JP2019137920A - Silver paste and semiconductor device made using the same - Google Patents

Silver paste and semiconductor device made using the same Download PDF

Info

Publication number
JP2019137920A
JP2019137920A JP2019038420A JP2019038420A JP2019137920A JP 2019137920 A JP2019137920 A JP 2019137920A JP 2019038420 A JP2019038420 A JP 2019038420A JP 2019038420 A JP2019038420 A JP 2019038420A JP 2019137920 A JP2019137920 A JP 2019137920A
Authority
JP
Japan
Prior art keywords
silver
silver paste
particles
paste
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019038420A
Other languages
Japanese (ja)
Inventor
石川 大
Masaru Ishikawa
大 石川
祐貴 川名
Yuki Kawana
祐貴 川名
松本 博
Hiroshi Matsumoto
博 松本
名取 美智子
Michiko Natori
美智子 名取
偉夫 中子
Takeo Nakako
偉夫 中子
田中 俊明
Toshiaki Tanaka
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2019137920A publication Critical patent/JP2019137920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

To provide a silver paste which is excellent in all of adhesive strength, electric conductivity and thermal conductivity in a good balance when sintered at low temperature and low pressure (or no pressure).SOLUTION: A silver paste comprises tabular silver particles with a center line average surface roughness Ra of 1 nm or less, silver particles with a center line average surface roughness Ra of 2 nm to 20 nm and a particle size of 1 μm to 20 μm, and solvent.SELECTED DRAWING: None

Description

本発明は、銀ペースト及びそれを用いた半導体装置に関する。更に詳しくは、パワー半導体、LSI、発光ダイオード(LED)等の半導体素子をリードフレーム、セラミック配線板、ガラスエポキシ配線板、ポリイミド配線板等の支持部材に接着するのに使用される銀ペースト及びそれを用いた半導体装置に関する。   The present invention relates to a silver paste and a semiconductor device using the same. More specifically, a silver paste used for bonding semiconductor elements such as power semiconductors, LSIs, and light emitting diodes (LEDs) to support members such as lead frames, ceramic wiring boards, glass epoxy wiring boards, polyimide wiring boards, and the like The present invention relates to a semiconductor device using.

半導体装置を製造する際、半導体素子と支持部材とを互いに接着させる方法としては、エポキシ樹脂、ポリイミド樹脂等のバインダ樹脂、銀粉等の充てん剤、溶剤組成物などを混合し、ペースト状として、これを接着剤として使用する方法がある。近年では半導体パッケージの高集積化に伴いパワー密度(W・cm−3)が高くなっており、半導体素子の動作安定性を確保するために、接着剤には高い放熱性が求められる。また、半導体素子の使用環境温度が高温となっているために、接着剤には耐熱性も求められる。さらに、環境負荷の低減のためにPbを含まない接着剤が求められている。以上のような経緯から、バインダ樹脂成分を含まない焼結タイプの銀ペーストが研究されている。 When manufacturing a semiconductor device, a semiconductor element and a support member are bonded to each other by mixing a binder resin such as an epoxy resin and a polyimide resin, a filler such as silver powder, a solvent composition, etc. Is used as an adhesive. In recent years, the power density (W · cm −3 ) has increased with the high integration of semiconductor packages, and high heat dissipation is required for adhesives to ensure the operational stability of semiconductor elements. Moreover, since the use environment temperature of the semiconductor element is high, the adhesive is also required to have heat resistance. Furthermore, there is a need for an adhesive that does not contain Pb in order to reduce the environmental burden. From the above circumstances, a sintered type silver paste not containing a binder resin component has been studied.

銀ペーストの使用方法としては、例えば、ディスペンサー、印刷機、スタンピングマシン等を用いて、銀ペーストを支持部材のダイパッドに塗布した後、半導体素子をダイボンディングし、加熱焼結により接着させ半導体装置とする方法が挙げられる。銀ペーストに要求される特性は、接着時の工法に関わる内容と、接着後の銀焼結体の物性に関わる内容とに大別される。   As a method of using the silver paste, for example, using a dispenser, a printing machine, a stamping machine, etc., after applying the silver paste to the die pad of the support member, the semiconductor element is die-bonded and bonded by heat sintering to the semiconductor device. The method of doing is mentioned. The characteristics required for the silver paste are broadly classified into the contents relating to the construction method at the time of bonding and the contents relating to the physical properties of the silver sintered body after bonding.

接着時の工法に関わる内容としては、半導体部材の損傷を防ぐために、低温(例えば300℃程度)、及び低加圧(例えば0.1MPa程度)又は無加圧で接着できることが要求される。また、スループット向上の観点から接着に要する時間の短縮が求められる。一方、接着後の銀焼結体の物性に関わる内容としては、半導体部材との接着を確保するために高接着性(高いダイシェア強度)が要求される。また、銀焼結体の高放熱特性(高熱伝導性)も求められている。さらに、長期間にわたる接続信頼性を確保するために、銀焼結体の耐熱性及び高緻密性(銀焼結体中に空孔が少ないこと)が要求される。   The contents related to the method of bonding are required to be able to bond at low temperature (for example, about 300 ° C.) and low pressure (for example, about 0.1 MPa) or no pressure in order to prevent damage to the semiconductor member. In addition, shortening the time required for adhesion is required from the viewpoint of improving throughput. On the other hand, as the contents relating to the physical properties of the silver sintered body after bonding, high adhesion (high die shear strength) is required in order to ensure adhesion with the semiconductor member. Moreover, the high heat dissipation characteristic (high thermal conductivity) of a silver sintered compact is also calculated | required. Furthermore, in order to ensure connection reliability over a long period of time, the heat resistance and high density of the silver sintered body (the number of voids in the silver sintered body is required) are required.

従来技術の銀ペーストとして、例えば特許文献1〜4に開示されるような銀粒子と溶剤とを混合した銀ペーストが提案されている。   As silver paste of a prior art, the silver paste which mixed the silver particle and solvent which are disclosed by patent documents 1-4, for example is proposed.

特許第4353380号公報Japanese Patent No. 4353380 特開2012−84514号公報JP 2012-84514 A 特許4414145号公報Japanese Patent No. 4414145 特開2012−119132号公報JP 2012-119132 A

従来技術の銀ペーストに係る問題点は、必ずしも接着強度、導電性及び熱伝導性のすべてを満足できるものではない点である。   The problem with the prior art silver paste is that it does not necessarily satisfy all of adhesive strength, electrical conductivity and thermal conductivity.

このような問題点に鑑みて、本発明は、低温かつ低加圧(あるいは無加圧)で焼結した場合であっても、接着強度、導電性及び熱伝導性のすべてにおいてバランスよく優れた銀ペースト及びそれを用いた半導体装置を提供することを目的とする。   In view of such problems, the present invention is excellent in a balanced manner in all of adhesive strength, conductivity, and thermal conductivity even when sintered at low temperature and low pressure (or no pressure). An object is to provide a silver paste and a semiconductor device using the same.

本発明は、中心線平均表面粗さRaが1nm以下である板状の銀粒子と、中心線平均表面粗さRaが2nm〜20nmであり、かつ粒子径が1μm〜20μmである銀粒子と、溶剤と、を含有する、銀ペーストを提供する。   The present invention relates to plate-like silver particles having a center line average surface roughness Ra of 1 nm or less, silver particles having a center line average surface roughness Ra of 2 nm to 20 nm, and a particle diameter of 1 μm to 20 μm, And a silver paste containing a solvent.

上記板状の銀粒子の中心線平均表面粗さRaが0.5nm以下であることが望ましい。   It is desirable that the centerline average surface roughness Ra of the plate-like silver particles is 0.5 nm or less.

上記板状の銀粒子が単結晶であることが望ましい。   The plate-like silver particles are desirably single crystals.

上記板状の銀粒子における厚み方向の最大長さaと面方向の最大長さbとの比が、2≦b/aを満たすことが望ましい。   The ratio of the maximum length a in the thickness direction to the maximum length b in the surface direction of the plate-like silver particles preferably satisfies 2 ≦ b / a.

上記板状の銀粒子における厚み方向の最大長さa及び面方向の最大長さbが、それぞれa≦500nm及び100nm≦b≦10000nmを満たすことが望ましい。   It is desirable that the maximum length a in the thickness direction and the maximum length b in the plane direction of the plate-like silver particles satisfy a ≦ 500 nm and 100 nm ≦ b ≦ 10000 nm, respectively.

上記粒子径が1μm〜20μmである銀粒子の含有量が、銀粒子全量基準で80質量%以下であることが望ましい。   The content of silver particles having a particle diameter of 1 μm to 20 μm is desirably 80% by mass or less based on the total amount of silver particles.

上記銀ペーストは、粒子径が0.01μm以上1μm未満である球状の銀粒子を更に含有することが望ましい。   The silver paste preferably further contains spherical silver particles having a particle diameter of 0.01 μm or more and less than 1 μm.

