JP2006080516A - Pyrolysis furnace with gas flowing path regulating section - Google Patents

Pyrolysis furnace with gas flowing path regulating section Download PDF

Info

Publication number
JP2006080516A
JP2006080516A JP2005256565A JP2005256565A JP2006080516A JP 2006080516 A JP2006080516 A JP 2006080516A JP 2005256565 A JP2005256565 A JP 2005256565A JP 2005256565 A JP2005256565 A JP 2005256565A JP 2006080516 A JP2006080516 A JP 2006080516A
Authority
JP
Japan
Prior art keywords
pyrolysis furnace
flow path
pyrolysis
source gas
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256565A
Other languages
Japanese (ja)
Inventor
Kyo-Yeol Lee
▲きょう▼ 烈 李
Eun-Hye Lee
恩 惠 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006080516A publication Critical patent/JP2006080516A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pyrolysis furnace having a structure of a ramping region improved so that the time required for preheating a precursor, i.e., source gas, is minimized to improve the pyrolysis characteristics of the precursor. <P>SOLUTION: The pyrolysis furnace is provided with a body 31 of the pyrolysis furnace; a heating unit 33 formed in the periphery of the body of the pyrolysis furnace for regulating the temperature of the body of the pyrolysis furnace; at least one gas-supplying tube 32 for supplying the source gas into the body of the pyrolysis furnace; and a gas flow path regulating section 34a installed in the body of the pyrolysis furnace for regulating the flow of the source gas. As a result, control and easy manufacture of small-sized nanoparticles having superior characteristics are facilitated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、改善された構造の流路調節部を備えた熱分解炉に係り、さらに詳細には、ソースガスの流速を調節してソースガスを均一に加熱して熱分解特性を調節して、結果的に一定サイズのナノパーチクルの製造を誘導する熱分解炉に関する。   The present invention relates to a pyrolysis furnace having a flow path control unit having an improved structure, and more specifically, to adjust the pyrolysis characteristics by adjusting the flow rate of the source gas to uniformly heat the source gas. As a result, the present invention relates to a pyrolysis furnace that induces the production of a nanoparticle of a certain size.

ナノパーチクルの製造方法は、化学的湿式製造方法と気相蒸着方法とに大別される。ここで、気相蒸着方法は、他の製造方法に比べて、ナノパーチクルのサイズ調節が比較的自由であり、不純物の流入を制御でき、所望の位置にナノパーチクルを形成できるという長所がある。気相蒸着法の代表的な方法には、レーザ溶発法と熱分解法とがある。   Nanoparticle manufacturing methods are roughly classified into chemical wet manufacturing methods and vapor deposition methods. Here, the vapor deposition method has advantages in that the size of the nanoparticle can be adjusted relatively freely compared to other manufacturing methods, the inflow of impurities can be controlled, and the nanoparticle can be formed at a desired position. Typical methods of the vapor deposition method include a laser ablation method and a thermal decomposition method.

熱分解法は、製造しようとする物質の前駆体を使用する方法である。これを説明すれば、ソースガスである前駆体に熱エネルギーを加えて前駆体を熱分解し、熱分解された前駆体から煙霧質状態のモノマーを生成させる。このようなモノマーが成長してナノパーチクルが形成される。このような熱分解法は、その製造装備及び工程が簡単であり、ナノパーチクルのサイズを制御しやすいという長所を有している。   The pyrolysis method is a method using a precursor of a substance to be manufactured. Explaining this, thermal energy is applied to the precursor that is the source gas to thermally decompose the precursor, and a monomer in an aerosol state is generated from the thermally decomposed precursor. Such monomers grow to form nanoparticle. Such a thermal decomposition method has the advantages that its production equipment and process are simple and the size of the nanoparticle is easy to control.

図1A及び図1Bは、一般的なナノパーチクルの製造装備を示す図面である。図1Aは、熱分解炉、酸化炉及び蒸着チャンバを示す概略図であり、図1Bは、特許文献1の熱分解炉を示す断面図である。   FIG. 1A and FIG. 1B are diagrams showing a general nanoparticle manufacturing equipment. FIG. 1A is a schematic view showing a pyrolysis furnace, an oxidation furnace, and a vapor deposition chamber, and FIG. 1B is a cross-sectional view showing the pyrolysis furnace of Patent Document 1.

図1Aを参照すれば、熱分解炉11に形成させようとするナノパーチクルのソースガス11aとキャリアガス11bとが流入され、熱分解炉11の内部は、加熱装置(図示せず)によって約900℃以上の高温に維持されて、ソースガス11aの熱分解反応が起こる。選択的に熱分解されたソースガス11aに対して酸化反応が必要な場合には、酸化炉12で約700℃以上の温度でソースガスの酸化工程を進む。そして、蒸着チャンバ13で基板13a上に熱分解及び酸化されたソースガスを塗布してナノパーチクルを形成させる。   Referring to FIG. 1A, a nanoparticle source gas 11a and a carrier gas 11b to be formed in the pyrolysis furnace 11 are introduced, and the interior of the pyrolysis furnace 11 is about 900 by a heating device (not shown). The thermal decomposition reaction of the source gas 11a occurs while being maintained at a high temperature of at least ° C. When an oxidation reaction is necessary for the selectively pyrolyzed source gas 11a, the oxidation process of the source gas proceeds in the oxidation furnace 12 at a temperature of about 700 ° C. or higher. Then, a thermally decomposed and oxidized source gas is applied on the substrate 13a in the vapor deposition chamber 13 to form nano particles.

