JP2003342621A - Method for manufacturing copper powder and copper powder obtained thereby - Google Patents

Method for manufacturing copper powder and copper powder obtained thereby

Info

Publication number
JP2003342621A
JP2003342621A JP2002152593A JP2002152593A JP2003342621A JP 2003342621 A JP2003342621 A JP 2003342621A JP 2002152593 A JP2002152593 A JP 2002152593A JP 2002152593 A JP2002152593 A JP 2002152593A JP 2003342621 A JP2003342621 A JP 2003342621A
Authority
JP
Japan
Prior art keywords
copper
copper powder
cupric oxide
particle size
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002152593A
Other languages
Japanese (ja)
Other versions
JP4195581B2 (en
Inventor
Takahiko Sakagami
貴彦 坂上
Yoshinobu Nakamura
芳信 中村
Akira Aoki
晃 青木
Kunihiko Yasunari
邦彦 安成
Takuya Sasaki
卓也 佐々木
Katsuhiko Yoshimaru
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002152593A priority Critical patent/JP4195581B2/en
Publication of JP2003342621A publication Critical patent/JP2003342621A/en
Application granted granted Critical
Publication of JP4195581B2 publication Critical patent/JP4195581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique that easily manufactures a copper powder consisting of fine particles having an extremely sharp particle size distribution, by improving a method for manufacturing the copper powder, and to provide the copper powder that satisfies such characteristics of a copper paste as viscosity and film density, which have not been realized by a conventional copper powder. <P>SOLUTION: In a process for manufacturing the copper powder, which includes mixing an alkali hydroxide with a copper salt aqueous solution containing bivalent copper ions to form a cupric oxide, reducing the cupric oxide into a cuprous oxide by adding a reducing sugar, and further reducing the cuprous oxide to form a metallic copper by adding a hydrazine-based reducing agent, this manufacturing method comprises previously charging a complexing agent into the copper salt solution, mixing it with the alkali hydroxide in an amount of 1.10-1.60 by reaction equivalent, and aging it so as to continue reaction of forming a black cupric oxide. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微細で且つ粒度分
布が非常にシャープな銅粉の製造方法に関するものであ
り、特に、電子回路用の導電体形成に適した銅ペースト
用の銅粉の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine copper powder having a very sharp particle size distribution, and more particularly to a copper powder for a copper paste suitable for forming a conductor for electronic circuits. Manufacturing method

【0002】[0002]

【従来の技術】従来、電子産業の分野、特にプリント配
線板製造の分野では、スクリーン印刷技術を応用して、
銅ペーストにより回路を形成することが一般的に行われ
ている。すなわち、銅粉により形成した銅ペーストを樹
脂基板若しくは樹脂シート上にスクリーン印刷技術を用
いて塗布して回路を描き、その後銅ペーストを焼成して
回路を形成するのである。
2. Description of the Related Art Conventionally, in the field of electronic industry, particularly in the field of printed wiring board manufacturing, screen printing technology has been applied to
It is common practice to form circuits with copper paste. That is, a copper paste formed of copper powder is applied onto a resin substrate or a resin sheet using a screen printing technique to draw a circuit, and then the copper paste is fired to form the circuit.

【0003】近年、プリント配線板製造では、銅箔など
の導電性材料からなる電子回路を有する多層プリント配
線板が用いられており、例えば、ノートブックパソコ
ン、携帯電話、AV機器等のいわゆる高級家電では、4
層以上の多層プリント配線板が用いられている。そし
て、このような多層プリント配線板における配線板相互
間の層間導電性を確保する手段として、スルーホールメ
ッキ法、バイアホール形成法等が注目されている。従来
から行われているスルーホールメッキ法、バイアホール
形成法等のプリント配線板の層間導通手段は、配線板に
形成されたスルーホールやバイアホール(ビアホール)
などと称される穴の内壁に、層間回路の電気的導通を確
保するための銅層を、メッキ法を用いて形成するという
手法が一般的である。しかし、このメッキ法では、無電
解銅メッキ、電解銅メッキの2段の処理が必要であり、
その工程が複雑化し長くなり、プリント配線板の製造コ
ストを上昇させる要因となっていた。
In recent years, in the production of printed wiring boards, multilayer printed wiring boards having electronic circuits made of a conductive material such as copper foil have been used. For example, so-called high-grade home appliances such as notebook personal computers, mobile phones and AV equipment. Then 4
A multilayer printed wiring board having more than one layer is used. Then, as a means for ensuring the interlayer conductivity between the wiring boards in such a multilayer printed wiring board, a through-hole plating method, a via-hole forming method and the like have been attracting attention. The interlayer conduction means of the printed wiring board such as the through-hole plating method and the via-hole forming method which have been conventionally used are the through-holes and via-holes (via holes) formed in the wiring board.
Generally, a method of forming a copper layer on the inner wall of the hole, which is referred to as “etc.”, for ensuring electrical conduction of the interlayer circuit by using a plating method. However, this plating method requires a two-step process of electroless copper plating and electrolytic copper plating,
The process becomes complicated and long, which has been a factor of increasing the manufacturing cost of the printed wiring board.

【0004】我国の電子電気業界は厳しい国際価格競争
に晒されており、小型化、高機能化を求められる一方、
プリント配線板業界に対するコストダウンの要求が一層
厳しさを増している。このようなことから、多層プリン
ト配線板の層間導通を確保するための別の手段が求めら
れていたところ、銅ペーストを用いて銅張積層板製造時
に層間導通を確保する方法が開発されている。
The electronic and electric industry in Japan is exposed to severe international price competition, and while miniaturization and high functionality are required,
The demand for cost reduction in the printed wiring board industry is becoming more severe. Under such circumstances, another means for ensuring the interlayer conduction of the multilayer printed wiring board has been demanded, and a method of securing the interlayer conduction during the production of the copper-clad laminate using a copper paste has been developed. .

【0005】ところで、銅ペーストは、銅粉にエポキシ
樹脂などの樹脂とその硬化剤等を加え、これらを混錬し
たものであり、導電性を有するものである。このような
銅ペーストに用いられる銅粉の製造方法としては、水酸
化銅を含む水溶液をヒドラジン等の還元剤で処理して溶
液中の銅成分を還元する方法、銅塩や銅酸化物を還元性
雰囲気中で加熱還元する方法、銅の塩化物蒸気を還元性
ガスで処理して銅の塩化物を還元する方法等が従来から
知られている。
By the way, the copper paste is obtained by adding a resin such as an epoxy resin and a curing agent thereof to copper powder and kneading them, and is electrically conductive. As a method for producing copper powder used in such a copper paste, a method of treating an aqueous solution containing copper hydroxide with a reducing agent such as hydrazine to reduce a copper component in the solution, and reducing a copper salt or a copper oxide. Conventionally, a method of heating and reducing in a neutral atmosphere, a method of treating copper chloride vapor with a reducing gas to reduce copper chloride, and the like have been conventionally known.

【0006】これらの銅粉製造方法のうち、いわゆるヒ
ドラジン還元法は、大気圧下で処理できる等の点で非常
に生産性に優れた方法であり、例えば、特開平4−11
6109号公報には、銅塩水溶液から水酸化銅を析出
し、その水酸化銅を亜酸化銅に還元し、さらにヒドラジ
ン系還元剤により亜酸化銅を金属銅にまで還元する技術
が開示されている。また、特開平2−294414号公
報にも、アミノ酢酸、アンモニア、有機アミン類などの
化合物存在下、銅塩水溶液に水酸化アルカリを加え水酸
化銅を析出し、還元糖を加えて亜酸化銅を水溶液中に析
出させ、これにヒドラジンを加えて亜酸化銅を還元して
銅粉末を得る技術が開示されている。
Among these copper powder production methods, the so-called hydrazine reduction method is a method which is extremely excellent in productivity because it can be processed under atmospheric pressure.
Japanese Patent No. 6109 discloses a technique of depositing copper hydroxide from an aqueous solution of a copper salt, reducing the copper hydroxide to cuprous oxide, and further reducing the cuprous oxide to metallic copper with a hydrazine-based reducing agent. There is. Also, in JP-A-2-294414, in the presence of compounds such as aminoacetic acid, ammonia, and organic amines, alkali hydroxide is added to a copper salt aqueous solution to precipitate copper hydroxide, and reducing sugar is added to form cuprous oxide. Has been disclosed in which an aqueous solution is precipitated and hydrazine is added to the solution to reduce cuprous oxide to obtain copper powder.

