施形態に係る導電粒子の概略断面図である。FIG. 1 is a schematic cross-sectional view of conductive particles according to the first embodiment of the present invention. 図2は、本発明の第二実施形態に係る導電粒子の概略断面図である。FIG. 2 is a schematic cross-sectional view of conductive particles according to the second embodiment of the present invention. 図3は、本発明の第三実施形態に係る導電粒子の概略断面図である。FIG. 3 is a schematic cross-sectional view of conductive particles according to the third embodiment of the present invention. 図4aは、本発明の第三実施形態に係る導電粒子を備える異方導電性接着剤の概略断面図であり、図4b及び図4cは、異方導電性接着剤を用いた接続構造体の作製方法を説明するための概略断面図である。FIG. 4a is a schematic cross-sectional view of an anisotropic conductive adhesive provided with conductive particles according to the third embodiment of the present invention, and FIGS. 4b and 4c are diagrams of a connection structure using an anisotropic conductive adhesive. It is a schematic sectional drawing for demonstrating the preparation method.

以下、発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments for carrying out the invention will be described in detail. However, the present invention is not limited to the following embodiments.

[第一実施形態]
<導電粒子>
図1に示すように、本発明の第一実施形態に係る導電粒子8aは、コア粒子11と、コア粒子11を被覆するめっき層12と、を備える。以下では、第一実施形態に係る導電粒子8a(表面に絶縁性粒子を備えない導電粒子)を、場合により「母粒子2a」と記す。
[First embodiment]
<Conductive particles>
As shown in FIG. 1, the conductive particle 8 a according to the first embodiment of the present invention includes a core particle 11 and a plating layer 12 that covers the core particle 11. Hereinafter, the conductive particles 8a according to the first embodiment (conductive particles having no insulating particles on the surface) are sometimes referred to as “mother particles 2a”.

(コア粒子)
コア粒子11は球状である。導電粒子8aも球状であることが好ましい。対向する電極間に配置された導電粒子が加圧等により変形したときに、球状の各導電粒子は均一に変形するため、接続安定性が向上し易くなる。このような理由から、コア粒子11の平面への投影像の長辺a及び短辺bは、0.7≦b/a≦1を満たすことが好ましく、0.80≦b/a≦1を満たすことがより好ましく、0.9≦b/a≦1の関係を満たすことがさらに好ましい。
(Core particles)
The core particle 11 is spherical. The conductive particles 8a are also preferably spherical. When the conductive particles arranged between the opposing electrodes are deformed by pressure or the like, the spherical conductive particles are uniformly deformed, so that the connection stability is easily improved. For this reason, the long side a and the short side b of the projected image of the core particle 11 on the plane preferably satisfy 0.7 ≦ b / a ≦ 1, and 0.80 ≦ b / a ≦ 1. It is more preferable to satisfy | fill, and it is still more preferable to satisfy | fill the relationship of 0.9 <= b / a <= 1.

コア粒子11の平均粒子径は、図4cの第一の電極5と第二の電極7との最小の間隔よりも小さいことが好ましい。また、コア粒子11の平均粒子径は、電極の高さ(電極の間隔)にばらつきがある場合、高さのばらつきよりも大きいことが好ましい。これらの理由から、コア粒子11の平均粒子径は、0.5〜100μmであることが好ましく、1〜50μmであることがより好ましく、1〜10μmであることがさらに好ましい。   The average particle diameter of the core particles 11 is preferably smaller than the minimum distance between the first electrode 5 and the second electrode 7 in FIG. Further, the average particle diameter of the core particles 11 is preferably larger than the height variation when the height of the electrodes (electrode spacing) varies. For these reasons, the average particle diameter of the core particles 11 is preferably 0.5 to 100 μm, more preferably 1 to 50 μm, and even more preferably 1 to 10 μm.

コア粒子11としては、金属、有機物及び無機物のいずれからなるものであってもよいが、樹脂からなる粒子(樹脂粒子)であることが好ましい。   The core particles 11 may be made of any of metals, organic substances, and inorganic substances, but are preferably particles (resin particles) made of a resin.

上記樹脂粒子としては、特に制限はないが、ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン及びポリブタジエン等のポリオレフィン樹脂、ポリスチレン、ジビニルベンゼン重合体、ジビニルベンゼン−スチレン共重合体、並びにベンゾグアナミンホルムアルデヒド樹脂等からなる樹脂粒子が好ましい。   The resin particles are not particularly limited, but are acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyolefin resins such as polyethylene, polypropylene, polyisobutylene and polybutadiene, polystyrene, divinylbenzene polymer, divinylbenzene-styrene copolymer. Resin particles composed of coalesced and benzoguanamine formaldehyde resins are preferred.

(めっき層)
めっき層12はカーボンナノチューブ(以下、「CNT」という。)を含有する。めっき層12がCNTを含有することで、めっき層の抵抗が低下し、導電粒子の導電性が向上する。CNTを含有するめっき層12は、破壊強度及び延性に優れるため、導電粒子8aを圧縮した場合に亀裂、割れ等を生じにくい。よって、めっき層12の亀裂、割れに伴うマイグレーション(めっき層中の金属の溶出)も起きにくい。その結果、異方導電性接着剤の絶縁信頼性が向上する。また、CNTを含有するめっき層12は割れ難いため、導電粒子が変形してもその導電性が変化し難い。その結果、異方導電性接着剤の接続安定性が向上する。めっき層12は、コア粒子11の表面全体を被覆することが好ましい。これにより、上記効果が顕著になる。
(Plating layer)
The plating layer 12 contains carbon nanotubes (hereinafter referred to as “CNT”). When the plating layer 12 contains CNT, the resistance of the plating layer is lowered and the conductivity of the conductive particles is improved. Since the plating layer 12 containing CNT is excellent in fracture strength and ductility, cracks, cracks, and the like are less likely to occur when the conductive particles 8a are compressed. Therefore, cracking of the plating layer 12 and migration accompanying the cracking (elution of metal in the plating layer) hardly occur. As a result, the insulation reliability of the anisotropic conductive adhesive is improved. Moreover, since the plating layer 12 containing CNT is hard to break, even if the conductive particles are deformed, its conductivity is difficult to change. As a result, the connection stability of the anisotropic conductive adhesive is improved. The plating layer 12 preferably covers the entire surface of the core particle 11. Thereby, the said effect becomes remarkable.

めっき層12の厚さは、5nm以上1000nm以下であることが好ましい。めっき層12の厚さが5nm以上であるとき、導電粒子が変形しても、めっき層が割れ難く、導電粒子の優れた導電性を維持し易い。同様の理由から、めっき層12の厚さが、10nm以上であることがより好ましく、20nm以上であることがさらに好ましい。めっき層12の厚さが1000nm以下であるとき、めっき層12の硬度が導電粒子全体の硬度に及ぼす影響が小さくなり、コア粒子の変形回復力(変形時の復元力)が発現し易く、異方導電性接着剤の接続信頼性が向上し易い。同様の理由から、めっき層12の厚さが、500nm以下であることがより好ましく、200nm以下であることがさらに好ましい。   The thickness of the plating layer 12 is preferably 5 nm or more and 1000 nm or less. When the thickness of the plating layer 12 is 5 nm or more, even if the conductive particles are deformed, the plating layer is difficult to break and it is easy to maintain the excellent conductivity of the conductive particles. For the same reason, the thickness of the plating layer 12 is more preferably 10 nm or more, and further preferably 20 nm or more. When the thickness of the plating layer 12 is 1000 nm or less, the influence of the hardness of the plating layer 12 on the hardness of the entire conductive particle is reduced, and the deformation recovery force (restoration force at the time of deformation) of the core particle is easily expressed. It is easy to improve the connection reliability of the conductive adhesive. For the same reason, the thickness of the plating layer 12 is more preferably 500 nm or less, and further preferably 200 nm or less.

CNTの平均直径(平均太さ)は1〜1000nmであることが好ましい。CNTの平均直径が1000nm以下である場合、CNTの平均直径がめっき層12の厚さ以下となり易く、また、CNTが曲がりやすくなる。このため、球状のコア粒子を被覆するめっき層12中にもCNTが取り込まれ易くなり、めっき層12の割れを抑制する効果が得られ易い。同様の理由から、CNTの平均直径は、500nm以下であることがより好ましく、200nm以下であることがさらに好ましい。CNTの平均直径が1nm以上である場合、めっき層12の強度を向上し易い。   It is preferable that the average diameter (average thickness) of CNT is 1-1000 nm. When the average diameter of the CNT is 1000 nm or less, the average diameter of the CNT tends to be equal to or less than the thickness of the plating layer 12, and the CNT is easily bent. For this reason, CNTs are easily taken into the plating layer 12 covering the spherical core particles, and an effect of suppressing cracking of the plating layer 12 is easily obtained. For the same reason, the average diameter of the CNT is more preferably 500 nm or less, and further preferably 200 nm or less. When the average diameter of CNT is 1 nm or more, it is easy to improve the strength of the plating layer 12.

CNTの平均長さは1〜5000nmであることが好ましい。CNTの平均長さが1nm以上である場合、めっき層12の強度を向上させ易くなる。CNTの平均長さが5000nm以下である場合、CNTの平均長さがめっき層12の厚さ以下となり易く、CNTがめっき層12表面に露出し難くなり、電極間のショートが抑制され易い。同様の理由から、CNTの平均長さは1000nm以下であることがより好ましい。   The average length of the CNT is preferably 1 to 5000 nm. When the average length of CNT is 1 nm or more, it becomes easy to improve the strength of the plating layer 12. When the average length of the CNT is 5000 nm or less, the average length of the CNT is likely to be equal to or less than the thickness of the plating layer 12, the CNT is difficult to be exposed on the surface of the plating layer 12, and a short circuit between the electrodes is easily suppressed. For the same reason, the average length of CNTs is more preferably 1000 nm or less.

CNTの平均直径、平均長さ及び先端部の最小曲率半径等の寸法は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)又は原子間力顕微鏡(AFM)によるCNTの観察に基づいて測定すればよい。各寸法の平均値は、例えば10個のCNTの寸法から算出すればよい。CNTの各寸法は、めっき層を酸で溶解して得た液中に分散したCNTの観察によって測定してもよい。   Dimensions such as the average diameter, average length, and minimum radius of curvature of the tip of the CNT are based on the observation of the CNT with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or an atomic force microscope (AFM). Just measure. What is necessary is just to calculate the average value of each dimension, for example from the dimension of ten CNT. Each dimension of CNT may be measured by observing CNT dispersed in a solution obtained by dissolving a plating layer with an acid.

CNTは炭素-炭素結合のみから構成されていることが好ましい。つまり、CNTの純度は高いことが好ましい。CNTは柔軟性を有することが好ましい。   CNTs are preferably composed only of carbon-carbon bonds. That is, it is preferable that the purity of CNT is high. CNTs preferably have flexibility.

CNTはそれを構成する層(グラフェンシート)の数を基準として、一層構造の単層カーボンナノチューブ(シングルウォールカーボンナノチューブ)、二層構造のダブルウォールカーボンナノチューブ(DWCNT)、三層以上から構成される構造の多層(マルチウォール)カーボンナノチューブ(MWCNT)等に分類される。MWCNTとは、換言すれば、円筒状に閉じた複数のグラフェンシートが入れ子状に積層された構造を有する。めっき層12は、SWCNT、DWCNT及びMWCNTからなる群より選ばれる少なくとも1種を含有してもよいし、2種以上を含有してもよい。   The CNT is composed of a single-layer carbon nanotube (single wall carbon nanotube), a double-wall carbon nanotube (DWCNT), and three or more layers based on the number of layers (graphene sheets) constituting the CNT. It is classified into a multilayer (multi-wall) carbon nanotube (MWCNT) having a structure. In other words, the MWCNT has a structure in which a plurality of graphene sheets closed in a cylindrical shape are stacked in a nested manner. The plating layer 12 may contain at least one selected from the group consisting of SWCNT, DWCNT, and MWCNT, or may contain two or more.

めっき層12中のCNTの含有量は、めっき層の耐久性(破壊強度)及び導電性に影響を与える。めっき層12中のCNTの含有量は、導電粒子の全質量に対して0.0000001質量%以上1.0質量%以下であることが好ましい。CNTの含有量が0.0000001質量%以上である場合、めっき層の強度が向上する傾向がある。同様の理由から、めっき層12中のCNTの含有量は、導電粒子全体の質量に対して0.0000005質量%以上であることがより好ましく、0.000001質量%以上であることがさらに好ましい。CNTの含有量が1.0質量%以下である場合、CNTがめっき層の表面に露出しにくくなるため、絶縁信頼性が向上する傾向がある。また、CNTが凝集しにくく、均一なめっき層が得られる傾向がある。同様の理由から、めっき層12中のCNTの含有量は、導電粒子全体の質量に対して0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。   The content of CNT in the plating layer 12 affects the durability (breaking strength) and conductivity of the plating layer. The content of CNT in the plating layer 12 is preferably 0.0000001% by mass or more and 1.0% by mass or less with respect to the total mass of the conductive particles. When the content of CNT is 0.0000001% by mass or more, the strength of the plating layer tends to be improved. For the same reason, the content of CNT in the plating layer 12 is more preferably 0.0000005% by mass or more, and further preferably 0.000001% by mass or more with respect to the mass of the entire conductive particles. When the content of CNT is 1.0% by mass or less, CNT is difficult to be exposed on the surface of the plating layer, so that the insulation reliability tends to be improved. Moreover, CNT hardly aggregates and there is a tendency that a uniform plating layer is obtained. For the same reason, the content of CNT in the plating layer 12 is more preferably 0.5% by mass or less, and further preferably 0.1% by mass or less with respect to the mass of the entire conductive particles.

めっき層12がCNTを含有することは、種々の方法で確認することができる。例えば、めっき層12を完全溶解した溶解液全量を濃縮及び乾燥した試料を、SEM又はTEMでの観察により、めっき層12がCNTを含有することを確認できる。また、めっき層12がCNTを含有する場合、ラマン分光法により測定した上記試料のラマンスペクトルが、GバンドとDバンドとを有する。Gバンドとは、波数が1560〜1610cm−1の範囲、たとえば、1592cm−1付近であるピークであり、CNTのグラファイト構造に由来する。Dバンドとは、波数が1335〜1375cm−1の範囲、たとえば、1355cm−1付近でありピークであり、CNTの欠陥(defect)に由来する。なお、単層カーボンナノチューブに固有の振動モードであるラジアルブリージングモード(Radial Breathing Mode:RBM)のスペクトル(100−300cm−1の低周波数領域に現れるピーク)によって、めっき層12中のCNTの存在を確認してもよい。また、導電粒子のめっき層の断面をSEM又はTEMで観察して、めっき層12中に存在するCNTとその位置を直接確認してもよい。特にTEMを用いて、めっき層12の断面を観察し、断面についてEDX(Energy Dispersive X−ray Spectroscopy)を組み合わせることで、めっき層中の炭素を確認し、めっき層中のCNTの存在を推定することもできる。 It can be confirmed by various methods that the plating layer 12 contains CNTs. For example, it is possible to confirm that the plating layer 12 contains CNTs by observing with SEM or TEM a sample obtained by concentrating and drying the entire solution obtained by completely dissolving the plating layer 12. Moreover, when the plating layer 12 contains CNT, the Raman spectrum of the sample measured by Raman spectroscopy has a G band and a D band. The G band is a peak having a wave number in the range of 1560 to 1610 cm −1 , for example, around 1592 cm −1 , and is derived from the CNT graphite structure. The D band is a peak having a wave number in the range of 1335 to 1375 cm −1 , for example, around 1355 cm −1 , and is derived from a defect of CNT. In addition, the presence of CNT in the plating layer 12 is determined by a spectrum of a radial breathing mode (RBM) (a peak appearing in a low frequency region of 100 to 300 cm −1 ), which is a vibration mode unique to the single-walled carbon nanotube. You may check. Further, the cross section of the plating layer of the conductive particles may be observed by SEM or TEM to directly confirm the CNT present in the plating layer 12 and its position. In particular, using TEM, the cross section of the plating layer 12 is observed, and by combining EDX (Energy Dispersive X-ray Spectroscopy) for the cross section, the carbon in the plating layer is confirmed, and the presence of CNT in the plating layer is estimated. You can also.

めっき層表面のラマンスペクトルは、GバンドとDバンドとを有していてもよい。すなわち、導電粒子が、めっき層12表面にCNTを有してもよい。すなわち、CNTがめっき層12の表面に遍在したり、露出したりしてもよい。導電粒子が、めっき層12表面にCNTを有することにより、めっき層12の強度をより向上させることができる。なお、めっき層表面のラマンスペクトルとは、めっき層表面自体を測定対象とするラマンスペクトルである。   The Raman spectrum of the plating layer surface may have a G band and a D band. That is, the conductive particles may have CNTs on the surface of the plating layer 12. That is, CNTs may be ubiquitous or exposed on the surface of the plating layer 12. When the conductive particles have CNTs on the surface of the plating layer 12, the strength of the plating layer 12 can be further improved. In addition, the Raman spectrum of the plating layer surface is a Raman spectrum whose measurement target is the plating layer surface itself.

また、めっき層表面のラマンスペクトルは、GバンドとDバンドとを有していなくてもよい。このことは、めっき層に含まれるカーボンナノチューブ及び金属のうち、金属のみがめっき層の表面に露出していることを意味する。強い疎水性を有するCNTがめっき層12の表面に露出しないことにより、CNTが疎水性物質を吸着することが抑制され、疎水性物質の吸着に伴う導電粒子の導電性の低下を抑制することができる。なお、導電粒子がめっき層12表面にCNTを有していない場合には、めっき層12の内側(コア粒子側)におけるCNTの含有率が、めっき層12の外側におけるCNTの含有率よりも高い。   Further, the Raman spectrum of the plating layer surface may not have the G band and the D band. This means that only the metal is exposed on the surface of the plating layer among the carbon nanotubes and metals contained in the plating layer. Since the CNTs having strong hydrophobicity are not exposed on the surface of the plating layer 12, the CNTs are prevented from adsorbing the hydrophobic substance, and the decrease in the conductivity of the conductive particles due to the adsorption of the hydrophobic substance is suppressed. it can. When the conductive particles do not have CNT on the surface of the plating layer 12, the content of CNT on the inner side (core particle side) of the plating layer 12 is higher than the content of CNT on the outer side of the plating layer 12. .

めっき層12中のCNTは、コア粒子の表面全体を囲むように、めっき層12中に均一に分布していることが好ましい。これにより、めっき層12の強度が均一に向上し、実装時にACF中の導電粒子の変形に伴うめっき層12の破壊を抑制し易くなる。また、めっき層12の内側におけるCNTの含有率は、めっき層12の外側におけるCNTの含有率よりも高くてもよい。めっき層12の内側におけるCNTの含有率が高い場合、導電粒子の変形に伴うめっき層12の破損を抑制し易くなる。   The CNTs in the plating layer 12 are preferably distributed uniformly in the plating layer 12 so as to surround the entire surface of the core particles. Thereby, the strength of the plating layer 12 is improved uniformly, and it becomes easy to suppress the destruction of the plating layer 12 due to the deformation of the conductive particles in the ACF during mounting. Further, the CNT content rate inside the plating layer 12 may be higher than the CNT content rate outside the plating layer 12. When the content rate of CNT inside the plating layer 12 is high, it becomes easy to suppress the damage of the plating layer 12 accompanying the deformation of the conductive particles.

めっき層12を構成する金属(めっき成分)は、めっきによって層を形成することが可能な金属であればよい。たとえば、めっき層12を構成する金属は、Au、Ag、Cu、Pt、Pd、Ni、Sn及びZnからなる群から選ばれる少なくとも1つの金属、又はこれらの合金であってよい。めっき層12を構成する金属が、Ni、Au、Cu及びPdからなる群から選ばれる少なくとも1つの金属、又はこれらの合金であることが好ましい。めっき層12が合金を含む場合、上記合金は例えばP及びB等の非金属元素を含有していてもよい。   The metal (plating component) which comprises the plating layer 12 should just be a metal which can form a layer by plating. For example, the metal constituting the plating layer 12 may be at least one metal selected from the group consisting of Au, Ag, Cu, Pt, Pd, Ni, Sn, and Zn, or an alloy thereof. The metal constituting the plating layer 12 is preferably at least one metal selected from the group consisting of Ni, Au, Cu and Pd, or an alloy thereof. When the plating layer 12 contains an alloy, the alloy may contain a nonmetallic element such as P and B, for example.

めっき層12及び下記導電層13の分析には、原子吸光光度計が使用できる。たとえば、めっき層12又は導電層13を酸等で溶解した液を、原子吸光光度計を用いて分析して、金属イオンの濃度を測定すればよい。金属イオンの濃度に基づいて、各層中の元素の含有率又は各層の平均厚みを算出することができる。また、各層の分析に、ICP(Inductively Coupled Plasma)発光分析装置を用いてもよい。ICP発光分析装置によれば、各層の定性分析と同時に各層中のリンの定量も可能となる。また、収束イオンビームを用いたFIB加工により粒子の断面を切り出し、当該断面をSEM観察及びEDX分析、又はTEM観察及びEDX分析することによってめっき膜の各領域の成分を分析することもできる。これらの方法によって、めっき層中のリンを定量することもできる。   An atomic absorption photometer can be used for the analysis of the plating layer 12 and the conductive layer 13 described below. For example, a solution obtained by dissolving the plating layer 12 or the conductive layer 13 with an acid or the like may be analyzed using an atomic absorption photometer to measure the concentration of metal ions. Based on the concentration of metal ions, the content of elements in each layer or the average thickness of each layer can be calculated. Further, an ICP (Inductively Coupled Plasma) emission analyzer may be used for analysis of each layer. According to the ICP emission analyzer, the quantification of phosphorus in each layer can be performed simultaneously with the qualitative analysis of each layer. Moreover, the component of each area | region of a plating film can also be analyzed by cutting out the cross section of particle | grains by FIB process using a focused ion beam, and analyzing the said cross section by SEM observation and EDX analysis, or TEM observation and EDX analysis. By these methods, phosphorus in the plating layer can also be quantified.