図1Bは、熱分解炉11の構造を示す図面であって、ソースガス11a及びキャリアガス11bは、それぞれソースガスチューブ15及びキャリアガスチューブ14を通じて熱分解炉11に供給される。ソースガス11a及びキャリアガス11bは、熱分解炉11のランピング領域18aでミキシング及び予熱され、熱分解領域18bで熱分解反応が起こって高温の煙霧質状態になる。そして、排出口16b側に流動16aしてナノパーチクル形成工程が進められる反応チャンバ13に供給される。   FIG. 1B is a diagram showing the structure of the pyrolysis furnace 11, and the source gas 11 a and the carrier gas 11 b are supplied to the pyrolysis furnace 11 through the source gas tube 15 and the carrier gas tube 14, respectively. The source gas 11a and the carrier gas 11b are mixed and preheated in the ramping region 18a of the pyrolysis furnace 11, and a pyrolysis reaction takes place in the pyrolysis region 18b, resulting in a high-temperature fumed state. Then, the fluid 16a flows toward the discharge port 16b and is supplied to the reaction chamber 13 where the nanoparticle forming process proceeds.

ナノパーチクルのサイズ、濃度、分散度などの基本的な特性は、使用しようとするソースガス、すなわち、前駆体の濃度によって決定される。もし、ナノパーチクルを高い密度で製造しようとする場合には、ソースガスの濃度を高めねばならないが、前駆体の濃度を高めれば、生成されるナノパーチクルの分散特性が悪くなるという結果をもたらす。   Basic characteristics such as the size, concentration, and degree of dispersion of the nanoparticle are determined by the concentration of the source gas to be used, that is, the precursor. If the nanoparticle is to be manufactured at a high density, the concentration of the source gas must be increased. However, if the concentration of the precursor is increased, the dispersion characteristics of the produced nanoparticle are deteriorated.

このような短所は、ソースガスが熱分解工程のために熱分解炉11に流入される経路での反応と関連があると知られている。すなわち、ソースガスが熱分解炉11に供給された後、熱分解反応が起こるまでのランピング領域(予熱領域)で停滞される時間によってソースガスの熱分解特性が変わる。   Such disadvantages are known to be related to the reaction in the path where the source gas flows into the pyrolysis furnace 11 for the pyrolysis process. That is, after the source gas is supplied to the pyrolysis furnace 11, the pyrolysis characteristics of the source gas change depending on the stagnation time in the ramping region (preheating region) until the pyrolysis reaction occurs.

図2は、熱分解炉11での温度分布を示す図面である。ソースガス11a及びキャリアガス11bが熱分解炉11に供給される場合、特に、ランピング領域での温度変化が大きく発生することが分かる。このような温度変化の影響によって、もし、ランピング領域での停滞時間が長くなれば、ソースガスである前駆体のサイズが変化してナノパーチクルの分散特性が悪くなる。   FIG. 2 is a drawing showing the temperature distribution in the pyrolysis furnace 11. It can be seen that when the source gas 11a and the carrier gas 11b are supplied to the pyrolysis furnace 11, a large temperature change occurs particularly in the ramping region. If the stagnation time in the ramping region becomes longer due to the influence of such temperature change, the size of the precursor as the source gas changes and the dispersion characteristics of the nanoparticle deteriorate.

ナノパーチクルを均一なサイズに形成するためには、ソースガス11aとキャリアガス11bとが熱分解反応が起こる前に短時間内に均一な濃度で十分に混合されねばならず、混合されたガスが熱分解炉11内で全体的に均一な濃度分布を有さねばならない。しかし、従来の技術による熱分解装置及び工程では、このような要求を何れも満足させ難いという問題点がある。
米国特許第6,586,785号明細書
In order to form the nanoparticle with a uniform size, the source gas 11a and the carrier gas 11b must be sufficiently mixed at a uniform concentration within a short time before the thermal decomposition reaction occurs. It must have a uniform concentration distribution throughout the pyrolysis furnace 11. However, conventional pyrolysis apparatuses and processes have a problem that it is difficult to satisfy all of these requirements.
US Pat. No. 6,586,785

本発明は、前記従来の技術の問題点を解決するためのものであって、熱分解法によるナノパーチクルの製造において、ソースガスである前駆体の熱分解特性を向上させるために前駆体の予熱に必要な時間を最小化するように、熱分解炉のランピング領域の構造を改善した熱分解炉を提供することを目的とする。   The present invention is to solve the above-mentioned problems of the prior art, and in the production of nanoparticle by the thermal decomposition method, the preheating of the precursor is performed in order to improve the thermal decomposition characteristics of the precursor which is a source gas. An object of the present invention is to provide a pyrolysis furnace having an improved structure of the ramping region of the pyrolysis furnace so as to minimize the time required for the pyrolysis furnace.

本発明では、前記目的を達成するために、熱分解炉本体と、前記熱分解炉本体の外周部に形成され、前記熱分解炉本体の温度を調節する加熱部と、前記熱分解炉本体内にソースガスを供給する少なくとも一つ以上のガス供給管と、前記熱分解炉本体内に装着されて前記ソースガスのフローを調節する流路調節部と、を備える流路調節部を備えた熱分解炉を提供する。   In the present invention, in order to achieve the above object, a pyrolysis furnace main body, a heating part formed on the outer periphery of the pyrolysis furnace main body for adjusting the temperature of the pyrolysis furnace main body, and the inside of the pyrolysis furnace main body Heat provided with a flow path adjustment unit comprising at least one gas supply pipe for supplying a source gas to a gas flow path, and a flow path adjustment unit mounted in the pyrolysis furnace main body to adjust the flow of the source gas A cracking furnace is provided.

