JP2006120713A - 成膜方法 - Google Patents

成膜方法 Download PDF

Info

Publication number
JP2006120713A
JP2006120713A JP2004304536A JP2004304536A JP2006120713A JP 2006120713 A JP2006120713 A JP 2006120713A JP 2004304536 A JP2004304536 A JP 2004304536A JP 2004304536 A JP2004304536 A JP 2004304536A JP 2006120713 A JP2006120713 A JP 2006120713A
Authority
JP
Japan
Prior art keywords
substrate
film
processed
temperature
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304536A
Other languages
English (en)
Inventor
Masaki Narishima
正樹 成島
Okiaki Matsuzawa
興明 松沢
Hiroshi Sato
浩 佐藤
Takayuki Komiya
隆行 小宮
Hidekazu Kondo
英一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2004304536A priority Critical patent/JP2006120713A/ja
Priority to US11/252,795 priority patent/US20060084266A1/en
Publication of JP2006120713A publication Critical patent/JP2006120713A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/161Process or apparatus coating on selected surface areas by direct patterning from plating step, e.g. inkjet
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1678Heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/168Control of temperature, e.g. temperature of bath, substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1682Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1685Process conditions with supercritical condition, e.g. chemical fluid deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Abstract

【課題】 超臨界状態の媒体を用いた、微細パターンへの成膜方法において、従来に比べて微細パターンへのカバレッジと埋め込み特性を良好とし、さらに微細なパターンへの成膜を可能とする。
【解決手段】 被処理基板上に、超臨界状態の媒体にプリカーサを溶解した処理媒体を供給して成膜を行う成膜方法であって、前記被処理基板の温度を、成膜が生じる温度の下限である成膜下限温度未満である第1の温度とし、当該被処理基板上に前記処理媒体を供給する第1の工程と、前記被処理基板の温度を前記第1の温度から前記成膜下限温度以上である第2の温度に上昇させることで、当該被処理基板上に成膜を行う第2の工程と、を有することを特徴とする成膜方法。
【選択図】 図1