[第二実施形態]
以下では、第一実施形態と第二実施形態との相違点についてのみ説明し、両者に共通する事項については説明を省略する。
[Second Embodiment]
Below, only the difference between 1st embodiment and 2nd embodiment is demonstrated, and description is abbreviate | omitted about the matter common to both.

図2に示すように、本発明の第二実施形態に係る導電粒子8bは、コア粒子11及びめっき層12に加えて、めっき層12を被覆する導電層13をさらに備える点で、第一実施形態に係る導電粒子8aと相違する。以下では、導電粒子8bを、場合により「母粒子2b」と記す。   As shown in FIG. 2, the conductive particle 8 b according to the second embodiment of the present invention is further provided with a conductive layer 13 that covers the plating layer 12 in addition to the core particle 11 and the plating layer 12. It is different from the conductive particles 8a according to the form. Hereinafter, the conductive particles 8b are sometimes referred to as “mother particles 2b”.

(導電層)
導電層13の平均厚さは、5〜200nmであることが好ましい。導電層13の厚さが5nm以上であるとき、めっき層12を十分に覆うことができる傾向がある。同様の理由から、導電層13の平均厚さは、10nm以上であることがより好ましく、15nm以上であることがさらに好ましい。また、導電層13の厚さが200nm以下であるとき、めっき層によって得られる効果が発揮され易くなる傾向がある。導電層13の平均厚さは、200nm以下であることがより好ましく、130nm以下であることがさらに好ましい。なお、CNTの平均直径(平均太さ)は、めっき層12と導電層13の厚さの合計よりも小さいことが好ましい。これにより、CNTが導電層13の表面に露出し難くなる。
(Conductive layer)
The average thickness of the conductive layer 13 is preferably 5 to 200 nm. When the thickness of the conductive layer 13 is 5 nm or more, the plating layer 12 tends to be sufficiently covered. For the same reason, the average thickness of the conductive layer 13 is more preferably 10 nm or more, and further preferably 15 nm or more. Moreover, when the thickness of the conductive layer 13 is 200 nm or less, the effect obtained by the plating layer tends to be easily exhibited. The average thickness of the conductive layer 13 is more preferably 200 nm or less, and further preferably 130 nm or less. In addition, it is preferable that the average diameter (average thickness) of CNT is smaller than the sum total of the thickness of the plating layer 12 and the conductive layer 13. This makes it difficult for CNTs to be exposed on the surface of the conductive layer 13.

導電層13を構成する金属は、たとえば、Au、Ag、Cu、Pt、Pd、Ni、Sn及びZnからなる群から選ばれる少なくとも1つの金属、又はこれらの合金であってよい。導電層13を構成する金属は、Au、Pd又はPt等の貴金属、又はこれらの合金であることが好ましい。導電層13が上記貴金属から構成されることで、接続抵抗を低くすることができ、まためっき層12の酸化を抑制し易く、実装時の導電粒子と電極との接触抵抗を低減し易くなる。また、めっき層12を構成する金属がCuである場合、導電層13にNi又はPd等を用いることにより、Cuの拡散、マイグレーションを抑制し易くなる。なお、導電層13が合金を含む場合は、合金は、たとえば、P及びB等の非金属元素を含有していてもよい。導電層13を構成する金属は、めっき層12を構成する金属と同じであっても異なっていてもよい。導電層13は、複数の層から構成されてよく、各層は互いに異なる金属から構成されていてもよい。   The metal constituting the conductive layer 13 may be, for example, at least one metal selected from the group consisting of Au, Ag, Cu, Pt, Pd, Ni, Sn, and Zn, or an alloy thereof. The metal constituting the conductive layer 13 is preferably a noble metal such as Au, Pd or Pt, or an alloy thereof. When the conductive layer 13 is made of the above-described noble metal, the connection resistance can be lowered, the oxidation of the plating layer 12 can be easily suppressed, and the contact resistance between the conductive particles and the electrodes during mounting can be easily reduced. Moreover, when the metal which comprises the plating layer 12 is Cu, it becomes easy to suppress the spreading | diffusion and migration of Cu by using Ni or Pd etc. for the conductive layer 13. FIG. In addition, when the conductive layer 13 contains an alloy, the alloy may contain nonmetallic elements, such as P and B, for example. The metal constituting the conductive layer 13 may be the same as or different from the metal constituting the plating layer 12. The conductive layer 13 may be composed of a plurality of layers, and each layer may be composed of different metals.

めっき層12の表面にCNTが露出している場合は、めっき層12の表面に形成した導電層13の少なくとも一部にCNTが取り込まれ、めっき層12と導電層13の密着性が向上する傾向がある。めっき層12及び導電層13の組成(金属の種類)又は各層の形成方法の組み合わせによっては、両層が密着し難いことがある。しかし、めっき層12の表面にCNTが露出していることにより、各層の組成及び形成方法に関わりなく、めっき層12と導電層13とが密着し易くなる。すなわち、めっき層12の表面にCNTが露出している場合、めっき層12及び導電層13の組成(金属の種類)又は各層の形成方法の組み合わせの自由度が増す。例えば、ニッケルを主成分とするめっき層12の表面に、密着し難いニッケル以外の金属から構成される導電層13をめっき層12に密着させるためには、自己触媒反応を用いた無電解ニッケルめっき又は置換めっきとこれらに続く還元めっきとを行って、めっき層12を形成したほうがよい。しかし、めっき層12の表面にCNTが露出している場合、めっき層12の形成方法に左右されることなく、導電層13をめっき層12表面に容易に密着させることができる。また、導電層13の形成方法として、スパッタ又はアローイング等の多様な方法を用いることが可能になる。   When CNT is exposed on the surface of the plating layer 12, CNT is taken into at least a part of the conductive layer 13 formed on the surface of the plating layer 12, and the adhesion between the plating layer 12 and the conductive layer 13 tends to be improved. There is. Depending on the composition of the plating layer 12 and the conductive layer 13 (the type of metal) or the combination of the methods for forming each layer, the two layers may be difficult to adhere to each other. However, since the CNTs are exposed on the surface of the plating layer 12, the plating layer 12 and the conductive layer 13 are easily in close contact regardless of the composition and formation method of each layer. That is, when CNT is exposed on the surface of the plating layer 12, the degree of freedom in the combination of the composition (metal type) of the plating layer 12 and the conductive layer 13 or the method of forming each layer is increased. For example, in order to make the conductive layer 13 made of a metal other than nickel difficult to adhere to the surface of the plating layer 12 containing nickel as a main component, the electroless nickel plating using an autocatalytic reaction is used. Alternatively, the plating layer 12 is preferably formed by performing displacement plating and subsequent reduction plating. However, when CNT is exposed on the surface of the plating layer 12, the conductive layer 13 can be easily adhered to the surface of the plating layer 12 without being influenced by the formation method of the plating layer 12. Further, as a method for forming the conductive layer 13, various methods such as sputtering or arrowing can be used.

CNTが露出しているめっき層12を導電層13で被覆することにより、めっき層12の表面に露出しているCNTを導電層13で覆うことができる。露出したCNTを覆うことにより、CNTへの疎水性物質の吸着を抑制し、実装時の導電粒子の導電性の低下を抑制し易くなる。   By covering the plating layer 12 where the CNT is exposed with the conductive layer 13, the CNT exposed on the surface of the plating layer 12 can be covered with the conductive layer 13. By covering the exposed CNTs, the adsorption of the hydrophobic substance to the CNTs can be suppressed, and the decrease in the conductivity of the conductive particles during mounting can be easily suppressed.

導電層13は、めっき層12の表面全体を被覆することが好ましい。これにより、導電層13に係る上記効果が顕著になる。   The conductive layer 13 preferably covers the entire surface of the plating layer 12. Thereby, the above-described effect relating to the conductive layer 13 becomes remarkable.

[第三実施形態]
以下では、第二実施形態と第三実施形態との相違点についてのみ説明し、両者に共通する事項については説明を省略する。
[Third embodiment]
Below, only the difference between 2nd embodiment and 3rd embodiment is demonstrated, and description is abbreviate | omitted about the matter which is common in both.

図3に示すように、本発明の第三実施形態に係る導電粒子8cは、コア粒子11、めっき層12及び導電層13を備える母粒子2b(導電粒子8b)に加えて、導電層13の表面に付着した複数の絶縁性粒子1を備える点で、第二実施形態に係る導電粒子8bと相違する。なお、第一実施形態に係る導電粒子のめっき層12の表面に複数の絶縁性粒子1を直接付着させてもよい。なお、導電層13上に吸着された絶縁性粒子1は、SEMを用いることが出来る。また、SEMで撮影した画像により、導電層13上の絶縁性微粒子1の位置、数、及び絶縁性微粒子1による導電層13の被覆率を確認できる。   As shown in FIG. 3, the conductive particle 8 c according to the third embodiment of the present invention includes a core particle 11, a plating layer 12, and a base particle 2 b including the conductive layer 13 (conductive particle 8 b). The conductive particle 8b is different from the conductive particle 8b according to the second embodiment in that it includes a plurality of insulating particles 1 attached to the surface. In addition, you may adhere the some insulating particle 1 directly to the surface of the plating layer 12 of the electroconductive particle which concerns on 1st embodiment. The insulating particles 1 adsorbed on the conductive layer 13 can use SEM. Further, the position and number of the insulating fine particles 1 on the conductive layer 13 and the coverage of the conductive layer 13 with the insulating fine particles 1 can be confirmed from an image taken with the SEM.

(絶縁性粒子)
絶縁性粒子1は無機酸化物であることが好ましい。絶縁性粒子1が無機酸化物であることにより、異方導電性接着剤の作製工程で絶縁性粒子1が変形することを抑制し、得られる異方導電性接着剤の特性の変化を低減させることができる。
(Insulating particles)
The insulating particle 1 is preferably an inorganic oxide. By the insulating particles 1 being an inorganic oxide, it is possible to suppress the deformation of the insulating particles 1 in the anisotropic conductive adhesive manufacturing process, and to reduce changes in the properties of the obtained anisotropic conductive adhesive. be able to.

絶縁性粒子1を構成する無機酸化物は、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム、及びマグネシウムからなる群より選ばれる少なくとも一種の元素を含む酸化物であることが好ましい。これらの酸化物は単独で又は2種類以上を混合して使用することができる。また、無機酸化物としては、上述の元素を含む酸化物の中でも、絶縁性に優れ、粒子径が制御された、水分散コロイダルシリカ(SiO)がより好ましい。 The inorganic oxide constituting the insulating particles 1 is preferably an oxide containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium. These oxides can be used alone or in admixture of two or more. As the inorganic oxide, water-dispersed colloidal silica (SiO 2 ) having excellent insulating properties and controlled particle diameter is more preferable among oxides containing the above-described elements.

このような無機酸化物からなる絶縁性粒子1(以下、「無機酸化物微粒子1」という。)の市販品としては、例えば、スノーテックス、スノーテックスUP(日産化学工業株式会社製)、及びクオートロンPLシリーズ(扶桑化学工業株式会社製)等が挙げられる。   Examples of commercially available insulating particles 1 made of such an inorganic oxide (hereinafter referred to as “inorganic oxide fine particles 1”) include, for example, Snowtex, Snowtex UP (manufactured by Nissan Chemical Industries, Ltd.), and Quatron. PL series (manufactured by Fuso Chemical Industry Co., Ltd.) and the like can be mentioned.

無機酸化物微粒子1の粒子径は、コア粒子11の粒子径より小さいことが好ましい。具体的には、無無機酸化物微粒子1の平均粒子径は20〜500nmであることが好ましい。なお、無機酸化物微粒子1の平均粒子径は、BET法による比表面積換算法又はX線小角散乱法で測定される。無機酸化物微粒子1の平均粒子径が20nm以上であることにより、母粒子2bに吸着した無機酸化物微粒子1が絶縁膜として有効に機能し、電極間のショートの発生を低減し易くなる。一方、無機酸化物微粒子1の粒子径が500nm以下であることにより、電極間での導電性が向上し易くなる。   The particle diameter of the inorganic oxide fine particles 1 is preferably smaller than the particle diameter of the core particles 11. Specifically, the average particle diameter of the non-inorganic oxide fine particles 1 is preferably 20 to 500 nm. In addition, the average particle diameter of the inorganic oxide fine particles 1 is measured by the specific surface area conversion method by the BET method or the X-ray small angle scattering method. When the average particle diameter of the inorganic oxide fine particles 1 is 20 nm or more, the inorganic oxide fine particles 1 adsorbed on the mother particles 2b function effectively as an insulating film, and it becomes easy to reduce the occurrence of shorts between the electrodes. On the other hand, when the particle diameter of the inorganic oxide fine particles 1 is 500 nm or less, the conductivity between the electrodes is easily improved.

<導電粒子の製造方法>
本発明の第一実施形態に係る導電粒子8aの製造方法は、球状のコア粒子11の表面にCNTを含有するめっき層12を形成する工程S1を備える。本発明の第二実施形態に係る導電粒子8bの製造方法は、工程S1の後に、めっき層12の表面に導電層13を形成する工程S2をさらに備える。本発明の第三実施形態に係る導電粒子8cの製造方法は、工程S2の後に、導電層13の表面に絶縁性粒子1を化学吸着により固定化する工程S5をさらに備える。工程S2と工程S5の間に、必要に応じて、導電層13(母粒子2b)の表面に官能基を形成する工程S3と、官能基が形成された導電層13の表面を高分子電解質で処理する工程S4と、を実施してもよい。第三実施形態に係る導電粒子8cの製造方法では、工程S3〜5からなるサイクルを2回以上繰り返してもよい。工程S3〜5を繰り返す方法は、交互積層法と呼ばれる。
<Method for producing conductive particles>
The manufacturing method of the conductive particles 8a according to the first embodiment of the present invention includes the step S1 of forming the plating layer 12 containing CNTs on the surface of the spherical core particles 11. The manufacturing method of the conductive particles 8b according to the second embodiment of the present invention further includes a step S2 of forming the conductive layer 13 on the surface of the plating layer 12 after the step S1. The manufacturing method of the conductive particles 8c according to the third embodiment of the present invention further includes a step S5 of fixing the insulating particles 1 to the surface of the conductive layer 13 by chemical adsorption after the step S2. Between step S2 and step S5, if necessary, a step S3 of forming a functional group on the surface of the conductive layer 13 (base particle 2b) and a surface of the conductive layer 13 on which the functional group is formed are made of a polymer electrolyte. You may implement process S4 to process. In the manufacturing method of the conductive particles 8c according to the third embodiment, the cycle including the steps S3 to S5 may be repeated twice or more. The method of repeating steps S3 to S5 is called an alternating lamination method.

(S1)
工程S1では、めっき成分、CNT及び球状のコア粒子11を含む混合液(めっき浴)中で、該コア粒子11を被覆するめっき層12を形成する。工程S1では、コア粒子11の分散液に、CNTの分散液及びめっき液を同時に又は交互に加えて、めっき層12を形成してもよい。上記方法によれば、CNT及びコア粒子11が分散した液体中で、めっき層12がCNTを取り込みながらコア粒子11表面に成長して、導電粒子8a(母粒子2a)が得られる。上記方法によれば、コア粒子の分散液に対するCNTの分散液又はめっき液の添加のタイミング、添加量、添加時間、添加速度、分散液中のCNTの濃度及びめっき液の濃度を容易に調整する。その結果、めっき層中のCNTの含有率、めっき層の厚さ方向におけるCNTの濃度分布及びめっきの平均厚みを自在に制御することが可能となる。なお、「同時に加える」とは、CNTの分散液及びめっき液を並行してコア粒子11を含有する液体に加えることであり、CNTの分散液及びめっき液の添加の開始時点が略一致することを意味する。工程S1では、コア粒子11の分散液に、めっき液のみを加えた後、さらにめっき液及びCNTの分散液を同時に加えて、めっき層を形成してもよい。この方法によれば、めっき層12の外側におけるCNTの含有率を、めっき層12の内側におけるCNTの含有率よりも高めることが可能になる。工程S1では、コア粒子11の分散液に、CNTの分散液及びめっき液を同時に加えた後、さらにめっき液のみを加えて、めっき層を形成してもよい。この方法によれば、めっき層12の内側(コア粒子側)におけるCNTの含有率を、めっき層12の外側におけるCNTの含有率よりも高めることが可能になる。この方法によれば、CNTが表面に露出しないめっき層を形成することも可能になる。
(S1)
In step S <b> 1, a plating layer 12 that covers the core particles 11 is formed in a mixed solution (plating bath) containing a plating component, CNT, and spherical core particles 11. In step S <b> 1, the plating layer 12 may be formed by simultaneously or alternately adding the CNT dispersion and the plating solution to the dispersion of the core particles 11. According to the above method, in the liquid in which the CNTs and the core particles 11 are dispersed, the plating layer 12 grows on the surface of the core particles 11 while taking in the CNTs, and the conductive particles 8a (the mother particles 2a) are obtained. According to the above method, the timing of adding the CNT dispersion or plating solution to the core particle dispersion, the addition amount, the addition time, the addition speed, the concentration of CNT in the dispersion and the concentration of the plating solution are easily adjusted. . As a result, it is possible to freely control the CNT content in the plating layer, the CNT concentration distribution in the thickness direction of the plating layer, and the average plating thickness. “Adding simultaneously” means adding the CNT dispersion and the plating solution to the liquid containing the core particles 11 in parallel, and the start points of the addition of the CNT dispersion and the plating solution are substantially the same. Means. In step S1, after adding only the plating solution to the dispersion of core particles 11, a plating solution and a dispersion of CNTs may be added simultaneously to form a plating layer. According to this method, the CNT content rate on the outer side of the plating layer 12 can be made higher than the CNT content rate on the inner side of the plating layer 12. In step S1, after the CNT dispersion and plating solution are simultaneously added to the core particle 11 dispersion, only the plating solution may be added to form a plating layer. According to this method, the CNT content rate on the inner side (core particle side) of the plating layer 12 can be made higher than the CNT content rate on the outer side of the plating layer 12. According to this method, it is possible to form a plating layer in which CNTs are not exposed on the surface.

工程S1で用いるめっき法としては、電気めっき及び無電解めっきが挙げられる。コア粒子11が樹脂粒子である場合、めっき層12を無電解めっきで形成することが好ましい。めっき液には、めっき層12を構成する金属又はそのイオン(めっき成分)が含まれる。無電解めっきは金属イオンを還元剤により還元することで金属を析出させる方法である。広義には金属イオンのイオン化傾向の差を利用して金属を析出させる置換めっきも無電解めっきに含まれる。無電解めっきを用いることで、各種金属のめっき層を作製することができる。   Examples of the plating method used in step S1 include electroplating and electroless plating. When the core particle 11 is a resin particle, it is preferable to form the plating layer 12 by electroless plating. The plating solution contains a metal constituting the plating layer 12 or ions thereof (plating component). Electroless plating is a method of depositing metal by reducing metal ions with a reducing agent. In a broad sense, electroless plating also includes displacement plating in which a metal is deposited using the difference in ionization tendency of metal ions. By using electroless plating, plating layers of various metals can be produced.

めっき層12を無電解めっきにより形成する場合、コア粒子11の表面をアルカリ等で脱脂した後、アルカリを酸で中和することが好ましい。その後、コア粒子11の表面にあらかじめ触媒を付与し、表面を活性化させることが好ましい。触媒としては、Pd、Au及びPt等の貴金属が主に用いられる。   When the plating layer 12 is formed by electroless plating, it is preferable to neutralize the alkali with an acid after degreasing the surface of the core particle 11 with an alkali or the like. Then, it is preferable to apply a catalyst to the surface of the core particle 11 in advance to activate the surface. As the catalyst, precious metals such as Pd, Au and Pt are mainly used.

無電解めっきに用いるめっき液は、金属イオン(めっき成分)のほかに、錯化剤及び還元剤を含んでよい。Niの合金を主成分とするめっき層12を無電解めっきにより形成する場合、Niの合金としては、たとえば、Ni−P、Ni−B、Ni−W、Ni−Pd及びNi−Cu等が挙げられる。Niイオンの還元剤としては、次亜リン酸若しくはその塩類、亜リン酸若しくはその塩類、ヒドラジン、水素化ホウ素、及びジメチルアミンンボラン等が用いられる。これらの中でも、次亜リン酸塩を用いた無電解Niめっきが好ましい。還元剤として次亜リン酸塩を用いることにより、Niの結晶度を結晶質から非晶質まで制御可能である。   The plating solution used for electroless plating may contain a complexing agent and a reducing agent in addition to metal ions (plating components). In the case where the plating layer 12 mainly composed of an Ni alloy is formed by electroless plating, examples of the Ni alloy include Ni-P, Ni-B, Ni-W, Ni-Pd, and Ni-Cu. It is done. As a reducing agent for Ni ions, hypophosphorous acid or a salt thereof, phosphorous acid or a salt thereof, hydrazine, borohydride, dimethylamine borane, or the like is used. Among these, electroless Ni plating using hypophosphite is preferable. By using hypophosphite as a reducing agent, the crystallinity of Ni can be controlled from crystalline to amorphous.

工程S1では、定量ポンプ等を用いて、所定量のめっき液を、コア粒子11の分散液へ逐次的に加えてもよい。コア粒子11の比表面積が大きく、めっき層12を無電解めっきにより形成する場合、めっき液への負荷(めっき層により被覆されるコア粒子の表面積/めっき液量)が大きくなる。このような場合であっても、定量ポンプ等を用いためっき液の逐次的な添加によって、めっきの過度の進行を抑制し、均一なめっき層を形成し易くなる。同様に、CNTの分散液を、定量ポンプ等を用いて、コア粒子11の分散液へ逐次的に加えてもよい。   In step S1, a predetermined amount of plating solution may be sequentially added to the dispersion of core particles 11 using a metering pump or the like. When the specific surface area of the core particle 11 is large and the plating layer 12 is formed by electroless plating, the load on the plating solution (surface area of the core particle / plating solution amount covered by the plating layer) increases. Even in such a case, the sequential addition of the plating solution using a metering pump or the like suppresses the excessive progress of plating and facilitates the formation of a uniform plating layer. Similarly, the CNT dispersion liquid may be sequentially added to the core particle 11 dispersion liquid using a metering pump or the like.

