JP2006028027A - Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus - Google Patents

Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus Download PDF

Info

Publication number
JP2006028027A
JP2006028027A JP2004204929A JP2004204929A JP2006028027A JP 2006028027 A JP2006028027 A JP 2006028027A JP 2004204929 A JP2004204929 A JP 2004204929A JP 2004204929 A JP2004204929 A JP 2004204929A JP 2006028027 A JP2006028027 A JP 2006028027A
Authority
JP
Japan
Prior art keywords
group
layer
substituted
resin
tetracarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004204929A
Other languages
Japanese (ja)
Inventor
Kenichi Sugimoto
賢一 杉本
Takahiro Fujiyama
高広 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004204929A priority Critical patent/JP2006028027A/en
Publication of JP2006028027A publication Critical patent/JP2006028027A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel compound suitably used as the electron transporting material in an organic electrophotographic photoconductor and an electrophotographic photoconductor using the same which has higher sensitivity than before. <P>SOLUTION: A tetracarboxylic acid derivative is represented by formula (1) (wherein X and Y are each selected from the group consisting of hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, and a substituted or unsubstituted aralkyl group; Z<SB>1</SB>, Z<SB>2</SB>, and Z<SB>3</SB>are each a tetravalent organic group constituting a tetracarboxylic acid or its derivative). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規なテトラカルボン酸誘導体および、該化合物を用いた電子写真感光体、さらに詳しくは、静電式複写機、ファクシミリ、レーザービームプリンタ等の画像形成装置に用いられる電子写真感光体、ならびに該感光体を備えた電子写真装置に関する。   The present invention relates to a novel tetracarboxylic acid derivative and an electrophotographic photosensitive member using the compound, more specifically, an electrophotographic photosensitive member used in an image forming apparatus such as an electrostatic copying machine, a facsimile machine, a laser beam printer, The present invention also relates to an electrophotographic apparatus provided with the photoreceptor.

有機電子写真感光体(OPC)は、近年、無公害、低コスト、材料選択の自由度から感光体特性を様々に設計できるなどの観点から、広く実用化されている。OPCの感光層は、電荷発生層と電荷輸送層とを積層させた積層型の感光体、いわゆる機能分離型の感光体や、電荷発生剤と電荷輸送剤とを単一の感光層中に分散させた、いわゆる単層型の感光体などが提案されている。   In recent years, organic electrophotographic photoreceptors (OPC) have been widely put into practical use from the viewpoints of pollution-free, low cost, and various design of photoreceptor characteristics from the degree of freedom of material selection. The photosensitive layer of OPC is a laminate type photoreceptor in which a charge generation layer and a charge transport layer are laminated, a so-called function separation type photoreceptor, or a charge generation agent and a charge transport agent dispersed in a single photosensitive layer. A so-called single-layer type photoconductor has been proposed.

これらの感光体に使用される電荷輸送剤にはキャリヤ移動度が高いことが要求されているが、キャリヤ移動度が高い電荷輸送剤のほとんどが正孔輸送性であるため、実用に供されているOPCは、機械的強度の観点から、最外層に電荷輸送層が設けられた負帯電プロセスの積層型感光体に限られている。しかし、負帯電プロセスのOPCは負極性コロナ放電を利用するため、正極性のそれに比べて不安定であり、かつオゾンの発生量が多いので感光体を劣化させる原因となり、また使用環境への悪影響などが問題となっている。   The charge transport agents used in these photoreceptors are required to have a high carrier mobility, but most of the charge transport agents with a high carrier mobility have a hole transport property, so that they are put to practical use. From the viewpoint of mechanical strength, the OPC that is used is limited to a negatively charged laminated photoconductor having a charge transport layer provided on the outermost layer. However, OPC in the negative charging process uses negative polarity corona discharge, so it is more unstable than that of positive polarity, and the amount of ozone generated is large, which can cause deterioration of the photoreceptor and adversely affect the use environment. Etc. is a problem.

そこで、このような問題点を解決するためには正帯電プロセスで使用できるOPCが有効である。そのためには、電荷輸送剤として電子輸送剤を使用することが必要であり、例えば特許文献1には、ジフェノキノン構造またはベンゾキノン構造を有する化合物を電子写真感光体用の電子輸送剤として使用することが提案されている。また、特許文献2には、ベンゼンテトラカルボン酸ジイミド化合物を電子写真感光体用の電子輸送剤として使用することが提案されている。   Therefore, in order to solve such problems, OPC that can be used in the positive charging process is effective. For this purpose, it is necessary to use an electron transport agent as a charge transport agent. For example, in Patent Document 1, a compound having a diphenoquinone structure or a benzoquinone structure is used as an electron transport agent for an electrophotographic photoreceptor. Proposed. Patent Document 2 proposes the use of a benzenetetracarboxylic acid diimide compound as an electron transport agent for an electrophotographic photoreceptor.