【0007】[0007]

【発明が解決しようとする課題】これらの従来から知ら
れているヒドラジン還元法では、銅塩水溶液から水酸化
銅を析出させて、それを順次還元することで金属銅を生
成するものであり、比較的微細な銅粉を得ることが可能
である。ところが、これら従来のヒドラジン還元法で
は、得られる銅粉を微細にできるものの、それを銅ぺー
ストにした際の粘度や膜密度などの特性に関しては十分
に満足できるものといえず、更なる改善をすべきとの要
望がある。
In these conventionally known hydrazine reduction methods, copper hydroxide is precipitated from an aqueous solution of a copper salt and sequentially reduced to produce metallic copper. It is possible to obtain relatively fine copper powder. However, in these conventional hydrazine reduction methods, although the obtained copper powder can be made fine, it cannot be said that the properties such as viscosity and film density when it is made into copper paste are sufficiently satisfactory, and further improvement is made. There is a request to do.

【0008】また、本出願人も、このヒドラジン還元法
に関する銅粉製造技術を提案しており(特開平10−3
30801号公報、特開平11−256208号公報参
照)、その技術は、二価の銅イオンを有する銅塩水溶液
に水酸化アルカリを添加して酸化第二銅を生成し、還元
糖を加えることで酸化第二銅を酸化第一銅に還元する。
その後濾過洗浄して、所定のpH値となるようにpH緩
衝剤を添加し、ヒドラジン系還元剤を加えることで酸化
第一銅を還元することにより金属銅を生成するものであ
る。
The present applicant has also proposed a copper powder manufacturing technique relating to this hydrazine reduction method (Japanese Patent Laid-Open No. 10-3.
No. 30801, JP-A-11-256208), the technique is to add an alkali hydroxide to an aqueous solution of a copper salt having a divalent copper ion to produce cupric oxide, and to add a reducing sugar. Reduce cupric oxide to cuprous oxide.
After that, it is filtered and washed, and a pH buffering agent is added so as to obtain a predetermined pH value, and a hydrazine-based reducing agent is added to reduce cuprous oxide to produce metallic copper.

【0009】本出願人が提案したこの製造方法によれ
ば、従来よりも、粉体状態での電気抵抗が著しく低く、
充填性に優れ、粒度分布がシャープな銅粉を得ることが
できる。しかしながら、本出願人の提案したヒドラジン
還元法によって得られる銅粉は、その銅粉粒子の平均粒
径が、レーザー回折散乱式粒度分布測定法による重量累
積粒径D50で4〜7μmと比較的大きく、より微細な
銅粉を得ることが困難であった。
According to this manufacturing method proposed by the present applicant, the electric resistance in the powder state is significantly lower than that of the conventional method,
It is possible to obtain a copper powder having excellent filling properties and a sharp particle size distribution. However, in the copper powder obtained by the hydrazine reduction method proposed by the present applicant, the average particle diameter of the copper powder particles is relatively 4 to 7 μm as the weight cumulative particle diameter D 50 by the laser diffraction scattering particle size distribution measurement method. It was difficult to obtain large and finer copper powder.

【0010】本発明は、以上のような背景のもとになさ
れたものであり、いわゆるヒドラジン還元法の銅粉製造
方法を改良することにより、微細な粒子で、その粒度分
布も非常にシャープな銅粉を容易に製造できる技術を提
供するものであり、粘度や膜密度などの銅ペースト特性
に関し、従来の銅粉では実現できなかった特性を満足す
る銅粉を提供せんとするものである。
The present invention has been made on the basis of the background as described above, and by improving the so-called hydrazine reduction method for producing copper powder, fine particles having a very sharp particle size distribution are obtained. It is intended to provide a technique for easily producing copper powder, and to provide a copper powder satisfying properties that cannot be realized by conventional copper powder, such as viscosity and film density.

【0011】[0011]

【課題を解決するための手段】本発明者らは、従来のヒ
ドラジン還元法について鋭意研究を重ねた結果、特定の
還元条件に設定して銅粉を製造すると、従来よりも微細
で、粒度分布が非常にシャープな銅粉が得られることを
見出した。
Means for Solving the Problems As a result of intensive studies on the conventional hydrazine reduction method, the present inventors have found that when copper powder is produced under specific reducing conditions, the particle size distribution is finer than before. Found that a very sharp copper powder was obtained.

【0012】具体的には、二価の銅イオンを有する銅塩
水溶液に水酸化アルカリを添加して酸化第二銅を生成
し、還元糖を加えることで酸化第二銅を酸化第一銅に還
元し、ヒドラジン系還元剤を加えることで酸化第一銅を
還元することにより金属銅を生成するものである銅粉の
製造方法において、該銅塩水溶液に錯化剤を予め投入し
た後、反応当量で1.10〜1.60に相当する水酸化
アルカリを加え、黒色の酸化第二銅を生成するように熟
成反応させるものとした。
Specifically, an alkali hydroxide is added to an aqueous solution of a copper salt having divalent copper ions to produce cupric oxide, and reducing sugar is added to convert cupric oxide to cuprous oxide. In the method for producing copper powder, which is to reduce metallic cuprous oxide by reducing cuprous oxide by adding a hydrazine-based reducing agent, a complexing agent is previously added to the copper salt aqueous solution, and then the reaction is performed. An alkali hydroxide equivalent to 1.10 to 1.60 was added in an equivalent amount, and the aging reaction was performed so as to generate black cupric oxide.

【0013】本発明者らの研究によると、特開平10−
330801号公報で提案したヒドラジン還元法では分
散性が高いものの、平均粒径が5μm以下の銅粉を生成
することが難しかった。そこで、このヒドラジン還元法
について、その還元条件を綿密に検討したところ、錯化
剤の投入時期と水酸化アルカリの添加量、及び反応条件
を制御すると、得られる銅粉粒径とその粒度分布状態と
を変化させることができるのを突き止めたのである。
According to the research conducted by the present inventors, Japanese Unexamined Patent Publication No. 10-
Although the hydrazine reduction method proposed in 330801 has high dispersibility, it was difficult to generate copper powder having an average particle size of 5 μm or less. Therefore, when the reduction conditions of this hydrazine reduction method were carefully examined, the copper powder particle size and its particle size distribution state obtained by controlling the timing of adding the complexing agent, the amount of alkali hydroxide added, and the reaction conditions He found that and could be changed.

【0014】即ち、二価の銅イオンを有する銅塩水溶液
に水酸化アルカリを添加して酸化第二銅を生成する際、
まず、該銅塩水溶液に錯化剤を投入し、反応当量で1.
10〜1.60に相当する水酸化アルカリを加える。そ
して、熟成反応をすることで黒色の酸化第二銅を生成す
る。このような酸化第二銅を還元することで得られる金
属銅は、従来の銅粉よりも微細で、非常に均一性の高い
銅粉となるのである。具体的には、レーザー回折散乱式
粒度分布測定法による重量累積粒径D50で0.05〜
4.0μmの平均粒径を有し、重量累積分布径D50
その粒度分布の標準偏差SDとによるSD/D50、即
ち粒度分布状態を示す変動係数であるSD/D50の値
が0.2〜0.5となる銅粉を製造できるのである。こ
の熟成反応とは、水酸化銅を析出させないようにして、
溶液中に析出するその全てが酸化第二銅となるようにす
る反応であり、具体的には、錯化剤、水酸化アルカリを
加えた後に、60〜80℃の液温に保持して、30〜9
0分間反応させて、液色が完全に黒色になるまで反応さ
せるものである。
That is, when alkali hydroxide is added to a copper salt aqueous solution having divalent copper ions to produce cupric oxide,
First, a complexing agent is added to the copper salt aqueous solution, and the reaction equivalent is 1.
Add alkali hydroxide corresponding to 10 to 1.60. Then, by performing an aging reaction, black cupric oxide is produced. The metallic copper obtained by reducing such cupric oxide is finer than conventional copper powder and has extremely high uniformity. Specifically, the weight cumulative particle size D 50 by the laser diffraction / scattering particle size distribution measurement method is 0.05 to
The average particle diameter is 4.0 μm, and the SD / D 50 by the weight cumulative distribution diameter D 50 and the standard deviation SD of the particle size distribution, that is, the value of the variation coefficient SD / D 50 indicating the particle size distribution state is 0. It is possible to produce copper powder having a grain size of 2 to 0.5. This aging reaction is to prevent copper hydroxide from precipitating,
It is a reaction in which all that precipitates in the solution becomes cupric oxide. Specifically, after adding a complexing agent and an alkali hydroxide, the liquid temperature is kept at 60 to 80 ° C., 30-9
The reaction is carried out for 0 minutes until the liquid color becomes completely black.