めっき液を、金属イオン及び錯化剤の溶解液と、還元剤の溶解液とに分けて、これらの2つの溶解液を同時にコア粒子11の分散液に加えてもよい。この方法によれば、無電解めっきの安定性が向上する。   The plating solution may be divided into a metal ion and complexing agent solution and a reducing agent solution, and these two solutions may be simultaneously added to the core particle 11 dispersion. According to this method, the stability of electroless plating is improved.

CNTは、コア粒子11の分散液、めっき液、金属イオン及び錯化剤の溶解液、並びに還元剤の溶解液のうちのいずれかに含まれていてもよい。   The CNTs may be contained in any of a dispersion of the core particles 11, a plating solution, a solution of metal ions and a complexing agent, and a solution of a reducing agent.

コア粒子11の分散液に、CNTの分散液、金属イオン及び錯化剤の溶解液、並びに還元剤の溶解液を同時に又は交互に加えてもよい。また、金属イオン及び錯化剤を溶解させたコア粒子11の分散液に、CNTの分散液と、還元剤の溶解液とを、同時又は交互に加えてもよい。また、還元剤を溶解させたコア粒子11の分散液に、CNTの分散液と、金属イオン及び錯化剤の溶解液とを、同時又は交互に加えてもよい。これらの方法では、安定しためっき反応が進行し、CNTを含有した均一なめっき層12が得られる。また、これらの方法において、CNTの分散液の濃度、添加のタイミング及び添加量を調整することにより、めっき層12の厚み方向おけるCNTの濃度分布を制御することも可能となる。   A dispersion of CNT, a solution of metal ions and a complexing agent, and a solution of a reducing agent may be added simultaneously or alternately to the dispersion of core particles 11. Further, a dispersion of CNT and a solution of reducing agent may be added simultaneously or alternately to the dispersion of core particles 11 in which metal ions and complexing agents are dissolved. Further, a dispersion of CNT and a solution of metal ions and complexing agent may be added simultaneously or alternately to the dispersion of core particles 11 in which the reducing agent is dissolved. In these methods, a stable plating reaction proceeds, and a uniform plating layer 12 containing CNTs is obtained. In these methods, it is also possible to control the CNT concentration distribution in the thickness direction of the plating layer 12 by adjusting the concentration of the CNT dispersion, the timing of addition, and the amount of addition.

CNTの分散液に用いる分散媒は、極性溶媒であることが好ましく、めっき液中の金属イオンの溶解性の観点から、水であることがより好ましい。水以外の分散媒としては、例えば、メタノール、エタノール、プロパンノール、ブタノール及びイソプロピルアルコール等のアルコール系溶剤、アセトン、2−ブタノン、メチルイソブチルケトン及びN−メチルピロリドン等のケトン系溶剤、テトラヒドロフラン、ガンマブチロラクトン並びにジメチルホルムアミド等が挙げられる。これら複数の分散媒を混合して用いてもよい。   The dispersion medium used for the CNT dispersion is preferably a polar solvent, and more preferably water from the viewpoint of the solubility of metal ions in the plating solution. Examples of the dispersion medium other than water include alcohol solvents such as methanol, ethanol, propanol, butanol and isopropyl alcohol, ketone solvents such as acetone, 2-butanone, methyl isobutyl ketone and N-methylpyrrolidone, tetrahydrofuran, and gamma. Examples include butyrolactone and dimethylformamide. You may mix and use these some dispersion media.

CNTの分散液に用いる分散媒は、金属イオンの溶解液、還元剤の溶解液、及びコア粒子の分散液に用いる液媒と同じであることが好ましい。これにより、CNTの分散液とそれ以外の上記液体を混合した際に、CNTの凝集を抑制し易くなる。CNTの凝集がなく、CNTが単分散している場合、めっき層12にCNTが均一に取り込まれやすく、めっき層12の特性がより向上する。このような分散媒としては、例えば水が挙げられる。   The dispersion medium used for the CNT dispersion is preferably the same as that used for the metal ion solution, the reducing agent solution, and the core particle dispersion. This makes it easy to suppress aggregation of CNTs when the CNT dispersion and the other liquids are mixed. When there is no aggregation of CNTs and CNTs are monodispersed, the CNTs are easily taken into the plating layer 12 and the characteristics of the plating layer 12 are further improved. An example of such a dispersion medium is water.

通常CNTは炭素原子のみから構成されているため、疎水性を呈する。よって、CNTは極性の分散媒中で凝集することがある。このような凝集を抑制し、分散媒中のCNTの分散性を向上させる方法としては、CNTの表面状態に応じてCNTが分散しやすい分散媒を選定する方法、CNTの分散液へ分散剤(界面活性剤)を添加する方法、及びCNTの表面に樹脂又は官能基を付与する方法等が挙げられる。CNTの分散性を高めることにより、CNTがめっき層12に均一に取り込まれ、めっき層12の強度が向上する傾向がある。なお、CNTの分散性が高い場合、CNTの分散液はスラリー状になる。   Since CNTs are usually composed of only carbon atoms, they are hydrophobic. Therefore, CNT may aggregate in a polar dispersion medium. As a method of suppressing such agglomeration and improving the dispersibility of CNT in the dispersion medium, a method of selecting a dispersion medium in which CNT easily disperses according to the surface state of CNT, a dispersing agent ( And a method of adding a resin or a functional group to the surface of the CNT. By increasing the dispersibility of CNTs, CNTs are uniformly taken into the plating layer 12 and the strength of the plating layer 12 tends to be improved. In addition, when the dispersibility of CNT is high, the dispersion liquid of CNT becomes a slurry form.

界面活性剤は、分子内に疎水構造部と親水構造部とを有するものであり、分散媒とCNTの双方に親和性を持ち、CNTを分散媒中に分散させる作用を持つ。このような特徴を有するものであれば、界面活性剤は特に制限されるものではない。界面活性剤としては、陰イオン界面活性剤、陽イオン界面活性剤、非イオン界面活性剤、及び両性イオン界面活性剤等が挙げられる。陰イオン界面活性剤としては、たとえば、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、モノアルキルリン酸塩、及び直鎖アルキルベンゼンスルホン酸ナトリウム等が挙げられる。特に、ドデシルベンゼンスルホン酸ナトリウム又はドデシルスルホン酸ナトリウム等が好適に用いられる。陽イオン界面活性剤としては、たとえば、アルキルトリメチルアンモニウム塩等が挙げられる。アルキルトリメチルアンモニウム塩としては、たとえば、ラウリルトリメチルアンモニウムクロライド等が挙げられる。両性イオン界面活性剤としては、たとえば、アルキルカルボキシベタイン、及びアルキルジメチルアミンオキシド等が挙げられる。特に、ラウリルジメチルアミノ酢酸ベタイン、ドデシルアミノメチルジメチルスルホプロピルベタイン、ラウロイルグルタミン酸ナトリウム、及びラウリルジメチルアミンN−オキシド等が好適に用いられる。非イオン性界面活性剤としては、たとえば、ポリオキシエチレンアルキルエーテル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、及び脂肪酸ソルビタンエステル等が挙げられる。その他の界面活性剤としては、ポリビニルアルコール及びポリエチレングリコール等が挙げられる。   The surfactant has a hydrophobic structure portion and a hydrophilic structure portion in the molecule, has an affinity for both the dispersion medium and the CNT, and has an action of dispersing the CNT in the dispersion medium. The surfactant is not particularly limited as long as it has such characteristics. Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant. Examples of the anionic surfactant include monoalkyl sulfates, alkyl polyoxyethylene sulfates, monoalkyl phosphates, and sodium linear alkylbenzene sulfonates. In particular, sodium dodecylbenzenesulfonate or sodium dodecylsulfonate is preferably used. Examples of the cationic surfactant include alkyl trimethyl ammonium salts. Examples of the alkyl trimethyl ammonium salt include lauryl trimethyl ammonium chloride. Examples of zwitterionic surfactants include alkyl carboxy betaines and alkyl dimethyl amine oxides. In particular, lauryldimethylaminoacetic acid betaine, dodecylaminomethyldimethylsulfopropylbetaine, sodium lauroylglutamate, lauryldimethylamine N-oxide, and the like are preferably used. Examples of the nonionic surfactant include polyoxyethylene alkyl ether, alkyl polyglucoside, fatty acid diethanolamide, and fatty acid sorbitan ester. Examples of other surfactants include polyvinyl alcohol and polyethylene glycol.

CNTの分散液に界面活性剤を含有させる場合、界面活性剤は分散媒に可溶であることが好ましい。CNTに結合した界面活性剤は、CNTの熱抵抗や電気抵抗を増加させる可能性がある。界面活性剤が分散媒に可溶であれば、洗浄によってCNT表面から界面活性剤を容易に除去できるため、分散液から単離したCNTの熱抵抗や電気抵抗等の増加が抑制される傾向がある。   When a surfactant is contained in the CNT dispersion, the surfactant is preferably soluble in the dispersion medium. Surfactant bonded to CNT may increase the thermal resistance and electrical resistance of CNT. If the surfactant is soluble in the dispersion medium, the surfactant can be easily removed from the CNT surface by washing, so that the increase in the thermal resistance, electrical resistance, etc. of the CNT isolated from the dispersion tends to be suppressed. is there.

CNTの分散性を向上させる他の方法としては、分散剤の攪拌、分散液のミリング(milling)、分散液への超音波の印加等が挙げられる。例えば、CNTの分散液を攪拌しながら、分散液へ超音波を印加させてもよい。めっき成分、CNT及びコア粒子を含む混合液(めっき浴)全体に対して、攪拌及び超音波の印加を行ってもよい。攪拌及び超音波の印加と、めっき層の形成とを同時におこなってもよい。超音波の印加により、より緻密なめっき層を形成することができる。超音波の出力は、コア粒子の分散液、CNTの分散液、めっき液又はめっき浴の量に応じて適宜調整すればよい。超音波の周波数は20kHz以上であることが好ましい。これにより、緻密で、且つCNTが均一に分散しためっき層を形成し易くなる。超音波の周波数は200kHz以下であればよい。これにより、溶液中でのCNTの分散性が向上し、めっき層12内のCNTの分布が均一化され易くなる。   Other methods for improving the dispersibility of CNTs include stirring of the dispersant, milling of the dispersion, application of ultrasonic waves to the dispersion, and the like. For example, ultrasonic waves may be applied to the dispersion while stirring the CNT dispersion. Agitation and application of ultrasonic waves may be performed on the entire mixed solution (plating bath) including the plating component, CNT, and core particles. Stirring and application of ultrasonic waves and formation of the plating layer may be performed simultaneously. By applying ultrasonic waves, a denser plating layer can be formed. What is necessary is just to adjust the output of an ultrasonic wave suitably according to the quantity of the dispersion liquid of a core particle, the dispersion liquid of CNT, a plating solution, or a plating bath. The ultrasonic frequency is preferably 20 kHz or more. Thereby, it becomes easy to form a dense plating layer in which CNTs are uniformly dispersed. The frequency of the ultrasonic wave may be 200 kHz or less. Thereby, the dispersibility of CNTs in the solution is improved, and the distribution of CNTs in the plating layer 12 is easily made uniform.

工程S1では、めっき層中のカーボンナノチューブの含有量を、導電粒子全体の質量に対して好ましくは0.0000001〜1.0質量%、より好ましくは0.0000005〜0.5質量%に調整する。めっき層中のカーボンナノチューブの含有量は、めっき浴中のCNTの濃度によって制御すればよい。又は、CNTの分散液、めっき液及びコア粒子の分散液それぞれの濃度、及びこれらの液体の配合比によって、めっき層中のカーボンナノチューブの含有量を制御してもよい。   In step S1, the content of the carbon nanotubes in the plating layer is preferably adjusted to 0.0000001 to 1.0% by mass, more preferably 0.0000005 to 0.5% by mass with respect to the total mass of the conductive particles. . The carbon nanotube content in the plating layer may be controlled by the concentration of CNT in the plating bath. Or you may control content of the carbon nanotube in a plating layer with the density | concentration of each of the dispersion liquid of CNT, the plating liquid, and the dispersion liquid of a core particle, and the compounding ratio of these liquids.

(S2)
工程S2では、めっき層12の表面に導電層13を形成する。導電層13の形成方法としては、特に限定されないが、電気めっき、無電解めっき、スパッタ及びアローイング等の多様な方法が挙げられる。導電層13の形成方法は、電気めっき又は無電解めっきであることが好ましく、無電解めっきであることがより好ましい。導電層13がめっきによって形成される場合、一般的なめっき液を用いればよい。導電層13は、CNTを用いないこと以外はめっき層12と同様に形成することができる。
(S2)
In step S <b> 2, the conductive layer 13 is formed on the surface of the plating layer 12. A method for forming the conductive layer 13 is not particularly limited, and various methods such as electroplating, electroless plating, sputtering, and arrowing can be used. The method for forming the conductive layer 13 is preferably electroplating or electroless plating, and more preferably electroless plating. When the conductive layer 13 is formed by plating, a general plating solution may be used. The conductive layer 13 can be formed in the same manner as the plating layer 12 except that CNT is not used.

(S3)
工程S3では、母粒子2bの導電層13の表面に官能基を導入する。官能基の導入方法としては、たとえば、母粒子2bの表面を、導電層13を構成する金属に対して配位結合を形成する官能基を有する化合物で処理する方法が挙げられる。このような化合物としては、メルカプト基、チオカルボニル基、シアノ基、イソシアナート基、アミノ基、アンモニウム基、ピリジニウム基、アジニル基、カルボキシル基、ベンゾトリアゾール基、トリアジンチオール基、イミン環及び硫黄複素環のいずれかを有する化合物が挙げられる。これらの化合物を組み合わせて用いてもよい。
(S3)
In step S3, a functional group is introduced on the surface of the conductive layer 13 of the mother particle 2b. Examples of the method for introducing the functional group include a method of treating the surface of the mother particle 2b with a compound having a functional group that forms a coordinate bond with the metal constituting the conductive layer 13. Such compounds include mercapto groups, thiocarbonyl groups, cyano groups, isocyanate groups, amino groups, ammonium groups, pyridinium groups, azinyl groups, carboxyl groups, benzotriazole groups, triazine thiol groups, imine rings and sulfur heterocycles. The compound which has either of these is mentioned. These compounds may be used in combination.

導電層13の表面を上記化合物で処理する場合、例えば、メタノール及びエタノール等の有機溶媒中に上記官能基を有する化合物を10〜100mmol/L程度分散させた液体を調製し、この液体に母粒子2bを分散させればよい。   When the surface of the conductive layer 13 is treated with the above compound, for example, a liquid is prepared by dispersing about 10 to 100 mmol / L of the compound having the above functional group in an organic solvent such as methanol and ethanol. What is necessary is just to disperse 2b.

(S4)
工程S4では、官能基が導入された母粒子2bの表面を高分子電解質で処理する。高分子電解質は、母粒子2b表面に導入された上記官能基と吸着する。たとえば、高分子電解質は、上記官能基に静電的に吸着する。かかる高分子電解質としては、水溶液中で電離し、荷電を有する官能基を主鎖又は側鎖に持つ高分子(ポリアニオン又はポリカチオン)を用いることができる。ポリアニオンとしては、例えば、ポリスチレンスルホン酸(PSS)、ポリビニル硫酸(PVS)、デキストラン硫酸、コンドロイチン硫酸、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリマレイン酸、ポリフマル酸等を用いることができる。また、ポリカチオンとしては、例えば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミド及びそれらを少なくとも1種以上含む共重合体等を用いることができる。
(S4)
In step S4, the surface of the mother particle 2b into which the functional group has been introduced is treated with a polymer electrolyte. The polymer electrolyte adsorbs with the functional group introduced on the surface of the mother particle 2b. For example, the polymer electrolyte is electrostatically adsorbed to the functional group. As such a polymer electrolyte, a polymer (polyanion or polycation) ionized in an aqueous solution and having a charged functional group in the main chain or side chain can be used. Examples of the polyanion include polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), dextran sulfate, chondroitin sulfate, polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, polyfumaric acid, and the like. . Examples of the polycation include polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride (PDDA), polyvinylpyridine (PVP), polylysine, polyacrylamide, and at least one of them. A copolymer or the like can be used.

高分子電解質による処理は、母粒子2bを高分子電解質溶液に浸漬することにより行うことができる。高分子電解質溶液は、水、又は水と水溶性の有機溶媒との混合溶媒に高分子電解質を溶解したものである。使用できる水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド及びアセトニトリル等が挙げられる。   The treatment with the polymer electrolyte can be performed by immersing the mother particles 2b in the polymer electrolyte solution. The polymer electrolyte solution is obtained by dissolving a polymer electrolyte in water or a mixed solvent of water and a water-soluble organic solvent. Examples of water-soluble organic solvents that can be used include methanol, ethanol, propanol, acetone, dimethylformamide, and acetonitrile.

高分子電解質は水溶性であるもの、又は水と有機溶媒との混合液に可溶なものであればよい。高分子電解質の分子量は、500〜200,000程度であればよい。なお、溶液中の高分子電解質の濃度は、0.01〜10質量%程度であればよい。また高分子電解質溶液のpHは、特に制限はない。   The polymer electrolyte may be water-soluble or soluble in a mixed solution of water and an organic solvent. The molecular weight of the polymer electrolyte may be about 500 to 200,000. In addition, the density | concentration of the polymer electrolyte in a solution should just be about 0.01-10 mass%. The pH of the polymer electrolyte solution is not particularly limited.

(S5)
工程S5では、母粒子2bを絶縁性粒子1の分散液に浸漬すればよい。この工程により、導電層13(母粒子2b)の表面に絶縁性粒子1が吸着し、導電層13の表面が絶縁性粒子1で被覆される。絶縁性粒子1で被覆された母粒子2bを加熱乾燥してもよい。これにより、母粒子2bの表面に絶縁性粒子1が強固に吸着する。
(S5)
In step S5, the mother particles 2b may be immersed in the dispersion liquid of the insulating particles 1. By this step, the insulating particles 1 are adsorbed on the surface of the conductive layer 13 (the mother particles 2b), and the surface of the conductive layer 13 is covered with the insulating particles 1. The mother particles 2b coated with the insulating particles 1 may be dried by heating. Thereby, the insulating particles 1 are firmly adsorbed on the surface of the mother particles 2b.

絶縁性粒子1としては、水分散コロイダルシリカ(SiO)が好ましい。水分散コロイダルシリカは表面に水酸基を有するため、母粒子2bとの結合性に優れ、粒子径を揃えやすく、安価である。 As the insulating particles 1, water-dispersed colloidal silica (SiO 2 ) is preferable. Since the water-dispersed colloidal silica has a hydroxyl group on the surface, it has excellent binding properties with the mother particles 2b, is easy to align the particle diameter, and is inexpensive.

母粒子2bを被覆する絶縁性粒子1からなる絶縁層の数は一層であることがよい。母粒子2bが複数の層で被覆される場合、積層量の制御が困難である。また、絶縁性粒子1の被覆率は、20〜100%の範囲であることが好ましく、30〜60%の範囲であることがさらに好ましい。   The number of insulating layers made of the insulating particles 1 covering the base particles 2b is preferably one. When the mother particle 2b is covered with a plurality of layers, it is difficult to control the amount of lamination. Moreover, the coverage of the insulating particles 1 is preferably in the range of 20 to 100%, and more preferably in the range of 30 to 60%.

<異方導電性接着剤>
図4aに示すように、導電粒子8cを、接着剤3中に分散させることにより、導電粒子8cを含む異方導電性接着剤40が得られる。なお、図の簡略化のため、図4a、4b及び4cでは、導電粒子8cが備えるめっき層12及び導電層13を省略する。異方導電性接着剤40は、導電粒子8cの代わりに、導電粒子8a又は8bを含有してもよい。
<Anisotropic conductive adhesive>
As shown in FIG. 4 a, the anisotropic conductive adhesive 40 including the conductive particles 8 c is obtained by dispersing the conductive particles 8 c in the adhesive 3. For simplification of the drawing, in FIGS. 4a, 4b and 4c, the plating layer 12 and the conductive layer 13 included in the conductive particles 8c are omitted. The anisotropic conductive adhesive 40 may contain conductive particles 8a or 8b instead of the conductive particles 8c.

異方導電性接着剤40に用いられる接着剤としては、熱反応性樹脂と硬化剤の混合物が用いられ、具体的には、エポキシ樹脂と潜在性硬化剤との混合物が好ましい。   As an adhesive used for the anisotropic conductive adhesive 40, a mixture of a heat-reactive resin and a curing agent is used, and specifically, a mixture of an epoxy resin and a latent curing agent is preferable.

エポキシ樹脂としては、エピクロルヒドリンとビスフェノールA、F若しくはAD等とから誘導されるビスフェノール型エポキシ樹脂;エピクロルヒドリンとフェノールノボラック又はクレゾールノボラック等とから誘導されるエポキシノボラック樹脂;ナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂;グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独に又は2種以上を混合して用いることが可能である。   Examples of the epoxy resin include a bisphenol type epoxy resin derived from epichlorohydrin and bisphenol A, F, AD, or the like; an epoxy novolak resin derived from epichlorohydrin and a phenol novolak or cresol novolak; a naphthalene having a skeleton containing a naphthalene ring Epoxy resin; various epoxy compounds having two or more glycidyl groups in one molecule such as glycidylamine, glycidyl ether, biphenyl, and alicyclic can be used alone or in admixture of two or more. is there.

エポキシ樹脂としては、不純物イオン(Na、Cl等)及び加水分解性塩素等の含有率が300ppm以下に低減された高純度品を用いることが好ましい。これによりエレクトロマイグレーションを防止し易くなる。 The epoxy resin, impurity ions (Na +, Cl -, etc.) and hydrolyzable chlorine and the like the content of it is preferable to use a high-purity product was reduced to 300ppm or less. This makes it easier to prevent electromigration.

潜在性硬化剤としては、イミダゾール系硬化剤、ヒドラジド系硬化剤、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩及びジシアンジアミド等が挙げられる。この他、接着剤には、ラジカル反応性樹脂と有機過酸化物の混合物や紫外線等のエネルギー線硬化性樹脂が用いられる。   Examples of latent curing agents include imidazole curing agents, hydrazide curing agents, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, and dicyandiamide. In addition, for the adhesive, a mixture of a radical reactive resin and an organic peroxide or an energy ray curable resin such as ultraviolet rays is used.