上記銀ペーストは、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Cd、In、Sn、Sb、Ta、W、Re、Os、Ir、Pt、Au、及びBiからなる群より選ばれる少なくとも1種を含む金属又は半金属粒子を、銀ペースト全量基準で0.01〜5.0質量%含有することが望ましい。   The silver paste includes Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd. , Cd, In, Sn, Sb, Ta, W, Re, Os, Ir, Pt, Au, and metal or metalloid particles containing at least one selected from the group consisting of Bi on the basis of the total amount of silver paste. It is desirable to contain 01-5.0 mass%.

また、本発明は、上記銀ペーストを焼結してなる焼結体を介して、半導体素子と半導体素子搭載用支持部材とが互いに接着した構造を有する半導体装置を提供する。   The present invention also provides a semiconductor device having a structure in which a semiconductor element and a semiconductor element mounting support member are bonded to each other through a sintered body obtained by sintering the silver paste.

本発明によれば、低温かつ低加圧(あるいは無加圧)で焼結した場合であっても、接着強度、導電性及び熱伝導性のすべてにおいてバランスよく優れた銀ペースト及びそれを用いた半導体装置を提供することができる。   According to the present invention, even when sintered at a low temperature and low pressure (or no pressure), a silver paste excellent in balance in all of adhesive strength, conductivity and thermal conductivity and the use thereof are used. A semiconductor device can be provided.

銀粒子LM1のSEM写真である。It is a SEM photograph of silver particle LM1. 銀粒子AgC239のSEM写真である。It is a SEM photograph of silver particle AgC239. 銀粒子AgC212DのSEM写真である。It is a SEM photograph of silver particle AgC212D. 銀粒子TC−20E−LのSEM写真である。It is a SEM photograph of silver particle TC-20E-L. 実施例1の半導体部材の接続断面のSEM写真である。4 is a SEM photograph of a connection cross section of the semiconductor member of Example 1. 実施例2の半導体部材の接続断面のSEM写真である。4 is a SEM photograph of a connection cross section of a semiconductor member of Example 2. 実施例3の半導体部材の接続断面のSEM写真である。4 is a SEM photograph of a connection cross section of a semiconductor member of Example 3. 比較例1の半導体部材の接続断面のSEM写真である。4 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 1. 比較例2の半導体部材の接続断面のSEM写真である。4 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 2. 比較例3の半導体部材の接続断面のSEM写真である。10 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 3. 比較例4の半導体部材の接続断面のSEM写真である。10 is a SEM photograph of a connection cross section of a semiconductor member of Comparative Example 4; 本発明に係る半導体装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of a semiconductor device according to the present invention. 本発明に係る半導体装置の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the semiconductor device which concerns on this invention.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本実施形態に係る銀ペーストは、中心線平均表面粗さRaが1nm以下である板状の銀粒子(以下、「銀粒子A」ともいう。)と、中心線平均表面粗さRaが2nm〜20nmであり、かつ粒子径が1μm〜20μmである銀粒子(以下、「銀粒子B」ともいう。)と、溶剤と、を含有する。   The silver paste according to the present embodiment has plate-like silver particles (hereinafter also referred to as “silver particles A”) having a center line average surface roughness Ra of 1 nm or less, and a center line average surface roughness Ra of 2 nm to Silver particles (hereinafter also referred to as “silver particles B”) having a particle diameter of 20 nm and a particle diameter of 1 μm to 20 μm and a solvent are contained.

本実施形態に用いられる銀粒子Aは、板状であり、中心線平均表面粗さRaが1nm以下の銀粒子である。銀粒子AのRaは、望ましくは0.5nm以下、より望ましくは0.1nm以下である。なお、本明細書における「板状」とは、銀粒子のアスペクト比(粒子径/厚さ)が2〜1000の範囲である形状を意味する。   The silver particles A used in the present embodiment are plate-like, and are silver particles having a center line average surface roughness Ra of 1 nm or less. The Ra of the silver particles A is desirably 0.5 nm or less, and more desirably 0.1 nm or less. In addition, the “plate shape” in the present specification means a shape in which the aspect ratio (particle diameter / thickness) of silver particles is in the range of 2 to 1000.

本明細書における「中心線平均表面粗さ」は、「算術平均粗さ」とも呼ばれ、JIS B0601:2001で定義される「算術平均粗さ」を意味する。銀粒子の中心線平均表面粗さRaの測定方法としては、比表面積から求める方法であるBET法、ブレーン法、原子間力顕微鏡(Atomic Force Microscope;AFM)を使用する方法、レーザー式の顕微鏡を使用する方法等の公知の方法を用いればよい。   The “center line average surface roughness” in the present specification is also called “arithmetic average roughness” and means “arithmetic average roughness” defined in JIS B0601: 2001. As a method of measuring the center line average surface roughness Ra of the silver particles, a BET method, a brain method, a method using an atomic force microscope (AFM), which is a method for obtaining from a specific surface area, a laser type microscope is used. A known method such as a method to be used may be used.

銀粒子Aの粒子径は、特に限定されないが、1〜20μmであることが望ましく、1〜10μmであることがより望ましく、1〜5μmであることが更に望ましい。なお、銀粒子の粒子径は、例えばSEMを用いて銀粒子を平面視したときの、銀粒子の面積の平方根とする。   The particle diameter of the silver particles A is not particularly limited, but is preferably 1 to 20 μm, more preferably 1 to 10 μm, and still more preferably 1 to 5 μm. In addition, let the particle diameter of a silver particle be a square root of the area of a silver particle when silver particle is planarly viewed using SEM, for example.

銀粒子Aにおける厚み方向の最大長さaと面方向の最大長さbとの比は、2≦b/aを満たすことが望ましく、5≦b/aを満たすことがより望ましく、10≦b/aを満たすことが更に望ましい。b/aが上記の条件を満たすと、銀ペーストと被着面との接着面積を確保することができ、接着強度をより向上させることができる。また、aとbとが、それぞれa≦500nm、100nm≦b≦10000nmを満たすことが望ましく、a≦300nm、300nm≦b≦6000nmを満たすことがより望ましく、a≦100nm、500nm≦b≦3000nmを満たすことが更に望ましい。bが上記の条件を満たすと、薄膜の銀焼結体を形成する場合にも好適に用いることができる。また、bの値にもよるが、十分なアスペクト比を確保するためにも、aは上記の条件を満たすことが望ましい。なお、aは、例えばa≧10nmとすることができる。   The ratio of the maximum length a in the thickness direction to the maximum length b in the plane direction of the silver particles A preferably satisfies 2 ≦ b / a, more preferably satisfies 5 ≦ b / a, and 10 ≦ b. It is further desirable to satisfy / a. When b / a satisfies the above conditions, an adhesive area between the silver paste and the adherend surface can be secured, and the adhesive strength can be further improved. Further, a and b preferably satisfy a ≦ 500 nm and 100 nm ≦ b ≦ 10000 nm, respectively, more preferably satisfy a ≦ 300 nm and 300 nm ≦ b ≦ 6000 nm, and satisfy a ≦ 100 nm and 500 nm ≦ b ≦ 3000 nm. It is more desirable to satisfy. When b satisfies the above-mentioned conditions, it can be suitably used when forming a thin-film silver sintered body. Further, although depending on the value of b, it is desirable that a satisfies the above-mentioned conditions in order to ensure a sufficient aspect ratio. Note that a can be set to a ≧ 10 nm, for example.

銀粒子Aは、単結晶であることが望ましい。なお、単結晶である銀粒子Aを作製する方法としては、例えば特開2012−167378号公報、Benjamin Wileyら,NANO LETTERS,Vol. 4,No.9,1733−1739,2004、上山竜祐ら,Journal of the Ceramic Society of Japan,107,[1],60−65,1999に記載されている公知の方法を用いればよい。   The silver particles A are preferably single crystals. In addition, as a method of producing the silver particle A which is a single crystal, for example, JP2012-167378A, Benjamin Wiley et al., NANO LETTERS, Vol. 4, no. 9, 1733-1739, 2004, Ryusuke Kamiyama et al., Journal of the Ceramic Society of Japan, 107, [1], 60-65, 1999 may be used.

銀粒子Aの含有量は、銀粒子全量基準で、20質量%以上であることが望ましく、50質量%以上であることがより望ましく、70質量%以上であることが更に望ましい。また、銀粒子Aの含有量は、99質量%以下であることが望ましく、95質量%以下であることがより望ましく、90質量%以下であることが更に望ましい。   The content of the silver particles A is desirably 20% by mass or more, more desirably 50% by mass or more, and further desirably 70% by mass or more based on the total amount of silver particles. Further, the content of the silver particles A is desirably 99% by mass or less, more desirably 95% by mass or less, and further desirably 90% by mass or less.