Description

本発明は超臨界状態の媒体を用いた成膜方法に関する。
近年、半導体装置の高性能化に伴い、半導体デバイスの高集積化が進んで微細化の要求が著しくなっており、配線ルールは0.1μm以下の領域へと開発が進んでいる。また、配線材料は配線遅延の影響の少ない、抵抗値の低いCuが用いられている。
そのため、Cu成膜技術と微細配線技術の組み合わせが、近年の微細化した多層配線技術の重要なキーテクノロジーとなっている。
前記したCuの成膜方法に関しては、スパッタ法、CVD法、メッキ法などが一般に知られているが、いずれも微細配線を考えた場合にはカバレージに限界があり、0.1μm以下の高アスペクト比の微細パターンに効率よくCuを成膜することは非常に困難である。
そこで、微細パターンにCuを効率よく成膜する方法として超臨界状態の媒体を用いたCuの成膜方法が提案されている。
超臨界状態にある物質を成膜のため前駆体化合物(プリカーサ)を溶解するための媒体に用いると、液体に近い密度・溶解度を持つことから、気体の媒体に比べてプリカーサの溶解度を高く維持できる一方、気体に近い拡散係数を利用することで、プリカーサを液体の媒体よりも効率よく被処理体に輸送することが可能となる。そのため、超臨界状態の媒体にプリカーサを溶解した処理媒体を用いた成膜では、成膜速度が高く、かつ微細パターンへのカバレッジが良好な成膜を行うことが可能となる。
例えば、超臨界状態のCO2を用いてCu成膜のためのプリカーサを溶解して処理媒体を形成し、Cuの成膜を行う方法が提案されている(例えば特許文献1参照)。
この場合、CO2の超臨界状態の媒体においては、Cuを含む前駆体化合物であるCu成膜プリカーサの溶解度が高い一方で粘性が低く、拡散性が高いため、いわゆるアスペクト比が高い微細なパターンに、良好なカバレッジでCu成膜が可能となる。
「Deposition of Conformal Copper and Nickel Films from Supercritical Carbon Dioxide」 SCIENCE vol294 2001 10月5日
しかし、このように超臨界状態の媒体を用いた場合であっても、配線パターンの微細化にともなって、パターニングの開口部の形状がさらに微細化し、さらにアスペクトが大きい場合には、パターニングのカバレッジ、または埋め込み性が充分でない場合が生じていた。
そこで、本発明では上記の問題を解決した、新規で有用な成膜方法を提供することを目的としている。
本発明の具体的な課題は、超臨界状態の媒体を用いた、微細パターンへの成膜方法において、従来に比べて微細パターンへのカバレッジと埋め込み特性を良好とし、さらに微細なパターンへの成膜を可能とすることである。
本発明は、上記の課題を解決するために、
請求項1に記載したように、
被処理基板上に、超臨界状態の媒体にプリカーサを溶解した処理媒体を供給して成膜を行う成膜方法であって、
前記被処理基板の温度を、成膜が生じる温度の下限である成膜下限温度未満である第1の温度とし、当該被処理基板上に前記処理媒体を供給する第1の工程と、
前記被処理基板の温度を前記第1の温度から前記成膜下限温度以上である第2の温度に上昇させることで、当該被処理基板上に成膜を行う第2の工程と、を有することを特徴とする成膜方法により、また、
請求項2に記載したように、
前記第1の温度と前記第2の温度との温度差が、50℃以上300℃以下であることを特徴とする請求項1記載の成膜方法により、また、
請求項3に記載したように、
前記第1の温度と前記成膜下限温度との温度差が、10℃以上100℃以下であることを特徴とする請求項1記載の成膜方法により、また、
請求項4に記載したように、
前記プリカーサは、Cu(hfac)、Cu(acac)2、Cu(dpm)2、Cu(dibm)2、Cu(ibpm)2、Cu(hfac)TMVS、および、Cu(hfac)COD、のいずれかであることを特徴とする、請求項1乃至3のうち、いずれか1項記載の成膜方法により、また、
請求項5に記載したように、
前記第1の温度は、100℃以上250℃以下であることを特徴とする請求項4記載の成膜方法により、また、
請求項6に記載したように、
前記第2の温度は、200℃以上400℃以下であることを特徴とする請求項4記載の成膜方法により、また、
請求項7に記載したように、
前記成膜は、前記被処理基板上に形成されたパターン形状を埋設するように行われることを特徴とする請求項1乃至6のうち、いずれか1項記載の成膜方法により、また、
請求項8に記載したように、
前記パターン形状は前記被処理基板上に形成された絶縁層に形成されていることを特徴とする請求項7記載の成膜方法により、また、
請求項9に記載したように、
前記処理媒体には、前記プリカーサの還元剤が添加されることを特徴とする請求項1乃至8のうち、いずれか1項記載の成膜方法により、また、
請求項10に記載したように、
前記超臨界状態の媒体は、COよりなることを特徴とする請求項1乃至9のうち、いずれか1項記載の成膜方法により、また、
請求項11に記載したように、
前記第1の工程および前記第2の工程は、前記被処理基板を保持する保持台を内部に有する処理容器の内部によって実施され、
前記処理媒体は前記処理容器の内部に供給され、前記被処理基板の温度上昇は前記保持台に設けられた加熱手段により行われることを特徴とする請求項1乃至10のうち、いずれか1項記載の成膜方法により、また、
請求項12に記載したように、
前記被処理基板が前記処理容器内に搬入、または前記被処理基板が前記処理容器内より搬出される場合には、前記処理容器内に不活性ガスが導入されることを特徴とする請求項11記載の成膜方法により、また、
請求項13に記載したように、
前記処理容器は、複数の前記処理容器を接続可能な基板搬送室に接続されていることを特徴とする請求項11または12記載の成膜方法により、また、
請求項14に記載したように、
前記基板搬送室には、前記処理容器と、さらに別の処理容器が接続されていることを特徴とする請求項13記載の成膜方法により、また、
請求項15に記載したように、
前記処理容器内には、前記保持台を覆うようにシールド板が設けられていることを特徴とする請求項11乃至14記載のうち、いずれか1項記載の成膜方法により、また、
請求項16に記載したように、
前記シールド板と前記保持台の隙間には、超臨界状態の媒体が導入されることを特徴とする請求項15記載の成膜方法により、また、
請求項17に記載したように、
前記処理容器内には、前記保持台に保持された前記被処理基板の周縁部を覆うように、成膜防止板が設けられていることを特徴とする請求項11乃至14のうち、いずれか1項記載の成膜方法により、また、
請求項18に記載したように、
前記成膜防止板は前記被処理基板に近づく方向または離間する方向に可動が可能な構造であることを特徴とする請求項17記載の成膜方法により、また、
請求項19に記載したように、
前記成膜防止板は突起部を有し、当該突起部によって前記被処理基板の周縁部を覆う構造であることを特徴とする請求項17または18記載の成膜方法により、また、
請求項20に記載したように、
前記成膜防止板と前記保持台の隙間には、超臨界状態の媒体が導入されることを特徴とする請求項17乃至19のうち、いずれか1項記載の成膜方法により、また、
請求項21に記載したように、
請求項1乃至20のうち、いずれか1項記載の成膜方法をコンピュータに実行させるプログラムを記録した記憶媒体により、解決する。
本発明によれば、超臨界状態の媒体を用いた、微細パターンへの成膜方法において、従来に比べて微細パターンへのカバレッジと埋め込み特性を良好とし、さらに微細なパターンへの成膜が可能となる。
次に、本発明の実施の形態に関して、図面に基づき以下に説明する。
本実施例による成膜方法では、例えば半導体装置の配線に用いる、Cu膜を形成する場合に、被処理基板上に形成された微細パターン形状にCu膜を、埋設するようにして形成することを可能とする。
本実施例により形成されるCu膜は、超臨界状態である媒体にプリカーサを溶解させた処理媒体を用いて、当該処理媒体を被処理基板上に供給することで、被処理基板上にCu膜を形成している。超臨界状態の媒体においては、プリカーサの溶解度が高い一方で粘性が低く、拡散性が高いため、いわゆるアスペクト比が高い微細なパターンに、良好なカバレッジでCu成膜が可能となり、例えば0.1μm以下のアスペクト比の高い微細パターンに、カバレッジを良好として、Cu膜を成膜し、ビア配線やトレンチ配線などの微細配線パターンを形成することが可能となっている。
しかし、このような超臨界状態の媒体を用いた成膜においても、埋め込み特性やカバレッジの向上には限界があり、さらに微細化したパターンやアスペクト比の高いパターンへの成膜を行う場合、例えばカバレッジが不十分であったり、配線部にボイドと呼ばれる空隙が形成されて配線の不良となってしまうなどの問題があった。
このように、パターンが微細化した場合に埋め込み特性が不十分となる理由としては、以下のような現象が起こっているためと考えられる。
例えば、被処理基板上に、超臨界状態の媒体にプリカーサが溶解した処理媒体を供給した場合、被処理基板上に形成された微細パターンの開口部付近でプリカーサの熱分解が急速に進行し、当該開口部付近の成膜速度が大きくなり、微細パターンの底部や側壁部に中分にプリカーサが行き渡らず、埋め込み特性が不十分と成る。また、超臨界状態の媒体は温度による密度変化が激しく、被処理基板近傍で加熱された処理媒体は被処理基板から離間する方向(上向き)に対流しようとするため、処理媒体が微細パターンの孔内に浸透することを妨げていると考えられる。