【0015】本発明に係る銅粉製造方法によると、微細
で且つ粒度分布のシャープな銅粉が得られる現象に関し
ての理論は不明であるが、基本的には次のような反応を
経るためではないかと推測している。本発明では、まず
銅塩水溶液に錯化剤を投入しているが、これは本出願人
が従来提案したヒドラジン還元法の場合(特開平10−
330801号公報、特開平11−256208号公
報)と異なる。この予め投入する錯化剤は、銅塩水溶液
のpH緩衝する作用を有しており、水酸化アルカリを混
合した際に生成される酸化第二銅の粒子を微細化、均一
化する作用に寄与するものと考えている。そして、予め
錯化剤を投入した銅塩水溶液に、反応当量で1.10〜
1.60に相当する水酸化アルカリを添加し、水酸化銅
を析出しないように熟成させて黒色の酸化第二銅を生成
すると、この時に生成される酸化第二銅の粒子が、微細
で且つ粒の揃った状態となっていると考えられる。
According to the method for producing a copper powder according to the present invention, the theory regarding the phenomenon of obtaining a fine copper powder having a sharp particle size distribution is unknown, but basically it is because the following reaction occurs. I'm guessing there is. In the present invention, the complexing agent is first added to the copper salt aqueous solution, which is the case of the hydrazine reduction method conventionally proposed by the applicant (Japanese Patent Laid-Open No. 10-
330801 and JP-A-11-256208). The complexing agent added in advance has a function of buffering the pH of the copper salt aqueous solution, and contributes to the function of refining and homogenizing the particles of cupric oxide produced when the alkali hydroxide is mixed. I think I will do it. Then, a reaction equivalent of 1.10 to a copper salt aqueous solution into which a complexing agent was previously added.
When alkali hydroxide corresponding to 1.60 is added and aged to prevent precipitation of copper hydroxide to produce black cupric oxide, the particles of cupric oxide produced at this time are fine and It is considered that the grains are in a uniform state.

【0016】このようにして生成された、微細且つ粒の
揃った状態の酸化第二銅を、還元糖により酸化第一銅に
還元し、続いてヒドラジン還元して金属銅を生成する
と、従来のヒドラジン還元法では得られなかった銅粉、
即ち、微細且つ粒度分布のシャープな銅粉を製造できる
のである。錯化剤、水酸化アルカリの投入時期が異なっ
たり、或いは、添加する水酸化アルカリが反応当量で、
1.10〜1.60の範囲を外れても、最終的に生成さ
れる金属銅粒子が粗大となったり、或いは、微細な銅粉
を製造することができてもその粒度分布はブロードとな
るのである。従って、本発明のヒドラジン還元法のよう
に、錯化剤の投入時期と水酸化アルカリの添加量とを制
御し、熟成反応させて酸化第二銅を生成すると、重量累
積粒径D で4.0μm以下の平均粒径を有し、粒度
分布の状態を示す変動係数であるSD/D50値が0.
2〜0.5となる銅粉を製造することができるのであ
る。尚、本発明の製造方法において、その反応温度やヒ
ドラジンの添加速度等を制御することにより重量累積粒
径D50が4.0μm以上の銅粉を製造することも可能
であり、その際に得られる銅粉のSD/D50値が0.
2〜0.5とすることができる。
The cupric oxide in a fine and uniform grain state thus produced is reduced to cuprous oxide by a reducing sugar, and subsequently hydrazine is reduced to produce metallic copper. Copper powder not obtained by the hydrazine reduction method,
That is, it is possible to produce a fine copper powder having a sharp particle size distribution. The timing of adding the complexing agent and the alkali hydroxide is different, or the alkali hydroxide to be added is a reaction equivalent,
Even if it goes out of the range of 1.10 to 1.60, the metallic copper particles finally produced become coarse, or even if fine copper powder can be produced, the particle size distribution becomes broad. Of. Therefore, as the hydrazine reduction method of the present invention, by controlling the amount of input time as an alkali hydroxide complexing agent and to produce cupric oxide by ripening reaction, a weight cumulative particle diameter D 5 0 The average particle size is 4.0 μm or less, and the SD / D 50 value which is a coefficient of variation showing the state of the particle size distribution is 0.
It is possible to produce a copper powder having a particle size of 2 to 0.5. In the production method of the present invention, it is possible to produce a copper powder having a weight cumulative particle diameter D 50 of 4.0 μm or more by controlling the reaction temperature, the addition rate of hydrazine, etc. The SD / D 50 value of the copper powder used is 0.
It can be set to 2 to 0.5.

【0017】本発明における二価の銅イオンを有する銅
塩水溶液は、二価の銅塩として硫酸銅、塩化銅、硝酸
銅、酢酸銅等を用いることができ、錯化剤としてはアミ
ノ酢酸、アラニン、グルタミン酸等を用いることができ
る。そして、水酸化アルカリとしては、水酸化ナトリウ
ム、水酸化カリウム、アンモニア等を用いることができ
る。また、還元糖としては、グルコース、フルクトー
ス、ラクトース等を用いることができ、ヒドラジン系還
元剤としては、ヒドラジン、水和ヒドラジン、硫酸ヒド
ラジン、炭酸ヒドラジン、塩酸ヒドラジンなどを用いる
ことができる。本発明者らの研究では、硫酸銅溶液から
銅粉を製造する場合では、特に錯化剤にアミノ酢酸を、
水酸化アルカリに水酸化ナトリウムを用いることが望ま
しいことを確認している。
In the aqueous copper salt solution having divalent copper ions in the present invention, copper sulfate, copper chloride, copper nitrate, copper acetate or the like can be used as the divalent copper salt, and aminoacetic acid as a complexing agent, Alanine, glutamic acid, etc. can be used. Then, as the alkali hydroxide, sodium hydroxide, potassium hydroxide, ammonia or the like can be used. As the reducing sugar, glucose, fructose, lactose or the like can be used, and as the hydrazine-based reducing agent, hydrazine, hydrated hydrazine, hydrazine sulfate, hydrazine carbonate, hydrazine hydrochloride or the like can be used. According to the research conducted by the present inventors, in the case of producing copper powder from a copper sulfate solution, aminoacetic acid is used as a complexing agent,
It has been confirmed that it is desirable to use sodium hydroxide as the alkali hydroxide.

【0018】次に、本発明は、上記した本発明に係るヒ
ドラジン還元法によって得られた金属銅を、脂肪酸含有
溶液に所定時間接触させ、有機溶媒を用いて少なくとも
1回の洗浄処理を行った後、乾燥することで金属銅の表
面に脂肪酸の金属塩による表面処理層を形成するように
した。一般的に銅ペーストでは、作製初期時のペースト
粘度が高く、そのペースト粘度が経時変化を起こして増
粘する傾向が知られており、銅ペーストに加工して以降
の長期保管の問題が指摘されるものである。そのため、
このように脂肪酸の金属塩で表面処理層を形成した銅粉
にすると、非常に良好な耐酸化性を有し、銅ペーストに
加工したときの初期粘度を低くし、且つ、銅ペースト粘
度の経時的変化を極めて有効に抑制することができるの
である。
Next, in the present invention, the metallic copper obtained by the above-mentioned hydrazine reduction method according to the present invention is brought into contact with a fatty acid-containing solution for a predetermined time and subjected to at least one washing treatment with an organic solvent. After that, by drying, a surface treatment layer with a metal salt of a fatty acid was formed on the surface of the metallic copper. In general, copper paste has a high paste viscosity in the initial stage of production, and it is known that the paste viscosity tends to increase over time, and problems with long-term storage after processing into copper paste have been pointed out. It is something. for that reason,
When the copper powder having the surface-treated layer formed of a metal salt of a fatty acid is used, it has very good oxidation resistance and lowers the initial viscosity when processed into a copper paste, and the copper paste viscosity changes with time. It is possible to extremely effectively suppress the dynamic change.

【0019】本発明の銅粉の製造方法における表面処理
は、脂肪酸で銅粉を処理し、一旦銅粉の表面に吸着残留
した脂肪酸及び脂肪酸の金属塩を含んだ表面処理層を形
成し、その後、有機溶媒を用いて洗浄することで、脂肪
酸の金属塩のみを銅粉の表面に残すのである。ここでい
う「脂肪酸の金属塩」とは、脂肪酸を用いて銅粉を表面
処理する際に、銅粉の銅成分と脂肪酸とが反応して形成
される金属塩のことである。そして、「吸着残留した脂
肪酸」とは、銅成分と反応せず、脂肪酸を溶解させた溶
媒中においてもイオン状態に解離することのなかった脂
肪酸が表面に吸着したものである。
The surface treatment in the method for producing copper powder of the present invention is performed by treating the copper powder with a fatty acid to form a surface treatment layer containing the fatty acid and the metal salt of the fatty acid once adsorbed on the surface of the copper powder. By washing with the organic solvent, only the metal salt of the fatty acid remains on the surface of the copper powder. The term “metal salt of fatty acid” as used herein means a metal salt formed by the reaction between the copper component of the copper powder and the fatty acid when the copper powder is surface-treated with the fatty acid. The “adsorbed residual fatty acid” is a fatty acid that has not reacted with the copper component and has not been dissociated into an ionic state even in a solvent in which the fatty acid is dissolved, and is adsorbed on the surface.