本実施形態に係る銀ペーストは、銀粒子Aに加えて、中心線平均表面粗さRaが2nm〜20nmであり、粒子径が1μm〜20μmである銀粒子Bを含有する。銀粒子Aと銀粒子Bとを含有することで、銀粒子同士の充填性を高め、形成される銀焼結体の接着強度、導電性及び熱伝導性を向上させることができる。   In addition to the silver particles A, the silver paste according to the present embodiment contains silver particles B having a center line average surface roughness Ra of 2 nm to 20 nm and a particle diameter of 1 μm to 20 μm. By containing the silver particles A and the silver particles B, it is possible to improve the filling property between the silver particles and to improve the adhesive strength, conductivity and thermal conductivity of the formed silver sintered body.

銀粒子Bとしては、板状の銀粒子を用いることができる。銀粒子Bの中心線平均表面粗さRaは、2nm〜20nmであり、2nm〜15nmであることが望ましく、2nm〜10nmであることがより望ましい。また、銀粒子Bの粒子径は、1〜20μmであり、1〜15μmであることが望ましく、1〜10μmであることがより望ましい。   As the silver particles B, plate-like silver particles can be used. The center line average surface roughness Ra of the silver particles B is 2 nm to 20 nm, preferably 2 nm to 15 nm, and more preferably 2 nm to 10 nm. Moreover, the particle diameter of the silver particle B is 1-20 micrometers, it is desirable that it is 1-15 micrometers, and it is more desirable that it is 1-10 micrometers.

銀粒子Bの含有量は、銀粒子全量基準で、5質量%以上であることが望ましく、10質量%以上であることがより望ましく、20質量%以上であることが更に望ましい。一方、銀粒子Bの含有量は、銀粒子全量基準で、80質量%以下であることが望ましく、75質量%以下であることがより望ましく、70質量%以下であることが更に望ましい。銀粒子Bの含有量が上記範囲内であると、特に導電性及び熱伝導性をより向上させることができる。   The content of the silver particles B is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass or more based on the total amount of silver particles. On the other hand, the content of the silver particles B is desirably 80% by mass or less, more desirably 75% by mass or less, and further desirably 70% by mass or less, based on the total amount of silver particles. When the content of the silver particles B is within the above range, the electrical conductivity and thermal conductivity can be particularly improved.

本実施形態に係る銀ペーストは、銀粒子A及び銀粒子B以外の銀粒子を更に含有していてもよく、例えば、粒子径が0.01μm以上1μm未満である球状の銀粒子を更に含有していてもよい。粒子径が0.01μm以上1μm未満である球状の銀粒子を含有することによって、銀粒子同士の充填性を更に高め、形成される銀焼結体の緻密度を向上させることができ、その結果、銀焼結体の物性をバルク銀に近づけることができる。   The silver paste according to the present embodiment may further contain silver particles other than the silver particles A and the silver particles B. For example, the silver paste further contains spherical silver particles having a particle diameter of 0.01 μm or more and less than 1 μm. It may be. By containing spherical silver particles having a particle diameter of 0.01 μm or more and less than 1 μm, it is possible to further improve the packing property between the silver particles and improve the density of the formed silver sintered body. The physical properties of the silver sintered body can be made close to that of bulk silver.

銀粒子は、通常その表面が有機物によって被覆されている。以下、この有機物を保護剤と記す。本実施形態で使用される銀粒子における保護剤の脱離温度は、望ましくは300℃以下、より望ましくは250℃以下、更に望ましくは230℃以下である。   The surface of silver particles is usually coated with an organic substance. Hereinafter, this organic substance is referred to as a protective agent. The desorption temperature of the protective agent in the silver particles used in this embodiment is desirably 300 ° C. or less, more desirably 250 ° C. or less, and further desirably 230 ° C. or less.

本実施形態において使用する銀粒子をほぼ同時に焼結させ緻密な銀焼結体を得るために、各々の銀粒子の保護剤の脱離温度は近いことが望ましい。具体的には、各々の銀粒子の保護剤の脱離温度の差は50℃以内であることが望ましく、30℃以内であることが望ましい。   In order to obtain a dense silver sintered body by sintering the silver particles used in the present embodiment almost simultaneously, it is desirable that the desorption temperature of the protective agent of each silver particle is close. Specifically, the difference in the desorption temperature of the protective agent for each silver particle is preferably within 50 ° C., and preferably within 30 ° C.

銀粒子の保護剤の脱離温度は示差熱−熱重量同時測定(Thermogravimetry−Differential Thermal Analysis;TG−DTA)を大気中で行うことにより求めることができる。   The desorption temperature of the protective agent for the silver particles can be determined by performing differential thermal-thermogravimetric simultaneous measurement (TG-DTA) in the atmosphere.

銀粒子における保護剤の量は、保護剤の質量:銀粒子の質量が、0.1:99.9〜20:80となる量であることが望ましい。保護剤の量が上記下限値以上であると、銀粒子を十分に被覆しやすくなる。その結果、銀粒子同士の凝集及び銀粒子の溶剤への分散性の悪化を抑制することができる。一方、保護剤の量が上記上限値以下であると、銀粒子が焼結する際の体積収縮の程度を抑制できる。その結果、銀焼結体の緻密度を確保することができる。   The amount of the protective agent in the silver particles is preferably such that the mass of the protective agent: the mass of the silver particles is 0.1: 99.9 to 20:80. It becomes easy to fully coat | cover silver particle as the quantity of a protective agent is more than the said lower limit. As a result, aggregation of silver particles and deterioration of dispersibility of silver particles in a solvent can be suppressed. On the other hand, when the amount of the protective agent is not more than the above upper limit value, the degree of volume shrinkage when the silver particles are sintered can be suppressed. As a result, the density of the silver sintered body can be ensured.

銀粒子の保護剤の種類としては、特にカルボン酸化合物を好適に使用でき、より望ましくは炭素数が2〜20の脂肪族モノカルボン酸である。   As the kind of the protective agent for silver particles, a carboxylic acid compound can be particularly preferably used, and more preferably an aliphatic monocarboxylic acid having 2 to 20 carbon atoms.

銀ペースト中の銀粒子の量としては、目的とする銀ペーストの粘度及びチキソ性に合わせて、適宜決めることができる。銀焼結体の接着強度及び熱伝導性をより向上させるためには、銀粒子は、銀ペースト全量基準で80質量%以上であることが望ましい。   The amount of silver particles in the silver paste can be appropriately determined according to the viscosity and thixotropy of the target silver paste. In order to further improve the adhesive strength and thermal conductivity of the silver sintered body, the silver particles are desirably 80% by mass or more based on the total amount of the silver paste.

本実施形態に係る銀ペーストは、銀以外の金属元素又は半金属元素として、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Cd、In、Sn、Sb、Ta、W、Re、Os、Ir、Pt、Au及びBiから選ばれる少なくとも1種類の元素を含有していてもよい。   The silver paste according to the present embodiment includes Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and other metal elements or metalloid elements other than silver. Contains at least one element selected from Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Sn, Sb, Ta, W, Re, Os, Ir, Pt, Au, and Bi It may be.

これらの元素は、銀ペーストと特定の被着金属との接着強度向上、低融点元素の添加による低温での接着の達成、銀焼結体の機械的特性の向上、銀焼結体の耐硫化性の付与等の目的に応じて、その種類を適宜選択して添加される。   These elements improve the adhesive strength between the silver paste and the specific deposited metal, achieve low-temperature adhesion by adding low melting point elements, improve the mechanical properties of the silver sintered body, and sulfidation resistance of the silver sintered body Depending on the purpose of imparting properties, the type is appropriately selected and added.

これらの元素の含有量は、銀ペースト全量基準で、0.01〜5.0質量%であることが望ましい。0.01質量%以上であると、所望する効果が得られやすくなる。また、5.0質量%以下であると、銀ペーストの焼結の阻害、及び銀焼結体の接着強度、熱伝導性、電気伝導性等の特性の悪化を抑制できる。   The content of these elements is preferably 0.01 to 5.0% by mass based on the total amount of the silver paste. When it is 0.01% by mass or more, a desired effect is easily obtained. Further, when the content is 5.0% by mass or less, inhibition of sintering of the silver paste and deterioration of properties such as adhesive strength, thermal conductivity, and electrical conductivity of the silver sintered body can be suppressed.

これらの元素は、銀粒子と混合して銀ペーストとするために、粒子状として含有されることが望ましく、その粒子径は0.01〜10μmであることが望ましい。   These elements are desirably contained in the form of particles in order to be mixed with silver particles to form a silver paste, and the particle diameter is desirably 0.01 to 10 μm.

また卑金属元素及び半金属元素は、通常、その表面が酸化されており、そのまま銀ペースト中に添加しても十分な効果が得られない可能性がある。そのため、これら元素とともにフラックスを添加することが望ましい。フラックスは公知の種類のものを使用でき、フラックスの量は適宜選定すればよい。また、より効果的な方法としては、上記元素を含む粒子として表面が銀めっき処理された粒子を使用する方法が挙げられる。銀めっき処理された粒子を用いると、銀ペーストの保存時及び焼結時の耐酸化性が向上する。銀めっきされた粒子は、市販のものを用いてもよいし、公知の方法で作製されたものを用いてもよい。   Further, the surface of base metal elements and metalloid elements is usually oxidized, and there is a possibility that sufficient effects cannot be obtained even if they are added as they are to the silver paste. Therefore, it is desirable to add flux together with these elements. A known type of flux can be used, and the amount of flux may be appropriately selected. Moreover, as a more effective method, a method of using particles whose surfaces are silver-plated as particles containing the above-described elements can be used. Use of silver-plated particles improves the oxidation resistance during storage and sintering of the silver paste. As the silver-plated particles, commercially available particles may be used, or particles prepared by a known method may be used.