本発明において、前記熱分解炉本体は、前記供給ガスが予熱されるランピング領域と、前記ソースガスが熱分解される熱分解領域と、に分けられることを特徴とする。   In the present invention, the pyrolysis furnace main body is divided into a ramping region where the supply gas is preheated and a pyrolysis region where the source gas is pyrolyzed.

本発明において、前記流路調節部は、前記ランピング領域に装着されたことを特徴とする。   In the present invention, the flow path adjusting portion is mounted on the ramping region.

本発明において、前記流路調節部と前記熱分解炉本体の内壁との間に、ソースガスが前記熱分解領域に供給されるように前記流路調節部と前記熱分解炉本体の内壁との間にガス流路が形成されたことを特徴とする。   In the present invention, between the flow path control unit and the inner wall of the pyrolysis furnace body, the source gas is supplied to the pyrolysis region between the flow path control unit and the inner wall of the pyrolysis furnace body. A gas flow path is formed between them.

本発明において、前記流路調節部は、前記熱分解炉本体内で位置調節自在に、前記流路調節部及び前記熱分解炉本体の側部と連結された移動支持部によって支持されたことを特徴とする。   In the present invention, the flow path adjustment part is supported by a moving support part connected to the flow path adjustment part and a side part of the pyrolysis furnace main body so that the position of the flow path adjustment part is freely adjustable in the pyrolysis furnace main body. Features.

本発明において、前記流路調節部の外周部は、前記熱分解炉本体の内壁に接触して形成され、前記流路調節部内には、前記ソースガスを前記熱分解領域に移動させうる一つ以上の流路が形成されたことを特徴とする。   In the present invention, an outer peripheral portion of the flow path adjustment unit is formed in contact with an inner wall of the pyrolysis furnace main body, and the source gas can be moved to the pyrolysis region in the flow path adjustment unit. The above flow path is formed.

本発明において、前記流路は、前記流路調節部を貫通して形成された貫通ホールであることを特徴とする。   In the present invention, the flow path is a through hole formed through the flow path adjusting portion.

本発明において、前記貫通ホールは、前記熱分解炉本体の内壁に近くなるほどその直径が大きくなることを特徴とする。   In the present invention, the diameter of the through hole increases as it approaches the inner wall of the pyrolysis furnace main body.

本発明において、前記流路調節部は、前記熱分解炉本体と同じ物質で形成させうる。   In the present invention, the flow path controller may be formed of the same material as the pyrolysis furnace body.

本発明において、前記流路調節部は、反応性の小さな石英を含む材料で形成させることが望ましい。   In the present invention, it is desirable that the flow path adjusting portion is formed of a material containing quartz with low reactivity.

本発明によれば、従来のナノパーチクル製造工程と比較して、次のような長所がある。ランピング領域に流路調節部を形成させてソースガスを均一に加熱して熱分解特性を調節して、結果的に、一定のサイズのナノパーチクルを製造できる。特に、高農度のソースガスを使用する場合に発生する分散特性の低下を抑制できるため、サイズが小さく、かつ優秀な特性を有するナノパーチクルの製造が可能であるので、全体的な工程効率を向上させうる。   According to the present invention, there are the following advantages compared with the conventional nanoparticle manufacturing process. By forming a flow path control unit in the ramping region and uniformly heating the source gas to adjust the thermal decomposition characteristics, it is possible to manufacture nano particles of a certain size. In particular, since it is possible to suppress the degradation of the dispersion characteristics that occur when using high-agricultural source gas, it is possible to manufacture nanoparticle with small size and excellent characteristics, so overall process efficiency is improved. It can be improved.

以下、図面を参照して、本発明による改善された構造の流路調節部を有する熱分解炉について詳細に説明する。   Hereinafter, a pyrolysis furnace having a flow path control unit having an improved structure according to the present invention will be described in detail with reference to the drawings.

図3Aは、本発明による流路調節部を備えた熱分解炉の構造を示す断面図である。本発明による熱分解炉(熱分解路本体)31は、その外周部に加熱部33が形成されており、ソースガス及びキャリアガスが供給される一つ以上のガス供給管32と、混合、予熱されるランピング領域35aと、ソースガス及びキャリアガスが熱分解される熱分解領域35bとに分けられる。熱分解炉31の内部のランピング領域35aには、本発明の特徴である流路調節部34が形成されている。   FIG. 3A is a cross-sectional view showing the structure of a pyrolysis furnace provided with a flow path control unit according to the present invention. A pyrolysis furnace (pyrolysis path main body) 31 according to the present invention has a heating portion 33 formed on the outer periphery thereof, and one or more gas supply pipes 32 to which source gas and carrier gas are supplied, and mixing and preheating. The ramping region 35a is divided into a thermal decomposition region 35b where the source gas and the carrier gas are thermally decomposed. In the ramping region 35 a inside the pyrolysis furnace 31, a flow path adjustment unit 34 that is a feature of the present invention is formed.

流路調節部34の形態は調節可能であり、図3Aでは、円筒形の流路調節部34aを示した。流路調節部34aは、ランピング領域35aの内部に形成させ、その材料は、一般的な熱分解炉31の材料のように反応性のない物質、例えば、石英を含む材料を使用することが望ましい。   The form of the flow path adjustment unit 34 can be adjusted, and FIG. 3A shows a cylindrical flow path adjustment unit 34a. The flow path adjustment unit 34a is formed inside the ramping region 35a, and it is desirable to use a non-reactive substance, for example, a material containing quartz, such as a general pyrolysis furnace 31 material. .