【0020】本発明に係る脂肪酸としては、飽和脂肪
酸、不飽和脂肪酸を用いることができる。より具体的に
は、飽和脂肪酸として、エナント酸、カプリル酸、ペラ
ルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、ト
リデシル酸、ミリスチン酸、ペンタデシル酸、パルミチ
ン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、
アラキン酸、ベヘン酸等、不飽和脂肪酸としては、アク
リル酸、クロトン酸、イソクロトン酸、ウンデシレン
酸、オレイン酸、エライジン酸、セトレイン酸、ブラシ
ジン酸、エルカ酸、ソルビン酸、リノール酸、リノレン
酸、アラキドン酸等のいずれか1種又は2種以上を組み
合わせて用いることができる。
As the fatty acid according to the present invention, saturated fatty acid and unsaturated fatty acid can be used. More specifically, as saturated fatty acids, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecyl acid, lauric acid, tridecyl acid, myristic acid, pentadecyl acid, palmitic acid, heptadecyl acid, stearic acid, nonadecanoic acid,
Unsaturated fatty acids such as arachidic acid and behenic acid include acrylic acid, crotonic acid, isocrotonic acid, undecylenic acid, oleic acid, elaidic acid, cetoleic acid, brassic acid, erucic acid, sorbic acid, linoleic acid, linolenic acid, arachidone. Any one or a combination of two or more acids can be used.

【0021】また、本発明の銅粉の製造方法に係る表面
処理では、有機溶媒で洗浄する方法は、当該表面処理銅
粉に直接有機溶媒をかけることで洗浄する方法、有機溶
媒中に入れ攪拌しつつ洗浄する方法等、有機溶媒と表面
処理した銅粉とが万遍なく接触し、効率よく洗浄できる
方法であれば、どのような手法を用いても構わない。そ
して、この有機溶媒による洗浄は、吸着残留した脂肪酸
を確実に除去できるように、1回洗浄よりも複数回の洗
浄を行った方が好ましい。繰り返し洗浄の適正回数の上
限は、脂肪酸の種類によっても僅かながらの差異ある
が、処理効率などを考慮すれば3回を越えない範囲での
繰り返し洗浄が好ましい。
Further, in the surface treatment according to the method for producing copper powder of the present invention, the method of washing with an organic solvent is a method of washing by directly applying an organic solvent to the surface-treated copper powder, or a method of putting the copper powder in an organic solvent and stirring. Any method may be used as long as the organic solvent and the surface-treated copper powder are evenly contacted with each other so that the cleaning can be efficiently performed. The washing with the organic solvent is preferably performed plural times rather than once so that the fatty acid remaining after adsorption can be surely removed. The upper limit of the appropriate number of repeated washings varies slightly depending on the type of fatty acid, but considering the treatment efficiency and the like, it is preferable to repeat washing within a range not exceeding three times.

【0022】上記した洗浄用の有機溶媒としては、エチ
ルアルコール、メチルアルコール、アセトン、メチルエ
チルケトン、プロパノールなどを用いることができる。
また、最終的に行う乾燥は、表面処理する銅粉の表面酸
化を防止する観点から可能な限り低温領域を採用するこ
とが望まれるので、乾燥温度50〜100℃、乾燥時間
2〜8時間の条件で行うことが好ましい。乾燥温度が5
0℃未満では、銅粉に吸着した水分を十分に除去する事
ができず、しかも、脂肪酸の金属塩を強固に固着できな
い。一方、乾燥温度が100℃を越えると、表面処理層
の損傷が起こり易くなる。この乾燥温度範囲を採用した
場合、その加熱温度に合わせて、表面処理層が損傷を起
こすことなく、且つ表面処理銅粉の吸着水分の除去が完
全できる加熱時間を採用すべきものである。
As the above-mentioned organic solvent for cleaning, ethyl alcohol, methyl alcohol, acetone, methyl ethyl ketone, propanol or the like can be used.
Moreover, since it is desired to adopt the lowest possible temperature range for the final drying from the viewpoint of preventing the surface oxidation of the copper powder to be surface-treated, the drying temperature is 50 to 100 ° C. and the drying time is 2 to 8 hours. It is preferable to carry out under the conditions. Drying temperature is 5
If the temperature is lower than 0 ° C, the water adsorbed on the copper powder cannot be sufficiently removed, and the metal salt of fatty acid cannot be firmly fixed. On the other hand, if the drying temperature exceeds 100 ° C., the surface treatment layer is likely to be damaged. When this drying temperature range is adopted, a heating time should be adopted in accordance with the heating temperature so that the surface treatment layer is not damaged and the adsorbed water of the surface treatment copper powder can be completely removed.

【0023】上記した本発明に係る銅粉の製造方法によ
り得られた銅粉は、平均粒径がD で0.05〜4.
0μmとなり、且つSD/D50が0.2〜0.5とな
る。このような銅粉は、銅ペーストにした際の粘度が低
く、その充填性も非常に良好となため、ぺースト膜の膜
密度を高くできるというペースト特性を実現できる。
The copper powder obtained by the production method of the copper powder according to the present invention described above, an average particle diameter in the D 5 0 0.05 to 4.
It becomes 0 μm and SD / D 50 becomes 0.2 to 0.5. Such a copper powder has a low viscosity when it is made into a copper paste, and its filling property is also very good. Therefore, it is possible to realize a paste characteristic that the film density of the paste film can be increased.

【0024】[0024]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、実施例及び比較例に基づき説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below based on Examples and Comparative Examples.

【0025】実施例:酸銅(五水塩)4kg及びアミノ
酢酸120gを水に溶解させて、液温60℃の8L(リ
ットル)の銅塩水溶液を作製した。そして、この水溶液
を撹拌しながら、表1に示す各量の25wt%水酸化ナ
トリウム溶液を約5分間かけて定量的に添加し、液温6
0℃で60分間の撹拌を行い、液色が完全に黒色になる
まで熟成させて酸化第二銅を生成した。その後30分間
放置し、グルコース1.5kg添加して、1時間熟成す
ることで酸化第二銅を酸化第一銅に還元した。さらに、
水和ヒドラジン1kgを5分間かけて定量的に添加して
酸化第一銅を還元することで金属銅にして、銅粉スラリ
ーを生成した。得られた銅粉スラリーを濾過し、純水で
十分に洗浄し、再度濾過した後、乾燥して表1に示す実
施例1〜4の銅粉を得た。また、水酸化ナトリウム溶液
を反応当量で1.0と2.0となる添加量にした比較例
1、2も作製した。
Example: 4 kg of acid copper (pentahydrate) and 120 g of aminoacetic acid were dissolved in water to prepare an aqueous solution of 8 L (liter) of copper salt at a liquid temperature of 60 ° C. Then, while stirring this aqueous solution, 25 wt% sodium hydroxide solution of each amount shown in Table 1 was quantitatively added over about 5 minutes to obtain a liquid temperature of 6
The mixture was stirred at 0 ° C. for 60 minutes and aged until the liquid color became completely black to form cupric oxide. Then, the mixture was allowed to stand for 30 minutes, 1.5 kg of glucose was added, and the mixture was aged for 1 hour to reduce cupric oxide to cuprous oxide. further,
1 kg of hydrated hydrazine was quantitatively added over 5 minutes to reduce cuprous oxide into metallic copper to produce a copper powder slurry. The obtained copper powder slurry was filtered, thoroughly washed with pure water, filtered again, and dried to obtain the copper powders of Examples 1 to 4 shown in Table 1. Further, Comparative Examples 1 and 2 in which the addition amount of the sodium hydroxide solution was 1.0 and 2.0 in terms of reaction equivalent were also prepared.