本実施形態における溶剤としては、特に限定されず、公知の溶剤を使用できる。溶剤としては、アルコール類、アルデヒド類、カルボン酸類、エーテル類、エステル類、アミン類、単糖類、多糖類、直鎖の炭化水素類、脂肪酸類、芳香族類等から選択することが可能であり、複数の溶剤を組み合わせて使用することも可能である。上記の中から銀粒子の分散に適した溶剤を選択することが望ましく、具体的には、アルコール構造、エーテル構造又はエステル構造を有する溶剤が、焼結後の銀焼結体の熱伝導性、導電性及び接着強度をより向上させることができる点から特に望ましい。   It does not specifically limit as a solvent in this embodiment, A well-known solvent can be used. Solvents can be selected from alcohols, aldehydes, carboxylic acids, ethers, esters, amines, monosaccharides, polysaccharides, linear hydrocarbons, fatty acids, aromatics, etc. It is also possible to use a plurality of solvents in combination. It is desirable to select a solvent suitable for the dispersion of silver particles from the above. Specifically, the solvent having an alcohol structure, an ether structure, or an ester structure is a thermal conductivity of the sintered silver body after sintering, This is particularly desirable from the viewpoint that the conductivity and the adhesive strength can be further improved.

溶剤の沸点は、特に限定されないが、100℃〜350℃であることが望ましい。半導体素子を支持部材に接続する温度範囲において、蒸発して銀焼結体に残存しない溶剤であることが望ましい。溶剤の沸点が100℃以上であると、銀ペーストの使用時に室温でも溶剤が蒸発するのを抑制でき、その結果、銀ペーストの粘度安定性、塗布性等を確保できる。また、溶剤の沸点が350℃以下であると、半導体素子の接続する温度で溶剤を蒸発させやすく、銀焼結体に溶剤が残存して銀焼結体の特性が低下するのを抑制できる。   Although the boiling point of a solvent is not specifically limited, It is desirable that it is 100 to 350 degreeC. It is desirable that the solvent does not evaporate and remain in the silver sintered body in the temperature range where the semiconductor element is connected to the support member. When the boiling point of the solvent is 100 ° C. or higher, the solvent can be prevented from evaporating even at room temperature when the silver paste is used, and as a result, the viscosity stability and coating property of the silver paste can be ensured. Further, when the boiling point of the solvent is 350 ° C. or less, it is easy to evaporate the solvent at the temperature at which the semiconductor element is connected, and it can be suppressed that the solvent remains in the silver sintered body and the characteristics of the silver sintered body are deteriorated.

また、溶剤以外の有機成分を添加剤として加えてもよい。添加剤の種類としては、ペースト中の銀粒子の沈降防止剤、銀粒子の焼結促進のためのフラックス剤等が挙げられる。添加剤は、溶剤と同様に、銀ペーストを焼結する温度で系外に脱離するものが望ましい。   Moreover, you may add organic components other than a solvent as an additive. Examples of the additive include an anti-settling agent for silver particles in the paste, a flux agent for promoting the sintering of silver particles, and the like. As in the case of the solvent, the additive is preferably removed from the system at a temperature at which the silver paste is sintered.

銀ペースト中の溶剤の量は、銀ペースト全量基準で20質量%未満であることが望ましい。溶剤が20質量%未満であると、銀ペーストを焼結した際の溶剤の蒸発に伴う体積収縮を抑制でき、形成される銀焼結体の緻密性を確保できる。   The amount of the solvent in the silver paste is desirably less than 20% by mass based on the total amount of the silver paste. When the solvent is less than 20% by mass, volume shrinkage due to evaporation of the solvent when the silver paste is sintered can be suppressed, and the denseness of the formed silver sintered body can be secured.

本実施形態に係る銀ペーストを製造するには、銀粒子及び溶剤を、必要に応じて添加される各種添加剤とともに、一括又は分割して撹拌器、らいかい器、3本ロール、プラネタリーミキサー等の分散・溶解装置を適宜組み合わせ、必要に応じて加熱して混合、溶解、解粒混練又は分散して均一なペースト状とすればよい。   In order to produce the silver paste according to the present embodiment, the silver particles and the solvent, together with various additives to be added as necessary, are collectively or divided into a stirrer, a raid device, a three roll, a planetary mixer. The dispersing / dissolving devices such as the above may be appropriately combined, and heated, if necessary, mixed, dissolved, granulated and kneaded or dispersed to form a uniform paste.

本実施形態に係る銀ペーストを加熱して焼結させる方法としては、公知の方法を利用できる。ヒーターによる外部加熱以外にも、紫外線ランプ、レーザー、マイクロ波等を好適に用いることができる。銀ペーストの加熱温度は、銀ペースト中の溶剤、添加剤等の有機成分が系外へ脱離する温度以上であることが望ましい。具体的には、加熱温度の範囲は、150℃以上300℃以下であることが望ましく、150℃以上250℃以下であることがより望ましい。加熱温度を300℃以下とすることで、一般的な半導体部材を接続する場合は、当該部材へのダメージを回避することができ、加熱温度を150℃以上とすることで、保護剤の脱離が起こりやすくなる。   As a method for heating and sintering the silver paste according to this embodiment, a known method can be used. In addition to external heating by a heater, an ultraviolet lamp, laser, microwave, or the like can be suitably used. The heating temperature of the silver paste is preferably equal to or higher than the temperature at which organic components such as solvents and additives in the silver paste are desorbed from the system. Specifically, the range of the heating temperature is desirably 150 ° C. or more and 300 ° C. or less, and more desirably 150 ° C. or more and 250 ° C. or less. When a general semiconductor member is connected by setting the heating temperature to 300 ° C. or less, damage to the member can be avoided, and by removing the protective agent by setting the heating temperature to 150 ° C. or more. Is likely to occur.

銀ペーストの加熱時間は、設定した温度において、保護剤、溶剤等の有機物の脱離が完了する時間とすればよい。適切な加熱温度及び加熱時間の範囲は、銀ペーストのTG−DTA測定を行うことで見積もることができる。   The heating time of the silver paste may be a time at which desorption of organic substances such as a protective agent and a solvent is completed at a set temperature. The range of appropriate heating temperature and heating time can be estimated by performing TG-DTA measurement of the silver paste.

また、銀ペーストを加熱する際の工程は適宜決めることができる。特に、溶剤の沸点を超える温度で焼結を行う場合には、溶剤の沸点以下の温度で予熱を行い、予め溶剤をある程度揮発させた上で焼結を行うと、より緻密な銀焼結体を得やすい。銀ペーストを加熱する際の昇温速度は、溶剤の沸点未満で焼結する場合には特に制限されない。溶剤の沸点を超える温度で焼結する場合には、昇温速度を1℃/秒以下とするか、予熱工程を行うことが望ましい。   Moreover, the process at the time of heating a silver paste can be determined suitably. In particular, when sintering is performed at a temperature exceeding the boiling point of the solvent, pre-heating at a temperature lower than the boiling point of the solvent, and after performing the sintering after volatilizing the solvent to some extent, a denser silver sintered body Easy to get. The rate of temperature increase when heating the silver paste is not particularly limited when sintering is performed below the boiling point of the solvent. In the case of sintering at a temperature exceeding the boiling point of the solvent, it is desirable to set the heating rate to 1 ° C./second or less, or to perform a preheating step.

上記のように銀ペーストを焼結させることにより得られる銀焼結体は、1×10−5Ω・cm以下の体積抵抗率、30W/m・K以上の熱伝導率、及び65%以上の緻密度を有することが望ましい。なお、銀焼結体の緻密度は下記式に基づいて算出される。
緻密度[%]=銀焼結体の密度[g/cm]×100/銀の理論密度[10.49g/cm
The silver sintered body obtained by sintering the silver paste as described above has a volume resistivity of 1 × 10 −5 Ω · cm or less, a thermal conductivity of 30 W / m · K or more, and 65% or more. It is desirable to have a denseness. The density of the silver sintered body is calculated based on the following formula.
Density [%] = density of sintered silver [g / cm 3 ] × 100 / theoretical density of silver [10.49 g / cm 3 ]

また、上記のように銀ペーストを焼結させることにより得られる銀焼結体の接着強度は、10MPa以上であることが望ましく、15MPa以上であることがより望ましい。   Further, the adhesive strength of the silver sintered body obtained by sintering the silver paste as described above is preferably 10 MPa or more, and more preferably 15 MPa or more.