接着剤3には、接着後の応力を低減させるため、又は接着性を向上させるために、ブタジエンゴム、アクリルゴム、スチレン−ブタジエンゴム又はシリコーンゴム等を混合することができる。   The adhesive 3 can be mixed with butadiene rubber, acrylic rubber, styrene-butadiene rubber, silicone rubber, or the like in order to reduce stress after adhesion or to improve adhesiveness.

接着剤3としてはペースト状又はフィルム状のものが用いられる。接着剤をフィルム状にするためには、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂を配合することが効果的である。これらのフィルム形成性高分子は、反応性樹脂の硬化時の応力緩和にも効果がある。特に、フィルム形成性高分子が、水酸基等の官能基を有する場合、接着性が向上するためより好ましい。   As the adhesive 3, a paste or film is used. In order to make the adhesive into a film, it is effective to blend a thermoplastic resin such as a phenoxy resin, a polyester resin, or a polyamide resin. These film-forming polymers are also effective in stress relaxation when the reactive resin is cured. In particular, when the film-forming polymer has a functional group such as a hydroxyl group, the adhesiveness is improved, which is more preferable.

フィルムの形成は、エポキシ樹脂、アクリルゴム、潜在性硬化剤、及びフィルム形成性高分子からなる接着組成物を、有機溶剤に溶解又は分散させることにより、液状化して、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。このとき用いる有機溶剤としては、材料の溶解性を向上させる点において、芳香族炭化水素系と含酸素系の混合溶剤が好ましい。   The film is formed by dissolving or dispersing an adhesive composition composed of epoxy resin, acrylic rubber, latent curing agent, and film-forming polymer in an organic solvent, and applying it onto a peelable substrate. And by removing the solvent below the activation temperature of the curing agent. The organic solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent in terms of improving the solubility of the material.

異方導電性接着剤40の厚さは、導電粒子8の平均粒子径及び異方導電性接着剤40の特性を考慮して相対的に決定されるが、1〜100μmであることが好ましい。厚さが1μm以上であることにより、接着性を向上させることができ、厚さが100μm以下であることにより、電極間の導電性を確保するための導電粒子数を抑えることができる。こうした理由から、厚さは3〜50μmであることがより好ましい。   The thickness of the anisotropic conductive adhesive 40 is relatively determined in consideration of the average particle diameter of the conductive particles 8 and the characteristics of the anisotropic conductive adhesive 40, but is preferably 1 to 100 μm. When the thickness is 1 μm or more, the adhesiveness can be improved, and when the thickness is 100 μm or less, the number of conductive particles for securing conductivity between the electrodes can be suppressed. For these reasons, the thickness is more preferably 3 to 50 μm.

<接続構造体>
この異方導電性接着剤40を用いた接続構造体42の作製方法を、図4b及び4cに示す。
<Connection structure>
A method for producing the connection structure 42 using the anisotropic conductive adhesive 40 is shown in FIGS. 4b and 4c.

図4bに示すように、第一の基板4と第二の基板6を準備し、異方導電性接着剤40をその間に配置する。このとき、第一の基板4が備える第一の電極5と第二の基板6が備える第二の電極7とを対向させる。その後、第一の基板4と第二の基板6を、第一の電極5と第二の電極7とが対向する方向で加圧加熱する。これらの工程を経て、第一の基板4及び第二の基板6と基板間に挟まれた異方導電性接着剤40とを備える接続構造体42が得られる(図4c参照。)。   As shown in FIG. 4b, a first substrate 4 and a second substrate 6 are prepared, and an anisotropic conductive adhesive 40 is disposed therebetween. At this time, the first electrode 5 included in the first substrate 4 and the second electrode 7 included in the second substrate 6 are opposed to each other. Thereafter, the first substrate 4 and the second substrate 6 are pressurized and heated in a direction in which the first electrode 5 and the second electrode 7 face each other. Through these steps, a connection structure 42 including the first substrate 4 and the second substrate 6 and the anisotropic conductive adhesive 40 sandwiched between the substrates is obtained (see FIG. 4c).

接続構造体42の縦方向(第一の電極5と第二の電極7とが対向する方向)では、絶縁性粒子1が母粒子2bにめり込み、第一の電極5と第二の電極7は母粒子2bの表面(導電層及びめっき層)を介して導通する。横方向では、母粒子間に絶縁性粒子1が介在し、隣接する第一の電極間の絶縁性、及び隣接する第二の電極間の絶縁性が維持される。   In the longitudinal direction of the connection structure 42 (the direction in which the first electrode 5 and the second electrode 7 face each other), the insulating particles 1 sink into the mother particles 2b, and the first electrode 5 and the second electrode 7 are It conducts through the surface (conductive layer and plating layer) of the mother particle 2b. In the lateral direction, the insulating particles 1 are interposed between the mother particles, and the insulation between the adjacent first electrodes and the insulation between the adjacent second electrodes are maintained.

第一の基板4又は第二の基板6としては、ガラス基板、ポリイミド等のテープ基板、ドライバーIC等のベアチップ、及びリジット型のパッケージ基板等が挙げられる。   Examples of the first substrate 4 or the second substrate 6 include a glass substrate, a tape substrate such as polyimide, a bare chip such as a driver IC, and a rigid package substrate.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。以下では、説明の便宜上、表面に絶縁性粒子を備える母粒子を、「導電粒子」と記し、表面に絶縁性粒子を備えない母粒子と区別する。ただし、下記実施例2、9〜32の母粒子及び導電粒子は、全て本発明に係る導電粒子に包含される。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. In the following, for convenience of explanation, mother particles having insulating particles on the surface are referred to as “conductive particles” and are distinguished from mother particles not having insulating particles on the surface. However, the mother particles and conductive particles of Examples 2 and 9 to 32 below are all included in the conductive particles according to the present invention.

<CNTの分散液の作製>
CNTを合成するための触媒であるAl膜及びFe膜を石英基板上にスパッタリングによって形成した。スパッタ装置には、島津エミット社製のマグネトロンスパッタ装置(HSM−542−HT)を用いた。
<Preparation of CNT dispersion>
An Al film and an Fe film, which are catalysts for synthesizing CNTs, were formed on a quartz substrate by sputtering. As the sputtering apparatus, a magnetron sputtering apparatus (HSM-542-HT) manufactured by Shimadzu Emit Co., Ltd. was used.

触媒が形成された基板を、石英製横型管状炉内に設置し、アセチレン、二酸化炭素及びアルゴンからなる原料ガスを炉内に供給した。炉内で原料ガスを30分間反応させることにより、黒色のCNT配向膜を石英基板上に形成した。炉内の原料ガスの温度は800℃であり、炉内に供給した原料ガスの圧力は常圧であった。原料ガスにおけるアセチレンの分圧は2.4Torrであった。原料ガスにおける二酸化炭素の分圧は7.6Torrであった。得られたCNTの平均直径は5nmであった。CNTの平均長さは約500μmであった。   The substrate on which the catalyst was formed was placed in a quartz horizontal tubular furnace, and a raw material gas consisting of acetylene, carbon dioxide and argon was supplied into the furnace. By reacting the raw material gas for 30 minutes in the furnace, a black CNT alignment film was formed on the quartz substrate. The temperature of the raw material gas in the furnace was 800 ° C., and the pressure of the raw material gas supplied into the furnace was normal pressure. The partial pressure of acetylene in the source gas was 2.4 Torr. The partial pressure of carbon dioxide in the source gas was 7.6 Torr. The average diameter of the obtained CNT was 5 nm. The average length of CNT was about 500 μm.

上記のCNT0.05g、水100mL及び分散剤0.25gから混合液を調製した。分散剤(界面活性剤)としては、ドデシルベンゼンスルホン酸ナトリウム(和光純薬製)を用いた。得られた混合液を30分間超音波で処理することにより、黒色のCNTの分散液(濃度:0.05質量%)を得た。超音波処理には、プローブ式の超音波分散機(日本精機製)を用いた。   A mixed solution was prepared from 0.05 g of the above CNT, 100 mL of water and 0.25 g of a dispersant. As a dispersant (surfactant), sodium dodecylbenzenesulfonate (manufactured by Wako Pure Chemical Industries, Ltd.) was used. The obtained mixed solution was treated with ultrasonic waves for 30 minutes to obtain a black CNT dispersion (concentration: 0.05% by mass). For the ultrasonic treatment, a probe type ultrasonic disperser (manufactured by Nippon Seiki Co., Ltd.) was used.

<母粒子の作製>
(母粒子1)
平均粒子径が3.0μmである球状の架橋ポリスチレン粒子(樹脂微粒子)3gに対し、アルカリ脱脂を実施した後、アルカリを酸で中和した。pHを6.0に調整したカチオン性高分子液100mLに、脱脂後の樹脂微粒子を添加し、60℃で1時間攪拌した。攪拌後のカチオン性高分子液中の樹脂微粒子を濾過により回収して、水洗した。濾過には、孔径が3μmであるメンブレンフィルタ(ミリポア社製)を用いた。水洗後の樹脂微粒子を、パラジウム触媒液100mLに添加し、触媒液を35℃で30分間攪拌した。パラジウム触媒液中のパラジウム触媒の含有率は8質量%に調整した。パラジウム触媒としては、アトテックネオガント834(アトテックジャパン社製、商品名)を用いた。攪拌後のパラジウム触媒液中の樹脂微粒子を濾過により回収して、水洗した。濾過には、上記のメンブレンフィルタを用いた。樹脂微粒子のパラジウム触媒液への添加、攪拌、濾過及び水洗からなるサイクルを繰り返して、樹脂微粒子表面に十分な量のパラジウム触媒を付与した。なお、「パラジウム触媒」とは、樹脂微粒子表面にめっき層を形成するための触媒であって、めっき層又は導電層を構成するものではない。
<Preparation of mother particles>
(Base particle 1)
Alkali was degreased on 3 g of spherical crosslinked polystyrene particles (resin fine particles) having an average particle diameter of 3.0 μm, and then the alkali was neutralized with an acid. The resin fine particles after degreasing were added to 100 mL of a cationic polymer solution adjusted to pH 6.0, and stirred at 60 ° C. for 1 hour. The fine resin particles in the cationic polymer liquid after stirring were collected by filtration and washed with water. For the filtration, a membrane filter (manufactured by Millipore) having a pore diameter of 3 μm was used. The resin fine particles after washing with water were added to 100 mL of palladium catalyst solution, and the catalyst solution was stirred at 35 ° C. for 30 minutes. The content of the palladium catalyst in the palladium catalyst solution was adjusted to 8% by mass. As the palladium catalyst, Atotech Neo Gant 834 (Atotech Japan Co., Ltd., trade name) was used. The fine resin particles in the palladium catalyst solution after stirring were collected by filtration and washed with water. For the filtration, the above membrane filter was used. A cycle consisting of addition of resin fine particles to the palladium catalyst solution, stirring, filtration and washing with water was repeated to give a sufficient amount of palladium catalyst to the surface of the resin fine particles. The “palladium catalyst” is a catalyst for forming a plating layer on the surface of resin fine particles, and does not constitute a plating layer or a conductive layer.

表面にパラジウム触媒を付与した樹脂微粒子を水素化ホウ素ナトリウムの水溶液に添加し、表面が活性化された樹脂微粒子(樹脂コア粒子1)を得た。水素化ホウ素ナトリウムの水溶液のpHは12.0に調整した。水素化ホウ素ナトリウムの水溶液の濃度は0.5g/Lに調整した。この樹脂コア粒子を蒸留水に浸漬し、超音波によって樹脂コア粒子を蒸留水中で分散させた。分散後の樹脂微粒子を濾過して、表面がアルカリパラジウム触媒で活性化された樹脂微粒子(樹脂コア粒子2)を回収した。濾過には、上記メンブレンフィルタを用いた。   Resin fine particles provided with a palladium catalyst on the surface were added to an aqueous solution of sodium borohydride to obtain resin fine particles (resin core particles 1) whose surfaces were activated. The pH of the aqueous solution of sodium borohydride was adjusted to 12.0. The concentration of the aqueous solution of sodium borohydride was adjusted to 0.5 g / L. The resin core particles were immersed in distilled water, and the resin core particles were dispersed in distilled water by ultrasonic waves. The dispersed resin fine particles were filtered to recover resin fine particles (resin core particles 2) whose surfaces were activated with an alkali palladium catalyst. The membrane filter was used for filtration.

2000mLのガラスビーカー(浴)中で、樹脂コア粒子2(約3g)と、及びクエン酸ナトリウムと、水1000mLとを、フッ素製攪拌羽根により攪拌して、樹脂コア粒子2を含有する液体を調製した。この液体におけるクエン酸ナトリウムの濃度を20g/Lに調整した。攪拌羽根の回転速度は600rpmに調整した。この樹脂コア粒子2を含有する液体に対して20kHzの超音波を印加しながら、液体のpHを3.5に調整し、液体を80℃に加温した。硫酸ニッケル及びクエン酸ナトリウムを含有する厚付けめっき液aを調製した。めっき液a中の硫酸ニッケルの濃度を224g/Lに調整した。めっき液a中のクエン酸ナトリウムの濃度を20g/Lに調整した。次亜リン酸ナトリウム及び水酸化ナトリウムを含有する厚付けめっき液bを調製した。めっき液b中の次亜リン酸ナトリウムの濃度を100g/Lに調整した。めっき液b中の水酸化ナトリウムの濃度を10g/Lに調整した。めっき液a及びbを、それぞれ20mL/分の速度で、樹脂コア粒子2を含有する液体に滴下した。滴下開始から30秒後に還元反応が開始し、浴中から気泡が発生して浴全体が灰色から黒色になった。浴中のpHを3.5に調整した後、めっき液a及びb、並びにCNTの分散液を同時に40分間、樹脂コア粒子2を含有する液体に滴下した。めっき液a及びめっき液bそれぞれの滴下速度は4mL/分に調整した。CNTの分散液の滴下速度は0.13mL/分に調整した。その後、樹脂コア粒子2、めっき液a及びb、並びにCNTを含む混合液(めっき浴)を気泡の発生が停止するまで攪拌したところ、混合液全体が黒色から灰色に変化した。混合液の最終的なpHは3.3であった。その後、混合液の濾過及び濾物の水洗を3回行って、めっきされた樹脂コア粒子2を回収した。めっき後の樹脂コア粒子2を40℃で7時間真空乾燥した後、解砕により粒子の凝集を解した。これらの工程を経て、樹脂コア粒子2と樹脂コア粒子2の表面全体を被覆する無電解ニッケルめっき層とを備える母粒子1を作製した。ニッケルめっき層の平均厚さは80nmであった。なお、超音波の印加はめっき終了まで継続した。   In a 2000 mL glass beaker (bath), resin core particles 2 (about 3 g), sodium citrate, and 1000 mL of water are stirred with a fluorine stirring blade to prepare a liquid containing resin core particles 2 did. The concentration of sodium citrate in this liquid was adjusted to 20 g / L. The rotation speed of the stirring blade was adjusted to 600 rpm. While applying a 20 kHz ultrasonic wave to the liquid containing the resin core particles 2, the pH of the liquid was adjusted to 3.5, and the liquid was heated to 80 ° C. A thick plating solution a containing nickel sulfate and sodium citrate was prepared. The concentration of nickel sulfate in the plating solution a was adjusted to 224 g / L. The concentration of sodium citrate in the plating solution a was adjusted to 20 g / L. A thick plating solution b containing sodium hypophosphite and sodium hydroxide was prepared. The concentration of sodium hypophosphite in the plating solution b was adjusted to 100 g / L. The concentration of sodium hydroxide in the plating solution b was adjusted to 10 g / L. The plating solutions a and b were added dropwise to the liquid containing the resin core particles 2 at a rate of 20 mL / min. The reduction reaction started 30 seconds after the start of dropping, bubbles were generated from the bath, and the entire bath turned from gray to black. After adjusting the pH in the bath to 3.5, the plating solutions a and b and the CNT dispersion were simultaneously added dropwise to the liquid containing the resin core particles 2 for 40 minutes. The dropping rate of each of the plating solution a and the plating solution b was adjusted to 4 mL / min. The dropping rate of the CNT dispersion was adjusted to 0.13 mL / min. Then, when the resin core particle 2, the plating solutions a and b, and the mixed solution (plating bath) containing CNT were stirred until the generation of bubbles stopped, the entire mixed solution changed from black to gray. The final pH of the mixture was 3.3. Thereafter, the mixed solution was filtered and the filtrate was washed with water three times to recover the plated resin core particles 2. After the resin core particles 2 after plating were vacuum dried at 40 ° C. for 7 hours, the aggregation of the particles was broken by crushing. Through these steps, mother particles 1 including resin core particles 2 and an electroless nickel plating layer covering the entire surface of resin core particles 2 were produced. The average thickness of the nickel plating layer was 80 nm. The application of ultrasonic waves was continued until the end of plating.

(母粒子2)
CNTの分散液の滴下速度を0.5mL/分に調整し、CNTの分散液の滴下を開始から10分で終了したこと以外は母粒子1と同様の方法で、母粒子2を作製した。
(Mother particle 2)
The mother particle 2 was prepared in the same manner as the mother particle 1 except that the dropping rate of the CNT dispersion was adjusted to 0.5 mL / min and the dropping of the CNT dispersion was completed in 10 minutes from the start.

(母粒子3)
上記のめっき液a及びbの滴下開始から30分経過後にCNTの分散液の滴下を開始して10分間継続し、CNTの分散液の滴下速度を0.5mL/分に調整したこと以外は母粒子1と同様の方法で、母粒子3を作製した。
(Mother particle 3)
30 minutes after the start of dropping of the plating solutions a and b, the dropping of the CNT dispersion was started and continued for 10 minutes, except that the dropping rate of the CNT dispersion was adjusted to 0.5 mL / min. Base particles 3 were prepared in the same manner as for particles 1.

(母粒子4)
CNTの分散液におけるCNTの濃度を0.5質量%に調整したこと以外は母粒子1と同様の方法で、母粒子4を作製した。
(Base particle 4)
Base particles 4 were produced in the same manner as base particles 1 except that the CNT concentration in the CNT dispersion was adjusted to 0.5 mass%.

(母粒子5)
CNTの分散液におけるCNTの濃度を0.5質量%に調整し、CNTの分散液の滴下速度を0.81mL/分に調整したこと以外は母粒子1と同様の方法で、母粒子5を作製した。
(Mother particle 5)
The mother particles 5 were prepared in the same manner as the mother particles 1 except that the concentration of CNTs in the CNT dispersion was adjusted to 0.5 mass% and the dropping rate of the CNT dispersion was adjusted to 0.81 mL / min. Produced.

(母粒子6)
実施例1と同様の方法で、樹脂コア粒子2を得た。2000mLのガラスビーカー(浴)中で、樹脂コア粒子2(約3g)及び水1000mLを、フッ素製攪拌羽根により攪拌して、樹脂コア粒子2を含有する液体を調製した。攪拌羽根の回転速度は600rpmに調整した。樹脂コア粒子2を含有する液体に対して20kHzの超音波を印加しながら、液体のpHを12に調整し、液体を40℃に加温した。CuSO・5HO、HCHO及びNaCN含有するめっき液cを調製した。めっき液c中のCuSO・5HOの濃度を200g/Lに調整した。めっき液c中のHCHOの濃度を30g/Lに調整した。めっき液c中のNaCNの濃度を0.05g/Lに調整した。EDTA・4Na及びNaOHを40g/Lを含有するめっき液dを調製した。めっき液d中のEDTA・4Naの濃度を292g/Lに調整した。めっき液dのNaOHの濃度を40g/Lに調整した。めっき液c及びdと、母粒子1の作製に用いたCNTの分散液とを、同時に40分間、樹脂コア粒子2を含有する液体に滴下した。めっき液c及びめっき液dそれぞれの滴下速度を20mL/分に調整した。CNTの分散液の滴下速度を0.13mL/分に調整した。その後、樹脂コア粒子2、めっき液c及びd、並びにCNTを含む混合液を気泡の発生が停止するまで攪拌したところ、混合液全体が黒色から褐色に変化した。混合液の最終的なpHは12以上であった。その後、混合液の濾過及び濾物の水洗を3回行って、めっきされた樹脂コア粒子2を回収した。めっき後の樹脂コア粒子2を40℃で7時間真空乾燥した後、解砕により粒子の凝集を解した。これらの工程を経て、樹脂コア粒子2と樹脂コア粒子2の表面全体を被覆する無電解銅めっき層とを備える母粒子6を作製した。無電解銅めっき層の平均厚さが80nmであった。なお、超音波の印加はめっき終了まで継続した。
(Base particle 6)
Resin core particles 2 were obtained in the same manner as in Example 1. In a 2000 mL glass beaker (bath), resin core particles 2 (about 3 g) and 1000 mL of water were stirred with a fluorine stirring blade to prepare a liquid containing the resin core particles 2. The rotation speed of the stirring blade was adjusted to 600 rpm. While applying an ultrasonic wave of 20 kHz to the liquid containing the resin core particles 2, the pH of the liquid was adjusted to 12, and the liquid was heated to 40 ° C. A plating solution c containing CuSO 4 .5H 2 O, HCHO and NaCN was prepared. The concentration of CuSO 4 .5H 2 O in the plating solution c was adjusted to 200 g / L. The concentration of HCHO in the plating solution c was adjusted to 30 g / L. The concentration of NaCN in the plating solution c was adjusted to 0.05 g / L. A plating solution d containing 40 g / L of EDTA · 4Na and NaOH was prepared. The concentration of EDTA · 4Na in the plating solution d was adjusted to 292 g / L. The concentration of NaOH in the plating solution d was adjusted to 40 g / L. The plating solutions c and d and the CNT dispersion used for the production of the mother particles 1 were simultaneously dropped into the liquid containing the resin core particles 2 for 40 minutes. The dropping rate of each of the plating solution c and the plating solution d was adjusted to 20 mL / min. The dropping rate of the CNT dispersion was adjusted to 0.13 mL / min. Thereafter, the mixed solution containing the resin core particles 2, the plating solutions c and d, and the CNTs was stirred until the generation of bubbles stopped, and the whole mixed solution changed from black to brown. The final pH of the mixture was 12 or higher. Thereafter, the mixed solution was filtered and the filtrate was washed with water three times to recover the plated resin core particles 2. After the resin core particles 2 after plating were vacuum dried at 40 ° C. for 7 hours, the aggregation of the particles was broken by crushing. Through these steps, mother particles 6 including resin core particles 2 and an electroless copper plating layer covering the entire surface of resin core particles 2 were produced. The average thickness of the electroless copper plating layer was 80 nm. The application of ultrasonic waves was continued until the end of plating.