【0026】また、従来例として、特開平10−330
801号公報に開示されたヒドラジン還元法による銅粉
を作製した。これは、硫酸銅(五水塩)4kgを温水に
溶解させて8L(リットル)の水溶液とし、これを60
℃に維持した。この水溶液に25重量%水酸化ナトリウ
ム溶液6.25kgを添加し、60℃に維持しながら1
時間撹拌して反応させ、酸化第二銅を生成した。そし
て、反応により得られたものを60℃に維持した状態
で、これに450g/Lのグルコース水溶液3.2Lを
1時間かけて定量的に添加して酸化第二銅を酸化第一銅
に還元した。スラリー状になった溶液を一旦濾過し、洗
浄した後、温水を加えて再度スラリー化し、12.8L
の酸化第一銅スラリーを得た。この酸化第一銅スラリー
にアミノ酢酸60gおよびアラビアゴム28gを添加
し、撹拌して50℃に保持した。この状態で、さらに2
0重量%水和ヒドラジン2Lを1時間かけて定量的に添
加して酸化第一銅を還元し、銅粉スラリーを生成した。
得られた銅粉スラリーを濾過し、純水で十分に洗浄し、
再度濾過した後、乾燥して、従来例の銅粉を得た。
As a conventional example, Japanese Patent Laid-Open No. 10-330.
Copper powder was produced by the hydrazine reduction method disclosed in Japanese Patent No. 801. This is made by dissolving 4 kg of copper sulphate (pentahydrate) in warm water to make an 8 L (liter) aqueous solution.
Maintained at 0 ° C. To this aqueous solution was added 6.25 kg of 25% by weight sodium hydroxide solution, and while maintaining the temperature at 60 ° C, 1
The mixture was stirred for a reaction to produce cupric oxide. Then, while maintaining the product obtained by the reaction at 60 ° C., 3.2 L of 450 g / L glucose aqueous solution was quantitatively added thereto over 1 hour to reduce cupric oxide to cuprous oxide. did. The slurry solution was once filtered and washed, and then warm water was added to make it into a slurry again, and 12.8 L
To obtain a cuprous oxide slurry. To this cuprous oxide slurry, 60 g of aminoacetic acid and 28 g of gum arabic were added, and the mixture was stirred and kept at 50 ° C. 2 more in this state
2 L of 0 wt% hydrated hydrazine was quantitatively added over 1 hour to reduce cuprous oxide to produce a copper powder slurry.
The resulting copper powder slurry is filtered and thoroughly washed with pure water,
After filtering again, it was dried to obtain a conventional copper powder.

【0027】[0027]

【表1】 [Table 1]

【0028】表1には、各銅粉を作製した際の水酸化ナ
トリウムの添加量と、その反応当量値を示している。ま
た、各銅粉の重量累積粒径D50を測定し、変動係数で
あるSD/D50も併記している。この重量累積粒径D
50は、レーザー回折散乱式粒度分布測定法により測定
した重量累積50%のときの粒径値を示すもので、SD
/D50はレーザー回折散乱式粒度分布測定法により測
定した粒度分布の標準偏差SDとD50とから算出でき
る変動係数である。このSD/D50の数値が小さいほ
ど粒度分布がシャープで、粒が揃った銅粉であることに
対応する。
Table 1 shows the amount of sodium hydroxide added and the reaction equivalent value when each copper powder was produced. In addition, the weight cumulative particle diameter D 50 of each copper powder was measured, and the variation coefficient SD / D 50 is also shown. This weight cumulative particle size D
50 indicates a particle size value at a weight cumulative 50% measured by a laser diffraction / scattering particle size distribution measuring method, which is SD
/ D 50 is a coefficient of variation that can be calculated from the standard deviation SD and D 50 of the particle size distribution measured by the laser diffraction scattering type particle size distribution measuring method. The smaller the value of SD / D 50, the sharper the particle size distribution and the more uniform the particles are.

【0029】表1を見ると判るように、本実施例の銅粉
は平均粒径(D50)が1.0μm以下となっており、
粒度分布状態を示すSD/D50も比較例1、2に比べ
小さな値となっており、非常にシャープな粒度分布とな
っていることが判明した。一方、従来例のヒドラジン還
元法ではシャープな粒度分布の銅粉が得られるものの、
その平均粒径(D50)は、本実施例に比べ大きな粒径
の銅粉しか得ることが出来なかった。
As can be seen from Table 1, the copper powder of this example has an average particle size (D 50 ) of 1.0 μm or less,
The SD / D 50 showing the particle size distribution state was also smaller than that of Comparative Examples 1 and 2, and it was found that the particle size distribution was extremely sharp. On the other hand, although the conventional hydrazine reduction method gives copper powder with a sharp particle size distribution,
As for the average particle diameter (D 50 ), only copper powder having a larger particle diameter than in this example could be obtained.

【0030】表1で示した実施例1〜4、比較例1、2
のデータにより、反応当量数に対する平均粒径
(D50)と、反応当量数に対するSD/D50との相
関について検討を行った。その結果、水酸化ナトリウム
の反応当量が1.0或いは2.0になると、平均粒径
(D50)とSD/D50との両方の値が急激に大きく
なり、水酸化ナトリウムの添加量が反応当量で1.10
付近から、D50及びSD/D の値が急激に大きく
なっていた。これは、合成される酸化第二銅が不均一と
なり、最終的に得られる銅粉もそれに合わせて不均一に
なるためと考えられた。また、2.0の反応当量に相当
する水酸化ナトリウムを添加すると、金属銅への還元時
の反応が激しくなり凝集し易くなるため、D50及びS
D/D50の値が急激に大きくなるものと考えられた。
従って、所定の平均粒径(D50)に対して、そのSD
/D50値を0.5以下となるような銅粉を製造するに
は、水酸化ナトリウムの添加量を反応当量でおおよそ
1.10〜1.60の範囲にコントロールすればよいと
推測された。
Examples 1 to 4 and Comparative Examples 1 and 2 shown in Table 1
The correlation between the average particle size (D 50 ) with respect to the number of reaction equivalents and the SD / D 50 with respect to the number of reaction equivalents was examined using the data of 1. As a result, when the reaction equivalent of sodium hydroxide becomes 1.0 or 2.0, both the average particle diameter (D 50 ) and the SD / D 50 value rapidly increase, and the addition amount of sodium hydroxide increases. 1.10 in reaction equivalent
From the vicinity of the value of D 50 and SD / D 5 0 it had sharply increased. It was considered that this was because the synthesized cupric oxide became non-uniform and the finally obtained copper powder also became non-uniform accordingly. Further, when sodium hydroxide corresponding to a reaction equivalent of 2.0 is added, the reaction at the time of reduction to metallic copper becomes vigorous and aggregation tends to occur, so that D 50 and S
It was considered that the value of D / D 50 suddenly increased.
Therefore, for a given average particle size (D 50 ), the SD
In order to produce a copper powder having a / D 50 value of 0.5 or less, it was presumed that the addition amount of sodium hydroxide should be controlled in the reaction equivalent range of about 1.10 to 1.60. .

【0031】また、上記実施例1の銅粉を製造した条件
で、そのヒドラジン添加時間を変化させた際の銅粉粒径
を調査した。その結果を表2に示す。表2に見ると判る
ように、ヒドラジンの添加を長時間かけて行うほど、得
られる銅粉の平均粒径(D )は大きくなったが、そ
の粒度分布状態は非常にシャープで、SD/D50値が
0.5以下になることも判明した。
Further, the particle size of the copper powder was investigated when the hydrazine addition time was changed under the conditions for producing the copper powder of Example 1 above. The results are shown in Table 2. As seen in Table 2, as carried out over a long time the addition of hydrazine, an average particle diameter (D 5 0) of copper powder obtained is increased, the particle size distribution is very sharp, SD It was also found that the / D 50 value was 0.5 or less.

【0032】[0032]

【表2】 [Table 2]

【0033】続いて、銅ペーストにした際の特性を調査
した結果について説明する。特性調査に用いた銅ペース
トは、エチルセルロース7部をターピネオール93部で
十分に溶解した溶媒50gと、銅粉50gとを混合した
後、3本ロールにて混練して作製した。そして、作製し
た銅ペーストの粘度は、粘度計(RE−105U型、東
機産業社製)を用い、0.5rpmで測定した。また、
作製した銅ペーストを塗工機により、フィルム上に厚さ
30μmで塗布し、乾燥した後、その乾燥塗膜により膜
密度を測定した。膜密度は、所定形状の乾燥塗膜の重量
を計測して求めた。その結果を表3に示す。
Next, the results of investigating the characteristics of the copper paste will be described. The copper paste used for the characteristic investigation was prepared by mixing 50 g of a solvent in which 7 parts of ethyl cellulose was sufficiently dissolved with 93 parts of terpineol and 50 g of copper powder, and then kneading with a three-roll mill. Then, the viscosity of the prepared copper paste was measured at 0.5 rpm using a viscometer (RE-105U type, manufactured by Toki Sangyo Co., Ltd.). Also,
The prepared copper paste was applied on a film with a thickness of 30 μm by a coater and dried, and then the film density was measured by the dried coating film. The film density was obtained by measuring the weight of a dry coating film having a predetermined shape. The results are shown in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】表3に示すように、実施例の銅ペースト
は、粘度が小さいので取り扱い性に優れていることが判
明した。膜密度に関しても、非常に高密度であることが
判明した。
As shown in Table 3, the copper pastes of the examples were found to have excellent handleability because of their low viscosity. It was also found that the film density was very high.