本実施形態に係る半導体装置は、本実施形態に係る銀ペーストを焼結してなる焼結体を介して、半導体素子と半導体素子搭載用支持部材とが互いに接着したものである。   In the semiconductor device according to the present embodiment, the semiconductor element and the semiconductor element mounting support member are bonded to each other through a sintered body obtained by sintering the silver paste according to the present embodiment.

図12は、本実施形態に係る半導体装置の一例を示す模式断面図である。図12に示すように、半導体装置10は、半導体素子搭載用支持部材であるとリードフレーム2aと、リードフレーム(放熱体)2b,2cと、本実施形態に係る銀ペーストの焼結体3を介してリードフレーム2aに接続された半導体素子1と、これらをモールドするモールドレジン5とを備えている。半導体素子1は、2本のワイヤ4を介してリードフレーム2b,2cにそれぞれ接続されている。   FIG. 12 is a schematic cross-sectional view showing an example of a semiconductor device according to the present embodiment. As shown in FIG. 12, the semiconductor device 10 includes a lead frame 2a, lead frames (heat radiating bodies) 2b and 2c, and a sintered body 3 of silver paste according to the present embodiment as a semiconductor element mounting support member. And a semiconductor element 1 connected to the lead frame 2a, and a mold resin 5 for molding them. The semiconductor element 1 is connected to lead frames 2b and 2c through two wires 4, respectively.

図13は、本実施形態に係る半導体装置の別の例を示す模式断面図である。図13に示すように、半導体装置20は、基板6と、基板6を囲むように形成された半導体素子搭載用支持部材であるリードフレーム7と、本実施形態に係る銀ペーストの焼結体3を介してリードフレーム7上に接続された半導体素子であるLEDチップ8と、これらを封止する透光性樹脂9とを備えている。LEDチップ8は、ワイヤ4を介してリードフレーム7に接続されている。   FIG. 13 is a schematic cross-sectional view showing another example of the semiconductor device according to the present embodiment. As shown in FIG. 13, the semiconductor device 20 includes a substrate 6, a lead frame 7 which is a semiconductor element mounting support member formed so as to surround the substrate 6, and the silver paste sintered body 3 according to the present embodiment. LED chip 8 which is a semiconductor element connected on lead frame 7 via, and translucent resin 9 which seals these. The LED chip 8 is connected to the lead frame 7 via the wire 4.

これらの半導体装置では、例えば、半導体素子搭載用支持部材上に銀ペーストをディスペンス法、スクリーン印刷法、スタンピング法等により塗布し、銀ペーストが塗布された部分に半導体素子を搭載し、加熱装置を用いて銀ペーストを焼結することによって、半導体素子と半導体素子搭載用支持部材とを互いに接着させることができる。また、銀ペーストの焼結後、ワイヤボンド工程及び封止工程を行うことにより、半導体装置が得られる。   In these semiconductor devices, for example, a silver paste is applied onto a semiconductor element mounting support member by a dispensing method, a screen printing method, a stamping method, etc., the semiconductor element is mounted on the portion where the silver paste is applied, and a heating device is installed. By using and sintering the silver paste, the semiconductor element and the semiconductor element mounting support member can be bonded to each other. Moreover, a semiconductor device is obtained by performing a wire bonding process and a sealing process after sintering the silver paste.

半導体素子搭載用支持部材としては、例えば、42アロイリードフレーム、銅リードフレーム、パラジウムPPFリードフレーム等のリードフレーム、ガラスエポキシ基板(ガラス繊維強化エポキシ樹脂からなる基板)、BT基板(シアネートモノマー及びそのオリゴマーとビスマレイミドからなるBTレジン使用基板)等の有機基板が挙げられる。   As the support member for mounting a semiconductor element, for example, a lead frame such as a 42 alloy lead frame, a copper lead frame, a palladium PPF lead frame, a glass epoxy substrate (a substrate made of glass fiber reinforced epoxy resin), a BT substrate (cyanate monomer and its component) And an organic substrate such as a BT resin-containing substrate made of an oligomer and bismaleimide.

以下に実施例を示し、本発明をより具体的に説明する。本発明は、これらの実施例により限定を受けるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited by these examples.

各実施例及び比較例における各特性の測定は、次のようにして実施した。   Measurement of each characteristic in each example and comparative example was performed as follows.

(1)銀粒子の形態観察
サンプルグリッド上にカーボン製の両面テープを貼り、カーボンテープ上に銀粉末を載せ、観察試料とした。卓上走査電子顕微鏡(日本電子株式会社、NeoScope JCM−5000)により、電子加速電圧10kVで観察し、SEM写真を撮影した。
(1) Observation of morphology of silver particles A double-sided carbon tape was attached on a sample grid, and silver powder was placed on the carbon tape to obtain an observation sample. The sample was observed with a desktop scanning electron microscope (JEOL Ltd., NeoScope JCM-5000) at an electron acceleration voltage of 10 kV, and an SEM photograph was taken.

(2)銀粒子の中心線平均表面粗さ
AFM(エスアイアイ・ナノテクノロジー、SPI4000)を用い、ダイナミック・フォース・モード(DFM)で銀粒子の表面粗さを測定した。具体的には、約10mgの銀粒子をアセトン10mLに加え、分散液を作製した。直径2cmの円形サンプルグリッド上に、分散液を約100μL滴下し、25℃で約24時間乾燥し、測定サンプルを得た。サンプルグリッドをAFM(エスアイアイ・ナノテクノロジー、SPI4000)にセットし、DFMで測定を行った。複数の銀粒子を含む視野範囲を走査対象とし、銀粒子の表面形状像を得た。この操作を繰り返し行い、10〜20個の銀粒子の表面形状像を得た。得られた各銀粒子の表面形状像について、最大粒子径の約90%の長さに対して、表面粗さ解析を行った。得られた表面粗さの平均値を算出し、その平均値を銀粒子の中心線平均表面粗さとした。
(2) Centerline average surface roughness of silver particles The surface roughness of silver particles was measured by dynamic force mode (DFM) using AFM (SII Nanotechnology, SPI4000). Specifically, about 10 mg of silver particles was added to 10 mL of acetone to prepare a dispersion. About 100 μL of the dispersion was dropped on a circular sample grid having a diameter of 2 cm and dried at 25 ° C. for about 24 hours to obtain a measurement sample. The sample grid was set in AFM (SII Nanotechnology, SPI4000), and measurement was performed with DFM. A visual field range including a plurality of silver particles was used as a scanning target, and a surface shape image of the silver particles was obtained. This operation was repeated to obtain surface shape images of 10 to 20 silver particles. About the surface shape image of each obtained silver particle, surface roughness analysis was performed with respect to the length of about 90% of the maximum particle diameter. The average value of the obtained surface roughness was calculated, and the average value was defined as the center line average surface roughness of the silver particles.

(3)銀焼結体の密度及び緻密度
銀ペーストをホットプレート(井内盛栄堂、SHAMAL HOTPLATE HHP−401)により110℃で10分間予熱し、更に200℃で1時間加熱することで銀焼結体(約10mm×10mm×1mm)を得た。作製した銀焼結体を紙やすり(800番)で研磨し、研磨後の銀焼結体の体積及び質量を測定した。これらの値から銀焼結体の密度を算出し、更に下記の式に従い緻密度を算出した。
緻密度[%]=銀焼結体の密度[g/cm]×100/銀の理論密度[10.49g/cm
(3) Density and density of the silver sintered body The silver paste is preheated at 110 ° C. for 10 minutes by a hot plate (Seiei Iuchi, SHAMAL HOTPLATE HHP-401), and further heated at 200 ° C. for 1 hour to sinter silver. A body (about 10 mm × 10 mm × 1 mm) was obtained. The produced silver sintered compact was grind | polished with sandpaper (# 800), and the volume and mass of the silver sintered compact after grinding | polishing were measured. The density of the silver sintered body was calculated from these values, and the density was further calculated according to the following formula.
Density [%] = density of sintered silver [g / cm 3 ] × 100 / theoretical density of silver [10.49 g / cm 3 ]