このように、処理媒体が被処理基板の微細パターン近傍に供給される場合に、当該被処理基板が所定の温度以上に加熱されていることが、成膜時の埋め込み特性やカバレッジを悪化させる要因となっていたと考えられる。
そこで、本実施例では、被処理基板上に、超臨界状態の媒体にプリカーサを溶解した処理媒体を供給して成膜を行う成膜方法であって、前記被処理基板の温度を、成膜が生じる温度の下限である成膜下限温度未満である第1の温度とし、当該被処理基板上に前記処理媒体を供給する第1の工程と、前記被処理基板の温度を前記第1の温度から前記成膜下限温度以上である第2の温度に上昇させることで、当該被処理基板上に成膜を行う第2の工程と、を有することを特徴とする成膜方法を用いている。
上記の本実施例による成膜方法の概略を図1に示す。
図1を参照するに、本実施例による成膜方法では、ステップ1(図中S1と表記する、以下同様)で、処理を開始すると、ステップ2で、被処理基板上に、プリカーサが溶解した超臨界状態の媒体よりなる処理媒体を供給する。この場合、被処理基板に成膜が生じる下限の温度を成膜下限温度とすると、本ステップにおいては、被処理基板の温度を、当該成膜下限温度未満の第1の温度としている。そこで、前記処理媒体が、被処理基板上に形成された、パターン形状の孔部の内部にまで浸透するようにして行き渡る。
次に、ステップ3において、被処理基板の温度を、前記成膜下限温度以上の前記第2の温度とすることで、プリカーサが分解され、被処理基板上の、パターン形状の孔の底部、側壁部などの内部に、当該パターン形状を埋設するように、成膜が生じ、ステップ4で成膜を完了する。
すなわち、本実施例では、最初に、プリカーサが溶解した超臨界状態の処理媒体が被処理基板上に供給される時に、当該被処理基板上(または被処理基板に形成された微細パターン)に実質的な成膜が生じないようにし、微細パターン形状の孔内に処理媒体が行き渡り、処理媒体中のプリカーサが微細パターン形状の孔内に充分に行き渡るようにしている。換言すれば、プリカーサは、加熱された被処理基板を介して加熱されることで反応が生じ、被処理基板上に成膜が行われるため、被処理基板を、成膜が生じる温度の下限である成膜下限温度未満である第1の温度として被処理基板上に処理媒体を供給し、実質的にプリカーサが未反応な状態で被処理基板上の微細パターンの孔内に供給されるようにしている。
次に、被処理基板上の当該微細パターンの孔内に処理媒体(プリカーサ)が行き渡った後、当該被処理基板を加熱し、前記被処理基板の温度を前記第1の温度から前記成膜下限温度以上である前記第2の温度に上昇させることで、当該被処理基板上の微細パターンの孔内を埋め込むようにして成膜を行っている。
このため、本実施例による成膜方法では、従来の成膜方法に比べて、微細パターン形状に対する埋め込み特性やカバレッジが良好である特徴を有し、ボイドなどの発生を抑制し、半導体装置などに用いられる、微細な配線形状を良好に形成することが可能となっている。
また、ステップ2における、前記第1の温度は、実質的な成膜が生じない温度、すなわち、成膜が生じる温度の下限である成膜下限温度未満であることが好ましいが、当該第1の温度を低く設定しすぎると、成膜が生じる温度、例えば第2の温度まで上昇させるために時間を要し、そのために成膜に時間を要して成膜処理の効率が低下してしまう可能性がある。
そこで、前記第1の温度は、処理効率を良好とするために、所定の温度以上とすることが好ましく、例えば、前記第1の温度と前記第2の温度の温度差が、すなわち前記ステップ2と前記ステップ3での被処理基板の温度差が、300℃以下であることが好ましく、また前記第1の温度と前記成膜下限温度の温度差が、100℃以下であることが好ましい。
しかし、一方、前記第1の温度と前記第2の温度の温度差が小さすぎる場合、または前記第1の温度と前記成膜下限温度の温度差が小さすぎる場合には、前記第1の温度でパターン形状に成膜がされてしまう場合があり、埋め込み特性やカバレッジが不十分となる場合がある。また、成膜条件により、成膜下限温度がばらつくこと、また測定方法による温度の誤差なども考慮し、前記第1の温度と前記第2の温度、または前記第1の温度と成膜下限温度には所定の温度差を設けることが好ましい。
このため、例えば、前記第1の温度と前記第2の温度の温度差が、すなわち前記ステップ2と前記ステップ3での被処理基板の温度差が、50℃以上であることが好ましく、また、前記第1の温度と前記成膜下限温度の温度差が、10℃以上であることが好ましい。
例えば、被処理基板に形成する膜がCu膜であって、超臨界状態の媒体に溶解するプリカーサに、Cu(hfac)(この場合、hfacはhexafluoroacetylacetonatoを示す)、を用いた場合、成膜下限温度は略150℃〜250℃程度となる。
この場合、埋め込み特性やカバレッジを良好とし、かつ成膜の処理効率を良好とするためには、前記第1の温度は、100℃以上250℃以下であることが好ましく、また、前記第2の温度は、200℃以上400℃以下であることが好ましい。
本実施例による成膜方法では、様々な材料で形成されたパターン形状に対して、様々な材料を成膜することが可能であるが、例えば、シリコン酸化膜よりなる絶縁層に形成されたパターン形状に対して、金属膜、例えばCu膜を、埋設するようにして成膜することが可能である。
この場合、絶縁層を構成する材料は、シリコン酸化膜(SiO膜)に限定されず、例えば、フッ素添加シリコン酸化膜(SiOF膜)、SiC膜、SiCO(H)膜、またこれらの多孔質膜など、様々な絶縁膜を用いることが可能である。
また、成膜に用いる、超臨界状態のプリカーサに溶解させるプリカーサは、例えばCu膜の成膜を行う場合には、例えば2価の銅イオンにベータ・ジケトナート(β−diketonato)配位子が2つ配位した金属錯体や1価の銅イオンにベータ・ジケトナート配位子1つが配位した金属錯体に、電子供与性の結合を持つ有機シラン、もしくは炭水化物を含むグループのうち少なくとも1つを含む分子が付加した金属錯体付加物(アダクト)を用いることができる。
また、2価の銅イオン、1価の銅イオンのうち、少なくとも一方を含む有機金属錯体、もしくは有機金属錯体付加物や、前記有機金属錯体、前記有機金属錯体付加物のうち、少なくとも一方を含む有機混合物などを用いることができる。
例えば、Cuを成膜する場合のプリカーサとしては、Cu(acac)2、Cu(dpm)2、Cu(dibm)2、Cu(ibpm)2、Cu(hfac)TMVS、および、Cu(hfac)COD、のいずれかを用いることが可能であり、Cu(hfac)2を用いた場合と同様の結果を得ることが可能である。
なお、この場合、dpmは、dipivaloylmethanato、dibmは、diisobutyrylmethanato、ibpmは、isobutyrylpivaloylmethanato、acacは、acetylacetonato、TMVSは、trimethylvinylsilane、CODは、1,5-cyclooctadieneを示している。
また、被処理基板に成膜する膜は、Cu膜に限定されるものではなく、タンタル、窒化タンタル、窒化チタン、タングステン、窒化タングステンなどの金属膜、金属化合物膜を形成することが可能である。これらの金属膜や金属化合物膜は、例えば微細パターンにCu配線を形成する場合の、Cu拡散防止膜として用いることが可能であり、微細パターンに効率よくCu拡散防止膜を形成することが可能であり、実施例中に記載したCu膜を形成する場合と同様の効果を奏する。
また、超臨界状態として用いる媒体は、CO2に限らず、例えばNH3などを用いることも可能であり、NH3を用いたには、金属窒化膜を形成することが可能となる。
次に、本実施例による成膜方法を実施する成膜装置について説明する。図2は、本実施例による成膜方法を実施する成膜装置の一例の構成を概略的に示した図である。
図2を参照するに、本図に示す成膜装置10は、外壁構造31によって画成される、例えば略円筒状の処理空間31Aを有し、当該処理空間31Aに被処理基板Wを保持する保持台32が設けられた、処理容器30を有している。前記保持台32には、例えばヒータからなる加熱手段32aが設けられて、保持台に載置された被処理基板を加熱することが可能になっている。
また、前記処理空間31Aの、前記保持台32に対向する側には、超臨界状態の媒体や、超臨界状態の媒体にプリカーサが溶解した処理媒体などを前記処理空間31A内に供給する、複数の供給穴が形成された、いわゆるシャワーヘッド構造を有する供給部33が形成されている。前記供給部33には、バルブ14Aが付されたライン14が接続されており、前記処理空間31Aには、当該ライン14から、前記供給部33を介して、超臨界状態の媒体や、超臨界状態の媒体にプリカーサが溶解した処理媒体が供給される構造になっている。なお、当該処理容器に被処理基板を搬入または搬出する際は、本図では図示を省略したゲートバルブを開放して処理容器を開放して行う。また、前記保持台は上下に可動する構造を有するが、これらのゲートバルブや可動構造に関しては本図では図示を省略し、図3以下で詳細を説明する。