ここで、図3Aに示したように、熱分解炉31の内部の供給ガスの進行方向を長手方向と定義すれば、流路調節部34は、熱分解炉31の内部直径より小さな直径に形成し、ソースガスの進行方向32が熱分解炉31と流路調節部34との間の長手方向となるように形成する。すなわち、図3Aのランピング領域35aでの供給ガスの流路は、流路調節部34と熱分解炉31の内壁との間となる。   Here, as shown in FIG. 3A, if the traveling direction of the supply gas inside the pyrolysis furnace 31 is defined as the longitudinal direction, the flow path adjustment unit 34 is formed to have a diameter smaller than the internal diameter of the pyrolysis furnace 31. Then, the source gas travel direction 32 is formed to be the longitudinal direction between the pyrolysis furnace 31 and the flow path adjustment unit 34. That is, the flow path of the supply gas in the ramping region 35 a in FIG. 3A is between the flow path adjustment unit 34 and the inner wall of the pyrolysis furnace 31.

図3B及び図3Cは、図3Aの流路調節部を示す斜視図である。   3B and 3C are perspective views showing the flow path adjusting section of FIG. 3A.

図3Bを参照すれば、流路調節部34は、熱分解炉31の内面と連結された固定支持部36を通じて固定されていることが分かる。このような固定支持部36は、熱分解炉31に供給される供給ガス流路に影響を及ぼさない範囲で熱分解炉31の内部に装着させる。   Referring to FIG. 3B, it can be seen that the flow path adjustment unit 34 is fixed through a fixed support unit 36 connected to the inner surface of the pyrolysis furnace 31. Such a fixed support portion 36 is mounted inside the pyrolysis furnace 31 as long as it does not affect the supply gas flow path supplied to the pyrolysis furnace 31.

図3Cを参照すれば、流路調節部34は、移動支持部37の支持を受け、移動支持部37は、熱分解炉31の外部で長さ調節が可能である。したがって、流路調節部34は、熱分解炉31の内部で移動支持部37の長手方向に位置調節が可能である。   Referring to FIG. 3C, the flow path adjustment unit 34 is supported by the movement support unit 37, and the movement support unit 37 can be adjusted in length outside the pyrolysis furnace 31. Therefore, the position of the flow path adjustment unit 34 can be adjusted in the longitudinal direction of the movement support unit 37 inside the pyrolysis furnace 31.

図4Aは、複数のホールが形成された流路調節部34を備えた熱分解炉31を示す図面である。図4Aを参照すれば、熱分解炉31は、ソースガス及びキャリアガスが混合されるランピング領域35aと、ソースガス及びキャリアガスが熱分解される熱分解領域35bとに分けられる。ガス供給管32から供給されたガスの排出領域である熱分解炉31の内部のランピング領域35aには、本発明の特徴である流路調節部34が形成されている。このような構造は、前述した図3Aの熱分解炉31と類似している。   FIG. 4A is a diagram illustrating a pyrolysis furnace 31 including a flow path adjustment unit 34 in which a plurality of holes are formed. Referring to FIG. 4A, the pyrolysis furnace 31 is divided into a ramping region 35a where the source gas and the carrier gas are mixed and a pyrolysis region 35b where the source gas and the carrier gas are pyrolyzed. In the ramping region 35 a inside the pyrolysis furnace 31, which is a discharge region of the gas supplied from the gas supply pipe 32, a flow path adjusting unit 34 that is a feature of the present invention is formed. Such a structure is similar to the above-described pyrolysis furnace 31 of FIG. 3A.

しかし、図4Aの流路調節部34は、図3Aの流路調節部34aと差がある。図4Aの流路調節部34は、熱分解炉31の内径と類似したサイズに形成され、熱分解炉31の長手方向にソースガス及びキャリアガスが移動できるように貫通ホール38が形成されたことが分かる。   However, the flow path adjustment unit 34 in FIG. 4A is different from the flow path adjustment unit 34a in FIG. 3A. 4A is formed in a size similar to the inner diameter of the pyrolysis furnace 31, and a through hole 38 is formed so that the source gas and the carrier gas can move in the longitudinal direction of the pyrolysis furnace 31. I understand.

図4Bは、前記図4Aの流路調節部34のように、流路調節部34の内部に熱分解炉31の長手方向に流路である貫通ホール38が形成されたことが分かる。このような貫通ホール38の形態及びそのサイズは、選択的に調節可能であり、ランピング領域35aの特性上ソースガスとキャリアガスとの混合及び予熱がなされねばならないので、熱伝逹を考慮して、流路調節部34の中心から遠くなるほど貫通ホール38のサイズ及び数が増加するように形成されることが望ましい。   4B shows that a through-hole 38 that is a flow path is formed in the longitudinal direction of the pyrolysis furnace 31 inside the flow path adjustment section 34, like the flow path adjustment section 34 of FIG. 4A. The shape and size of the through-hole 38 can be selectively adjusted, and the source gas and the carrier gas must be mixed and preheated due to the characteristics of the ramping region 35a. It is desirable that the size and number of the through holes 38 increase as the distance from the center of the flow path adjustment unit 34 increases.