しかしながら、従来のジフェノキノン誘導体、ベンゾキノン誘導体、ベンゼンテトラカルボン酸ジイミド化合物などの電子輸送剤は、結着樹脂との相溶性が低いため、析出する等の問題がある。また、感光層中に分散できる量が制限されてしまうために、ホッピング距離が長くなり、低電界での電子移動が生じ難い。従って、従来の電子輸送剤を含有する感光体は、電子輸送能に優れた感光体とすることが困難であった。
特開平1−206349号公報 特開平5−142812号公報
However, conventional electron transporting agents such as a diphenoquinone derivative, a benzoquinone derivative, and a benzenetetracarboxylic acid diimide compound have problems such as precipitation because they have low compatibility with the binder resin. Further, since the amount that can be dispersed in the photosensitive layer is limited, the hopping distance becomes long, and the electron transfer hardly occurs in a low electric field. Therefore, it has been difficult to make a conventional photoreceptor containing an electron transport agent excellent in electron transport ability.
JP-A-1-206349 JP-A-5-142812

本発明の目的は、上記した技術的課題を解決し、有機電子写真感光体における電子輸送剤として好適な新規化合物と、該化合物を用いた従来よりも高感度の電子写真感光体とを提供することにある。   The object of the present invention is to solve the above technical problems and provide a novel compound suitable as an electron transporting agent in an organic electrophotographic photoreceptor and an electrophotographic photoreceptor having higher sensitivity than the conventional one using the compound. There is.

本発明者らは鋭意検討した結果、一般式(1)で示されるテトラカルボン酸誘導体が、樹脂への分散性が良好であり、かつ薄膜形成性や電子輸送性に優れており、電子写真感光体における電子輸送剤として使用することにより、高感度で高性能な素子が作製可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the tetracarboxylic acid derivative represented by the general formula (1) has good dispersibility in the resin and is excellent in thin film formation and electron transport properties. It has been found that a high-sensitivity and high-performance device can be produced by using it as an electron transport agent in the body, and the present invention has been completed.

すなわち、本発明は、
1.一般式(1)で示されるテトラカルボン酸誘導体。
That is, the present invention
1. A tetracarboxylic acid derivative represented by the general formula (1).

Figure 2006028027
Figure 2006028027

[式中、X、Yは、それぞれ独立に水素原子、置換または未置換のアリール基、置換または未置換のアルキル基、置換または未置換のシクロアルキル基、置換または未置換のアラルキル基からなる群より選ばれる基を表す。また、式中、Z、Z、Zは、それぞれ独立にテトラカルボン酸及びその誘導体を構成する4価の有機基を表す。]
2.導電性基体上に感光層が設けられた電子写真感光体において、該感光体層中に、上記化合物が含有されていることを特徴とする電子写真感光体。
3.上記電子写真感光体を備えた電子写真装置。
に関する。
[Wherein X and Y are each independently a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, or a substituted or unsubstituted aralkyl group. Represents a group selected from In the formula, Z 1 , Z 2 and Z 3 each independently represents a tetravalent organic group constituting tetracarboxylic acid and a derivative thereof. ]
2. An electrophotographic photoreceptor having a photosensitive layer provided on a conductive substrate, wherein the compound is contained in the photoreceptor layer.
3. An electrophotographic apparatus comprising the electrophotographic photosensitive member.
About.

本発明により得られる新規テトラカルボン酸誘導体は電子輸送性に優れ、該化合物を電子写真感光体に用いた場合には、樹脂への分散性が改善されつつ、かつ電気特性、繰り返し安定性にも優れた高耐久性の電子写真感光体が得られる。   The novel tetracarboxylic acid derivative obtained by the present invention has excellent electron transport properties, and when the compound is used in an electrophotographic photoreceptor, the dispersibility in the resin is improved and the electrical properties and repeat stability are also improved. An excellent and highly durable electrophotographic photoreceptor can be obtained.

以下、本発明を詳細に説明する。
本発明の新規テトラカルボン酸誘導体とは、一般式(1)で表される化合物である。
Hereinafter, the present invention will be described in detail.
The novel tetracarboxylic acid derivative of the present invention is a compound represented by the general formula (1).

Figure 2006028027
Figure 2006028027

[式中、X、Yは、それぞれ独立に水素原子、置換または未置換のアリール基、置換または未置換のアルキル基、置換または未置換のシクロアルキル基、置換または未置換のアラルキル基からなる群より選ばれる基を表す。また、式中、Z、Z、Zは、それぞれ独立にテトラカルボン酸及びその誘導体を構成する4価の有機基を表す。] [Wherein X and Y are each independently a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, or a substituted or unsubstituted aralkyl group. Represents a group selected from In the formula, Z 1 , Z 2 and Z 3 each independently represents a tetravalent organic group constituting tetracarboxylic acid and a derivative thereof. ]

まず、一般式(1)で表される化合物において、置換基X、Yについて説明する。XとYは、同じであっても異なっていてもよく、水素原子、置換または未置換のアリール基、置換または未置換のアルキル基、置換または未置換のシクロアルキル基、置換または未置換のアラルキル基からなる群より選ばれる基である。   First, substituents X and Y in the compound represented by the general formula (1) will be described. X and Y may be the same or different and are each a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl It is a group selected from the group consisting of groups.