前記ライン14には、当該ライン14に超臨界状態の媒体を供給する、バルブ15Aが付されたライン15が、また、当該供給ライン14にプリカーサを供給する、バルブ16Aが付されたライン16が、また、還元剤など成膜処理に必要なガスを供給する、バルブ18Aが付されたライン18が、さらに、Arなどの不活性ガスを供給する、バルブ20Aが付されライン20が接続されている。また、前記供給ライン14には、必要に応じて前記処理空間31Aや、前記供給ライン14を真空排気する、図示を省略する真空ポンプが接続された、バルブ17Aが付されたライン17が接続されている。
前記ライン15には、加圧ポンプ15B、および冷却器15C、およびバルブ15D,15Eを介して、超臨界状態の媒体が形成されるもとの媒体である、例えばCOのボンベ15Fが接続されている。前記ボンベ15Fから供給されるCOは、前記冷却器15Cで冷却され、さらに加圧ポンプ15Bで加圧されて所定の条件の圧力、温度とされ、超臨界状態の媒体とされて前記処理空間31Aに供給される。例えば、CO2の場合、臨界点(超臨界状態となる点)は、温度31.0℃、圧力7.38MPaであり、当該臨界点以上の温度、圧力でCO2は超臨界状態となる。
また、前記ライン16からは、超臨界状態のCOに溶解されたプリカーサ、例えばCu(hfac)が供給され、前記ライン18からは、還元剤である、例えばHガスがそれぞれ前記処理空間31Aに供給される。
さらに、前記処理容器30には、前記処理空間31Aに供給された処理媒体や超臨界状態の媒体などを排出する、バルブ19A,19C、およびトラップ19Dが付された排出ライン19が接続されており、例えば処理媒体中に溶解したプリカーサなどをトラップ19Dで捕獲しながら、処理媒体などを処理空間の外に排出する構造になっている。当該排出ライン19には、圧力制御バルブ19Bがさらに付されており、前記排出ライン19の圧力を所望の値に制御しながら、前記処理空間31Aに供給された処理媒体や超臨界状態の媒体などを排出することが可能になっている。
また、上記の成膜装置10は、例えばハードディスクよりなる記憶媒体HDと、図示を省略するコンピュータ(CPU)とを有する、制御装置Sを有している。前記制御装置Sは、前記記憶媒体HDに記憶されたプログラムによって、前記CPUが前記成膜装置10を動作させる。例えば、前記制御装置10は、前記プログラムに基づいて、例えばバルブの動作などにより、処理容器内に超臨界状態の媒体を供給したり、処理容器内の排気などを行い、また、加熱手段を制御して被処理基板の温度制御を行って、成膜処理にかかわる動作を成膜装置に実行させる。また、このように記録媒体に記録された成膜のためのプログラムをレシピと呼ぶ場合がある。本文中に記載された成膜装置の成膜のための動作は、上記制御装置Sが、前記記憶媒体HDに記憶されたプログラム(レシピ)に基づいて行われるものである。
次に、前記処理容器30の詳細を、次に図3(A)、(B)に示す。図3(A)、(B)は、図2に示した前記処理容器30の詳細を模式的に示した断面図である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
まず、図3(A)を参照するに、前記処理容器30は、前記外壁構造31内に形成された前記処理空間31Aを有しているが、当該処理空間31A内に設けられた前記保持台32は、保持台支持部34に支持されており、当該保持台支持部34は、上部構造34a、中部構造34b、および下部構造34cよりなる。前記外壁構造31内には、前記処理空間31Aに連通する、例えば略円筒状の上部空間31Bと、当該上部空間31Bと中部空間31Cを介して連通する、例えば略円筒状の下部空間31Dが形成されている。前記上部空間31Bと前記処理空間31Aは、前記保持台32および前記上部構造34aにより、隔絶される構造となっている。
略円筒状の前記上部構造34aは、その周囲を前記上部空間31Bの内壁面に接するように形成されており、接触面には例えばシール材料が設置されて、前記処理空間31Aの気密性が保持されるとともに、前記上部構造34aが上下に稼動することが可能な構造となっている。同様に、略円筒状の前記下部構造34cは、その周囲を前記下部空間31Dの内壁面に接するように形成されており、接触面には例えばシール材料が設置されて、当該下部構造34cによって隔絶される前記下部空間31Dの気密性が保持されるとともに、前記下部構造34cが上下に稼動することが可能な構造となっている。また、略円筒状の前記中部構造34bは、その周囲を前記中部空間31Cの内壁面に接するように形成されており、接触面には例えばシール材料が設置されて、前記上部空間と下部空間の気密性が保持されるとともに、前記中部構造34bが上下に稼動することが可能な構造となっている。
また、前記下部空間31Dの上端部付近と下端部付近には、それぞれガス吸排出口36、37が形成されており、前記下部空間31Dに、空気またはNなどの前記保持台支持34を上下に稼動させるための気体を供給または排出することが可能になっている。
また、前記外壁構造31には、前記上部空間31Bを介して前記処理空間31Aに連通する、被処理基板通路31Eが形成され、当該被処理基板通路31Eの終端、すなわち前記外壁構造31の外側には、開閉が可能なゲートバルブ35が設けられている。当該ゲートバルブ35は、被処理基板を前記処理空間31Aに搬入する場合、または被処理基板を前記処理空間31Aより搬出する場合に開放され、被処理基板に対して成膜処理が行われる場合には閉じられるようになっている。
本図に示す状態は、前記ゲートバルブ35が閉じられた状態であり、成膜処理が行われる状態を示している。
この場合、前記吸排出口37から、例えば空気やNなどの気体、または液体が導入され、前記吸排出口36から排出されて、前記保持台支持部34を押し上げる方向に力が加えられ、前記外壁構造31、前記保持台32、および前記保持台支持部34によって、前記処理空間31Aが画成され、当該処理空間31A内に前記供給部33より処理媒体が供給されて成膜処理が行われる。
また、図3(B)には、被処理基板を処理容器に搬入する場合、または被処理基板を処理容器より搬出する場合の、前記処理容器30の状態を示している。
図3(B)を参照するに、本図に示す処理容器においては、前記吸排出口36から例えば気体が導入され、前記吸排出口37から気体が排出されて、前記保持台支持部34を押し下げる方向に力が加えられ、前記保持台32が押し下げられた状態になっており、さらに前記ゲートバルブ35が開放されて、被処理基板が保持される空間が前記被処理基板通路31E、および前記ゲートバルブ35を介して処理容器の外部に対して開放された状態になっている。またこの場合、前記保持台32に設けられた、複数の押し上げピン32bによって被処理基板が持ち上げられ、例えば後述する搬送アームなどの搬送手段によって、被処理基板が搬送可能な状態となっている。
また、この場合、処理容器内部に、例えば、前記供給部33から、例えばArなどの不活性ガスを導入することが好ましい。これは、特に被処理基板が高温である場合、例えば被処理基板上に形成されたCu膜などの膜が、周囲に存在する酸素などの活性なガスによって酸化反応などの反応が進行することを防止するためである。本実施例による成膜装置では、処理容器を開放して被処理基板を搬入または搬出する場合に、前記ライン14から前記供給部33を介して、例えばArガスを導入し、被処理基板上に形成された膜が変質することを防止している。また処理容器内に供給されるガスは、Arに限定されず、例えば、N、Heなど他のガスを用いることも可能である。また、このような成膜後の変質を防止するために、処理容器内を減圧状態にすることも可能であり、例えば前記ライン17から処理容器内を真空排気し、減圧状態とすることで被処理基板上に形成された膜の変質を防止することができる。
また、このように構成される処理容器を、例えば被処理基板を搬送する搬送アームを有する基板搬送室に接続して用いることが可能であり、基板搬送の効率が向上して成膜処理の効率が向上する。
図4(A)、(B)は、図3(A)、(B)に示した前記処理容器30を、基板搬送室に接続して構成した成膜システムを概略的に示した図であり、図3(A)は基板搬送室が減圧状態である成膜システム500を、図3(B)は基板処理室が略大気圧である成膜システム600をそれぞれ示している。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
まず、図4(A)を参照するに、本図に示す成膜システム500は、図示を省略する排気手段により内部を減圧状態にすることが可能であって、被処理基板を搬送する搬送アーム101aを内部に有する、例えば平面視した形状が六角形である、基板搬送室501に、前記処理容器30が複数接続されて構成されている。さらに、前記基板搬送室501には、ロードロック室501A、501Bが接続され、当該ロードロック室501A、501Bは、基板搬送部502を有する基板ステーション503に接続されている。
前記成膜システム500では、前記基板ステーション503に載置された被処理基板が、基板搬送部502を介して減圧状態である前記ロードロック室501Aまたは501Bに搬送され、さらに前記搬送アーム501aによって、ロードロック室から、基板搬送室501を介して、前記処理容器30内に搬送される構造になっている。また、成膜処理が終了した被処理基板は、前記処理容器30から、前記搬送アーム501aによって、基板搬送室501を介してロードロック室に搬送され、さらにロードロック室から基板ステーションに搬送される構造になっている。