(母粒子7)
母粒子7の作製では、めっき液c及びd、並びにCNTの分散液の滴下の開始と同時に、さらに硫酸ニッケルを224g/Lの濃度で含有するめっき液eの滴下を開始した。そして、めっき液eの滴下を開始から10分間で終了した。めっき液eの滴下速度を5mL/分に調整した。これらの事項以外は母粒子6と同様の方法で、母粒子7を作製した。
(Mother particle 7)
In the production of the mother particles 7, simultaneously with the start of the dropping of the plating solutions c and d and the dispersion of CNTs, the dropping of the plating solution e containing nickel sulfate at a concentration of 224 g / L was started. Then, the dropping of the plating solution e was completed in 10 minutes from the start. The dropping rate of the plating solution e was adjusted to 5 mL / min. Except for these matters, mother particles 7 were produced in the same manner as mother particles 6.

(母粒子8)
実施例1と同様の方法で、樹脂コア粒子2を得た。2000mLのガラスビーカー(浴)中で、樹脂コア粒子2(約3g)と、クエン酸ナトリウムを溶解させた水1000mLとを、フッ素製攪拌羽根により攪拌して、樹脂コア粒子2を含有する液体を調製した。この液体におけるクエン酸ナトリウムの濃度は50g/Lに調整した。攪拌羽根の回転速度は600rpmに調整した。樹脂微粒子を含有する液体に対して20kHzの超音波を印加しながら、液体のpHを6.0に調整し、液体を70℃に加温した。パラジウム、クエン酸ナトリウム及びエチレンジアミンを含有するめっき液fを調製した。めっき液f中のパラジウムの濃度を20g/Lに調整した。なお、パラジウムはめっき液fにおいてイオン又は錯体として存在する。パラジウムの濃度は、めっき液f中に含まれる全てのパラジウム元素の重量に基づく値である。めっき液f中のクエン酸ナトリウムの濃度を50g/Lに調整した。めっき液f中のエチレンジアミンの濃度を20g/Lに調整した。めっき液fのpHを6.0に調整した。次亜リン酸ナトリウムを含有するめっき液gを調製した。めっき液g中の次亜リン酸ナトリウムの濃度を1.2mol/Lに調整した。水酸化ナトリウムの添加により、めっき液gのpHを6.0に調整した。めっき液f及びgと、母粒子1の作製に用いたCNTの分散液とを、同時に40分間、樹脂コア粒子2を含有する液体に滴下した。めっき液f及びgそれぞれの滴下速度を10mL/分に調整した。CNTの分散液の滴下速度を0.13mL/分に調整した。滴下終了後、めっき液f及びg、並びにCNTを含む混合液からの気泡の発生が停止するのを待った。反応が停止した時の混合液のpHは6.0であった。混合液の濾過及び濾物の水洗を3回行って、めっきされた樹脂コア粒子2を回収した。めっき後の樹脂コア粒子2を40℃で7時間真空乾燥した後、解砕により粒子の凝集を解した。これらの工程を経て、樹脂コア粒子2と樹脂コア粒子2の表面全体を被覆する無電解パラジウムめっき層とを備える母粒子8を作製した。無電解パラジウムめっき層の平均厚さが80nmであった。なお、超音波の印加はめっき終了まで継続した。
(Base particle 8)
Resin core particles 2 were obtained in the same manner as in Example 1. In a 2000 mL glass beaker (bath), resin core particles 2 (about 3 g) and 1000 mL of water in which sodium citrate is dissolved are stirred with a fluorine stirring blade, and a liquid containing the resin core particles 2 is obtained. Prepared. The concentration of sodium citrate in this liquid was adjusted to 50 g / L. The rotation speed of the stirring blade was adjusted to 600 rpm. While applying 20 kHz ultrasonic waves to the liquid containing resin fine particles, the pH of the liquid was adjusted to 6.0 and the liquid was heated to 70 ° C. A plating solution f containing palladium, sodium citrate and ethylenediamine was prepared. The concentration of palladium in the plating solution f was adjusted to 20 g / L. In addition, palladium exists as an ion or a complex in the plating solution f. The concentration of palladium is a value based on the weight of all palladium elements contained in the plating solution f. The concentration of sodium citrate in the plating solution f was adjusted to 50 g / L. The concentration of ethylenediamine in the plating solution f was adjusted to 20 g / L. The pH of the plating solution f was adjusted to 6.0. A plating solution g containing sodium hypophosphite was prepared. The concentration of sodium hypophosphite in the plating solution g was adjusted to 1.2 mol / L. The pH of the plating solution g was adjusted to 6.0 by adding sodium hydroxide. The plating solutions f and g and the CNT dispersion used for the production of the mother particles 1 were simultaneously dropped into the liquid containing the resin core particles 2 for 40 minutes. The dropping rate of each of the plating solutions f and g was adjusted to 10 mL / min. The dropping rate of the CNT dispersion was adjusted to 0.13 mL / min. After completion of the dropping, the generation of bubbles from the mixed solution containing the plating solutions f and g and CNTs was awaited. The pH of the mixed solution when the reaction stopped was 6.0. The mixed liquid was filtered and the filtrate was washed with water three times to recover the plated resin core particles 2. After the resin core particles 2 after plating were vacuum dried at 40 ° C. for 7 hours, the aggregation of the particles was broken by crushing. Through these steps, mother particles 8 including resin core particles 2 and an electroless palladium plating layer covering the entire surface of resin core particles 2 were produced. The average thickness of the electroless palladium plating layer was 80 nm. The application of ultrasonic waves was continued until the end of plating.

(母粒子9)
2000mLのガラスビーカー(浴)中で、母粒子1(6g)と、クエン酸ナトリウムと、水1000mLとを、フッ素製攪拌羽根により攪拌して、母粒子1を含有する液体を調製した。この液体におけるクエン酸ナトリウムの濃度を20g/Lに調整した。攪拌羽根の回転速度は600rpmに調整した。母粒子1を含有する液体に対して、20kHzの超音波を印加しながら、液体のpHを6.0に調整し、液体を80℃に加温した。硫酸ニッケル及び酒石酸ナトリウムを含有する厚付けめっき液hを調製した。めっき液h中の硫酸ニッケルの濃度を224g/Lに調整した。めっき液h中の酒石酸ナトリウムの濃度を30g/Lに調整した。次亜リン酸ナトリウム及び水酸化ナトリウムを含有する厚付けめっき液iを調製した。めっき液i中の次亜リン酸ナトリウムの濃度を200g/Lに調整した。めっき液i中の水酸化ナトリウムの濃度を80g/Lに調整した。めっき液h及びめっき液iを、それぞれ10mL/分の速度で、母粒子1を含有する液体に滴下した。その後、めっき液h及びi、並びにCNTを含む混合液を気泡の発生が停止するまで攪拌を行ったところ、混合液の最終的なpHは6.0であった。その後、混合液の濾過及び濾物の水洗を3回行って、めっきされた母粒子1を回収した。めっき後の母粒子1を40℃で7時間真空乾燥した後、解砕により粒子の凝集を解した。これらの工程を経て、母粒子1と、母粒子1の表面全体を被覆するリン濃度の低い無電解ニッケルめっき層と、を備える母粒子9を作製した。無電解ニッケルめっき層(Ni導電層)の平均厚さは30nmであった。なお、超音波の印加はめっき終了まで継続した。
(Base particle 9)
In a 2000 mL glass beaker (bath), mother particles 1 (6 g), sodium citrate, and 1000 mL of water were stirred with a fluorine stirring blade to prepare a liquid containing mother particles 1. The concentration of sodium citrate in this liquid was adjusted to 20 g / L. The rotation speed of the stirring blade was adjusted to 600 rpm. While applying a 20 kHz ultrasonic wave to the liquid containing the mother particles 1, the pH of the liquid was adjusted to 6.0 and the liquid was heated to 80 ° C. A thick plating solution h containing nickel sulfate and sodium tartrate was prepared. The concentration of nickel sulfate in the plating solution h was adjusted to 224 g / L. The concentration of sodium tartrate in the plating solution h was adjusted to 30 g / L. A thick plating solution i containing sodium hypophosphite and sodium hydroxide was prepared. The concentration of sodium hypophosphite in the plating solution i was adjusted to 200 g / L. The concentration of sodium hydroxide in the plating solution i was adjusted to 80 g / L. The plating solution h and the plating solution i were added dropwise to the liquid containing the mother particles 1 at a rate of 10 mL / min. Thereafter, the mixed solution containing the plating solutions h and i and CNT was stirred until the generation of bubbles was stopped, and the final pH of the mixed solution was 6.0. Thereafter, the mixed liquid was filtered and the filtrate was washed with water three times to recover the plated mother particles 1. After the mother particles 1 after plating were vacuum-dried at 40 ° C. for 7 hours, the aggregation of the particles was broken by crushing. Through these steps, a mother particle 9 including the mother particle 1 and an electroless nickel plating layer having a low phosphorus concentration covering the entire surface of the mother particle 1 was produced. The average thickness of the electroless nickel plating layer (Ni conductive layer) was 30 nm. The application of ultrasonic waves was continued until the end of plating.

(母粒子10)
母粒子1に代えて母粒子2を用いたこと以外は母粒子9と同様の方法で、母粒子10を作製した。
(Base particle 10)
A mother particle 10 was produced in the same manner as the mother particle 9 except that the mother particle 2 was used in place of the mother particle 1.

(母粒子11)
母粒子1に代えて母粒子3を用いたこと以外は母粒子9と同様の方法で、母粒子11を作製した。
(Base particle 11)
A mother particle 11 was produced in the same manner as the mother particle 9 except that the mother particle 3 was used in place of the mother particle 1.

(母粒子12)
母粒子1に代えて母粒子4を用いたこと以外は母粒子9と同様の方法で、母粒子12を作製した。
(Base particle 12)
A mother particle 12 was produced in the same manner as the mother particle 9 except that the mother particle 4 was used instead of the mother particle 1.

(母粒子13)
母粒子1に代えて母粒子5を用いたこと以外は母粒子9と同様の方法で、母粒子13を作製した。
(Base particle 13)
A mother particle 13 was produced in the same manner as the mother particle 9 except that the mother particle 5 was used instead of the mother particle 1.

(母粒子14)
母粒子6(6g)を0.1質量%の塩化パラジウム溶液1000mLに3分浸漬した。浸漬後の母粒子6に対し水洗を2回行い、表面にパラジウム核を析出させた母粒子6を得た。母粒子1に代えて表面にパラジウム核を析出させた母粒子6を用いたこと以外は母粒子9と同様の方法で、母粒子14を作製した。
(Base particle 14)
Base particles 6 (6 g) were immersed in 1000 mL of 0.1 mass% palladium chloride solution for 3 minutes. The mother particles 6 after immersion were washed twice with water to obtain mother particles 6 having palladium nuclei deposited on the surface. A mother particle 14 was produced in the same manner as the mother particle 9 except that the mother particle 6 having palladium nuclei deposited on the surface was used instead of the mother particle 1.

(母粒子15)
母粒子6に代えて母粒子7を用いたこと以外は母粒子14と同様の方法で、母粒子15を作製した。
(Host particle 15)
A mother particle 15 was produced in the same manner as the mother particle 14 except that the mother particle 7 was used instead of the mother particle 6.

(母粒子16)
母粒子1に代えて母粒子8を用いたこと以外は母粒子9と同様の方法で、母粒子16を作製した。
(Host particle 16)
A mother particle 16 was produced in the same manner as the mother particle 9 except that the mother particle 8 was used instead of the mother particle 1.

(母粒子17)
2000mLのガラスビーカー(浴)中で、母粒子1(6g)と、クエン酸ナトリウムを溶解させた水1000mLとを、フッ素製攪拌羽根により攪拌して、母粒子1を含有する液体を調製した。この液体におけるクエン酸ナトリウムは50g/Lに調整した。攪拌羽根の回転速度は600rpmに調整した。母粒子1を含有する液体に対して20kHzの超音波を印加しながら、液体のpHを6.0に調整し、液体を70℃に加温した。パラジウム、クエン酸ナトリウム及びエチレンジアミンを含有するめっき液jを調製した。めっき液j中のパラジウムの濃度を20g/Lに調整した。なお、パラジウムはめっき液jにおいてイオン又は錯体として存在する。パラジウムの濃度は、めっき液j中に含まれる全てのパラジウム元素の重量に基づく値である。めっき液j中のクエン酸ナトリウムの濃度を50g/Lに調整した。めっき液j中のエチレンジアミンの濃度を20g/Lに調整した。めっき液jのpHを6.0に調整した。ギ酸を含有するめっき液kを調製した。めっき液k中のギ酸の濃度を20g/Lに調整した。水酸化ナトリウムの添加により、めっき液kのpHを6.0に調整した。めっき液j及びkを、母粒子1を含有する液体に滴下した。めっき液j及びめっき液kそれぞれの滴下速度を10mL/分に調整した。滴下終了後、めっき液j及びk、並びに母粒子1を含む混合液からの気泡の発生が停止するのを待った。反応が停止した時の混合液のpHは、6.0であった。混合液の濾過及び濾物の水洗を3回行って、めっきされた母粒子1を回収した。めっき後の母粒子1を40℃で7時間真空乾燥した後、解砕により粒子の凝集を解した。これらの工程を経て、母粒子1と母粒子1の表面全体を被覆する無電解パラジウムめっき層とを備える母粒子17を作製した。無電解パラジウムめっき層(Pd導電層)の平均厚さは30nmであった。
(Mother particle 17)
In a 2000 mL glass beaker (bath), mother particle 1 (6 g) and 1000 mL of water in which sodium citrate was dissolved were stirred with a fluorine stirring blade to prepare a liquid containing mother particle 1. Sodium citrate in this liquid was adjusted to 50 g / L. The rotation speed of the stirring blade was adjusted to 600 rpm. While applying an ultrasonic wave of 20 kHz to the liquid containing the mother particles 1, the pH of the liquid was adjusted to 6.0 and the liquid was heated to 70 ° C. A plating solution j containing palladium, sodium citrate and ethylenediamine was prepared. The concentration of palladium in the plating solution j was adjusted to 20 g / L. In addition, palladium exists as an ion or a complex in the plating solution j. The concentration of palladium is a value based on the weight of all the palladium elements contained in the plating solution j. The concentration of sodium citrate in the plating solution j was adjusted to 50 g / L. The concentration of ethylenediamine in the plating solution j was adjusted to 20 g / L. The pH of the plating solution j was adjusted to 6.0. A plating solution k containing formic acid was prepared. The concentration of formic acid in the plating solution k was adjusted to 20 g / L. The pH of the plating solution k was adjusted to 6.0 by adding sodium hydroxide. The plating solutions j and k were added dropwise to the liquid containing the mother particles 1. The dropping rate of each of the plating solution j and the plating solution k was adjusted to 10 mL / min. After completion of dropping, the process waited for the generation of bubbles from the mixed solution containing the plating solutions j and k and the mother particles 1 to stop. The pH of the mixed solution when the reaction stopped was 6.0. The mixture was filtered and the filtrate was washed with water three times to recover the plated mother particles 1. After the mother particles 1 after plating were vacuum-dried at 40 ° C. for 7 hours, the aggregation of the particles was broken by crushing. Through these steps, a mother particle 17 having a mother particle 1 and an electroless palladium plating layer covering the entire surface of the mother particle 1 was produced. The average thickness of the electroless palladium plating layer (Pd conductive layer) was 30 nm.

(母粒子18)
母粒子1に代えて母粒子2を用いたこと以外は母粒子17と同様の方法で、母粒子18を作製した。
(Mother particle 18)
A mother particle 18 was produced in the same manner as the mother particle 17 except that the mother particle 2 was used in place of the mother particle 1.

(母粒子19)
母粒子1に代えて母粒子3を用いたこと以外は母粒子17と同様の方法で、母粒子19を作製した。
(Mother particle 19)
A mother particle 19 was produced in the same manner as the mother particle 17 except that the mother particle 3 was used instead of the mother particle 1.

(母粒子20)
母粒子1に代えて母粒子4を用いたこと以外は母粒子17と同様の方法で、母粒子20を作製した。
(Mother particle 20)
A mother particle 20 was produced in the same manner as the mother particle 17 except that the mother particle 4 was used instead of the mother particle 1.

(母粒子21)
母粒子1に代えて母粒子5を用いたこと以外は母粒子17と同様の方法で、母粒子21を作製した。
(Host particle 21)
A mother particle 21 was produced in the same manner as the mother particle 17 except that the mother particle 5 was used instead of the mother particle 1.

(母粒子22)
母粒子1に代えて母粒子6を用いたこと以外は母粒子17と同様の方法で、母粒子22を作製した。
(Host particle 22)
A mother particle 22 was produced in the same manner as the mother particle 17 except that the mother particle 6 was used instead of the mother particle 1.

(母粒子23)
母粒子1に代えて母粒子7を用いたこと以外は母粒子17と同様の方法で、母粒子23を作製した。
(Host particle 23)
A mother particle 23 was produced in the same manner as the mother particle 17 except that the mother particle 7 was used instead of the mother particle 1.

(母粒子24)
母粒子1に代えて母粒子8を用いたこと以外は母粒子17と同様の方法で、母粒子24を作製した。
(Host particle 24)
A mother particle 24 was produced in the same manner as the mother particle 17 except that the mother particle 8 was used in place of the mother particle 1.

(母粒子25)
無電解金めっき液であるHGS―500(日立化成工業株式会社製 製品名)を80℃に加温した。母粒子1を、加温したHGS―500に浸漬し、置換金めっきを行った。めっき後、濾過と濾物の水洗によって、めっきされた母粒子1をHGS―500中から回収した。無電解金めっき液であるHGS−2000(日立化成工業株式会社製 製品名)を60℃に加温した。HGS―500によるめっき後の母粒子1を、加温したHGS−2000に浸漬し、置換金めっきを行った。HGS−2000によるめっき後、濾過と濾物の水洗によって、めっきされた母粒子1をHGS―200中から回収した。40℃で7時間真空乾燥した後、解砕により粒子の凝集を解した。これらの工程を経て、母粒子1と母粒子1の表面全体を被覆する無電解金めっき層とを備える母粒子25を作製した。無電解金めっき層(Au導電層)の平均厚さは30nmであった。
(Host particle 25)
HGS-500 (product name, manufactured by Hitachi Chemical Co., Ltd.), which is an electroless gold plating solution, was heated to 80 ° C. The mother particles 1 were immersed in heated HGS-500 and subjected to displacement gold plating. After plating, the plated mother particles 1 were recovered from the HGS-500 by filtration and washing of the filtrate. HGS-2000 (product name, manufactured by Hitachi Chemical Co., Ltd.), which is an electroless gold plating solution, was heated to 60 ° C. The mother particles 1 after plating with HGS-500 were immersed in warmed HGS-2000 and subjected to displacement gold plating. After plating with HGS-2000, the plated mother particles 1 were recovered from the HGS-200 by filtration and washing of the filtrate. After vacuum drying at 40 ° C. for 7 hours, the particles were agglomerated by crushing. Through these steps, a mother particle 25 including the mother particle 1 and an electroless gold plating layer covering the entire surface of the mother particle 1 was produced. The average thickness of the electroless gold plating layer (Au conductive layer) was 30 nm.

(母粒子26)
母粒子1に代えて母粒子2を用いたこと以外は母粒子25と同様の方法で、母粒子26を作製した。
(Mother particle 26)
A mother particle 26 was produced in the same manner as the mother particle 25 except that the mother particle 2 was used instead of the mother particle 1.

(母粒子27)
母粒子1に代えて母粒子3を用いたこと以外は母粒子25と同様の方法で、母粒子27を作製した。
(Host particle 27)
A mother particle 27 was produced in the same manner as the mother particle 25 except that the mother particle 3 was used instead of the mother particle 1.

(母粒子28)
母粒子1に代えて母粒子4を用いたこと以外は母粒子25と同様の方法で、母粒子28を作製した。
(Host particle 28)
A mother particle 28 was produced in the same manner as the mother particle 25 except that the mother particle 4 was used instead of the mother particle 1.

(母粒子29)
母粒子1に代えて母粒子5を用いたこと以外は母粒子25と同様の方法で、母粒子29を作製した。
(Mother particle 29)
A mother particle 29 was produced in the same manner as the mother particle 25 except that the mother particle 5 was used instead of the mother particle 1.

(母粒子30)
母粒子1に代えて母粒子6を用いたこと以外は母粒子25と同様の方法で、母粒子30を作製した。
(Mother particle 30)
A mother particle 30 was produced in the same manner as the mother particle 25 except that the mother particle 6 was used instead of the mother particle 1.

(母粒子31)
母粒子1に代えて母粒子7を用いたこと以外は母粒子25と同様の方法で、母粒子31を作製した。
(Host particle 31)
A mother particle 31 was produced in the same manner as the mother particle 25 except that the mother particle 7 was used instead of the mother particle 1.

(母粒子32)
母粒子1に代えて母粒子8を用いたこと以外は母粒子25と同様の方法で、母粒子32を作製した。
(Host particle 32)
A mother particle 32 was produced in the same manner as the mother particle 25 except that the mother particle 8 was used instead of the mother particle 1.

(比較母粒子1)
CNTの分散液を用いなかったこと以外は母粒子1と同様の方法で、比較母粒子1を作製した。
(Comparison mother particle 1)
Comparative mother particle 1 was produced in the same manner as mother particle 1 except that the CNT dispersion was not used.