【0036】続いて、本発明に係る表面処理銅粉につい
て説明する。ここでは実施例1の銅粉に、脂肪酸として
オレイン酸を用いて表面処理銅粉を製造した場合を例に
する。ここでの評価は、表面処理銅粉を用いて銅ペース
トを製造し、その銅ペーストの粘度の変化率を測定し
た。更に、従来のオレイン酸処理した表面処理銅粉との
比較を行った。
Next, the surface-treated copper powder according to the present invention will be described. Here, the case where a surface-treated copper powder is produced by using oleic acid as a fatty acid for the copper powder of Example 1 will be taken as an example. In this evaluation, a copper paste was produced using surface-treated copper powder, and the rate of change in viscosity of the copper paste was measured. Further, a comparison was made with the conventional oleic acid-treated surface-treated copper powder.

【0037】まず、銅粉表面にオレイン酸を用いた表面
処理層を形成した条件について説明する。実施例1の銅
粉5kgをヌッチェに入れ、5gのオレイン酸を加えて
分散させた5リットルのメタノール溶液を滴下して、銅
粉表面に表面処理層を形成した。そして、吸引濾過する
ことで、表面処理銅粉と溶液とを濾別した。
First, the conditions for forming a surface treatment layer using oleic acid on the surface of copper powder will be described. 5 kg of the copper powder of Example 1 was put in a nutsche, and 5 liters of a methanol solution containing 5 g of oleic acid dispersed therein was added dropwise to form a surface treatment layer on the surface of the copper powder. Then, the surface-treated copper powder and the solution were separated by suction filtration.

【0038】そして、得られた表面処理銅粉に2リット
ルのメタノール液を滴下することで、表面処理銅粉の洗
浄を行い、吸引濾過して銅粉の表面処理層にオレイン酸
の金属塩のみが残留するようにした(以下実施例1Sと
する)。吸引濾過で分取した表面処理銅粉を、70℃の
温度で5時間の乾燥を行った。この段階の表面処理銅粉
をFT−IR分析した結果、脂肪酸の金属塩のピークの
みが検出されていることが判明した。
Then, the surface-treated copper powder was washed by dropping 2 liters of methanol solution onto the obtained surface-treated copper powder, and suction-filtered to the surface-treated layer of copper powder containing only the metal salt of oleic acid. Was allowed to remain (hereinafter referred to as Example 1S). The surface-treated copper powder collected by suction filtration was dried at 70 ° C. for 5 hours. As a result of FT-IR analysis of the surface-treated copper powder at this stage, it was found that only the peak of the metal salt of fatty acid was detected.

【0039】続いて、この表面処理銅粉を用いて、エポ
キシ系銅ペーストを製造した。表面処理銅粉80重量
部、第1のエポキシ樹脂(油化シェル社製のエピコート
828)4重量部、第2のエポキシ樹脂(東都化成株式
会社製のYD−171)12重量部、エポキシ樹脂硬化
剤(味の素株式会社製アミキュアMY−24)4重量
部、これらを混合して30分の混錬を行ってエポキシ系
銅ペーストを得た。
Subsequently, an epoxy-based copper paste was produced using this surface-treated copper powder. 80 parts by weight of surface-treated copper powder, 4 parts by weight of first epoxy resin (Epicoat 828 manufactured by Yuka Shell Co., Ltd.), 12 parts by weight of second epoxy resin (YD-171 manufactured by Toto Kasei Co., Ltd.), epoxy resin curing 4 parts by weight of an agent (Amicure MY-24 manufactured by Ajinomoto Co., Inc.) and these were mixed and kneaded for 30 minutes to obtain an epoxy-based copper paste.

【0040】以上のようにして得られたエポキシ系銅ペ
ーストの製造直後の粘度を測定すると300Pa・s、
一週間経過後の粘度は450Pa・sであり、製造直後
の粘度を基準に粘度の変化率として考えると50%であ
るという結果が得られた。なお、この粘度測定には、R
E−105U粘度計(東機産業社製)を用い、0.1r
pmの回転数で測定した結果である。
The viscosity of the epoxy-based copper paste obtained as described above immediately after the production was measured to be 300 Pa · s,
The result was that the viscosity after one week was 450 Pa · s, and it was 50% when the rate of change in viscosity was considered based on the viscosity immediately after production. For this viscosity measurement, R
Using E-105U viscometer (manufactured by Toki Sangyo Co., Ltd.), 0.1r
It is the result measured at the rotation speed of pm.

【0041】比較として、オレイン酸で処理して、銅粉
表面に吸着残留した脂肪酸、脂肪酸の金属塩のそれぞれ
が存在する表面処理銅粉を作製してFT−IR分析を
し、上述と同様のエポキシ系銅ペーストを製造し、その
粘度変化を調査した。銅粉表面に吸着残留した脂肪酸、
脂肪酸の金属塩のそれぞれが存在する表面処理銅粉をF
T−IR分析した結果、当然ながら、脂肪酸の金属塩の
ピーク及び脂肪酸に起因するピークが検出された。
For comparison, a surface-treated copper powder treated with oleic acid and having a fatty acid and a metal salt of a fatty acid remaining on the surface of the copper powder adsorbed was prepared and subjected to FT-IR analysis. An epoxy-based copper paste was manufactured and its viscosity change was investigated. Fatty acids adsorbed on the surface of copper powder,
The surface-treated copper powder in which each of the fatty acid metal salts is present is F
As a result of T-IR analysis, naturally, a peak of a metal salt of fatty acid and a peak attributable to the fatty acid were detected.

【0042】そして、この銅粉表面に吸着残留した脂肪
酸、脂肪酸の金属塩のそれぞれが存在する表面処理銅粉
を銅ペースとにした際の粘度及び粘度の変化率を測定し
た。その結果、エポキシ系銅ペーストの製造直後の粘度
を測定すると430Pa・s、一週間経過後の粘度は1
120Pa・sであり、製造直後の粘度を基準に粘度の
変化率として考えると260%であった。以上の結果よ
り、本実施例の表面処理銅粉は初期粘度が低く、しか
も、粘度の経時変化が非常に少ないことが判明した。
Then, the viscosity and the rate of change of the viscosity were measured when the surface-treated copper powder having the fatty acid and the metal salt of the fatty acid remaining on the surface of the copper powder adsorbed thereon was used as the copper paste. As a result, the viscosity of the epoxy-based copper paste immediately after production was measured to be 430 Pa · s, and the viscosity after one week was 1
The viscosity was 120 Pa · s, which was 260% when the rate of change in viscosity was considered based on the viscosity immediately after production. From the above results, it was found that the surface-treated copper powder of this example had a low initial viscosity and had a very small change in viscosity with time.

【0043】さらに上記実施例2〜4の銅粉を上述した
表面処理を行い表面処理銅粉(実施例2S〜4S)と
し、銅ペーストにした際の特性を調査した結果について
説明する。銅ペーストの製法、特性測定は上記した方法
と同様であるので省略する。表3に各表面処理銅粉のペ
ースト特性調査結果を示す。
Further, the results of investigating the characteristics when the copper powders of Examples 2 to 4 are subjected to the above-mentioned surface treatment to obtain surface-treated copper powders (Examples 2S to 4S) and made into copper paste will be described. The manufacturing method and the characteristic measurement of the copper paste are the same as the above-mentioned methods, and therefore the description thereof is omitted. Table 3 shows the results of investigation of the paste characteristics of each surface-treated copper powder.

【0044】[0044]

【表4】 [Table 4]

【0045】表4を見ると判るように、表3に示した表
面処理を行っていない銅粉に比べ、粘度も低くなり、表
面処理銅粉にすると膜密度が0.1〜0.2程度向上し
ていることが確認された。
As can be seen from Table 4, the viscosity is lower than that of the non-surface-treated copper powder shown in Table 3, and the surface-treated copper powder has a film density of about 0.1 to 0.2. It was confirmed to have improved.