一方、図4(B)に示した成膜システム600は、被処理基板を搬送する搬送アーム601aを内部に有する基板搬送室601に、前記処理容器30が複数接続されて構成されている。さらに、前記基板搬送室601には、基板搬送部602を有する基板ステーション603が接続されている。
前記成膜システム600では、前記基板ステーション603に載置された被処理基板が、基板搬送部602を介して前記搬送アーム601aによって、基板搬送室601を介して、前記処理容器30内に搬送される構造になっている。また、成膜処理が終了した被処理基板は、前記処理容器30から、前記搬送アーム601aによって、基板搬送室601を介して基板ステーションに搬送される構造になっている。本図に示す成膜システムの場合、基板搬送室を略大気圧として用いているため、真空排気手段や、ロードロック室が不用である。
次に、図1に示した成膜方法を適用して被処理基板上に形成された微細パターン形状に、例えばCu膜を形成する場合の一例について、図2〜図3(A)、(B)に示した成膜装置10を用いた場合を例にとり、以下に説明する。
まず、図1に示したように、ステップ1で成膜処理を開始すると、前記ゲートバルブ15を開放して被処理基板を前記処理空間31Aに搬入し、前記保持台32上に被処理基板を載置する。次に、前記処理空間31Aを、前記ライン17を用いて真空排気した後、前記保持台32に設けられたヒータにより被処理基板を加熱し、被処理基板を150℃とする。
次に、前記ライン15より前記処理空間31AにCO2を導入して当該処理空間31A内の圧力を上昇させる。この場合、予め超臨界状態としたCO2を導入してもよく、また、例えば液体のCO2を前記処理空間31Aに連続的に供給することで、供給されたCO2の圧力を上げることにより、またはCO2の温度を上げることにより、CO2が処理空間31Aで超臨界状態の媒体となるようにしてもよい。また、処理空間31Aの圧力の上昇と共に、または上昇の前に、前記処理空間31Aに、前記ライン18からHを導入しておき、当該Hが処理媒体と混合されるようにして、処理媒体に加えて用いられる。また、前記処理空間31Aの圧力は、例えば15MPaとする。
次に、前記ライン16から、前記処理空間31Aの、保持台上の被処理基板上に、プリカーサである、例えばCu(hfac)2が溶解した超臨界状態の媒体、すなわち処理媒体を供給する。この場合、被処理基板の温度が、成膜下限温度未満であるため、実質的な成膜は行われず、処理媒体、すなわちプリカーサが微細パターン形状の孔部まで浸透する。この場合、プリカーサが溶解している超臨界状態の媒体は拡散性が高い特徴があるため、微細パターン形状の孔部の底部付近にまで効率よくプリカーサを行き渡らせることができる。またこの場合、被処理基板の温度が成膜下限温度未満であるため、微細パターン形状の開口部付近でプリカーサが消費されることなく、また超臨界状態の媒体の対流の影響が少ないため、効率よくプリカーサを微細パターン形状に浸透させることができる。
次に、ステップ3において、前記加熱手段32aにより、被処理基板を、例えば、300℃に加熱することにより、被処理基板上でプリカーサが熱分解され、被処理基板上に形成された、微細パターン形状を埋設するように、Cu膜が成膜される。
例えば、絶縁膜に形成された、線幅0.1μm以下の微細なパターンに良好な埋め込み性、カバレッジと、高い成膜速度でCu膜を形成することが可能である。
ここで、所定の時間の成膜を行った後、次に、前記処理媒体の供給を停止し、前記バルブ19A,19Cを開放して、前記処理空間31Aの処理媒体を、前記排出ライン19より排出する。この場合、排出される媒体の圧力が高くなりすぎないように、前記圧力調整バルブ19Bによって、所定の圧力となるよう制御する。この場合、必要に応じて前記ライン15より前記処理空間31AにCOを供給して前記処理空間31Aをパージする。
次に、パージが終了した後、前記処理空間31Aの圧力を大気圧に戻して、成膜が完了する。
次に、実施例1に示した方法を用いて、半導体装置を形成する例を図5〜図6に示す。
図5(A)〜(B)、図4(C)〜(D)は、実施例1に示した成膜方法を用いて半導体装置を形成する一例を、手順を追って示したものである。
まず、図3(A)を参照するに、シリコンからなる半導体基板(被処理基板)上に形成されたMOSトランジスタなどの素子(図示せず)を覆うように絶縁膜、例えばシリコン酸化膜101が形成されている。当該素子に電気的に接続されている、例えばW(タングステン)からなる配線層(図示せず)と、これに接続された、例えばCuからなる配線層102が形成されている。
また、前記シリコン酸化膜101上には、配線層102を覆うように、第1の絶縁層103が形成されている。前記第1の絶縁層103には、溝部104aおよびホール部104bが形成されている。前記溝部104aおよびホール部104bには、Cuにより形成された、トレンチ配線とビア配線からなる配線部104が形成され、これが前述の配線層102と電気的に接続された構成となっている。
また、前記第1の絶縁層103と前記配線部104の間にはCu拡散防止膜104cが形成されている。前記Cu拡散防止膜104cは、前記配線部104から前記第1の絶縁層103へCuが拡散するのを防止する機能を有する。さらに、前記配線部104および前記第1の絶縁層103の上を覆うように第2の絶縁層106が形成されている。本実施例では、前記第2の絶縁層106に、本発明による成膜方法を適用して、Cu膜を形成する方法を示す。なお、前記配線部104に関しても、実施例1に記載の方法で形成することが可能である。
図5(B)に示す工程では、前記第2の絶縁層106に、溝部107aおよびホール部107bを、例えばドライエッチング法などによって形成する。
次に図6(C)に示す工程において、前記溝部107aおよび前記ホール部107bの内壁面を含む前記第2の絶縁層106上、および前記配線部104の露出面に、Cu拡散防止膜107Aの成膜を行う。前記Cu拡散防止膜107cは、例えばこの場合Ta膜とTaN膜の積層膜からなり、スパッタ法などの方法により、形成することが可能であるが、実施例1の説明に記載したように、前記成膜装置10を用いて、超臨界状態の媒体にプリカーサを溶解した処理媒体を供給する方法を用いて形成することも可能である。この場合、微細なパターンに良好なカバレッジでCu拡散防止膜を形成することが可能となる。この場合、例えば、プリカーサは、TaF5、TaCl5,TaBr5,TaI5、(C552TaH3,(C552TaCl3、PDMAT(Pentakis(dimethylamino)Tantalum,、[(CH32N] 5Ta))およびPDEAT(Pentakis(diethylamino)Tantalum,、[(C252N] 5Ta))、TBTDET(Ta(NC(CH(N(C)、TAIMATA(登録商標、Ta(NC(CH3)225)(N(CH3)2)3))、のいずれかを用いればよい。また、超臨界状態の媒体は、CO2またはNH3を用いることで、例えば、Ta/TaNからなるCu拡散防止膜107cを形成する。また、このようなCu拡散防止膜は、いわゆるALD法によって形成することも可能である。
次に図5(D)に示す工程において、実施例1に示した方法で、前記溝部107aおよび前記ホール部107bを含む、前記Cu拡散防止膜107cの上に、Cuよりなる配線部107を形成する。この場合、超臨界状態のCO2を用いているため、Cu成膜プリカーサが溶解した超臨界状態のCO2(処理媒体)が良好な拡散性を有するため、微細な前記ホール部107bおよび溝部107a部の底部や側壁部にも良好なカバレッジで、良好な埋め込み特性をもって前記配線部107を形成することができる。
この場合、本実施例では、実施例1に記載したように、被処理基板を、成膜が生じる温度の下限である成膜下限温度未満である前記第1の温度として被処理基板上に処理媒体を供給し、実質的にプリカーサが未反応な状態でホール部および溝部の孔内に処理媒体が行き渡り、処理媒体中のプリカーサがホール部および溝部の孔内に充分に行き渡るようにしている。その後、当該被処理基板を加熱し、前記被処理基板の温度を前記第1の温度から前記成膜下限温度以上である前記第2の温度に上昇させることで、当該被処理基板上のホール部および溝部の孔内を埋め込むようにして成膜を行っている。
このため、本実施例による成膜方法では、従来の成膜方法に比べて、微細なホール形状や溝部の形状に対して、埋め込み特性やカバレッジが良好である特徴を有し、ボイドなどの発生を抑制し、信頼性の高い配線部を形成することが可能となっている。
また、本工程の後に、さらに前記第2の絶縁層の上部に第2+n(nは自然数)の絶縁層を形成し、それぞれの絶縁層に本発明による成膜方法を適用してCuよりなる配線部などを形成することが可能である。
また、本実施例では、Cu拡散防止膜にはTa/TaNからなる積層膜を用いているが、これに限定されるものではなく、様々なCu拡散防止膜を用いることが可能であり、例えばWN膜、W膜、TiとTiNの積層膜、などを用いることが可能である。
また、Cu拡散防止膜は、いわゆる自己組織化単分子膜を用いて形成してもよい。当該自己組織化単分子膜は、例えば、3−[2(トリメトキシシリル)エチル]ピリジン、または、2−(ジフェニルホスホ)エチルトリエトキシーシラン、などを用いて形成することが可能であり、略単分子程度の厚さで形成することが可能であるため、Cu拡散防止膜を薄くすることが可能であり、微細な配線形状を形成する場合に好適である。また、当該自己組織化単分子膜は、成膜対象である、例えば絶縁膜に、原料を、例えば、液相中で吸着させる、または気相中で吸着させる、などの方法で形成することが可能であるが、本実施例中に記載したように、Cu膜を形成する場合と同様にして、超臨界状態の媒体に原料を溶解させて成膜する方法を用いても形成することが可能である。