(比較母粒子2)
CNTの分散液を用いなかったこと以外は母粒子6と同様の方法で、比較母粒子2を作製した。
(Comparison mother particle 2)
Comparative mother particle 2 was produced in the same manner as mother particle 6 except that the CNT dispersion was not used.

(比較母粒子3)
CNTの分散液を用いなかったこと以外は母粒子8と同様の方法で、比較母粒子3を作製した。
(Comparison mother particle 3)
Comparative mother particles 3 were produced in the same manner as the mother particles 8 except that the CNT dispersion was not used.

(比較母粒子4)
母粒子1に代えて比較母粒子1を用いたこと以外は母粒子9と同様の方法で、比較母粒子4を作製した。
(Comparison mother particle 4)
Comparative mother particles 4 were produced in the same manner as the mother particles 9 except that the comparative mother particles 1 were used in place of the mother particles 1.

(比較母粒子5)
母粒子6に代えて比較母粒子2を用いたこと以外は母粒子14と同様の方法で、比較母粒子5を作製した。
(Comparison mother particle 5)
Comparative mother particles 5 were prepared in the same manner as the mother particles 14 except that the comparative mother particles 2 were used in place of the mother particles 6.

(比較母粒子6)
母粒子8に代えて比較母粒子3を用いたこと以外は母粒子16と同様の方法で、比較母粒子6を作製した。
(Comparison mother particle 6)
Comparative mother particles 6 were produced in the same manner as the mother particles 16 except that the comparative mother particles 3 were used in place of the mother particles 8.

(比較母粒子7)
母粒子1に代えて比較母粒子1を用いたこと以外は母粒子17と同様の方法で、比較母粒子7を作製した。
(Comparison mother particle 7)
Comparative mother particles 7 were produced in the same manner as the mother particles 17 except that the comparative mother particles 1 were used in place of the mother particles 1.

(比較母粒子8)
母粒子6に代えて比較母粒子2を用いたこと以外は母粒子22と同様の方法で、比較母粒子8を作製した。
(Comparison mother particle 8)
Comparative mother particles 8 were produced in the same manner as the mother particles 22 except that the comparative mother particles 2 were used in place of the mother particles 6.

(比較母粒子9)
母粒子8に代えて比較母粒子3を用いたこと以外は母粒子24と同様の方法で、比較母粒子9を作製した。
(Comparison mother particle 9)
Comparative mother particles 9 were produced in the same manner as the mother particles 24 except that the comparative mother particles 3 were used in place of the mother particles 8.

(比較母粒子10)
母粒子1に代えて比較母粒子1を用いたこと以外は母粒子25と同様の方法で、比較母粒子10を作製した。
(Comparison mother particle 10)
Comparative mother particles 10 were produced in the same manner as the mother particles 25 except that the comparative mother particles 1 were used in place of the mother particles 1.

(比較母粒子11)
母粒子6に代えて比較母粒子2を用いたこと以外は母粒子30と同様の方法で、比較母粒子11を作製した。
(Comparison mother particle 11)
Comparative mother particle 11 was produced in the same manner as mother particle 30 except that comparative mother particle 2 was used instead of mother particle 6.

(比較母粒子12)
母粒子8に代えて比較母粒子3を用いたこと以外は母粒子32と同様の方法で、比較母粒子12を作製した。
(Comparison mother particle 12)
Comparative mother particles 12 were produced in the same manner as the mother particles 32 except that the comparative mother particles 3 were used in place of the mother particles 8.

<導電粒子の作製>
(導電粒子1)
カルボキシベンゾトリアゾール20mmolをメタノール200mLに溶解させた溶液を調製した。この溶液に母粒子1(1g)を加え、スリーワンモーター及び直径45mmの攪拌羽を用いて、溶液を室温(25℃)で2時間攪拌した。攪拌後の母粒子1をメタノールで洗浄し、上記メンブレンフィルタで濾過することにより、表面にカルボキシル基を有する母粒子1を得た。
<Preparation of conductive particles>
(Conductive particles 1)
A solution in which 20 mmol of carboxybenzotriazole was dissolved in 200 mL of methanol was prepared. Base particles 1 (1 g) were added to this solution, and the solution was stirred at room temperature (25 ° C.) for 2 hours using a three-one motor and a stirring blade having a diameter of 45 mm. The mother particle 1 after stirring was washed with methanol and filtered through the membrane filter to obtain mother particles 1 having a carboxyl group on the surface.

次に、重量平均分子量70000のポリエチレンイミンの30質量%水溶液(和光純薬工業株式会社製)を超純水で希釈し、ポリエチレンイミンの0.3質量%水溶液を得た。ポリエチレンイミンの0.3質量%水溶液に、表面にカルボキシル基を有する母粒子1(1g)を加え、室温で15分攪拌することにより、表面にポリエチレンイミンが吸着した母粒子1を得た。   Next, a 30% by mass aqueous solution of polyethyleneimine having a weight average molecular weight of 70,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted with ultrapure water to obtain a 0.3% by mass aqueous solution of polyethyleneimine. Mother particle 1 (1 g) having a carboxyl group on the surface was added to a 0.3% by mass aqueous solution of polyethyleneimine and stirred at room temperature for 15 minutes to obtain mother particle 1 having polyethyleneimine adsorbed on the surface.

その後、孔径3μmのメンブレンフィルタ(ミリポア社製)で表面にポリエチレンイミンが吸着した上記母粒子1をろ過し、超純水200g中、室温で5分間攪拌した。さらに母粒子1を上記メンブレンフィルタでろ過し、メンブレンフィルタ上で200gの超純水で母粒子1を2回洗浄することで、母粒子1に吸着していないポリエチレンイミンを除去した。   Thereafter, the mother particle 1 having polyethyleneimine adsorbed on the surface was filtered with a membrane filter (manufactured by Millipore) having a pore size of 3 μm, and stirred in 200 g of ultrapure water at room temperature for 5 minutes. Further, the mother particle 1 was filtered with the membrane filter, and the mother particle 1 was washed twice with 200 g of ultrapure water on the membrane filter, thereby removing the polyethyleneimine not adsorbed on the mother particle 1.

次に、絶縁性粒子であるコロイダルシリカの分散液(20質量%、扶桑化学工業株式会社製、平均粒子径100nm、製品名:クオートロンPL−10)を超純水で希釈して、濃度が0.1質量%であるシリカの分散溶液を得た。シリカ分散溶液に表面にポリエチレンイミンが吸着した上記母粒子1を加えて、室温で15分攪拌することにより、表面にシリカ微粒子が吸着した母粒子1を得た。   Next, the dispersion liquid of colloidal silica which is insulating particles (20% by mass, manufactured by Fuso Chemical Industry Co., Ltd., average particle diameter 100 nm, product name: Quatron PL-10) is diluted with ultrapure water, and the concentration is 0. A dispersion solution of 1% by mass of silica was obtained. The mother particle 1 having polyethyleneimine adsorbed on the surface thereof was added to the silica dispersion and stirred at room temperature for 15 minutes to obtain mother particle 1 having silica particles adsorbed on the surface.

次に、孔径3μmのメンブレンフィルタ(ミリポア社製)で表面にシリカ微粒子が吸着した上記母粒子1をろ過し、超純水200gに入れて室温で5分攪拌した。さらに孔径3μmのメンブレンフィルタ(ミリポア社製)で母粒子1をろ過し、上記メンブレンフィルタ上にて200gの超純水で2回洗浄を行うことで、母粒子1に吸着していないシリカを除去した。その後、シリカが吸着した母粒子を180℃で30分加熱乾燥し、さらに120℃1時間加熱乾燥した。以上の工程を経て、導電粒子1を作製した。   Next, the mother particle 1 having silica fine particles adsorbed on the surface was filtered with a membrane filter (manufactured by Millipore) having a pore diameter of 3 μm, and the mixture was put in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Further, the mother particle 1 is filtered through a membrane filter (made by Millipore) having a pore diameter of 3 μm, and the silica not adsorbed on the mother particle 1 is removed by washing twice with 200 g of ultrapure water on the membrane filter. did. Thereafter, the mother particles adsorbed with silica were dried by heating at 180 ° C. for 30 minutes, and further dried by heating at 120 ° C. for 1 hour. Through the above steps, conductive particles 1 were produced.

(導電粒子2)
母粒子1に代えて母粒子2を用いたこと以外は導電粒子1と同様の方法で、導電粒子2を作製した。
(Conductive particles 2)
Conductive particles 2 were produced in the same manner as the conductive particles 1 except that the mother particles 2 were used in place of the mother particles 1.

(導電粒子3)
母粒子1に代えて母粒子3を用いたこと以外は導電粒子1と同様の方法で、導電粒子3を作製した。
(Conductive particles 3)
Conductive particles 3 were produced in the same manner as the conductive particles 1 except that the mother particles 3 were used in place of the mother particles 1.

(導電粒子4)
母粒子1に代えて母粒子4を用いたこと以外は導電粒子1と同様の方法で、導電粒子4を作製した。
(Conductive particles 4)
Conductive particles 4 were produced in the same manner as the conductive particles 1 except that the mother particles 4 were used instead of the mother particles 1.

(導電粒子5)
母粒子1に代えて母粒子5を用いたこと以外は導電粒子1と同様の方法で、導電粒子5を作製した。
(Conductive particles 5)
Conductive particles 5 were produced in the same manner as the conductive particles 1 except that the mother particles 5 were used in place of the mother particles 1.

(導電粒子6)
母粒子1に代えて母粒子6を用いたこと以外は導電粒子1と同様の方法で、導電粒子6を作製した。
(Conductive particles 6)
Conductive particles 6 were produced in the same manner as the conductive particles 1 except that the mother particles 6 were used in place of the mother particles 1.

(導電粒子7)
母粒子1に代えて母粒子7を用いたこと以外は導電粒子1と同様の方法で、導電粒子7を作製した。
(Conductive particles 7)
Conductive particles 7 were produced in the same manner as the conductive particles 1 except that the mother particles 7 were used in place of the mother particles 1.

(導電粒子8)
母粒子1に代えて母粒子8を用いたこと、及びカルボキシベンゾトリアゾール20mmolに代えてメルカプト酢酸8mmolを用いたこと以外は導電粒子1と同様の方法で、導電粒子8を作製した。
(Conductive particles 8)
Conductive particles 8 were produced in the same manner as the conductive particles 1 except that the mother particles 8 were used instead of the mother particles 1 and that 8 mmol of mercaptoacetic acid was used instead of 20 mmol of carboxybenzotriazole.

(導電粒子9)
母粒子1に代えて母粒子9を用いたこと以外は導電粒子1と同様の方法で、導電粒子9を作製した。
(Conductive particles 9)
Conductive particles 9 were produced in the same manner as the conductive particles 1 except that the mother particles 9 were used in place of the mother particles 1.

(導電粒子10)
母粒子1に代えて母粒子10を用いたこと以外は導電粒子1と同様の方法で、導電粒子10を作製した。
(Conductive particles 10)
Conductive particles 10 were produced in the same manner as the conductive particles 1 except that the mother particles 10 were used instead of the mother particles 1.

(導電粒子11)
母粒子1に代えて母粒子11を用いたこと以外は導電粒子1と同様の方法で、導電粒子11を作製した。
(Conductive particles 11)
Conductive particles 11 were produced in the same manner as the conductive particles 1 except that the mother particles 11 were used in place of the mother particles 1.

(導電粒子12)
母粒子1に代えて母粒子12を用いたこと以外は導電粒子1と同様の方法で、導電粒子12を作製した。
(Conductive particles 12)
Conductive particles 12 were produced in the same manner as the conductive particles 1 except that the mother particles 12 were used in place of the mother particles 1.

(導電粒子13)
母粒子1に代えて母粒子13を用いたこと以外は導電粒子1と同様の方法で、導電粒子13を作製した。
(Conductive particles 13)
Conductive particles 13 were produced in the same manner as the conductive particles 1 except that the mother particles 13 were used in place of the mother particles 1.

(導電粒子14)
母粒子1に代えて母粒子14を用いたこと以外は導電粒子1と同様の方法で、導電粒子14を作製した。
(Conductive particles 14)
Conductive particles 14 were produced in the same manner as the conductive particles 1 except that the mother particles 14 were used in place of the mother particles 1.

(導電粒子15)
母粒子1に代えて母粒子15を用いたこと以外は導電粒子1と同様の方法で、導電粒子15を作製した。
(Conductive particles 15)
Conductive particles 15 were produced in the same manner as the conductive particles 1 except that the mother particles 15 were used in place of the mother particles 1.

(導電粒子16)
母粒子1に代えて母粒子16を用いたこと以外は導電粒子1と同様の方法で、導電粒子16を作製した。
(Conductive particles 16)
Conductive particles 16 were produced in the same manner as the conductive particles 1 except that the mother particles 16 were used in place of the mother particles 1.

(導電粒子17)
母粒子1に代えて母粒子17を用いたこと、及びカルボキシベンゾトリアゾール20mmolに代えてメルカプト酢酸8mmolを用いたこと以外は導電粒子1と同様の方法で、導電粒子17を作製した。
(Conductive particles 17)
Conductive particles 17 were produced in the same manner as the conductive particles 1 except that the mother particles 17 were used instead of the mother particles 1 and that 8 mmol of mercaptoacetic acid was used instead of 20 mmol of carboxybenzotriazole.

(導電粒子18)
母粒子17に代えて母粒子18を用いたこと以外は導電粒子17と同様の方法で、導電粒子18を作製した。
(Conductive particles 18)
Conductive particles 18 were produced in the same manner as the conductive particles 17 except that the mother particles 18 were used in place of the mother particles 17.

(導電粒子19)
母粒子17に代えて母粒子19を用いたこと以外は導電粒子17と同様の方法で、導電粒子19を作製した。
(Conductive particles 19)
Conductive particles 19 were produced in the same manner as the conductive particles 17 except that the mother particles 19 were used in place of the mother particles 17.

(導電粒子20)
母粒子17に代えて母粒子20を用いたこと以外は導電粒子17と同様の方法で、導電粒子20を作製した。
(Conductive particles 20)
Conductive particles 20 were produced in the same manner as the conductive particles 17 except that the mother particles 20 were used in place of the mother particles 17.

(導電粒子21)
母粒子17に代えて母粒子21を用いたこと以外は導電粒子17と同様の方法で、導電粒子21を作製した。
(Conductive particles 21)
Conductive particles 21 were produced in the same manner as the conductive particles 17 except that the mother particles 21 were used in place of the mother particles 17.

(導電粒子22)
母粒子17に代えて母粒子22を用いたこと以外は導電粒子17と同様の方法で、導電粒子22を作製した。
(Conductive particles 22)
Conductive particles 22 were produced in the same manner as the conductive particles 17 except that the mother particles 22 were used in place of the mother particles 17.

(導電粒子23)
母粒子17に代えて母粒子23を用いたこと以外は導電粒子17と同様の方法で、導電粒子23を作製した。
(Conductive particles 23)
Conductive particles 23 were produced in the same manner as the conductive particles 17 except that the mother particles 23 were used in place of the mother particles 17.

(導電粒子24)
母粒子17に代えて母粒子24を用いたこと以外は導電粒子17と同様の方法で、導電粒子24を作製した。
(Conductive particles 24)
Conductive particles 24 were produced in the same manner as the conductive particles 17 except that the mother particles 24 were used in place of the mother particles 17.

(導電粒子25)
母粒子17に代えて母粒子25を用いたこと以外は導電粒子17と同様の方法で、導電粒子25を作製した。
(Conductive particles 25)
Conductive particles 25 were produced in the same manner as the conductive particles 17 except that the mother particles 25 were used in place of the mother particles 17.

(導電粒子26)
母粒子17に代えて母粒子26を用いたこと以外は導電粒子17と同様の方法で、導電粒子26を作製した。
(Conductive particles 26)
Conductive particles 26 were produced in the same manner as the conductive particles 17 except that the mother particles 26 were used in place of the mother particles 17.

(導電粒子27)
母粒子17に代えて母粒子27を用いたこと以外は導電粒子17と同様の方法で、導電粒子27を作製した。
(Conductive particles 27)
Conductive particles 27 were produced in the same manner as the conductive particles 17 except that the mother particles 27 were used in place of the mother particles 17.

(導電粒子28)
母粒子17に代えて母粒子28を用いたこと以外は導電粒子17と同様の方法で、導電粒子28を作製した。
(Conductive particles 28)
Conductive particles 28 were produced in the same manner as the conductive particles 17 except that the mother particles 28 were used in place of the mother particles 17.

(導電粒子29)
母粒子17に代えて母粒子29を用いたこと以外は導電粒子17と同様の方法で、導電粒子29を作製した。
(Conductive particles 29)
Conductive particles 29 were produced in the same manner as the conductive particles 17 except that the mother particles 29 were used in place of the mother particles 17.

(導電粒子30)
母粒子17に代えて母粒子30を用いたこと以外は導電粒子17と同様の方法で、導電粒子30を作製した。
(Conductive particles 30)
Conductive particles 30 were produced in the same manner as the conductive particles 17 except that the mother particles 30 were used in place of the mother particles 17.

(導電粒子31)
母粒子17に代えて母粒子31を用いたこと以外は導電粒子17と同様の方法で、導電粒子31を作製した。
(Conductive particles 31)
Conductive particles 31 were produced in the same manner as the conductive particles 17 except that the mother particles 31 were used in place of the mother particles 17.

(導電粒子32)
母粒子17に代えて母粒子32を用いたこと以外は導電粒子17と同様の方法で、導電粒子32を作製した。
(Conductive particles 32)
Conductive particles 32 were produced in the same manner as the conductive particles 17 except that the mother particles 32 were used in place of the mother particles 17.

(比較導電粒子1)
母粒子1に代えて比較母粒子1を用いたこと以外は導電粒子1と同様の方法で、比較導電粒子1を作製した。
(Comparison conductive particle 1)
Comparative conductive particles 1 were produced in the same manner as the conductive particles 1 except that the comparative mother particles 1 were used in place of the mother particles 1.

(比較導電粒子2)
母粒子1に代えて比較母粒子2を用いたこと以外は導電粒子1と同様の方法で、比較導電粒子2を作製した。
(Comparison conductive particle 2)
Comparative conductive particles 2 were produced in the same manner as the conductive particles 1 except that the comparative mother particles 2 were used in place of the mother particles 1.

(比較導電粒子3)
母粒子1に代えて比較母粒子3を用いたこと以外は導電粒子1と同様の方法で、比較導電粒子3を作製した。
(Comparison conductive particle 3)
Comparative conductive particles 3 were produced in the same manner as the conductive particles 1 except that the comparative mother particles 3 were used in place of the mother particles 1.

(比較導電粒子4)
母粒子1に代えて比較母粒子4を用いたこと以外は導電粒子1と同様の方法で、比較導電粒子4を作製した。
(Comparison conductive particle 4)
Comparative conductive particles 4 were produced in the same manner as the conductive particles 1 except that the comparative mother particles 4 were used in place of the mother particles 1.

(比較導電粒子5)
母粒子1に代えて比較母粒子5を用いたこと以外は導電粒子1と同様の方法で、比較導電粒子5を作製した。
(Comparison conductive particle 5)
Comparative conductive particles 5 were produced in the same manner as the conductive particles 1 except that the comparative mother particles 5 were used in place of the mother particles 1.

(比較導電粒子6)
母粒子1に代えて比較母粒子6を用いたこと以外は導電粒子1と同様の方法で、比較導電粒子6を作製した。
(Comparison conductive particle 6)
Comparative conductive particles 6 were produced in the same manner as the conductive particles 1 except that the comparative mother particles 6 were used in place of the mother particles 1.

(比較導電粒子7)
母粒子17に代えて比較母粒子7を用いたこと以外は導電粒子17と同様の方法で、比較導電粒子7を作製した。
(Comparison conductive particle 7)
Comparative conductive particles 7 were produced in the same manner as the conductive particles 17 except that the comparative mother particles 7 were used in place of the mother particles 17.

(比較導電粒子8)
比較母粒子7に代えて比較母粒子8を用いたこと以外は比較導電粒子7と同様の方法で、比較導電粒子8を作製した。
(Comparison conductive particle 8)
Comparative conductive particles 8 were produced in the same manner as the comparative conductive particles 7 except that the comparative mother particles 8 were used instead of the comparative mother particles 7.

(比較導電粒子9)
比較母粒子7に代えて比較母粒子9を用いたこと以外は比較導電粒子7と同様の方法で、比較導電粒子9を作製した。
(Comparative conductive particle 9)
Comparative conductive particles 9 were produced in the same manner as the comparative conductive particles 7 except that the comparative mother particles 9 were used instead of the comparative mother particles 7.

(比較導電粒子10)
比較母粒子7に代えて比較母粒子10を用いたこと以外は比較導電粒子7と同様の方法で、比較導電粒子10を作製した。
(Comparison conductive particle 10)
Comparative conductive particles 10 were produced in the same manner as the comparative conductive particles 7 except that the comparative mother particles 10 were used instead of the comparative mother particles 7.

(比較導電粒子11)
比較母粒子7に代えて比較母粒子11を用いたこと以外は比較導電粒子7と同様の方法で、比較導電粒子11を作製した。
(Comparison conductive particle 11)
Comparative conductive particles 11 were produced in the same manner as the comparative conductive particles 7 except that the comparative mother particles 11 were used instead of the comparative mother particles 7.

(比較導電粒子12)
比較母粒子7に代えて比較母粒子12を用いたこと以外は比較導電粒子7と同様の方法で、比較導電粒子12を作製した。
(Comparison conductive particle 12)
Comparative conductive particles 12 were produced in the same manner as comparative conductive particles 7 except that comparative mother particles 12 were used instead of comparative mother particles 7.