【0046】最後に、上記実施例1で説明した製造過程
において生成される酸化第二銅をX線回折した結果につ
いて説明する。ここでは、硫酸銅(五水塩)及びアミノ
酢酸を水に溶解させた銅塩水溶液に、反応当量1.15
に相当する水酸化ナトリウム溶液を添加することで生成
される酸化第二銅をX線回折分析した。その結果を図1
に示す。
Finally, the result of X-ray diffraction of cupric oxide produced in the manufacturing process described in Example 1 will be described. Here, a reaction equivalent of 1.15 was added to a copper salt aqueous solution in which copper sulfate (pentahydrate) and aminoacetic acid were dissolved in water.
X-ray diffraction analysis was performed on cupric oxide produced by adding a sodium hydroxide solution corresponding to. The result is shown in Figure 1.
Shown in.

【0047】図1にはX線回折パターンには、比較とし
て反応当量1.08に相当する水酸化ナトリウム溶液を
添加し、熟成反応をさせることなく、溶液色がやや青色
を呈している状態で生成された析出物を分析した結果
(比較例3)を一緒に示している。この図1のX線回折
パターンを見ると判るように、実施例1で得られる酸化
第二銅では、酸化第二銅のピークのみが明確に検出され
た。一方、比較例3の析出物では、酸化第二銅に相当す
るピークが若干見受けられたものの、水酸化銅のピーク
の方が明確に現れていた。そのため、比較例3の場合に
おいて、熟成処理をすることなく銅塩水溶液から生成さ
れたものは、水酸化銅と酸化第二銅との混合物であると
考えられた。
In the X-ray diffraction pattern shown in FIG. 1, for comparison, a sodium hydroxide solution corresponding to a reaction equivalent of 1.08 was added, and the solution color was slightly blue without aging reaction. The results of analysis of the produced precipitates (Comparative Example 3) are also shown. As can be seen from the X-ray diffraction pattern of FIG. 1, in the cupric oxide obtained in Example 1, only the cupric oxide peak was clearly detected. On the other hand, in the precipitate of Comparative Example 3, although a peak corresponding to cupric oxide was slightly found, the peak of copper hydroxide was more apparent. Therefore, in the case of Comparative Example 3, it was considered that the product produced from the copper salt aqueous solution without performing the aging treatment was a mixture of copper hydroxide and cupric oxide.

【0048】また、この比較例3についても還元処理を
して銅粉を製造し、比較例1及び2と同様に銅ペースト
にして、その粘度、膜密度を測定した。その結果を実施
例1と一緒に表5に示す。
Further, in this Comparative Example 3 as well, reduction treatment was carried out to produce copper powder, and a copper paste was prepared in the same manner as in Comparative Examples 1 and 2, and its viscosity and film density were measured. The results are shown in Table 5 together with Example 1.

【0049】[0049]

【表5】 [Table 5]

【0050】この表5に示す結果とX線回折パターンの
結果とを合わせて考えると、比較例3(比較例1又は2
も同様)の銅粉のように、硫酸銅の銅塩水溶液から熟成
処理されることなく生成された析出物(水酸化銅と酸化
銅の混合物)を還元して得られたものでは、微細な粒径
であるが、銅ペーストにした際の粘度、膜密度の特性は
十分に満足できるものではなかった。一方、本実施例
は、硫酸銅の銅塩水溶液から熟成処理を経て完全に酸化
第二銅として生成されたものを還元して得られ、微細且
つ粒度分布が非常にシャープな銅粉であるために、銅ペ
ーストにした際の粘度や膜密度の特性向上が図られたと
考えられる。
Considering together the results shown in Table 5 and the results of the X-ray diffraction pattern, Comparative Example 3 (Comparative Example 1 or 2) was obtained.
Similarly, copper powder of (1) is obtained by reducing a precipitate (a mixture of copper hydroxide and copper oxide) produced without being aged from a copper sulfate copper salt aqueous solution. Although it is a particle size, the viscosity and film density characteristics of the copper paste were not sufficiently satisfactory. On the other hand, this example is obtained by reducing what was produced as cupric oxide completely through an aging treatment from a copper salt aqueous solution of copper sulfate, and because it is a fine and very sharp particle size distribution of copper powder. In addition, it is considered that when the copper paste was used, the characteristics of viscosity and film density were improved.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
微細な銅粉で、粒度分布も非常にシャープな銅粉を容易
に製造できる。そして、本発明の製法により得られた銅
粉で銅ペーストを形成すると、従来の銅粉では実現でき
なかった低粘度特性を有し、充填性に優れ、電子回路用
の導電体形成に好適なものとなる。
As described above, according to the present invention,
Fine copper powder with a very sharp particle size distribution can be easily manufactured. Then, when a copper paste is formed from the copper powder obtained by the production method of the present invention, it has a low viscosity characteristic that could not be realized by the conventional copper powder, has excellent filling properties, and is suitable for forming a conductor for an electronic circuit. Will be things.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の酸化第二銅に関するX線回折パター
ン図。
FIG. 1 is an X-ray diffraction pattern diagram for cupric oxide of Example 1.

フロントページの続き (72)発明者 中村 芳信 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部機能粉事 業部内 (72)発明者 青木 晃 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部機能粉事 業部内 (72)発明者 安成 邦彦 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部機能粉事 業部内 (72)発明者 佐々木 卓也 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部機能粉事 業部内 (72)発明者 吉丸 克彦 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部機能粉事 業部内 Fターム(参考) 4K017 AA03 BA05 CA07 DA01 EJ01 FB07 4K018 BA02 BB04 BD04 5G301 AA08 AB20 AD06 Continued front page    (72) Inventor Yoshinobu Nakamura             1-11-1 Osaki, Shinagawa-ku, Tokyo Mitsui Kin             Functional Mineral Co., Ltd.             Within the department (72) Inventor Aoki Akira             1-11-1 Osaki, Shinagawa-ku, Tokyo Mitsui Kin             Functional Mineral Co., Ltd.             Within the department (72) Inventor Kunihiko Yasunari             1-11-1 Osaki, Shinagawa-ku, Tokyo Mitsui Kin             Functional Mineral Co., Ltd.             Within the department (72) Inventor Takuya Sasaki             1-11-1 Osaki, Shinagawa-ku, Tokyo Mitsui Kin             Functional Mineral Co., Ltd.             Within the department (72) Inventor Katsuhiko Yoshimaru             1-11-1 Osaki, Shinagawa-ku, Tokyo Mitsui Kin             Functional Mineral Co., Ltd.             Within the department F-term (reference) 4K017 AA03 BA05 CA07 DA01 EJ01                       FB07                 4K018 BA02 BB04 BD04                 5G301 AA08 AB20 AD06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二価の銅イオンを有する銅塩水溶液に水
酸化アルカリを混合して酸化第二銅を生成し、還元糖を
加えることで酸化第二銅を酸化第一銅に還元し、さらに
ヒドラジン系還元剤を加えることで酸化第一銅を還元す
ることにより金属銅を生成する銅粉の製造方法におい
て、 銅塩水溶液に錯化剤を予め投入した後、反応当量で1.
10〜1.60に相当する水酸化アルカリを混合して、
黒色の酸化第二銅を生成するように熟成反応させること
を特徴とする銅粉の製造方法。
1. An aqueous solution of a copper salt having a divalent copper ion is mixed with an alkali hydroxide to produce cupric oxide, and reducing sugar is added to reduce cupric oxide to cuprous oxide. Further, in a method for producing a copper powder in which cuprous oxide is reduced by adding a hydrazine-based reducing agent to produce metallic copper, a complexing agent is previously added to an aqueous solution of a copper salt, and then the reaction equivalent is 1.
Mix alkali hydroxide equivalent to 10 to 1.60,
A method for producing a copper powder, which is characterized by performing an aging reaction so as to generate black cupric oxide.
【請求項2】 錯化剤はアミノ酢酸であり、水酸化アル
カリは水酸化ナトリウムである請求項1に記載の銅粉の
製造方法。
2. The method for producing copper powder according to claim 1, wherein the complexing agent is aminoacetic acid, and the alkali hydroxide is sodium hydroxide.
【請求項3】 酸化第一銅を還元して生成した金属銅を
脂肪酸含有溶液に所定時間接触させ、有機溶媒を用いて
少なくとも1回の洗浄処理を行った後乾燥することで、
金属銅表面に脂肪酸の金属塩による表面処理層を形成す
るものである請求項1又は請求項2に記載の銅粉の製造
方法。
3. Metallic copper produced by reducing cuprous oxide is contacted with a fatty acid-containing solution for a predetermined period of time, washed with an organic solvent at least once, and then dried.
The method for producing copper powder according to claim 1 or 2, wherein a surface treatment layer of a metal salt of fatty acid is formed on the surface of the metal copper.
【請求項4】 請求項1〜請求項3に記載する銅箔の製
造方法により得られた銅粉であって、 レーザー回折散乱式粒度分布測定法による重量累積粒径
50が0.05〜4.0μmで、且つ重量累積分布径
50とその粒度分布の標準偏差SDとによるSD/D
50が0.2〜0.5である銅粉。
4. A copper powder obtained by the method for producing a copper foil according to any one of claims 1 to 3, wherein a weight cumulative particle diameter D 50 by a laser diffraction scattering type particle size distribution measuring method is 0.05 to. SD / D of 4.0 μm and the weight cumulative distribution diameter D 50 and the standard deviation SD of the particle size distribution
The copper powder whose 50 is 0.2-0.5.
JP2002152593A 2002-05-27 2002-05-27 Copper powder manufacturing method and copper powder obtained by the method Expired - Lifetime JP4195581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152593A JP4195581B2 (en) 2002-05-27 2002-05-27 Copper powder manufacturing method and copper powder obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152593A JP4195581B2 (en) 2002-05-27 2002-05-27 Copper powder manufacturing method and copper powder obtained by the method