図3A及び図4Aのように、流路調節部34を熱分解炉31のランピング領域35aに形成させる理由を説明すれば、次の通りである。   The reason why the flow path adjustment unit 34 is formed in the ramping region 35a of the pyrolysis furnace 31 as shown in FIGS. 3A and 4A is as follows.

第一に、ランピング領域35aでの予熱効率を増大させるためである。加熱部によって相対的に高い温度を維持する熱分解炉31の内壁に、可能な限り近くソースガス及びキャリアガスなどの供給ガスを移動させることによって、供給ガスを熱分解反応が起こる温度にまでさらに早く到達させるためである。   The first reason is to increase the preheating efficiency in the ramping region 35a. By moving the supply gas such as the source gas and the carrier gas as close as possible to the inner wall of the pyrolysis furnace 31 that maintains a relatively high temperature by the heating unit, the supply gas is further brought to a temperature at which the pyrolysis reaction occurs. This is to make it reach early.

第二に、ソースガス及びキャリアガスなどの供給ガスがランピング領域35aで停滞する時間を短縮させるために、ランピング領域35aの断面積を減少させることによって、特に、ソースガスである前駆体のサイズ変化を防止してナノパーチクルの分散特性が悪くなることを防止するためである。   Secondly, in order to reduce the time during which the supply gas such as the source gas and the carrier gas stagnates in the ramping region 35a, by reducing the cross-sectional area of the ramping region 35a, in particular, the size change of the precursor as the source gas This is to prevent the dispersion characteristics of the nanoparticle from deteriorating.

したがって、図3A及び図4Aのように、流路調節部34をランピング領域35aに形成させることによって、ソースガス及びキャリアガスがランピング領域35aに流入されてミキシングされた後、これを早く通過するように誘導して、ほとんどのソースガスを同じ地点及び同じ温度で同時に熱分解させる。流路調節部34は、前述したように、ガスのフロー方向で対称形になるように、円筒形またはその内部に貫通ホール38を形成させたものである。   Therefore, as shown in FIGS. 3A and 4A, the flow path adjusting unit 34 is formed in the ramping region 35a, so that the source gas and the carrier gas flow into the ramping region 35a and are mixed and then quickly pass through. Most source gases are pyrolyzed at the same point and at the same temperature at the same time. As described above, the flow path adjusting section 34 is cylindrical or has a through hole 38 formed therein so as to be symmetrical in the gas flow direction.

本発明者は、流路調節部を備えた熱分解炉を利用した熱分解工程でナノパーチクルを製造した。このときに使用した装備は、従来使用してきた熱分解炉及び反応チャンバを使用し、但し、熱分解炉内に円筒形の流路調節部をランピング領域に装着させた。   The inventor manufactured nanoparticle by a pyrolysis process using a pyrolysis furnace provided with a flow path control unit. The equipment used at this time was a conventional pyrolysis furnace and reaction chamber, except that a cylindrical flow path control unit was installed in the ramping region in the pyrolysis furnace.

基板上にSiナノパーチクルを形成させるために、ソースガスとしてSiHガスを使用し、キャリアガスとしてNを使用した。熱分解炉のランピング領域に円筒形の流路調節部を設置した。SiHは、約300℃ないし600℃の温度領域で熱分解反応が起こり始めるので、加熱部を通じて熱分解炉の内部温度をそれ以上になるように維持した。熱分解されたSiを基板上に蒸着してナノパーチクルを形成させた。そして、特性比較のために流路調節部を除外した状態で、他の条件は同一にしてナノパーチクルを形成させた。 In order to form Si nanoparticle on the substrate, SiH 4 gas was used as a source gas and N 2 was used as a carrier gas. A cylindrical flow path control unit was installed in the ramping region of the pyrolysis furnace. Since SiH 4 begins to undergo a pyrolysis reaction in the temperature range of about 300 ° C. to 600 ° C., the internal temperature of the pyrolysis furnace was maintained at a higher temperature through the heating unit. Pyrolyzed Si was vapor-deposited on the substrate to form nanoparticle. Then, the nanoparticle was formed under the same conditions except for the flow path adjusting part for the characteristic comparison.

図5は、前述したように、流路調節部を熱分解炉に装着した状態及び流路調節部を熱分解炉に装着していない状態で、それぞれ形成させたナノパーチクルのサイズ及び密度を測定して示したグラフである。図5で、横軸は、ナノパーチクルのサイズ(nm)を表し、縦軸は、ナノパーチクルのサイズによる分布を表す。   FIG. 5 shows the measurement of the size and density of the nanoparticle formed in a state where the flow path adjustment unit is mounted on the pyrolysis furnace and the flow path control unit is not mounted on the pyrolysis furnace, as described above. It is the graph shown. In FIG. 5, the horizontal axis represents the size (nm) of the nanoparticle, and the vertical axis represents the distribution according to the size of the nanoparticle.

図5を参照すれば、本発明によって形成されたSiナノパーチクルは、約8nmサイズに最も多く形成され、サイズが15nm以上であるナノパーチクルは、ほとんど形成されないということが分かる。すなわち、全般的に、非常に均一なサイズにナノパーチクルが形成された。一方、従来の技術によって形成されたSiナノパーチクルは、約10nmサイズに最も多く形成され、非常に広く分布するということが分かる。そして、約15nm以上のサイズを有するナノパーチクルも相当数形成された。   Referring to FIG. 5, it can be seen that the Si nanoparticle formed according to the present invention is the most formed with a size of about 8 nm, and the nanoparticle with a size of 15 nm or more is hardly formed. That is, in general, nanoparticle was formed in a very uniform size. On the other hand, it can be seen that the Si nano-particles formed by the conventional technique are most formed in a size of about 10 nm and are very widely distributed. A considerable number of nano-particles having a size of about 15 nm or more were formed.