参考例1)
<異方導電性接着剤フィルムの作製>
フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)10g及びアクリルゴム7.5gを酢酸エチル30gに溶解し、固形分の濃度が36.8質量%である溶液を得た。アクリルゴムとしては、ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、及びグリシジルメタクリレート3質量部の共重合体であって、重量平均分子量が85万であるものを用いた。
( Reference Example 1)
<Production of anisotropic conductive adhesive film>
10 g of phenoxy resin (trade name: PKHC, manufactured by Union Carbide) and 7.5 g of acrylic rubber were dissolved in 30 g of ethyl acetate to obtain a solution having a solid content of 36.8% by mass. As the acrylic rubber, a copolymer of 40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, and 3 parts by mass of glycidyl methacrylate having a weight average molecular weight of 850,000 was used.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185、旭化成エポキシ株式会社製、商品名:ノバキュアHX−3941)30gを上記溶液に加え、撹拌して接着剤溶液を作製した。   Next, 30 g of a liquid epoxy (epoxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., trade name: NovaCure HX-3941) containing a microcapsule type latent curing agent was added to the above solution and stirred to prepare an adhesive solution.

次に、4gの導電粒子1を酢酸エチル10g中に分散させて、粒子分散液を得た。   Next, 4 g of the conductive particles 1 were dispersed in 10 g of ethyl acetate to obtain a particle dispersion.

導電粒子1が異方導電性接着剤全量に対して37質量%となるように、上記粒子分散液を上記接着剤溶液に混合し、異方導電性接着剤を得た。異方導電性接着剤をセパレータ上にロールコータで塗布し、90℃で10分乾燥することにより、厚さ25μmの異方導電性接着剤フィルムを作製した。セパレータとしては、シリコーン処理したポリエチレンテレフタレートフイルムを用いた。セパレータの厚みは40μmであった。   The particle dispersion was mixed with the adhesive solution so that the conductive particles 1 were 37% by mass with respect to the total amount of the anisotropic conductive adhesive to obtain an anisotropic conductive adhesive. An anisotropic conductive adhesive was applied onto the separator with a roll coater and dried at 90 ° C. for 10 minutes to prepare an anisotropic conductive adhesive film having a thickness of 25 μm. As the separator, a silicone-treated polyethylene terephthalate film was used. The thickness of the separator was 40 μm.

<接続構造体の作製>
上記異方導電性接着剤フィルム、金バンプ付きチップ、及びITO回路付きガラス基板を備える接続構造体を、以下の方法で作製した。金バンプの面積は30×90μmであった。金バンプ間のスペースは10μmであった。金バンプの高さは15μmであった。金バンプ数は362個であった。チップの面積は1.7×17mmであり、その厚さは0.5mmであった。ITO回路付きガラス基板の厚さは0.7mmであった。
<Production of connection structure>
A connection structure including the anisotropic conductive adhesive film, a chip with a gold bump, and a glass substrate with an ITO circuit was produced by the following method. The area of the gold bump was 30 × 90 μm. The space between the gold bumps was 10 μm. The height of the gold bump was 15 μm. The number of gold bumps was 362. The area of the chip was 1.7 × 17 mm and its thickness was 0.5 mm. The thickness of the glass substrate with an ITO circuit was 0.7 mm.

異方導電性接着剤フィルム(2×19mm)を80℃に加熱しながら0.98MPa(10kgf/cm)で加圧することにより、ITO回路付きガラス基板に貼り付けた。異方導電性接着剤フィルムからセパレータを剥離した。チップの金バンプとガラス基板のITO回路との位置合わせを行った。金バンプ付きチップ及びITO回路付きガラス基板の間に異方導電性接着剤フィルムが挟まれた状態で、チップ上方から190℃で5秒間加熱及び加圧を行い、本接続を行った。以上の工程を経て、接続構造体を作製した。 An anisotropic conductive adhesive film (2 × 19 mm) was applied to a glass substrate with an ITO circuit by applying pressure at 0.98 MPa (10 kgf / cm 2 ) while heating to 80 ° C. The separator was peeled from the anisotropic conductive adhesive film. The gold bumps on the chip and the ITO circuit on the glass substrate were aligned. With the anisotropic conductive adhesive film sandwiched between the chip with gold bumps and the glass substrate with ITO circuit, heating and pressurization were performed at 190 ° C. for 5 seconds from above the chip to perform the main connection. Through the above steps, a connection structure was produced.

(実施例2)
実施例2では、導電粒子1に代えて導電粒子2を用い、単位面積あたりに含まれる導電粒子の数が、参考例1と同じになるように接着剤溶液に添加する導電粒子2の割合を調整した。このこと以外は参考例1と同様の方法で、実施例2の異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 2)
In Example 2, the conductive particles 2 were used in place of the conductive particles 1, and the ratio of the conductive particles 2 added to the adhesive solution was adjusted so that the number of conductive particles contained per unit area was the same as in Reference Example 1. It was adjusted. Except for this, the anisotropic conductive adhesive film and connection structure of Example 2 were produced in the same manner as in Reference Example 1.

参考例3)
導電粒子2に代えて導電粒子3を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
( Reference Example 3)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 3 were used in place of the conductive particles 2.

参考例4)
導電粒子2に代えて導電粒子4を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
( Reference Example 4)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 4 were used in place of the conductive particles 2.

参考例5)
導電粒子2に代えて導電粒子5を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
( Reference Example 5)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 5 were used in place of the conductive particles 2.

参考例6)
導電粒子2に代えて導電粒子6を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
( Reference Example 6)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 6 were used in place of the conductive particles 2.

参考例7)
導電粒子2に代えて導電粒子7を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
( Reference Example 7)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 7 were used in place of the conductive particles 2.

参考例8)
導電粒子2に代えて導電粒子8を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
( Reference Example 8)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 8 were used in place of the conductive particles 2.

(実施例9)
導電粒子2に代えて導電粒子9を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
Example 9
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 9 were used in place of the conductive particles 2.

(実施例10)
導電粒子2に代えて導電粒子10を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 10)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 10 were used in place of the conductive particles 2.

(実施例11)
導電粒子2に代えて導電粒子11を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 11)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 11 were used in place of the conductive particles 2.

(実施例12)
導電粒子2に代えて導電粒子12を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 12)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 12 were used in place of the conductive particles 2.

(実施例13)
導電粒子2に代えて導電粒子13を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 13)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 13 were used in place of the conductive particles 2.

(実施例14)
導電粒子2に代えて導電粒子14を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 14)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 14 were used in place of the conductive particles 2.

(実施例15)
導電粒子2に代えて導電粒子15を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 15)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 15 were used in place of the conductive particles 2.

(実施例16)
導電粒子2に代えて導電粒子16を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 16)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 16 were used in place of the conductive particles 2.

(実施例17)
導電粒子2に代えて導電粒子17を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 17)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 17 were used instead of the conductive particles 2.

(実施例18)
導電粒子2に代えて導電粒子18を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 18)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 18 were used in place of the conductive particles 2.

(実施例19)
導電粒子2に代えて導電粒子19を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 19)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 19 were used in place of the conductive particles 2.

(実施例20)
導電粒子2に代えて導電粒子20を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 20)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 20 were used in place of the conductive particles 2.

(実施例21)
導電粒子2に代えて導電粒子21を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 21)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 21 were used in place of the conductive particles 2.

(実施例22)
導電粒子2に代えて導電粒子22を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 22)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 22 were used in place of the conductive particles 2.

(実施例23)
導電粒子2に代えて導電粒子23を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 23)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 23 were used in place of the conductive particles 2.

(実施例24)
導電粒子2に代えて導電粒子24を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 24)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 24 were used in place of the conductive particles 2.

(実施例25)
導電粒子2に代えて導電粒子25を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 25)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 25 were used in place of the conductive particles 2.

(実施例26)
導電粒子2に代えて導電粒子26を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 26)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 26 were used in place of the conductive particles 2.

(実施例27)
導電粒子2に代えて導電粒子27を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 27)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 27 were used in place of the conductive particles 2.

(実施例28)
導電粒子2に代えて導電粒子28を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 28)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 28 were used in place of the conductive particles 2.

(実施例29)
導電粒子2に代えて導電粒子29を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 29)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 29 were used in place of the conductive particles 2.

(実施例30)
導電粒子2に代えて導電粒子30を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 30)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 30 were used in place of the conductive particles 2.

(実施例31)
導電粒子2に代えて導電粒子31を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 31)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 31 were used in place of the conductive particles 2.

(実施例32)
導電粒子2に代えて導電粒子32を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Example 32)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the conductive particles 32 were used in place of the conductive particles 2.

(比較例1)
導電粒子2に代えて比較導電粒子1を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 1)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 1 were used in place of the conductive particles 2.

(比較例2)
導電粒子2に代えて比較導電粒子2を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 2)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 2 were used in place of the conductive particles 2.

(比較例3)
導電粒子2に代えて比較導電粒子3を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 3)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 3 were used in place of the conductive particles 2.

(比較例4)
導電粒子2に代えて比較導電粒子4を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 4)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 4 were used in place of the conductive particles 2.

(比較例5)
導電粒子2に代えて比較導電粒子5を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 5)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 5 were used in place of the conductive particles 2.

(比較例6)
導電粒子2に代えて比較導電粒子6を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 6)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 6 were used in place of the conductive particles 2.

(比較例7)
導電粒子2に代えて比較導電粒子7を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 7)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 7 were used in place of the conductive particles 2.

(比較例8)
導電粒子2に代えて比較導電粒子8を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 8)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 8 were used in place of the conductive particles 2.

(比較例9)
導電粒子2に代えて比較導電粒子9を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 9)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 9 were used in place of the conductive particles 2.

(比較例10)
導電粒子2に代えて比較導電粒子10を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 10)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 10 were used in place of the conductive particles 2.

(比較例11)
導電粒子2に代えて比較導電粒子11を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 11)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 11 were used in place of the conductive particles 2.

(比較例12)
導電粒子2に代えて比較導電粒子12を用いたこと以外は実施例2と同様の方法で、異方導電性接着剤フィルム及び接続構造体を作製した。
(Comparative Example 12)
An anisotropic conductive adhesive film and a connection structure were produced in the same manner as in Example 2 except that the comparative conductive particles 12 were used in place of the conductive particles 2.

<めっき層及び導電層の分析>
各導電粒子の金属部分(めっき層及び/又は導電層)を、塩酸と硝酸とを3対1の体積比で混合した濃度50体積%の王水に完全に溶解させた。王水中の樹脂微粒子及び固形物を直径0.1μmのメンブレンフィルタ(ミリポア社製)で濾別して取り除いた。原子吸光光度計Z5310(株式会社日立製作所製 製品名)を用いて、王水における各金属イオンの濃度を測定した。測定値を用いて、各層の組成を特定した。また測定値からめっき層の平均厚み及び/又は導電層の平均厚みを逆算した。各厚みを表1〜12に示す。
<Analysis of plating layer and conductive layer>
The metal part (plating layer and / or conductive layer) of each conductive particle was completely dissolved in aqua regia having a concentration of 50% by volume in which hydrochloric acid and nitric acid were mixed at a volume ratio of 3: 1. The fine resin particles and solids in the aqua regia were removed by filtration with a membrane filter (manufactured by Millipore) having a diameter of 0.1 μm. The concentration of each metal ion in aqua regia was measured using an atomic absorption photometer Z5310 (product name, manufactured by Hitachi, Ltd.). The composition of each layer was specified using the measured values. Moreover, the average thickness of the plating layer and / or the average thickness of the conductive layer was calculated from the measured values. Each thickness is shown in Tables 1-12.

<めっき層中のCNTの有無>
各導電粒子1gを、濃度50体積%の王水に投入し、導電粒子が備える金属部分(めっき層及び/又は導電層)を完全に溶解した。この溶解液を孔径が0.1μmであるメンブレンフィルタ(ミリポア社製)で濾過し、メンブレンフィルタを乾燥させた。メンブレンフィルタの溶解液に接した側に付着した濾物について、ラマン分光測定した。また、乾燥機を用いて80℃で上記溶解液を乾燥し、溶解液から水分を飛ばして固形試料を得た。固形試料を試料台に均一に載せ、固形試料についてラマン分光測定を行った。これらの測定によって得たラマンスペクトルがGバンド及Dバンドを有していた場合、各導電粒子のめっき層がCNTを含有していると判断した。
<Presence or absence of CNT in the plating layer>
1 g of each conductive particle was put into aqua regia having a concentration of 50% by volume, and the metal portion (plating layer and / or conductive layer) included in the conductive particle was completely dissolved. This solution was filtered through a membrane filter (Millipore) having a pore size of 0.1 μm, and the membrane filter was dried. Raman spectroscopic measurement was performed on the residue attached to the side of the membrane filter in contact with the solution. Moreover, the said solution was dried at 80 degreeC using the dryer, the water | moisture content was skipped from the solution, and the solid sample was obtained. The solid sample was uniformly placed on the sample stage, and Raman spectroscopy measurement was performed on the solid sample. When the Raman spectrum obtained by these measurements had a G band and a D band, it was determined that the plating layer of each conductive particle contained CNT.

<めっき層中のCNTの含有量>
以下の方法で各導電粒子のめっき層中のCNTの含有量(CNT含有量)を測定した。各導電粒子100gを、濃度50体積%の王水に投入し、導電粒子が備える金属部分(めっき層及び/又は導電層)を完全に溶解した。この溶解液を遠心分離法により固液分離を行った。遠心分離を繰り返し行い、CNTのみを分離・採取した。得られたCNTを100℃の真空乾燥にて完全に乾燥し、乾燥後のCNTの質量を測定し、測定した値(g)をCNT含有量(質量%)とした。CNT含有量の測定値を表1〜12に示す。なお、めっき層中のCNTの含有量とは、めっき層に含まれるCNTの全質量の、導電粒子全体の質量に対する百分率(質量%)である。
<Content of CNT in plating layer>
The CNT content (CNT content) in the plating layer of each conductive particle was measured by the following method. 100 g of each conductive particle was put into aqua regia having a concentration of 50% by volume, and the metal portion (plating layer and / or conductive layer) included in the conductive particle was completely dissolved. This solution was subjected to solid-liquid separation by centrifugation. Centrifugation was repeated and only CNTs were separated and collected. The obtained CNTs were completely dried by vacuum drying at 100 ° C., the mass of the dried CNTs was measured, and the measured value (g) was defined as the CNT content (mass%). The measured values of CNT content are shown in Tables 1-12. In addition, content of CNT in a plating layer is a percentage (mass%) with respect to the mass of the whole electroconductive particle of the total mass of CNT contained in a plating layer.

<導電粒子の表面におけるCNTの有無>
各導電粒子をラマン分光測定機(HORIBA社製:HR−800)の試料台に均一に載せ、50倍の対物レンズを用いて粒子表面に焦点を合わせた。そして、ラマン分光法により、各導電粒子の表面(めっき層又は導電層の表面)のラマンスペクトルを測定した。なお、ラマン分光測定において、測定波長は488nm、設定出力は10mW、グレーティングは300とした。ラマンスペクトルが、Gバンド及Dバンドを有していた場合、導電粒子の表面(めっき層又は導電層の表面)にCNTが存在しているものと判断した。測定結果を表1〜12に示す。
<Presence / absence of CNT on the surface of conductive particles>
Each conductive particle was uniformly placed on a sample stage of a Raman spectrophotometer (manufactured by HORIBA: HR-800) and focused on the particle surface using a 50 × objective lens. And the Raman spectrum of the surface (surface of a plating layer or a conductive layer) of each conductive particle was measured by Raman spectroscopy. In the Raman spectroscopic measurement, the measurement wavelength was 488 nm, the set output was 10 mW, and the grating was 300. When the Raman spectrum had a G band and a D band, it was determined that CNT was present on the surface of the conductive particles (the surface of the plating layer or the conductive layer). The measurement results are shown in Tables 1-12.

<破壊強度>
表1〜3に示す各導電粒子が備えるめっき層の破壊強度、表4〜12に示す各導電粒子が備えるめっき層及び導電層全体の破壊強度を以下の方法で測定した。各導電粒子を表面被膜物性試験機(株式会社フィッシャー・インストルメンツ製、商品名:Fisher−scope H100C)の試料台に均一に載せ、一辺が50μmの四角柱の平滑端面で、導電粒子を圧縮速度0.33mN/秒、最大荷重5mNで圧縮した。ここで、破壊強度は圧縮の過程において導電粒子のめっき層及び導電層全体の破壊が起こる点での荷重値(破壊荷重値)である。180℃における各圧縮特性は、上記導電性微粒子を載せた測定台を加熱器によって180℃に加熱し、圧縮を行って測定を行う。破壊強度の測定値を表1〜12に示す。
<Destructive strength>
The breaking strength of the plating layer included in each conductive particle shown in Tables 1 to 3, the plating layer included in each conductive particle shown in Tables 4 to 12 and the breaking strength of the entire conductive layer were measured by the following methods. Each conductive particle is uniformly placed on a sample stage of a surface coating physical property tester (manufactured by Fischer Instruments Co., Ltd., trade name: Fisher-scope H100C). Compression was performed at 0.33 mN / sec and a maximum load of 5 mN. Here, the breaking strength is a load value (breaking load value) at a point where the plating layer of the conductive particles and the whole conductive layer breaks in the process of compression. Each compression characteristic at 180 ° C. is measured by heating the measurement table on which the conductive fine particles are placed to 180 ° C. with a heater and compressing it. The measured values of the breaking strength are shown in Tables 1-12.

<導電粒子の変形時の抵抗>
表1〜3に示す各導電粒子を50%変形させた時の導電粒子の抵抗を以下の方法で測定した。表面が平滑な白金板が固定されたステージ(X−Y方向)と、パラジウム合金製のプローブが固定された上下機構(Z方向)を用意し、白金板とプローブを抵抗測定器に接続した。上記白金板上に導電粒子を静置し、プローブを上記導電粒子の直上に配置した。プローブを0.03μm/sで下降させ、抵抗値が0より大きくなった点を基準点とした。基準点から導電粒子の平均粒子径の50%の深さまでプローブを降下させたときの抵抗値を、導電粒子の変形時の抵抗値とした。抵抗値を表1〜3に示す。
<Resistance during deformation of conductive particles>
The resistance of the conductive particles when the conductive particles shown in Tables 1 to 3 were deformed by 50% was measured by the following method. A stage (XY direction) on which a platinum plate having a smooth surface was fixed and a vertical mechanism (Z direction) on which a palladium alloy probe was fixed were prepared, and the platinum plate and the probe were connected to a resistance measuring instrument. Conductive particles were allowed to stand on the platinum plate, and a probe was placed directly on the conductive particles. The probe was lowered at 0.03 μm / s, and the point where the resistance value was greater than 0 was taken as the reference point. The resistance value when the probe was lowered from the reference point to a depth of 50% of the average particle diameter of the conductive particles was defined as the resistance value when the conductive particles were deformed. The resistance values are shown in Tables 1-3.

<導通抵抗試験>
14個の参考例1の接続構造体に対し、バイアス試験(温度85℃、湿度85%、1000時間の吸湿耐熱試験)を行った。バイアス試験前後において、すべての接続構造体のチップ電極とガラス基板の回路電極との間の導通抵抗値を測定した。バイアス試験前における全測定値の平均値(初期値)と、バイアス試験後における全測定値の平均値とを、測定結果を表1に示す。参考例1と同様の方法で、実施例2、参考例3〜8、実施例9〜32及び比較例1〜12の各接続構造体の導通抵抗値を測定した。測定結果を表1〜12に示す。導通抵抗値が低いことは、異方導電性接着剤フィルムが接続安定性に優れることを意味する。
<Conduction resistance test>
A bias test (temperature 85 ° C., humidity 85%, 1000 hour moisture absorption heat resistance test) was performed on the 14 connection structures of Reference Example 1. Before and after the bias test, the conduction resistance values between the chip electrodes of all connection structures and the circuit electrodes of the glass substrate were measured. Table 1 shows the measurement results of the average value (initial value) of all measured values before the bias test and the average value of all measured values after the bias test. By the method similar to the reference example 1 , the conduction | electrical_connection resistance value of each connection structure of Example 2 , Reference Examples 3-8, Examples 9-32, and Comparative Examples 1-12 was measured. The measurement results are shown in Tables 1-12. A low conduction resistance value means that the anisotropic conductive adhesive film is excellent in connection stability.

<絶縁抵抗試験>
20個の参考例1の接続構造体に対し、バイアス試験(温度90℃、湿度60%、20V直流電圧、50時間の耐久試験)を行った。バイアス試験前後において、すべての接続構造体のチップ電極間の抵抗値を測定した。全測定値中の最小値を、絶縁抵抗値として表1に示す。参考例1と同様の方法で、実施例2、参考例3〜8、実施例9〜32及び比較例1〜12の各接続構造体の絶縁抵抗値を測定した。測定結果を表1〜12に示す。絶縁抵抗値が高いことは、異方導電性接着剤フィルムが絶縁信頼性に優れることを意味する。
<Insulation resistance test>
A bias test (temperature 90 ° C., humidity 60%, 20 V DC voltage, 50 hour durability test) was performed on the 20 connection structures of Reference Example 1. Before and after the bias test, resistance values between the chip electrodes of all connection structures were measured. Table 1 shows the minimum value of all the measured values as the insulation resistance value. In the same manner as in Reference Example 1, the insulation resistance values of the connection structures of Example 2 , Reference Examples 3 to 8, Examples 9 to 32, and Comparative Examples 1 to 12 were measured. The measurement results are shown in Tables 1-12. A high insulation resistance value means that the anisotropic conductive adhesive film is excellent in insulation reliability.

(総合判定)
上記評価結果から、参考例、実施例2、参考例3〜8、実施例9〜32及び比較例1〜12の導電粒子及び接続構造体の特性を、導電粒子を構成する金属種ごとに、以下の基準に基づいて、総合的に判定した。なお、判定結果を表1〜12に示す。
(Comprehensive judgment)
From the above evaluation results, the characteristics of the conductive particles and connection structures of Reference Example 1 , Example 2, Reference Examples 3 to 8, Examples 9 to 32 and Comparative Examples 1 to 12 are determined for each metal species constituting the conductive particles. Based on the following criteria, a comprehensive determination was made. The determination results are shown in Tables 1-12.