Publications (2)

Publication Number Publication Date
JP2003342621A true JP2003342621A (en) 2003-12-03
JP4195581B2 JP4195581B2 (en) 2008-12-10

Family

ID=29769889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152593A Expired - Lifetime JP4195581B2 (en) 2002-05-27 2002-05-27 Copper powder manufacturing method and copper powder obtained by the method

Country Status (1)

Country Link
JP (1) JP4195581B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314755A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Flake copper powder, production method therefor and conductive paste
WO2006068061A1 (en) * 2004-12-22 2006-06-29 Mitsui Mining & Smelting Co., Ltd. Superfine copper powder slurry and process for producing the same
JP2010138494A (en) * 2010-02-10 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for producing flake copper powder
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
JP2012241213A (en) * 2011-05-17 2012-12-10 Hokkaido Univ Method for producing copper fine particle
CN102941351A (en) * 2012-11-27 2013-02-27 中国船舶重工集团公司第七一二研究所 Preparation method of superfine copper powder
JP2013079429A (en) * 2011-10-04 2013-05-02 Denso Corp Composite material, electric contact electrode, electric contact film, conductive filler, electric contact structure using composite material, and method of manufacturing composite material
WO2016136753A1 (en) * 2015-02-27 2016-09-01 日立化成株式会社 Copper-containing particles, conductor-forming composition, method for manufacturing conductor, conductor and device
JP2016160456A (en) * 2015-02-27 2016-09-05 日立化成株式会社 Copper-containing particle, conductor forming composition, method for producing conductor, conductor and device
JP2016176146A (en) * 2016-04-21 2016-10-06 協立化学産業株式会社 Coated copper particle
KR20170067785A (en) 2014-10-01 2017-06-16 교리쯔 가가꾸 산교 가부시키가이샤 Coated copper particles and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264302A (en) * 1991-02-18 1992-09-21 Toagosei Chem Ind Co Ltd Copper powder for conductive paste, and conductive paste thereof
JPH10330801A (en) * 1997-06-04 1998-12-15 Mitsui Mining & Smelting Co Ltd Fine copper powder and its production
JP2001220607A (en) * 1999-12-01 2001-08-14 Dowa Mining Co Ltd Copper powder and method for producing copper powder
JP2002115001A (en) * 2000-10-10 2002-04-19 Mitsui Mining & Smelting Co Ltd Fine copper powder for forming circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264302A (en) * 1991-02-18 1992-09-21 Toagosei Chem Ind Co Ltd Copper powder for conductive paste, and conductive paste thereof
JPH10330801A (en) * 1997-06-04 1998-12-15 Mitsui Mining & Smelting Co Ltd Fine copper powder and its production
JP2001220607A (en) * 1999-12-01 2001-08-14 Dowa Mining Co Ltd Copper powder and method for producing copper powder
JP2002115001A (en) * 2000-10-10 2002-04-19 Mitsui Mining & Smelting Co Ltd Fine copper powder for forming circuit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105345A1 (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co., Ltd. Flaky copper powder, process for producing the same, and conductive paste
JP2005314755A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Flake copper powder, production method therefor and conductive paste
KR101186946B1 (en) * 2004-04-28 2012-09-28 미쓰이 긴조꾸 고교 가부시키가이샤 Flaky copper powder, process for producing the same, and conductive paste
KR101282389B1 (en) * 2004-12-22 2013-07-04 미쓰이 긴조꾸 고교 가부시키가이샤 Superfine copper powder slurry and process for producing the same
WO2006068061A1 (en) * 2004-12-22 2006-06-29 Mitsui Mining & Smelting Co., Ltd. Superfine copper powder slurry and process for producing the same
JP2006176836A (en) * 2004-12-22 2006-07-06 Mitsui Mining & Smelting Co Ltd Slurry of ultrafine copper powder and method for producing the slurry
JP4662760B2 (en) * 2004-12-22 2011-03-30 三井金属鉱業株式会社 Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
JP2010138494A (en) * 2010-02-10 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for producing flake copper powder
US9248504B2 (en) 2010-09-30 2016-02-02 Dowa Electronics Materials Co., Ltd. Copper powder for conductive paste and method for producing same
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
JP2012241213A (en) * 2011-05-17 2012-12-10 Hokkaido Univ Method for producing copper fine particle
JP2013079429A (en) * 2011-10-04 2013-05-02 Denso Corp Composite material, electric contact electrode, electric contact film, conductive filler, electric contact structure using composite material, and method of manufacturing composite material
US9305676B2 (en) 2011-10-04 2016-04-05 Denso Corporation Composite material, electric contact electrode, electric contact film, conductive filler, electric contact structure using composite material, and manufacturing method of composite material
CN102941351A (en) * 2012-11-27 2013-02-27 中国船舶重工集团公司第七一二研究所 Preparation method of superfine copper powder
KR20170067785A (en) 2014-10-01 2017-06-16 교리쯔 가가꾸 산교 가부시키가이샤 Coated copper particles and production method therefor
WO2016136753A1 (en) * 2015-02-27 2016-09-01 日立化成株式会社 Copper-containing particles, conductor-forming composition, method for manufacturing conductor, conductor and device
JP2016160456A (en) * 2015-02-27 2016-09-05 日立化成株式会社 Copper-containing particle, conductor forming composition, method for producing conductor, conductor and device
JPWO2016136753A1 (en) * 2015-02-27 2017-12-07 日立化成株式会社 Copper-containing particles, conductor-forming composition, conductor manufacturing method, conductor and apparatus
JP2016176146A (en) * 2016-04-21 2016-10-06 協立化学産業株式会社 Coated copper particle

Also Published As

Publication number Publication date
JP4195581B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
KR100480863B1 (en) Copper fine powder and method for preparing the same
JP4868716B2 (en) Flake copper powder and conductive paste
KR101345441B1 (en) Spherical silver powder and method for producing same
JP4894266B2 (en) Conductive powder surface treatment method, conductive powder and conductive paste
EP3192597A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
KR101554580B1 (en) Silver-coated glass powder for electrical conduction, method for producing the same, and electrically conductive paste
EP2806429B1 (en) Flake-form conductive filler
WO2012023566A1 (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
US10076032B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
EP3187279A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP5847511B2 (en) Conductive silver-coated glass powder, method for producing the same, and conductive paste
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
TWI583802B (en) Conductive particles, a method for producing the same, a conductive resin composition containing the same, and a conductive coating
JP2012167337A (en) Method of manufacturing silver coated flake copper powder
JP6278969B2 (en) Silver coated copper powder
JP5255580B2 (en) Method for producing flake copper powder
WO2016031210A1 (en) Silver-coated copper powder and production method for same
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
KR101759400B1 (en) A silver coating method for copper powder used circuit printing and adhesive conductive paste
JP2013206777A (en) Silver-coated flake-like glass powder and method of manufacturing the same
JP2006097086A (en) Spherical silver powder and its producing method
JP2003141929A (en) Copper powder for copper paste
JP2006131978A (en) SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM
JP2002332502A (en) Surface-treated copper powder for copper paste, method for producing the surface-treated copper powder, copper paste using the surface-treated copper powder and printed circuit board using the copper paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080926

R150 Certificate of patent or registration of utility model

Ref document number: 4195581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term