(4)ダイシェア強度
銀ペーストをAgめっきCuリードフレーム(ランド部:10×5mm)上に0.1mg塗布し、この上に1mm×1mmのAgめっきSiチップ(Agめっき厚:0.1μm、チップ厚:400μm)又はAuめっきSiチップ(Auめっき厚:0.1μm、チップ厚:400μm)を接着した。これをホットプレート(井内盛栄堂、SHAMAL HOTPLATE HHP−401)で、200℃で1時間加熱した。得られた銀焼結体の接着強度を、ダイシェア強度[MPa]により評価した。万能型ボンドテスタ(デイジ社製 4000シリーズ)を用い、測定スピード500μm/s、測定高さ100μmでSiチップを水平方向に押し、銀焼結体のダイシェア強度[MPa]を測定した。なお、評価結果は、以下の基準に従ってA,B,Cを用いて記載する。
(被着体:AgめっきSiチップの場合)
A:20MPa以上
B:10MPa以上20MPa未満
C:0MPa以上10MPa未満
(被着体:AuめっきSiチップの場合)
A:10MPa以上
B:5MPa以上10MPa未満
C:0MPa以上5MPa未満
(4) Die shear strength 0.1 mg of silver paste was applied onto an Ag-plated Cu lead frame (land part: 10 × 5 mm), and 1 mm × 1 mm Ag-plated Si chip (Ag plating thickness: 0.1 μm, chip) (Thickness: 400 μm) or Au-plated Si chip (Au plating thickness: 0.1 μm, chip thickness: 400 μm) was bonded. This was heated at 200 ° C. for 1 hour with a hot plate (Seiei Inai, SHAMAL HOTPLATE HHP-401). The adhesive strength of the obtained silver sintered body was evaluated by die shear strength [MPa]. Using a universal bond tester (4000 series, manufactured by Daisy), the Si chip was pushed in the horizontal direction at a measurement speed of 500 μm / s and a measurement height of 100 μm, and the die shear strength [MPa] of the silver sintered body was measured. The evaluation results are described using A, B, and C according to the following criteria.
(Adherent: Ag-plated Si chip)
A: 20 MPa or more B: 10 MPa or more and less than 20 MPa C: 0 MPa or more and less than 10 MPa (Substrate: Au-plated Si chip)
A: 10 MPa or more B: 5 MPa or more and less than 10 MPa C: 0 MPa or more and less than 5 MPa

(5)熱伝導率
銀ペーストをホットプレート(井内盛栄堂、SHAMAL HOTPLATE HHP−401)により110℃で10分間予熱し、更に200℃で1時間加熱することで銀焼結体(約10mm×10mm×1mm)を得た。この銀焼結体の熱拡散率をレーザーフラッシュ法(ネッチ、LFA 447、測定温度25℃)で測定し、更にこの熱拡散率と、示差走査熱量測定装置(パーキンエルマー、Pyris1)で得られた比熱容量と焼結密度の積より、25℃における銀焼結体の熱伝導率[W/m・K]を算出した。なお、評価結果は、以下の基準に従ってA,B,Cを用いて記載する。
A:100W/m・K以上
B:80W/m・K以上100W/m・K未満
C:0W/m・K以上80W/m・K未満
(5) Thermal conductivity The silver paste is preheated at 110 ° C. for 10 minutes with a hot plate (Seiei Iuchi, SHAMAL HOTPLATE HHP-401), and further heated at 200 ° C. for 1 hour to obtain a silver sintered body (about 10 mm × 10 mm). × 1 mm) was obtained. The thermal diffusivity of this silver sintered body was measured by a laser flash method (Netch, LFA 447, measurement temperature 25 ° C.), and further obtained by this thermal diffusivity and a differential scanning calorimeter (Perkin Elmer, Pyris 1). From the product of specific heat capacity and sintering density, the thermal conductivity [W / m · K] of the silver sintered body at 25 ° C. was calculated. The evaluation results are described using A, B, and C according to the following criteria.
A: 100 W / m · K or more B: 80 W / m · K or more and less than 100 W / m · K C: 0 W / m · K or more and less than 80 W / m · K

(6)体積抵抗率
銀ペーストをガラス板上に塗布し、ホットプレート(井内盛栄堂、SHAMAL HOTPLATE HHP−401)により110℃で10分間予熱し、更に200℃で1時間加熱することで、ガラス板上に1×50×0.03mmの銀焼結体を得た。この銀焼結体を4端子法(アドバンテスト株式会社、R687E DIGTAL MULTIMETER)にて体積抵抗率[μΩ・cm]を測定した。なお、評価結果は、以下の基準に従ってA,B,Cを用いて記載する。
A:0μΩ・cm以上5.5μΩ・cm未満
B:5.5μΩ・cm以上6.5μΩ・cm未満
C:6.5μΩ・cm以上
(6) Volume resistivity A silver paste is coated on a glass plate, preheated at 110 ° C. for 10 minutes with a hot plate (Seihei Inai, SHAMAL HOTPLATE HHP-401), and further heated at 200 ° C. for 1 hour. A 1 × 50 × 0.03 mm silver sintered body was obtained on the plate. The volume resistivity [μΩ · cm] of this silver sintered body was measured by a four-terminal method (Advantest Corporation, R687E DIGITAL MULTITIMER). The evaluation results are described using A, B, and C according to the following criteria.
A: 0 μΩ · cm or more and less than 5.5 μΩ · cm B: 5.5 μΩ · cm or more and less than 6.5 μΩ · cm C: 6.5 μΩ · cm or more

(7)銀焼結体の断面観察
銀ペーストをAgめっきCuリードフレーム(ランド部:10×5mm、Agめっき厚:約4μm)上に0.1mgを塗布し、この上に1mm×1mmのAuめっきSiチップ(Auめっき厚:0.1μm、チップ厚:400μm)を接着した。これをホットプレート(井内盛栄堂、SHAMAL HOTPLATE HHP−401)を用い200℃で1時間加熱した。接続したサンプルをエポキシ樹脂中に埋め込み、AuめっきSiチップ/銀焼結体/AgめっきCuリードフレームの断面が確認できるまで研磨した。研磨後のサンプルにイオンスパッター装置(日立ハイテクノロジーズ株式会社、E1045)で白金を蒸着し、これを卓上走査電子顕微鏡(日本電子株式会社、NeoScope JCM−5000)により、電子加速電圧10kV、倍率5000倍で観察し、SEM写真を撮影した。
(7) Cross-sectional observation of silver sintered body Apply 0.1 mg of silver paste on Ag-plated Cu lead frame (land part: 10 × 5 mm, Ag plating thickness: about 4 μm), and 1 mm × 1 mm Au A plated Si chip (Au plating thickness: 0.1 μm, chip thickness: 400 μm) was adhered. This was heated at 200 ° C. for 1 hour using a hot plate (Seiei Iuchi, SHAMAL HOTPLATE HHP-401). The connected sample was embedded in an epoxy resin and polished until the cross section of the Au plated Si chip / silver sintered body / Ag plated Cu lead frame could be confirmed. Platinum was vapor-deposited on the polished sample with an ion sputtering apparatus (Hitachi High-Technologies Corporation, E1045), and this was scanned with a desktop scanning electron microscope (JEOL Ltd., NeoScope JCM-5000) with an electron acceleration voltage of 10 kV and a magnification of 5000 times. And SEM photographs were taken.

実施例1〜22及び比較例1〜4では、以下のとおり銀ペーストを作製した。なお、各実施例及び比較例で使用した銀粒子(LM1(トクセン工業株式会社)、AgC239(福田金属箔株式会社)、AgC212D(福田金属箔株式会社)、TC−20E−L(株式会社徳力化学研究所)、AgS050(株式会社徳力化学研究所)、C−34(株式会社徳力化学研究所))の性状を表1に示す。また、LM1、AgC239、AgC212D、TC−20E−LのSEM写真を、それぞれ図1,2,3,4に示す。また、実施例1〜22及び比較例1〜4における銀粒子及びその他の粒子(銀以外の粒子)の種類及び配合量を表2に示す。   In Examples 1-22 and Comparative Examples 1-4, the silver paste was produced as follows. In addition, the silver particles (LM1 (Tokusen Kogyo Co., Ltd.), AgC239 (Fukuda Metal Foil Co., Ltd.), AgC212D (Fukuda Metal Foil Co., Ltd.), TC-20E-L (Tokuriki Chemical Co., Ltd.) used in each Example and Comparative Example Research Institute), AgS050 (Tokuroku Chemical Laboratory Co., Ltd.), C-34 (Tokuriku Chemical Laboratory Co., Ltd.)) are shown in Table 1. In addition, SEM photographs of LM1, AgC239, AgC212D, and TC-20E-L are shown in FIGS. Table 2 shows the types and amounts of silver particles and other particles (particles other than silver) in Examples 1 to 22 and Comparative Examples 1 to 4.

(実施例1)
銀粒子としてLM1(トクセン工業株式会社)75質量部及びAgC239(福田金属箔株式会社)25質量部、溶剤としてテルピネオール(和光純薬株式会社、異性体混合物)13.6質量部、添加剤としてステアリン酸(新日本理化株式会社)1質量部を使用した。銀粒子、溶剤、及び添加剤をらいかい機にて15分間混練し銀ペーストを作製した。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図5に示す。
Example 1
75 parts by mass of LM1 (Tokusen Kogyo Co., Ltd.) and 25 parts by mass of AgC239 (Fukuda Metal Foil Co., Ltd.) as silver particles, 13.6 parts by mass of terpineol (Wako Pure Chemical Industries, Ltd., isomer mixture), stearin as additive 1 part by mass of acid (New Nippon Rika Co., Ltd.) was used. The silver particles, the solvent, and the additive were kneaded for 15 minutes with a screening machine to prepare a silver paste. The properties of this silver paste are shown in Table 3. Moreover, the SEM photograph which image | photographed the cross section of the connection part of the Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. .