また、前記第1の絶縁層103または前記第2の絶縁層106には、様々な材料を用いることが可能であり、例えば、シリコン酸化膜(SiO膜)、フッ素添加シリコン酸化膜(SiOF膜)、SiCO(H)膜、などを用いることが可能である。
また、本発明による成膜方法を実施が可能である処理容器は、図2〜図3(A),(B)に示した前記処理容器30に限定されず、以下に示すように、様々に変形、変更して用いることが可能である。
図7(A)〜(C)は、前記処理容器30の変形例であり、前記処理容器30と同様に、例えば前記成膜装置10において用いることが可能である。
まず、図7(A)に示した処理容器130では、外壁構造131によって画成された処理空間に、加熱手段132aが設けられた、被処理基板Wを保持する保持台132が設置された構造を有している。また、当該処理空間には、前記保持台に対向するように、処理媒体などを処理空間に供給する供給部133が設置されている。前記保持台132および供給部133は、それぞれ、前記処理容器30における前記保持台32および供給部33に該当し、同様の機能を有する。また、本図では、前記供給部133に接続される前記ライン14や、ゲートバルブ、保持台の上下動機構などは図示を省略するが、前記処理容器30の場合と同様にこれらの構造を用いることが可能であり、前記成膜装置10において、前記処理容器30と同様の機能を有し、本図以下に示す処理容器でも同様とする。また、本図以下では本図にて説明した部分には同一の参照符号を付し、説明を省略する。
本図に示す処理容器130の場合、処理容器内には、前記保持台132を覆うようにシールド板201が設けられている。また、当該シールド板201は、前記外壁構造の底部から起立するように設置され、前記保持台132の側壁からさらに当該保持台132の被処理基板が保持される面において、被処理基板が載置される部分以外の、保持台の周縁部を覆うように形成されている。このため、保持台に成膜が行われることを防止することが可能となる。
また、図7(A)に示した処理容器130は、次に図7(B)に示す処理容器130Aのように構成することも可能である。図7(B)は、前記処理容器130の変形例である処理容器130Aを模式的に示した図である。図7(B)を参照するに、本図に示す処理容器130Aでは、前記処理容器130の場合と同様に、前記保持台132を覆うようにシールド板201Aが設けられている。また、当該シールド板201Aは、前記外壁構造の底部から起立するように設置され、前記保持台132の側壁からさらに当該保持台132の被処理基板が保持される面において、被処理基板が載置される部分以外の、保持台の周縁部を覆うように形成されている。
本実施例によるシールド板201Aの場合、さらに、前記保持台132と当該シールド板201Aの隙間に、超臨界状態の媒体が導入される構造としており、処理容器に設けられた、導入口134から、超臨界状態の媒体、例えば超臨界状態のCOが供給されて、当該隙間を超臨界状態の媒体により、パージしている。このため、当該隙間への成膜を効果的に防止することができる。また、当該隙間の厚さ、すなわち前記シールド板201Aと、前記保持台132の距離d1は、5mm以下とすることが、当該隙間への成膜防止のために、好ましい。
また、図7(B)に示した処理容器130Aは、次に図7(C)に示す処理容器130Bのように構成することも可能である。図7(C)は、前記処理容器130Aの変形例である処理容器130Bを模式的に示した図である。図7(C)を参照するに、本図に示す処理容器130Bでは、前記外壁構造131の側壁から前記保持台132の側壁に延伸するように、シール板201Bが形成され、当該シールド板201Bによって、処理容器内は、被処理基板が保持された側である処理空間131Aと、当該処理空間131Aの反対側の空間131Bに略二分されている。そこで、前記導入口134から、超臨界状態の媒体、例えば超臨界状態のCOが供給されて、当該空間131Bを超臨界状態の媒体により、パージしている。このため、当該空間131Bへの成膜を効果的に防止することができる。また、前記シールド板201Bと、前記保持台132の距離d2は、5mm以下とすることが、前記空間131Bへの成膜防止のために、好ましい。
また、本実施例による成膜方法の場合、被処理基板においても、成膜されることが好ましくない部分が存在し、以下に示すように、このような成膜されることが好ましくない部分を覆うような構造体を有するように処理容器を構成することが可能である。
図8(A)は、前記処理容器130の別の変形例である処理容器130Cを模式的に示した図である。図8(A)を参照するに、本図に示す処理容器130Cでは、被処理基板の周縁部を覆うように、シールド構造302が設置されている。例えば、被処理基板の側壁や、いわゆるベベルと呼ばれるエッジ部分を含む周縁部付近に、例えばCu膜などが成膜されると、後の工程において膜剥がれの原因となってしまう懸念がある。そこで、本図に示す処理容器では、被処理基板の周縁部を本図に示すようなシールド構造302で覆い、成膜を防止して後の工程における膜の剥離を防止している。
前記シールド構造302は、略ドーナツ状の、被処理基板の周縁部を覆う成膜防止板と、当該成膜防止板を支える、複数の円柱状の支持棒を有している。当該支持棒は、前記外壁構造131の内壁面から前記保持台132の方向に延伸するように形成された、支持棒保持板301に形成された穴部に挿通され、シール部303aでシールされたフランジ303を介して前記外壁構造131の底面を貫通して、駆動部304に接続されている。
前記駆動部304は、前記シールド構造301を上下に稼動させることが可能であり、前記シールド構造301の、前記成膜防止板は、被処理基板に近づく方向または離間する方向に可動が可能な構造となっている。例えば、当該成膜防止板は、被処理基板の搬入、搬出時には被処理基板から離間する方向(上方)に稼動され、被処理基板が保持台に載置された後は、被処理基板に近づく方向(下方)に稼動され、所定の位置に設置される。
また、前記成膜防止板と被処理基板の隙間には超臨界状態の媒体が導入される構造であり、処理容器に設けられた、前記導入口134から、超臨界状態の媒体、例えば超臨界状態のCOが供給されて、当該隙間を超臨界状態の媒体により、パージしている。このため、当該隙間への成膜を効果的に防止することができる。
また、図8(B)は、図8(A)にA部で示した部分である、被処理基板と前記シールド構造301の拡大図である。図8(B)を参照するに、前記シールド構造301の前記成膜防止板は突起部を有し、当該突起部によって前記被処理基板の周縁部を覆う構造となっている。また、前記成膜防止板と、前記保持台132の距離d3は、1mm以下とすることが、被処理基板への成膜防止のために、好ましい。
このように、本発明による成膜方法を実施する成膜装置は、様々に変形・変更して用いることが可能である。
以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
本発明によれば、超臨界状態の媒体を用いた、微細パターンへの成膜方法において、従来に比べて微細パターンへのカバレッジと埋め込み特性を良好とし、さらに微細なパターンへの成膜が可能となる。
実施例1による成膜方法を示すフローチャートである。 実施例1を実施可能な成膜装置の一例を模式的に示した図である。 (A),(B)は、図2の成膜装置に用いる処理容器の詳細を示した図である。 (A),(B)は、図3(A),(B)に示した処理容器を用いた成膜システムの構成の一例を、模式的に示した図である。 (A),(B)は、実施例1による成膜方法を用いて、半導体装置の製造を行う手順を示した図(その1)である。(その1)である。 (C),(D)は、実施例1による成膜方法を用いて、半導体装置の製造を行う手順を示した図(その2)である。 (A)〜(C)は、図3(A),(B)に示した処理容器の変形例(その1)である。 (A)は、図3(A),(B)に示した処理容器の変形例(その2)であり、(B)はその一部の拡大図である。
符号の説明
10 成膜装置
14,15,16,17,18,20 ライン
19 排出ライン
14A,15A,15D,15E,16A,17A,18A,19A,19C,20A バルブ
15B 加圧ポンプ
15C 冷却器
19B 圧力調整バルブ
19D トラップ
30,130,130A,130B 処理容器
11,131 外壁構造
31A,131A,131B 処理空間
31B,31C,31D 空間
32 保持台
32a 加熱手段
34 保持台支持部
34a 上部構造
34b 中部構造
34c 下部構造
35 ゲートバルブ
36,37 吸排出口
33 供給部
201,201A,201B シールド板
134 供給口
302 シールド構造
303 フランジ
303a シール
304 駆動部
101 シリコン酸化膜
102 配線層層
103,106 絶縁層
104,107 配線部
104a,107a 溝部
104b,107b ホール部
104c,107c Cu拡散防止膜
500,600 成膜システム
501,601 基板搬送室
501a,601a 搬送アーム
501A,501B ロードロック室
502,602 搬送部
503,603 基板ステーション