参考例,実施例2,参考例3〜5,実施例9〜13,17〜21及び25〜29、並びに、比較例1,4,7,及び10の判定基準。
A:導通抵抗値(初期値)10Ω以下、導通抵抗値(試験後)10Ω以下、及び絶縁抵抗値1.0×1010以上をすべて満たすとき。
B:導通抵抗値(初期値)10Ω以下、導通抵抗値(試験後)30Ω以下、及び絶縁抵抗値1.0×1010以上をすべて満たすとき。Aの場合を除く。
C:導通抵抗値(初期値)30Ω以下、導通抵抗値(試験後)50Ω以下、及び絶縁抵抗値1.0×10以上をすべて満たすとき。A及びBの場合を除く。
D:A〜C以外。
Criteria for Reference Example 1 , Example 2, Reference Examples 3 to 5, Examples 9 to 13, 17 to 21, and 25 to 29, and Comparative Examples 1, 4, 7, and 10.
A: When the conduction resistance value (initial value) is 10Ω or less, the conduction resistance value (after test) is 10Ω or less, and the insulation resistance value is 1.0 × 10 10 or more.
B: When the conduction resistance value (initial value) is 10Ω or less, the conduction resistance value (after test) is 30Ω or less, and the insulation resistance value is 1.0 × 10 10 or more. Except for case A.
C: When the conduction resistance value (initial value) is 30Ω or less, the conduction resistance value (after test) is 50Ω or less, and the insulation resistance value is 1.0 × 10 9 or more. Except for A and B.
D: Other than A to C.

参考例6,7,実施例14,15,22,23,30及び31、並びに、比較例2,5,8及び11の判定基準。
A:導通抵抗値(初期値)1Ω以下、導通抵抗値(試験後)5Ω以下、及び絶縁抵抗値1.0×1010以上をすべて満たすとき。
B:導通抵抗値(初期値)10Ω以下、導通抵抗値(試験後)10Ω以下、及び絶縁抵抗値1.0×10以上をすべて満たすとき。Aの場合を除く。
C:導通抵抗値(初期値)20Ω以下、導通抵抗値(試験後)30Ω以下、及び絶縁抵抗値1.0×10以上をすべて満たすとき。A及びBの場合を除く。
D:A〜C以外。
Criteria for Reference Examples 6 and 7, Examples 14, 15, 22, 23, 30 and 31 and Comparative Examples 2, 5, 8 and 11.
A: When the conduction resistance value (initial value) is 1Ω or less, the conduction resistance value (after test) is 5Ω or less, and the insulation resistance value is 1.0 × 10 10 or more.
B: When the conduction resistance value (initial value) is 10Ω or less, the conduction resistance value (after test) is 10Ω or less, and the insulation resistance value is 1.0 × 10 8 or more. Except for case A.
C: When the conduction resistance value (initial value) is 20Ω or less, the conduction resistance value (after test) is 30Ω or less, and the insulation resistance value is 1.0 × 10 5 or more. Except for A and B.
D: Other than A to C.

参考例8,実施例16,24及び32、並びに、比較例3,6,9及び12の判定基準。
A:導通抵抗値(初期値)1Ω以下、導通抵抗値(試験後)5Ω以下、及び絶縁抵抗値1.0×1010以上をすべて満たすとき。
B:導通抵抗値(初期値)10Ω以下、導通抵抗値(試験後)10Ω以下、及び絶縁抵抗値1.0×1010以上をすべて満たすとき。Aの場合を除く。
C:導通抵抗値(初期値)30Ω以下、導通抵抗値(試験後)50Ω以下、及び絶縁抵抗値1.0×10以上をすべて満たすとき。A及びBの場合を除く。
D:A〜C以外。
Criteria for Reference Example 8, Examples 16, 24, and 32 and Comparative Examples 3, 6, 9, and 12.
A: When the conduction resistance value (initial value) is 1Ω or less, the conduction resistance value (after test) is 5Ω or less, and the insulation resistance value is 1.0 × 10 10 or more.
B: conduction resistance value (initial value) 10 [Omega below, the conduction resistance (after the test) 10 [Omega below, and when it satisfies all the insulation resistance value 1.0 × 10 10 or more. Except for case A.
C: When the conduction resistance value (initial value) is 30Ω or less, the conduction resistance value (after test) is 50Ω or less, and the insulation resistance value is 1.0 × 10 9 or more. Except for A and B.
D: Other than A to C.

表1〜3に示す各導電粒子は、コア粒子を被覆するめっき層の表面に導電層を備えないものである。表4〜6に示す各導電粒子は、コア粒子を被覆するめっき層の表面に、導電層として無電解ニッケルめっき層(Ni導電層)を備えるものである。表7〜9に示す各導電粒子は、コア粒子を被覆するめっき層の表面に、導電層として無電解パラジウムめっき層(Pd導電層)を備えるものである。表10〜12に示す各導電粒子は、コア粒子を被覆するめっき層の表面に、導電層として無電解金めっき層(Au導電層)を備えるものである。参考例1、実施例2、参考例3〜5、実施例9〜13、17〜21、25〜29、比較例1、4、7、10のコア粒子表面を被覆するめっき層は、無電解ニッケルめっき層である。参考例6、7、実施例14、15、22、23、30、31、比較例2、5、8、11のコア粒子表面を被覆するめっき層は、無電解銅めっき層である。参考例8、実施例16、24、32、比較例3、6、9、12のコア粒子表面を被覆するめっき層は、無電解パラジウムめっき層である。表1〜12に示す実施例の導電粒子のめっき層中のCNTの含有量は、導電粒子全体の質量に対して0.0031質量%以上0.2質量%以下の範囲内である。表1〜4に示す実施例の導電粒子のめっき層の厚さは、30〜80nmの範囲内である。 Each conductive particle shown in Tables 1 to 3 does not have a conductive layer on the surface of the plating layer covering the core particle. Each conductive particle shown in Tables 4 to 6 includes an electroless nickel plating layer (Ni conductive layer) as a conductive layer on the surface of the plating layer covering the core particle. Each conductive particle shown in Tables 7 to 9 includes an electroless palladium plating layer (Pd conductive layer) as a conductive layer on the surface of the plating layer covering the core particle. Each conductive particle shown in Tables 10 to 12 includes an electroless gold plating layer (Au conductive layer) as a conductive layer on the surface of the plating layer covering the core particle. The plating layers covering the core particle surfaces of Reference Example 1, Example 2, Reference Examples 3 to 5, Examples 9 to 13, 17 to 21, 25 to 29, and Comparative Examples 1, 4, 7, and 10 are electroless. It is a nickel plating layer. The plating layers covering the core particle surfaces of Reference Examples 6 and 7, Examples 14, 15, 22, 23, 30, 31, and Comparative Examples 2, 5, 8, and 11 are electroless copper plating layers. The plating layers covering the core particle surfaces of Reference Example 8, Examples 16, 24, and 32 and Comparative Examples 3, 6, 9, and 12 are electroless palladium plating layers. Content of CNT in the plating layer of the electroconductive particle of the Example shown in Tables 1-12 exists in the range of 0.0031 mass% or more and 0.2 mass% or less with respect to the mass of the whole electroconductive particle. The thickness of the plating layer of the conductive particles of the examples shown in Tables 1 to 4 is in the range of 30 to 80 nm.

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

Figure 0006286852
Figure 0006286852

表1に記載の参考例1、実施例2、参考例3〜5と、比較例1とは、めっき層を構成する金属がニッケルである点において共通する。これらを比較すると、めっき層がCNTを含有する参考例1、実施例2、参考例3〜5では、比較例1と比較して、めっき層の破壊強度が高く、導電粒子の変形時の抵抗が低かった。特に、CNTがニッケルめっき層の内側に遍在し、CNTがニッケルめっき層表面に露出していない実施例2の導電粒子では、変形時の抵抗が著しく低かった。参考例1、実施例2、参考例3〜5の試験後の導通抵抗値は、比較例1よりも低かった。 Reference Example 1, Example 2, Reference Examples 3 to 5 described in Table 1 and Comparative Example 1 are common in that the metal constituting the plating layer is nickel. When these are compared, in Reference Example 1, Example 2, and Reference Examples 3 to 5 in which the plating layer contains CNT, the breaking strength of the plating layer is higher than that of Comparative Example 1, and the resistance during deformation of the conductive particles is high. Was low. In particular, the conductive particles of Example 2 in which CNTs are ubiquitous inside the nickel plating layer and the CNTs are not exposed on the surface of the nickel plating layer have extremely low resistance during deformation. The conduction resistance values after the tests of Reference Example 1, Example 2, and Reference Examples 3 to 5 were lower than those of Comparative Example 1.

表2に記載の参考例6、7と、比較例2とは、めっき層を構成する金属が銅である点において共通する。これらを比較すると、めっき層がCNTを含有する参考例6,7では、めっき層がCNTを含有しない比較例2と比較して、試験後の導通抵抗値が低かった。 Reference Examples 6 and 7 listed in Table 2 and Comparative Example 2 are common in that the metal constituting the plating layer is copper. When these were compared, in Reference Examples 6 and 7 in which the plating layer contained CNT, the conduction resistance value after the test was lower than in Comparative Example 2 in which the plating layer did not contain CNT.

表3に記載の参考例8と、比較例3とは、めっき層を構成する金属がパラジウムである点において共通する。これらを比較すると、めっき層がCNTを含有する参考例8では、めっき層がCNTを含有しない比較例3と比較して、めっき層の破壊強度が高く、導電粒子の変形時の抵抗が低く、さらに試験後の導通抵抗値が低かった。 Reference Example 8 described in Table 3 and Comparative Example 3 are common in that the metal constituting the plating layer is palladium. When these are compared, in Reference Example 8 in which the plating layer contains CNT, compared to Comparative Example 3 in which the plating layer does not contain CNT, the breaking strength of the plating layer is high, and the resistance during deformation of the conductive particles is low. Furthermore, the conduction resistance value after the test was low.

めっき層を構成する金属がニッケルである参考例1、実施例2、参考例3〜5と、めっき層を構成する金属が銅である参考例6,7とを比較する。参考例1、実施例2、参考例3〜5の絶縁抵抗値は、参考例6,7よりも高かった。これは、ニッケルは銅よりもマイグレーションを起こし難いことに起因すると推定される。 Reference Example 1, Example 2, and Reference Examples 3 to 5 in which the metal constituting the plating layer is nickel are compared with Reference Examples 6 and 7 in which the metal constituting the plating layer is copper. The insulation resistance values of Reference Example 1, Example 2, and Reference Examples 3 to 5 were higher than those of Reference Examples 6 and 7. This is presumed to be due to nickel being less prone to migration than copper.

実施例9〜13、16と、参考例1、実施例2、参考例3〜5、8との比較によれば、導電粒子が、CNTを含むめっき層の表面に、Ni導電層を備えることにより、破壊強度が向上し、バイアス試験後の導通抵抗値が低下する傾向があることが確認された。実施例14及び15の絶縁抵抗値は、参考例6及び7よりも高かった。これは、実施例14及び15の導電粒子では、無電解ニッケルめっき層(導電層)によって、めっき層中の銅のマイグレーションが抑制されたことに起因する、と推定される。なお、実施例14、15、比較例5は、導電層の形成のため、めっき層表面にパラジウム核を析出させているが、パラジウムは単一膜としては存在しておらず、導電性や粒子の物性に影響する量ではない。 According to a comparison between Examples 9 to 13 and 16, Reference Example 1, Example 2, and Reference Examples 3 to 5 and 8, the conductive particles have a Ni conductive layer on the surface of the plating layer containing CNT. Thus, it was confirmed that the breaking strength is improved and the conduction resistance value after the bias test tends to decrease. The insulation resistance values of Examples 14 and 15 were higher than those of Reference Examples 6 and 7. This is estimated to be due to the fact that in the conductive particles of Examples 14 and 15, migration of copper in the plating layer was suppressed by the electroless nickel plating layer (conductive layer). In Examples 14 and 15 and Comparative Example 5, palladium nuclei were deposited on the surface of the plating layer to form a conductive layer. However, palladium does not exist as a single film, and conductivity and particles It is not an amount that affects the physical properties of the food.

Pd導電層又はAu導電層を用いた実施例17〜32の導通抵抗値は、参考例1、実施例2、参考例3〜8、実施例9〜16に比べて著しく低い傾向があった。また、実施例17〜32の導通抵抗値は、参考例1、実施例2、参考例3〜8、実施例9〜16に比べて、バイアス試験後に増加し難く、安定している傾向があった。特に、めっき層に銅を用いた実施例22、23、30及び31の導通抵抗値は低い傾向があった。
The conduction resistance values of Examples 17 to 32 using a Pd conductive layer or an Au conductive layer tended to be significantly lower than those of Reference Example 1, Example 2, Reference Examples 3 to 8, and Examples 9 to 16. In addition, the conduction resistance values of Examples 17 to 32 are less likely to increase after the bias test and are more stable than those of Reference Example 1, Example 2, Reference Examples 3 to 8, and Examples 9 to 16. It was. In particular, the conduction resistance values of Examples 22, 23, 30 and 31 using copper for the plating layer tended to be low.

以上のように、めっき層がCNTを含有する実施例の導電粒子(母粒子)は、比較例よりも高い破壊強度を有することが確認された。実施例の導電粒子(母粒子)を具備する異方導電性接着剤フィルムは、比較例に比べて、接続安定性に優れることが確認された。また、実施例の導電粒子(母粒子)を具備する異方導電性接着剤フィルムは、十分に高い絶縁信頼性を有することが確認された。   As mentioned above, it was confirmed that the electroconductive particle (mother particle) of the Example in which a plating layer contains CNT has higher fracture strength than a comparative example. It was confirmed that the anisotropic conductive adhesive film comprising the conductive particles (mother particles) of the examples was superior in connection stability as compared with the comparative example. Moreover, it was confirmed that the anisotropic conductive adhesive film provided with the conductive particles (mother particles) of Examples has sufficiently high insulation reliability.

1・・・絶縁性粒子、2,2a,2b・・・母粒子、3・・・接着剤、4・・・第一の基板、5・・・第一の電極、6・・・第二の基板、7・・・第二の電極、8,8a,8b,8c・・・導電粒子、11・・・コア粒子、12・・・めっき層、13・・・導電層、40・・・異方導電性接着剤(異方導電性接着剤フィルム)、42・・・接続構造体。
DESCRIPTION OF SYMBOLS 1 ... Insulating particle, 2, 2a, 2b ... Mother particle, 3 ... Adhesive, 4 ... 1st board | substrate, 5 ... 1st electrode, 6 ... 2nd 7 ... second electrode 8,8a, 8b, 8c ... conductive particles, 11 ... core particles, 12 ... plated layer, 13 ... conductive layer, 40 ... Anisotropic conductive adhesive (anisotropic conductive adhesive film), 42... Connection structure.

Claims (12)

球状のコア粒子と、
前記コア粒子を直接被覆するめっき層と、
前記めっき層を被覆する導電層と、を備え、
前記めっき層がカーボンナノチューブを含有し、
前記コア粒子は樹脂からなる粒子である、導電粒子。
Spherical core particles,
A plating layer that directly covers the core particles;
A conductive layer covering the plating layer,
The plating layer contains carbon nanotubes ;
The core particles are conductive particles, which are particles made of a resin .
球状のコア粒子と、
前記コア粒子を直接被覆するめっき層と、を備え、
前記めっき層がカーボンナノチューブを含有し、
前記めっき層に含まれるカーボンナノチューブ及び金属のうち、前記金属のみが前記めっき層の表面に露出しており、
前記コア粒子は樹脂からなる粒子である、導電粒子。
Spherical core particles,
A plating layer that directly covers the core particles,
The plating layer contains carbon nanotubes;
Of the carbon nanotubes and metals contained in the plating layer, only the metal is exposed on the surface of the plating layer ,
The core particles are conductive particles, which are particles made of a resin .
前記めっき層中の前記カーボンナノチューブの含有量は、前記導電粒子全体の質量に対して、0.0000001〜1.0質量%である、請求項1又は2に記載の導電粒子。   3. The conductive particle according to claim 1, wherein a content of the carbon nanotube in the plating layer is 0.0000001 to 1.0% by mass with respect to a mass of the entire conductive particle. 前記めっき層中の前記カーボンナノチューブの含有量は、前記導電粒子全体の質量に対して、0.0000005〜0.5質量%である、請求項1又は2に記載の導電粒子。   3. The conductive particle according to claim 1, wherein a content of the carbon nanotube in the plating layer is 0.0000005 to 0.5 mass% with respect to a mass of the entire conductive particle. 前記導電粒子の断面を電子顕微鏡で観察したとき、前記めっき層中にカーボンナノチューブが存在する、請求項1〜4のいずれか一項に記載の導電粒子。   The conductive particles according to any one of claims 1 to 4, wherein carbon nanotubes are present in the plating layer when a cross section of the conductive particles is observed with an electron microscope. 前記めっき層表面のラマンスペクトルは、ピークの波数が1560〜1610cm−1であるGバンドと、ピークの波数が1335〜1375cm−1であるDバンドとを有する、請求項1〜5のいずれか一項に記載の導電粒子。 The Raman spectrum of the plating layer surface has a G band wavenumber peak is 1560~1610Cm -1, and D band wavenumber peak is 1335~1375Cm -1, one of claims 1 to 5 one Conductive particles according to Item. 前記めっき層を被覆する導電層を備える、請求項2に記載の導電粒子。   The electroconductive particle of Claim 2 provided with the electroconductive layer which coat | covers the said plating layer. 請求項1〜7のいずれか一項に記載の導電粒子を含む、異方導電性接着剤。   An anisotropic conductive adhesive containing the electroconductive particle as described in any one of Claims 1-7. 球状のコア粒子を含有する液体に、カーボンナノチューブの分散液及びめっき液を同時に加えた後、さらに前記めっき液のみを加えて、前記コア粒子を被覆するめっき層を形成する工程を備える、導電粒子の製造方法。   Conductive particles comprising a step of simultaneously adding a dispersion liquid of carbon nanotubes and a plating solution to a liquid containing spherical core particles, and further adding only the plating solution to form a plating layer covering the core particles. Manufacturing method. 前記めっき層中のカーボンナノチューブの含有量を、前記導電粒子全体の質量に対して0.0000001〜1.0質量%に調整する、請求項に記載の導電粒子の製造方法。 The method for producing conductive particles according to claim 9 , wherein the content of the carbon nanotubes in the plating layer is adjusted to 0.0000001 to 1.0 mass% with respect to the mass of the entire conductive particles. 前記めっき層中のカーボンナノチューブの含有量を、前記導電粒子全体の質量に対して0.0000005〜0.5質量%に調整する、請求項に記載の導電粒子の製造方法。 The method for producing conductive particles according to claim 9 , wherein the content of the carbon nanotubes in the plating layer is adjusted to 0.0000005 to 0.5 mass% with respect to the mass of the entire conductive particles. 前記めっき層の表面を被覆する導電層を形成する工程を備える、請求項に記載の導電粒子の製造方法。 The manufacturing method of the electrically-conductive particle of Claim 9 provided with the process of forming the electrically conductive layer which coat | covers the surface of the said plating layer.
JP2013076382A 2013-04-01 2013-04-01 Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles Active JP6286852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076382A JP6286852B2 (en) 2013-04-01 2013-04-01 Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076382A JP6286852B2 (en) 2013-04-01 2013-04-01 Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles

Publications (2)

Publication Number Publication Date
JP2014203546A JP2014203546A (en) 2014-10-27
JP6286852B2 true JP6286852B2 (en) 2018-03-07

Family

ID=52353841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076382A Active JP6286852B2 (en) 2013-04-01 2013-04-01 Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles

Country Status (1)

Country Link
JP (1) JP6286852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI681918B (en) 2015-08-24 2020-01-11 日商昕芙旎雅股份有限公司 Workpiece conveying device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235434A1 (en) 2020-05-20 2021-11-25 日本化学工業株式会社 Electroconductive particles, and electroconductive material and connection structure using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173817A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive material, and liquid crystal display
JP4272875B2 (en) * 2002-11-28 2009-06-03 シナノケンシ株式会社 Electrical contact member
JP2005277096A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Semiconductor interconnection constituted by use of metal film containing carbon nanotube and its manufacturing method, and method of manufacturing metal film containing carbon nanotube
JP3973039B2 (en) * 2004-03-31 2007-09-05 日精樹脂工業株式会社 Composite plated product and method for producing the same
JP2008157912A (en) * 2006-11-28 2008-07-10 Seiko Epson Corp Timepiece component, and timepiece provided with same
JP2010033911A (en) * 2008-07-29 2010-02-12 Hiroshima Industrial Promotion Organization Conductive particle and conductive material
JP5266088B2 (en) * 2009-02-18 2013-08-21 パナソニック株式会社 Electromagnetic shield plating film, electromagnetic shield substrate, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI681918B (en) 2015-08-24 2020-01-11 日商昕芙旎雅股份有限公司 Workpiece conveying device

Also Published As

Publication number Publication date
JP2014203546A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP4640532B2 (en) Coated conductive particles
JP5472332B2 (en) Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
JP4640531B2 (en) Conductive particles
WO2013015304A1 (en) Conductive particles, conductive material and connection structure
TWI394174B (en) Conductive particles, method for producing conductive particles, anisotropic conductive material, and connecting structure
KR20140027058A (en) Conductive powder, conductive material containing the conductive powder, and method for manufacturing the conductive powder
TW201125661A (en) Conductive fine particles and anisotropic conductive material
WO2011030715A1 (en) Conductive particles with attached insulating particles, method for producing conductive particles with attached insulating particles, anisotropic conductive material, and connection structure
WO2011002084A1 (en) Conductive particle
JP2013149613A (en) Conductive particle, conductive material, and connection structure
WO2013108843A1 (en) Conductive particles, conductive material and connection structure
JP2013214511A (en) Conductive particle, conductive material, and connection structure
JP4715969B1 (en) Conductive particles
JP6286852B2 (en) Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP5589361B2 (en) Conductive particles and method for producing the same
JP6340876B2 (en) Conductive particles
JP6386767B2 (en) Silver-coated spherical resin particles and method for producing the same
JP2013229240A (en) Conductive particle and method for producing the same
JP5484265B2 (en) Conductive particles, conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP6507551B2 (en) Conductive particles
JP7298256B2 (en) conductive particles
JP2006131978A (en) SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
KR101151072B1 (en) Conductive particles, insulating coated conductive particles and method for producing the same, and anisotropic conductive adhesive
JP4714719B2 (en) Method for producing conductive fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6286852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350