(実施例2)
銀粒子としてLM1とAgC239とを表2に示す割合で混合して使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図6に示す。
(Example 2)
A silver paste was prepared in the same procedure as in Example 1, except that LM1 and AgC239 were mixed and used as silver particles in the ratio shown in Table 2. The properties of this silver paste are shown in Table 3. Moreover, the SEM photograph which image | photographed the cross section of the connection part of Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. .

(実施例3)
銀粒子としてLM1とAgC239とを表2に示す割合で混合して使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図7に示す。
(Example 3)
A silver paste was prepared in the same procedure as in Example 1, except that LM1 and AgC239 were mixed and used as silver particles in the ratio shown in Table 2. The properties of this silver paste are shown in Table 3. Moreover, the SEM photograph which image | photographed the cross section of the connection part of the Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. .

(実施例4)
Al粒子(Alfa Aeser)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
Example 4
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Al particles (Alfa Aeser) was further added. The properties of this silver paste are shown in Table 3.

(実施例5)
Si粒子(株式会社高純度化学研究所)1質量部を使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 5)
A silver paste was prepared in the same procedure as in Example 1, except that 1 part by mass of Si particles (High Purity Chemical Research Laboratory) was used. The properties of this silver paste are shown in Table 3.

(実施例6)
Ti粒子(和光純薬株式会社)1質量部以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 6)
A silver paste was prepared in the same procedure as in Example 1 except for 1 part by mass of Ti particles (Wako Pure Chemical Industries, Ltd.). The properties of this silver paste are shown in Table 3.

(実施例7)
V粒子(和光純薬株式会社)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 7)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of V particles (Wako Pure Chemical Industries, Ltd.) was further added. The properties of this silver paste are shown in Table 3.

(実施例8)
Mn粒子(和光純薬株式会社)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 8)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Mn particles (Wako Pure Chemical Industries, Ltd.) was further added. The properties of this silver paste are shown in Table 3.

(実施例9)
Fe粒子(和光純薬株式会社)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
Example 9
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Fe particles (Wako Pure Chemical Industries, Ltd.) was further added. The properties of this silver paste are shown in Table 3.

(実施例10)
Co粒子(和光純薬株式会社)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 10)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Co particles (Wako Pure Chemical Industries, Ltd.) was further added. The properties of this silver paste are shown in Table 3.

(実施例11)
Ni粒子(METAL FOIL & POWDERS MFG CO.、Ni−HWQ)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 11)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Ni particles (METAL FOIL & POWDERS MFG CO., Ni-HWQ) was further added. The properties of this silver paste are shown in Table 3.

(実施例12)
Zn粒子(Alfa Aeser)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
Example 12
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Zn particles (Alfa Aeser) was further added. The properties of this silver paste are shown in Table 3.

(実施例13)
Pd粒子(Alfa Aeser)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 13)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Pd particles (Alfa Aeser) was further added. The properties of this silver paste are shown in Table 3.

(実施例14)
In粒子(和光純薬株式会社)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 14)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of In particles (Wako Pure Chemical Industries, Ltd.) was further added. The properties of this silver paste are shown in Table 3.

(実施例15)
Sn粒子(和光純薬株式会社)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 15)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Sn particles (Wako Pure Chemical Industries, Ltd.) was further added. The properties of this silver paste are shown in Table 3.

(実施例16)
Sb粒子(和光純薬株式会社)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 16)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Sb particles (Wako Pure Chemical Industries, Ltd.) was further added. The properties of this silver paste are shown in Table 3.

(実施例17)
AgめっきCu粒子(福田金属箔株式会社)1質量部を更に添加した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 17)
A silver paste was prepared in the same procedure as in Example 1 except that 1 part by mass of Ag-plated Cu particles (Fukuda Metal Foil Co., Ltd.) was further added. The properties of this silver paste are shown in Table 3.

(実施例18)
銀粒子としてLM1とAgC212Dとを表2に示す割合で混合して使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 18)
A silver paste was prepared in the same procedure as in Example 1, except that LM1 and AgC212D were mixed and used as silver particles in the ratio shown in Table 2. The properties of this silver paste are shown in Table 3.

(実施例19)
銀粒子としてLM1とAgC212Dとを表2に示す割合で混合して使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 19)
A silver paste was prepared in the same procedure as in Example 1, except that LM1 and AgC212D were mixed and used as silver particles in the ratio shown in Table 2. The properties of this silver paste are shown in Table 3.

(実施例20)
銀粒子としてLM1とAgC212Dとを表2に示す割合で混合して使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 20)
A silver paste was prepared in the same procedure as in Example 1, except that LM1 and AgC212D were mixed and used as silver particles in the ratio shown in Table 2. The properties of this silver paste are shown in Table 3.

(実施例21)
銀粒子としてLM1とAgC239とAgS050とを表2に示す割合で混合して使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 21)
A silver paste was prepared in the same procedure as in Example 1 except that LM1, AgC239, and AgS050 were mixed and used as silver particles in the proportions shown in Table 2. The properties of this silver paste are shown in Table 3.

(実施例22)
銀粒子としてLM1とAgC239とC−34とを表2に示す割合で混合して使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。
(Example 22)
A silver paste was prepared in the same procedure as in Example 1 except that LM1, AgC239, and C-34 were mixed and used as the silver particles in the ratio shown in Table 2. The properties of this silver paste are shown in Table 3.

(比較例1)
銀粒子としてAgC239のみを100質量部使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図8に示す。
(Comparative Example 1)
A silver paste was prepared in the same procedure as in Example 1 except that 100 parts by mass of AgC239 alone was used as the silver particles. The properties of this silver paste are shown in Table 3. Moreover, the SEM photograph which image | photographed the cross section of the connection part of the Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. .

(比較例2)
銀粒子としてAgC212D(福田金属箔株式会社)のみを100質量部使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図9に示す。
(Comparative Example 2)
A silver paste was prepared in the same procedure as in Example 1 except that 100 parts by mass of AgC212D (Fukuda Metal Foil Co., Ltd.) alone was used as the silver particles. The properties of this silver paste are shown in Table 3. Moreover, the SEM photograph which image | photographed the cross section of the connection part of the Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. .

(比較例3)
銀粒子としてTC−20E−L(株式会社徳力化学研究所)のみを100質量部使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図10に示す。
(Comparative Example 3)
A silver paste was prepared in the same procedure as in Example 1 except that 100 parts by mass of TC-20E-L (Tokuriki Chemical Laboratory Co., Ltd.) was used as the silver particles. The properties of this silver paste are shown in Table 3. Moreover, the SEM photograph which image | photographed the cross section of the connection part of the Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. .

(比較例4)
銀粒子としてLM1のみを100質量部使用した以外は、実施例1と同様の手順で銀ペーストを作製した。この銀ペーストの特性を表3に示す。また、上記(7)に従って作製したAuめっきSiチップ/銀焼結体/AgめっきCuリードフレームにおけるAuめっきSiチップと銀焼結体との接続部の断面を撮影したSEM写真を図11に示す。
(Comparative Example 4)
A silver paste was prepared in the same procedure as in Example 1 except that 100 parts by mass of LM1 alone was used as the silver particles. The properties of this silver paste are shown in Table 3. Moreover, the SEM photograph which image | photographed the cross section of the connection part of the Au plating Si chip and silver sintered compact in Au plating Si chip / silver sintered compact / Ag plating Cu lead frame produced according to said (7) is shown in FIG. .

1…半導体素子、2a,2b,2c…リードフレーム、3…銀ペーストの焼結体、4…ワイヤ、5…モールドレジン、6…基板、7…リードフレーム、8…LEDチップ、9…透光性樹脂、10,20…半導体装置。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 2a, 2b, 2c ... Lead frame, 3 ... Silver paste sintered body, 4 ... Wire, 5 ... Mold resin, 6 ... Substrate, 7 ... Lead frame, 8 ... LED chip, 9 ... Translucent Resin, 10, 20... Semiconductor device.