Claims (21)

  1. 被処理基板上に、超臨界状態の媒体にプリカーサを溶解した処理媒体を供給して成膜を行う成膜方法であって、
    前記被処理基板の温度を、成膜が生じる温度の下限である成膜下限温度未満である第1の温度とし、当該被処理基板上に前記処理媒体を供給する第1の工程と、
    前記被処理基板の温度を前記第1の温度から前記成膜下限温度以上である第2の温度に上昇させることで、当該被処理基板上に成膜を行う第2の工程と、を有することを特徴とする成膜方法。
  2. 前記第1の温度と前記第2の温度との温度差が、50℃以上300℃以下であることを特徴とする請求項1記載の成膜方法。
  3. 前記第1の温度と前記成膜下限温度との温度差が、10℃以上100℃以下であることを特徴とする請求項1記載の成膜方法。
  4. 前記プリカーサは、Cu(hfac)、Cu(acac)2、Cu(dpm)2、Cu(dibm)2、Cu(ibpm)2、Cu(hfac)TMVS、および、Cu(hfac)COD、のいずれかであることを特徴とする、請求項1乃至3のうち、いずれか1項記載の成膜方法。
  5. 前記第1の温度は、100℃以上250℃以下であることを特徴とする請求項4記載の成膜方法。
  6. 前記第2の温度は、200℃以上400℃以下であることを特徴とする請求項4記載の成膜方法。
  7. 前記成膜は、前記被処理基板上に形成されたパターン形状を埋設するように行われることを特徴とする請求項1乃至6のうち、いずれか1項記載の成膜方法。
  8. 前記パターン形状は前記被処理基板上に形成された絶縁層に形成されていることを特徴とする請求項7記載の成膜方法。
  9. 前記処理媒体には、前記プリカーサの還元剤が添加されることを特徴とする請求項1乃至8のうち、いずれか1項記載の成膜方法。
  10. 前記超臨界状態の媒体は、COよりなることを特徴とする請求項1乃至9のうち、いずれか1項記載の成膜方法。
  11. 前記第1の工程および前記第2の工程は、前記被処理基板を保持する保持台を内部に有する処理容器の内部によって実施され、
    前記処理媒体は前記処理容器の内部に供給され、前記被処理基板の温度上昇は前記保持台に設けられた加熱手段により行われることを特徴とする請求項1乃至10のうち、いずれか1項記載の成膜方法。
  12. 前記被処理基板が前記処理容器内に搬入、または前記被処理基板が前記処理容器内より搬出される場合には、前記処理容器内に不活性ガスが導入されることを特徴とする請求項11記載の成膜方法。
  13. 前記処理容器は、複数の前記処理容器を接続可能な基板搬送室に接続されていることを特徴とする請求項11または12記載の成膜方法。
  14. 前記基板搬送室には、前記処理容器と、さらに別の処理容器が接続されていることを特徴とする請求項13記載の成膜方法。
  15. 前記処理容器内には、前記保持台を覆うようにシールド板が設けられていることを特徴とする請求項11乃至14記載のうち、いずれか1項記載の成膜方法。
  16. 前記シールド板と前記保持台の隙間には、超臨界状態の媒体が導入されることを特徴とする請求項15記載の成膜方法。
  17. 前記処理容器内には、前記保持台に保持された前記被処理基板の周縁部を覆うように、成膜防止板が設けられていることを特徴とする請求項11乃至14のうち、いずれか1項記載の成膜方法。
  18. 前記成膜防止板は前記被処理基板に近づく方向または離間する方向に可動が可能な構造であることを特徴とする請求項17記載の成膜方法。
  19. 前記成膜防止板は突起部を有し、当該突起部によって前記被処理基板の周縁部を覆う構造であることを特徴とする請求項17または18記載の成膜方法。
  20. 前記成膜防止板と前記保持台の隙間には、超臨界状態の媒体が導入されることを特徴とする請求項17乃至19のうち、いずれか1項記載の成膜方法。
  21. 請求項1乃至20のうち、いずれか1項記載の成膜方法をコンピュータに実行させるプログラムを記録した記憶媒体。
JP2004304536A 2004-10-19 2004-10-19 成膜方法 Pending JP2006120713A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004304536A JP2006120713A (ja) 2004-10-19 2004-10-19 成膜方法
US11/252,795 US20060084266A1 (en) 2004-10-19 2005-10-19 Film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304536A JP2006120713A (ja) 2004-10-19 2004-10-19 成膜方法