本発明によって形成されたSiナノパーチクルのサイズ及び従来の技術によって形成されたSiナノパーチクルのサイズについて、それぞれ標準偏差を測定した。その結果、本発明によって形成されたSiナノパーチクルのサイズ標準偏差は、1.31であり、従来の技術によって形成されたSiナノパーチクルのサイズ標準偏差は、1.42であると現れた。したがって、統計的にも本発明による流路調節部を熱分解炉に形成させた場合、さらに向上した特性を有するナノパーチクルを形成させうるということが分かる。   Standard deviations were measured for the size of the Si nanoparticle formed by the present invention and the size of the Si nanoparticle formed by the conventional technique, respectively. As a result, the size standard deviation of the Si nanoparticle formed by the present invention was 1.31, and the size standard deviation of the Si nanoparticle formed by the conventional technique appeared to be 1.42. Therefore, statistically, it can be seen that when the flow path control unit according to the present invention is formed in the pyrolysis furnace, nanoparticle having further improved characteristics can be formed.

前記説明で多くの事項が具体的に記載されているが、それらは、発明の範囲を限定するものではなく、望ましい実施形態の例示として解釈されねばならない。すなわち、流路調節部の形態は、円筒形または複数のホールを形成させた構造だけでなく、多様な形態に形成させることができ、例えば、メッシュ構造や格子構造または蜂の巣状の構造として採用できる。   Although many matters have been specifically described in the above description, they do not limit the scope of the invention and should be construed as examples of desirable embodiments. That is, the shape of the flow path adjusting portion can be formed not only in a cylindrical shape or a structure in which a plurality of holes are formed, but also in various shapes, for example, can be adopted as a mesh structure, a lattice structure, or a honeycomb structure. .

したがって、本発明の範囲は、説明された実施形態によって決定されず、特許請求の範囲に記載された技術的思想によって決定されねばならない。   Accordingly, the scope of the invention should not be determined by the described embodiments, but by the technical spirit described in the claims.

本発明は、熱分解炉に関連した技術分野に適用可能である。   The present invention is applicable to technical fields related to a pyrolysis furnace.

熱分解炉、酸化炉及び蒸着チャンバを示す概略図である。It is the schematic which shows a pyrolysis furnace, an oxidation furnace, and a vapor deposition chamber. 特許文献1の熱分解炉を示す断面図である。It is sectional drawing which shows the thermal decomposition furnace of patent document 1. FIG. 熱分解炉内における熱分解工程時の温度分布を示す図面である。It is drawing which shows the temperature distribution at the time of the pyrolysis process in a pyrolysis furnace. 本発明による流路調節部を備えた熱分解炉の一実施形態を示す図面である。1 is a view showing an embodiment of a pyrolysis furnace provided with a flow path control unit according to the present invention. 本発明による流路調節部を備えた熱分解炉の一実施形態を示す図面である。1 is a view showing an embodiment of a pyrolysis furnace provided with a flow path control unit according to the present invention. 本発明による流路調節部を備えた熱分解炉の一実施形態を示す図面である。1 is a view showing an embodiment of a pyrolysis furnace provided with a flow path control unit according to the present invention. 本発明による流路調節部を備えた熱分解炉の他の実施形態を示す図面である。It is drawing which shows other embodiment of the pyrolysis furnace provided with the flow-path adjustment part by this invention. 本発明による流路調節部を備えた熱分解炉の他の実施形態を示す図面である。It is drawing which shows other embodiment of the pyrolysis furnace provided with the flow-path adjustment part by this invention. 流路調節部を熱分解炉に装着した状態及び流路調節部を熱分解炉に装着していない状態でそれぞれ形成させたナノパーチクルサイズ及び密度を測定して示すグラフである。It is a graph which measures and shows the nano particle size and the density which were formed in the state where the flow path adjustment part was attached to the pyrolysis furnace, and the state where the flow path adjustment part was not attached to the pyrolysis furnace, respectively.

符号の説明Explanation of symbols

31 熱分解炉、
32 ガス供給管、
33 加熱部、
34,34a,34b 流路調節部、
35a ランピング領域、
35b 熱分解領域、
36 固定支持部、
37 移動支持部。
31 pyrolysis furnace,
32 gas supply pipe,
33 heating section,
34, 34a, 34b flow path adjustment unit,
35a ramping area,
35b pyrolysis region,
36 fixed support,
37 Moving support.

Claims (10)