Claims (9)

中心線平均表面粗さRaが1nm以下である板状の銀粒子と、
中心線平均表面粗さRaが2nm〜20nmであり、かつ粒子径が1μm〜20μmである銀粒子と、
溶剤と、
を含有する、銀ペースト。
Plate-like silver particles having a center line average surface roughness Ra of 1 nm or less;
Silver particles having a center line average surface roughness Ra of 2 nm to 20 nm and a particle diameter of 1 μm to 20 μm;
Solvent,
Containing silver paste.
前記板状の銀粒子の中心線平均表面粗さRaが0.5nm以下である、請求項1に記載の銀ペースト。   The silver paste of Claim 1 whose centerline average surface roughness Ra of the said plate-shaped silver particle is 0.5 nm or less. 前記板状の銀粒子が単結晶である、請求項1又は2に記載の銀ペースト。   The silver paste according to claim 1 or 2, wherein the plate-like silver particles are single crystals. 前記板状の銀粒子における厚み方向の最大長さaと面方向の最大長さbとの比が、2≦b/aを満たす、請求項1〜3のいずれか一項に記載の銀ペースト。   The silver paste as described in any one of Claims 1-3 in which ratio of the maximum length a of the thickness direction in the said plate-shaped silver particle and the maximum length b of a surface direction satisfy | fills 2 <= b / a. . 前記板状の銀粒子における厚み方向の最大長さa及び面方向の最大長さbが、それぞれa≦500nm及び100nm≦b≦10000nmを満たす、請求項1〜4のいずれか一項に記載の銀ペースト。   5. The maximum length a in the thickness direction and the maximum length b in the plane direction of the plate-like silver particles satisfy a ≦ 500 nm and 100 nm ≦ b ≦ 10000 nm, respectively. Silver paste. 前記粒子径が1μm〜20μmである銀粒子の含有量が、銀粒子全量基準で80質量%以下である、請求項1〜5のいずれか一項に記載の銀ペースト。   The silver paste as described in any one of Claims 1-5 whose content of the silver particle whose said particle diameter is 1 micrometer-20 micrometers is 80 mass% or less on the basis of the total amount of silver particles. 粒子径が0.01μm以上1μm未満である球状の銀粒子を更に含有する、請求項1〜6のいずれか一項に記載の銀ペースト。   The silver paste as described in any one of Claims 1-6 which further contains the spherical silver particle whose particle diameter is 0.01 micrometer or more and less than 1 micrometer. Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Cd、In、Sn、Sb、Ta、W、Re、Os、Ir、Pt、Au、及びBiからなる群より選ばれる少なくとも1種を含む金属又は半金属粒子を、銀ペースト全量基準で0.01〜5.0質量%含有する、請求項1〜7のいずれか一項に記載の銀ペースト。   Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Metal or metalloid particles containing at least one selected from the group consisting of Sn, Sb, Ta, W, Re, Os, Ir, Pt, Au, and Bi are added in an amount of 0.01 to 5.0 based on the total amount of silver paste. The silver paste as described in any one of Claims 1-7 containing the mass%. 請求項1〜8のいずれか一項に記載の銀ペーストを焼結してなる焼結体を介して、半導体素子と半導体素子搭載用支持部材とが互いに接着した構造を有する、半導体装置。   A semiconductor device having a structure in which a semiconductor element and a semiconductor element mounting support member are bonded to each other through a sintered body formed by sintering the silver paste according to claim 1.
JP2019038420A 2013-10-22 2019-03-04 Silver paste and semiconductor device made using the same Pending JP2019137920A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013219285 2013-10-22
JP2013219285 2013-10-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015543808A Division JP6900148B2 (en) 2013-10-22 2014-10-15 Silver paste and semiconductor devices using it

Publications (1)

Publication Number Publication Date
JP2019137920A true JP2019137920A (en) 2019-08-22

Family

ID=52992773

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015543808A Active JP6900148B2 (en) 2013-10-22 2014-10-15 Silver paste and semiconductor devices using it
JP2019038420A Pending JP2019137920A (en) 2013-10-22 2019-03-04 Silver paste and semiconductor device made using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015543808A Active JP6900148B2 (en) 2013-10-22 2014-10-15 Silver paste and semiconductor devices using it

Country Status (3)

Country Link
JP (2) JP6900148B2 (en)
TW (1) TWI669722B (en)
WO (1) WO2015060173A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180769B2 (en) * 2013-03-29 2017-08-16 トクセン工業株式会社 Flaky microparticles
JP6900148B2 (en) * 2013-10-22 2021-07-07 昭和電工マテリアルズ株式会社 Silver paste and semiconductor devices using it
WO2016103527A1 (en) * 2014-12-26 2016-06-30 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
JP6605848B2 (en) * 2015-06-11 2019-11-13 古河電気工業株式会社 Dispersion solution of surface-coated metal fine particles, and method for producing sintered conductor and conductive connecting member, including steps of applying and sintering this dispersion solution
JP6396964B2 (en) * 2015-09-29 2018-09-26 三ツ星ベルト株式会社 Conductive paste, electronic substrate and manufacturing method thereof
JP6870258B2 (en) * 2016-09-23 2021-05-12 日亜化学工業株式会社 Conductive adhesives and conductive materials
JP6780457B2 (en) 2016-11-10 2020-11-04 株式会社デンソー Semiconductor devices and their manufacturing methods
WO2018122971A1 (en) 2016-12-27 2018-07-05 三ツ星ベルト株式会社 Electroconductive paste, electronic substrate, and method for manufacturing said substrate
JP6467542B1 (en) * 2018-03-29 2019-02-13 トクセン工業株式会社 Silver powder for ink or paint
WO2019198328A1 (en) * 2018-04-12 2019-10-17 パナソニックIpマネジメント株式会社 Mounting structure and nanoparticle mounting material
JP2020152961A (en) * 2019-03-20 2020-09-24 尾池工業株式会社 Flaky silver particle, silver dispersion liquid, and conductive paste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169039A (en) * 1998-04-20 2004-06-17 Asahi Kasei Metals Kk Metallic paint composition
JP2006063414A (en) * 2004-08-27 2006-03-09 Mitsui Mining & Smelting Co Ltd Silver powder containing spherical high roughness silver grain, silver powder containing flaky high roughness silver grain, mixed powder of the above both silver powders and method for producing these silver powders, silver ink and silver paste containing these silver powders and method for producing these silver powders
JP2007070718A (en) * 2005-09-06 2007-03-22 Santoku Corp Porous iron powder, method for producing porous iron powder, and radio wave absorber
WO2012086588A1 (en) * 2010-12-20 2012-06-28 セメダイン株式会社 Electroconductive adhesive
WO2015060173A1 (en) * 2013-10-22 2015-04-30 日立化成株式会社 Silver paste and semiconductor device using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080810B1 (en) * 1998-04-20 2006-06-14 Asahi Kasei Metals Limited Aluminum pigment
JP4929653B2 (en) * 2005-09-02 2012-05-09 住友電気工業株式会社 Conductive paste and wiring board using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169039A (en) * 1998-04-20 2004-06-17 Asahi Kasei Metals Kk Metallic paint composition
JP2006063414A (en) * 2004-08-27 2006-03-09 Mitsui Mining & Smelting Co Ltd Silver powder containing spherical high roughness silver grain, silver powder containing flaky high roughness silver grain, mixed powder of the above both silver powders and method for producing these silver powders, silver ink and silver paste containing these silver powders and method for producing these silver powders
JP2007070718A (en) * 2005-09-06 2007-03-22 Santoku Corp Porous iron powder, method for producing porous iron powder, and radio wave absorber
WO2012086588A1 (en) * 2010-12-20 2012-06-28 セメダイン株式会社 Electroconductive adhesive
WO2015060173A1 (en) * 2013-10-22 2015-04-30 日立化成株式会社 Silver paste and semiconductor device using same

Also Published As

Publication number Publication date
TW201526029A (en) 2015-07-01
WO2015060173A1 (en) 2015-04-30
JPWO2015060173A1 (en) 2017-03-09
TWI669722B (en) 2019-08-21
JP6900148B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP2019137920A (en) Silver paste and semiconductor device made using the same
JP6303392B2 (en) Silver paste, semiconductor device using the same, and method for producing silver paste
CN110709487B (en) Thermally and electrically conductive adhesive composition
JP5940782B2 (en) Use of aliphatic hydrocarbons and paraffins as solvents in sintered silver pastes
KR102019576B1 (en) Thermally conductive conductive adhesive composition
KR20170075748A (en) Conductive composition and electronic component using same
JP2016054098A (en) Silver paste, semiconductor device using the same and method for producing silver paste
CN109070206A (en) The engagement manufacturing method of copper thickener, the manufacturing method of conjugant and semiconductor device
KR20130034013A (en) Bonding material and bonding method using same
JP2007149522A (en) Conductive resin paste composition containing silver and carbon nanotube, and semiconductor device using this
JP6563700B2 (en) Semiconductor bonding resin composition, semiconductor bonding sheet, and semiconductor device using the same
JP2017031227A (en) Adhesive composition and semiconductor device using the same
JP2014225350A (en) Silver paste composition
TW202006749A (en) Conductive paste and sintered body
JP7317397B2 (en) COPPER OXIDE PASTE AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT
TW201911989A (en) Method for producing metal bonded laminate
JP2008214524A (en) Adhesive, semiconductor device, and method for manufacturing semiconductor device
JP2019173023A (en) Sheet for semiconductor bonding and semiconductor device including the same
JP5522390B2 (en) Conductive paste composition and conductive bonding method
JP6609979B2 (en) Copper particle manufacturing method, copper particle, copper paste, and semiconductor device
JP6669420B2 (en) Bonding composition
JP2018168226A (en) Paste-like silver powder composition, method for producing joined body, and method for producing silver film
JP6603989B2 (en) COMPOSITE PARTICLE AND ITS MANUFACTURING METHOD, ELECTRIC CONDUCTIVE PASTE, SINTERED BODY AND SEMICONDUCTOR DEVICE
TWI789698B (en) Copper oxide paste and method for producing electronic parts
JP6942469B2 (en) Sinterable metal particles and their use in electronics applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309