Publications (1)

Publication Number Publication Date
JP2006120713A true JP2006120713A (ja) 2006-05-11

Family

ID=36181327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304536A Pending JP2006120713A (ja) 2004-10-19 2004-10-19 成膜方法

Country Status (2)

Country Link
US (1) US20060084266A1 (ja)
JP (1) JP2006120713A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239104A (ja) * 2008-03-27 2009-10-15 Tokyo Electron Ltd 成膜方法および成膜装置、コンピュータ可読記録媒体
JP2010056145A (ja) * 2008-08-26 2010-03-11 Denso Corp 成膜装置およびそれを用いた成膜方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605469B2 (en) * 2004-06-30 2009-10-20 Intel Corporation Atomic layer deposited tantalum containing adhesion layer
JP5066336B2 (ja) * 2005-12-14 2012-11-07 東京エレクトロン株式会社 高圧処理装置及び高圧処理方法
US10679827B2 (en) * 2017-01-25 2020-06-09 Applied Materials, Inc. Method and apparatus for semiconductor processing chamber isolation for reduced particles and improved uniformity
US10224224B2 (en) * 2017-03-10 2019-03-05 Micromaterials, LLC High pressure wafer processing systems and related methods
WO2020117462A1 (en) * 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350929A (ja) * 1991-05-28 1992-12-04 Tokyo Electron Ltd スパッタ装置
JP2002198416A (ja) * 2000-12-27 2002-07-12 Tokyo Electron Ltd 処理装置
JP2003514115A (ja) * 1999-11-02 2003-04-15 ユニバーシティー オブ マサチューセッツ パターン基板およびパターンなし基板上に金属および金属合金被膜を形成するための化学流体被着
JP2003213425A (ja) * 2002-01-24 2003-07-30 Utec:Kk 成膜装置及び成膜方法
JP2004228526A (ja) * 2003-01-27 2004-08-12 Tokyo Electron Ltd 基板処理方法および半導体装置の製造方法
JP2004231995A (ja) * 2003-01-28 2004-08-19 Tokyo Electron Ltd W系膜の成膜方法およびw系膜
JP2004273874A (ja) * 2003-03-11 2004-09-30 Kobe Steel Ltd 多孔質膜の形成方法及びその方法によって形成された多孔質膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948842B2 (ja) * 1989-11-24 1999-09-13 日本真空技術株式会社 インライン型cvd装置
JP3844670B2 (ja) * 2001-09-14 2006-11-15 東京エレクトロン株式会社 塗布膜形成装置
AU2002360750A1 (en) * 2001-12-21 2003-07-30 University Of Massachusetts Contamination suppression in chemical fluid deposition
US6835664B1 (en) * 2003-06-26 2004-12-28 Micron Technology, Inc. Methods of forming trenched isolation regions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350929A (ja) * 1991-05-28 1992-12-04 Tokyo Electron Ltd スパッタ装置
JP2003514115A (ja) * 1999-11-02 2003-04-15 ユニバーシティー オブ マサチューセッツ パターン基板およびパターンなし基板上に金属および金属合金被膜を形成するための化学流体被着
JP2002198416A (ja) * 2000-12-27 2002-07-12 Tokyo Electron Ltd 処理装置
JP2003213425A (ja) * 2002-01-24 2003-07-30 Utec:Kk 成膜装置及び成膜方法
JP2004228526A (ja) * 2003-01-27 2004-08-12 Tokyo Electron Ltd 基板処理方法および半導体装置の製造方法
JP2004231995A (ja) * 2003-01-28 2004-08-19 Tokyo Electron Ltd W系膜の成膜方法およびw系膜
JP2004273874A (ja) * 2003-03-11 2004-09-30 Kobe Steel Ltd 多孔質膜の形成方法及びその方法によって形成された多孔質膜

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239104A (ja) * 2008-03-27 2009-10-15 Tokyo Electron Ltd 成膜方法および成膜装置、コンピュータ可読記録媒体
JP4731580B2 (ja) * 2008-03-27 2011-07-27 東京エレクトロン株式会社 成膜方法および成膜装置
US8273409B2 (en) 2008-03-27 2012-09-25 Tokyo Electron Limited Method for film formation, apparatus for film formation, and computer-readable recording medium
US9062374B2 (en) 2008-03-27 2015-06-23 Tokyo Electron Limited Method for film formation, apparatus for film formation, and computer-readable recording medium
JP2010056145A (ja) * 2008-08-26 2010-03-11 Denso Corp 成膜装置およびそれを用いた成膜方法

Also Published As

Publication number Publication date
US20060084266A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4980235B2 (ja) 金属カルボニル前駆体からの金属層の成膜速度を上げる方法
JP4980234B2 (ja) 金属カルボニル前駆体から金属層を堆積する方法
TWI338324B (en) Apparatus for thermal and plasma enhanced vapor deposition and method of operating
KR20170017963A (ko) 텅스텐 막의 성막 방법
KR101275679B1 (ko) 배리어층, 성막 방법 및 처리 시스템
US7699945B2 (en) Substrate treatment method and film forming method, film forming apparatus, and computer program
US9536745B2 (en) Tungsten film forming method
KR101196501B1 (ko) 반도체장치의 제조 방법, 반도체장치의 제조 장치, 컴퓨터 프로그램 및 기억 매체
JP2018041898A (ja) 成膜方法および成膜システム
US20060084266A1 (en) Film formation method
US20090029047A1 (en) Film-forming apparatus and film-forming method
TWI663277B (zh) 釕膜之成膜方法及成膜裝置,以及半導體裝置之製造方法
US20060099348A1 (en) Deposition method
JP4947922B2 (ja) 成膜方法およびコンピュータにより読み取り可能な記憶媒体
KR100731424B1 (ko) 성막 방법, 및 이 방법을 실행시키는 프로그램을 기억시킨 컴퓨터 판독가능 기록 매체
JP2005187879A (ja) 成膜装置および成膜方法
US7846839B2 (en) Film forming method, semiconductor device manufacturing method, semiconductor device, program and recording medium
KR101231507B1 (ko) 성막방법 및 성막장치
JP2006148089A (ja) 成膜方法
US20120040085A1 (en) METHOD FOR FORMING Cu FILM AND STORAGE MEDIUM
US8697572B2 (en) Method for forming Cu film and storage medium
US20120064247A1 (en) Method for forming cu film, and storage medium
KR102650982B1 (ko) 성막 방법, 반도체 장치의 제조 방법, 성막 장치 및 반도체 장치를 제조하는 시스템
WO2023008239A1 (ja) 基板表面に形成された凹部に対してルテニウムを埋め込む方法及び装置
WO2022202315A1 (ja) 埋め込み方法および処理システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920