シリコン基板と、
熱分解炉本体と、
前記熱分解炉本体の外周部に形成され、前記熱分解炉本体の温度を調節する加熱部と
前記熱分解炉本体内にソースガスを供給する少なくとも一つ以上のガス供給管と、
前記熱分解炉本体内に装着されて前記ソースガスのフローを調節する流路調節部と、
を備えることを特徴とする流路調節部を備えた熱分解炉。
A silicon substrate;
A pyrolysis furnace body;
A heating section that is formed on an outer peripheral portion of the pyrolysis furnace body, and that adjusts the temperature of the pyrolysis furnace body;
A flow path adjusting unit mounted in the pyrolysis furnace main body to adjust the flow of the source gas;
A pyrolysis furnace provided with a flow path control unit.
前記熱分解炉本体は、
前記供給ガスが予熱されるランピング領域と、
前記ソースガスが熱分解される熱分解領域と、
に分けられることを特徴とする請求項1に記載の流路調節部を備えた熱分解炉。
The pyrolysis furnace body is:
A ramping region in which the feed gas is preheated;
A pyrolysis region in which the source gas is pyrolyzed;
The pyrolysis furnace provided with the flow path control unit according to claim 1, wherein the pyrolysis furnace is divided into two types.
前記流路調節部は、
前記ランピング領域に装着されたことを特徴とする請求項2に記載の流路調節部を備えた熱分解炉。
The flow path adjuster is
The pyrolysis furnace provided with the flow path control unit according to claim 2, wherein the pyrolysis furnace is attached to the ramping region.
前記流路調節部と前記熱分解炉本体の内壁との間にソースガスが前記熱分解領域に供給されるように、前記流路調節部と前記熱分解炉本体の内壁との間にガス流路が形成されたことを特徴とする請求項3に記載の流路調節部を備えた熱分解炉。   A gas flow between the flow path control unit and the inner wall of the pyrolysis furnace body so that a source gas is supplied to the pyrolysis region between the flow path control unit and the inner wall of the pyrolysis furnace body. The thermal decomposition furnace provided with the flow-path adjustment part of Claim 3 characterized by the above-mentioned. 前記流路調節部は、前記熱分解炉本体内で位置調節自在に、前記流路調節部及び前記熱分解炉本体の側部と連結された移動支持部によって支持されたことを特徴とする請求項4に記載の流路調節部を備えた熱分解炉。   The flow path adjustment unit is supported by a moving support unit connected to the flow path adjustment unit and a side portion of the pyrolysis furnace main body so that the position of the flow path adjustment unit is freely adjustable in the pyrolysis furnace main body. Item 5. A pyrolysis furnace comprising the flow path controller according to Item 4. 前記流路調節部の外周部は、前記熱分解炉本体の内壁に接触して形成され、前記流路調節部内には、前記ソースガスを前記熱分解領域に移動させうる一つ以上の流路が形成されたことを特徴とする請求項3に記載の流路調節部を備えた熱分解炉。   An outer peripheral portion of the flow path adjusting unit is formed in contact with an inner wall of the pyrolysis furnace main body, and one or more flow paths capable of moving the source gas to the pyrolysis region in the flow path adjusting unit. The thermal decomposition furnace provided with the flow-path adjustment part of Claim 3 characterized by the above-mentioned. 前記流路は、前記流路調節部を貫通して形成された貫通ホールであることを特徴とする請求項6に記載の流路調節部を備えた熱分解炉。   The pyrolysis furnace provided with the flow path adjusting part according to claim 6, wherein the flow path is a through hole formed through the flow path adjusting part. 前記貫通ホールは、前記熱分解炉本体の内壁に近くなるほどその直径が大きくなることを特徴とする請求項7に記載の流路調節部を備えた熱分解炉。   8. The pyrolysis furnace having a flow path control unit according to claim 7, wherein the diameter of the through-hole increases as it approaches the inner wall of the main body of the pyrolysis furnace. 前記流路調節部は、前記熱分解炉本体と同じ物質で形成されたことを特徴とする請求項1〜8のうち何れか1項に記載の流路調節部を備えた熱分解炉。   The pyrolysis furnace provided with the channel adjusting unit according to any one of claims 1 to 8, wherein the channel adjusting unit is formed of the same material as that of the pyrolysis furnace main body. 前記流路調節部は、石英を含む材料で形成されたことを特徴とする請求項1〜8のうち何れか1項に記載の流路調節部を備えた熱分解炉。   The pyrolysis furnace provided with the flow path control unit according to claim 1, wherein the flow path control unit is formed of a material containing quartz.
JP2005256565A 2004-09-06 2005-09-05 Pyrolysis furnace with gas flowing path regulating section Pending JP2006080516A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040070818A KR100634510B1 (en) 2004-09-06 2004-09-06 Pyrolysis furnace having gas flowing path controller

Publications (1)

Publication Number Publication Date
JP2006080516A true JP2006080516A (en) 2006-03-23

Family

ID=36159678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256565A Pending JP2006080516A (en) 2004-09-06 2005-09-05 Pyrolysis furnace with gas flowing path regulating section

Country Status (3)

Country Link
US (1) US7632093B2 (en)
JP (1) JP2006080516A (en)
KR (1) KR100634510B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0708381D0 (en) * 2007-04-30 2007-06-06 Nokia Corp Method for forming a semiconductor structure

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2790838A (en) * 1952-01-16 1957-04-30 Eastman Kodak Co Process for pyrolysis of hydrocarbons
US3972682A (en) * 1975-10-06 1976-08-03 Envirotech Corporation Pyrolysis furnace
US4020273A (en) * 1975-11-26 1977-04-26 Celanese Corporation Vertical pyrolysis furnace for use in the production of carbon fibers
US4180723A (en) * 1977-03-28 1979-12-25 Corning Glass Works Electrical contacts for electrically conductive carbon glasses
JPS6342377A (en) 1986-08-06 1988-02-23 Sharp Corp Production of ultrafine particle dispersed film
JPS6447029U (en) 1987-09-17 1989-03-23
JPS6454329U (en) 1987-09-30 1989-04-04
JPH066521Y2 (en) * 1988-03-25 1994-02-16 ウシオ電機株式会社 Metal vapor laser equipment
KR960012876B1 (en) * 1988-06-16 1996-09-25 도오교오 에레구토론 사가미 가부시끼가이샤 Heat treating apparatus with cooling fluid nozzles
JP2709182B2 (en) 1990-06-28 1998-02-04 川崎製鉄株式会社 Vapor phase growth apparatus and vapor phase growth control method
JP3149966B2 (en) 1991-05-23 2001-03-26 キヤノン株式会社 Method for manufacturing semiconductor device having quantum box structure
JPH0766139A (en) 1993-08-30 1995-03-10 Ryoden Semiconductor Syst Eng Kk Chemical vapor deposition system
JPH08274031A (en) 1995-03-30 1996-10-18 Toshiba Corp Method and apparatus for manufacturing semiconductor device
JPH0960835A (en) * 1995-08-28 1997-03-04 Kubota Corp Fluidized bed type incinerator
JP3157479B2 (en) * 1997-03-27 2001-04-16 川崎重工業株式会社 Fluidized bed connecting pipe
WO1998056872A1 (en) * 1997-06-10 1998-12-17 Exxon Chemical Patents Inc. Pyrolysis furnace with an internally finned u-shaped radiant coil
JPH1154442A (en) * 1997-08-07 1999-02-26 Shin Etsu Handotai Co Ltd Manufacture of compound semiconductor epitaxial wafer and vapor-phase growth device used for the same
KR100321064B1 (en) * 1997-12-22 2002-03-08 이구택 Apparatus for measuring volume of gas generated in coke oven
KR19990032947U (en) * 1997-12-31 1999-07-26 배길훈 Combustor of exhaust gas purifier for diesel vehicle
DE19817016C2 (en) * 1998-04-17 2000-02-03 Gerstel Gmbh & Co Kg Sample application device for a gas chromatograph
KR100372145B1 (en) * 1998-12-30 2003-04-18 두산중공업 주식회사 Pulverized coal burner for reducing NOx
US6586785B2 (en) * 2000-06-29 2003-07-01 California Institute Of Technology Aerosol silicon nanoparticles for use in semiconductor device fabrication
US6830730B2 (en) * 2001-09-11 2004-12-14 Spectrolanalytical Instruments Method and apparatus for the on-stream analysis of total sulfur and/or nitrogen in petroleum products
US7183228B1 (en) * 2001-11-01 2007-02-27 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube growth
US7121474B2 (en) * 2002-06-18 2006-10-17 Intel Corporation Electro-optical nanocrystal memory device
US6808983B2 (en) * 2002-08-27 2004-10-26 Micron Technology, Inc. Silicon nanocrystal capacitor and process for forming same
US6868230B2 (en) * 2002-11-15 2005-03-15 Engineered Glass Products Llc Vacuum insulated quartz tube heater assembly
JP4379247B2 (en) * 2004-04-23 2009-12-09 住友電気工業株式会社 Method for producing carbon nanostructure
US20060027499A1 (en) * 2004-08-05 2006-02-09 Banaras Hindu University Carbon nanotube filter
KR101281165B1 (en) * 2006-02-08 2013-07-02 삼성전자주식회사 Method to form nano-particle array by convective assembly and a convective assembly apparatus for the same
US7712528B2 (en) * 2006-10-09 2010-05-11 World Energy Systems, Inc. Process for dispersing nanocatalysts into petroleum-bearing formations
US7955569B2 (en) * 2007-03-14 2011-06-07 Hubert Patrovsky Metal halide reactor for CVD and method

Also Published As

Publication number Publication date
US20060051257A1 (en) 2006-03-09
KR20060022052A (en) 2006-03-09
US7632093B2 (en) 2009-12-15
KR100634510B1 (en) 2006-10-13

Similar Documents

Publication Publication Date Title
JP4580323B2 (en) Catalytic chemical vapor deposition equipment
JP5677988B2 (en) Gas injector for a CVD system with a gas injector
Fu et al. Controllable synthesis of high quality monolayer WS 2 on a SiO 2/Si substrate by chemical vapor deposition
US20220267216A1 (en) Systems and methods for silicon oxycarbide ceramic materials comprising silicon metal
TW201727710A (en) Film deposition device
KR101252333B1 (en) A controllable fabrication method of graphene sheets using the thermal plasma chemical vapor deposition method
KR100689052B1 (en) Manufacture device of nano-particle using vacuum plasma
WO2013014920A1 (en) Silicon carbide single crystal manufacturing device
JP2008201648A (en) Carbon nanotube production apparatus and carbon nanotube production method
JP2006080516A (en) Pyrolysis furnace with gas flowing path regulating section
US9481944B2 (en) Gas injectors including a funnel- or wedge-shaped channel for chemical vapor deposition (CVD) systems and CVD systems with the same
US20190085454A1 (en) Vertical deposition system
KR101840111B1 (en) Method of manufacturing carbon nanotube
JP7090789B2 (en) Carbon nanotube manufacturing system
US20110091646A1 (en) Orifice chemical vapor deposition reactor
JP2023525652A (en) CNT filament formation by buoyancy-induced elongational flow
TWI518198B (en) System for preparing films
US20110008246A1 (en) System and method for generating nanoparticles
JP5085901B2 (en) Carbon nanotube production equipment
JP2012126598A (en) Ejection device, apparatus for producing oriented carbon nanotube aggregate, and production method
Rebrov et al. Diamond crystals deposited from interacting jets
KR102374149B1 (en) Chemical vapor deposition system
JP3927455B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP2007039838A (en) Apparatus and method for producing fine carbon fiber
JP2000167384A (en) Method and device for manufacturing solid matter product manufactured by thermal decomposition and its use

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310