アリール基としては、特に制限はないが、中でも炭素数6〜30の置換または未置換の炭素環式芳香族基、炭素数3〜25の置換または未置換の複素環式芳香族基が好ましく、炭素数6〜25の置換または未置換の炭素環式芳香族基、炭素数4〜12の置換または未置換の複素環式芳香族基がより好ましく、炭素数6〜22の置換または未置換の炭素環式芳香族基、炭素数4〜10の置換または未置換の複素環式芳香族基がさらに好ましい。具体的には、フェニル基、ナフチル基、アントリル基、ビフェニル基、チエニル基、ビチエニル基、フリル基、ピリジル基などが挙げられる。   The aryl group is not particularly limited, but is preferably a substituted or unsubstituted carbocyclic aromatic group having 6 to 30 carbon atoms, a substituted or unsubstituted heterocyclic aromatic group having 3 to 25 carbon atoms, A substituted or unsubstituted carbocyclic aromatic group having 6 to 25 carbon atoms, a substituted or unsubstituted heterocyclic aromatic group having 4 to 12 carbon atoms is more preferable, and a substituted or unsubstituted group having 6 to 22 carbon atoms is preferred. A carbocyclic aromatic group and a substituted or unsubstituted heterocyclic aromatic group having 4 to 10 carbon atoms are more preferable. Specific examples include a phenyl group, a naphthyl group, an anthryl group, a biphenyl group, a thienyl group, a bithienyl group, a furyl group, and a pyridyl group.

アルキル基としては、特に制限はないが、中でも炭素数1〜25、好ましくは炭素数1〜10の炭素原子を有する直鎖、分岐または環状のアルキル基が好ましい。具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ペプチル基、n−オクチル基、デシル基といった直鎖状のもの、i―プロピル基、s−ブチル基、t−ブチル基、メチルプロピル基、ジメチルプロピル基、エチルプロピル基、ジエチルプロピル基、メチルブチル基、ジメチルブチル基、メチルペンチル基、ジメチルペンチル基、メチルヘキシル基、ジメチルヘキシル基などの分岐状のものなどが挙げられる。   The alkyl group is not particularly limited, but a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms, preferably 1 to 10 carbon atoms is particularly preferable. Specifically, straight chain such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-peptyl group, n-octyl group, decyl group, i-propyl group, s-butyl group, t-butyl group, methylpropyl group, dimethylpropyl group, ethylpropyl group, diethylpropyl group, methylbutyl group, dimethylbutyl group, methylpentyl group, dimethylpentyl group, methylhexyl group, Examples include branched ones such as a dimethylhexyl group.

シクロアルキル基としては、特に制限はないが、中でも炭素数1〜25、好ましくは炭素数1〜10の炭素原子を有するシクロアルキル基が好ましい。具体的には、シクロプロパンからシクロデカンまでの同属環、メチルシクロペンタン、ジメチルシクロペンタン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、テトラメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサンなどのアルキル置換基を有するものなどが挙げられる。   The cycloalkyl group is not particularly limited, but among them, a cycloalkyl group having 1 to 25 carbon atoms, preferably 1 to 10 carbon atoms is preferable. Specifically, the same ring from cyclopropane to cyclodecane, those having alkyl substituents such as methylcyclopentane, dimethylcyclopentane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, tetramethylcyclohexane, ethylcyclohexane, diethylcyclohexane, etc. Can be mentioned.

アラルキル基としては、特に制限はないが、中でも炭素数6〜14のアラルキル基が好ましい。具体的には、ベンジル基、1−フェニルエチル基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、ベンズヒドリル基、トリチル基、フェネチル基などが挙げられる。   Although there is no restriction | limiting in particular as an aralkyl group, Especially a C6-C14 aralkyl group is preferable. Specific examples include benzyl group, 1-phenylethyl group, 3-phenylpropyl group, 4-phenylbutyl group, 5-phenylpentyl group, 6-phenylhexyl group, benzhydryl group, trityl group, phenethyl group and the like. .

また、X、Yに相当するアリール基、アルキル基、シクロアルキル基、アラルキル基は置換基を有していても良く、具体的にはヒドロキシアルキル基、アルコキシアルキル基、モノアルキルアミノアルキル基、ジアルキルアミノアルキル基、ハロゲン置換アルキル基、アルコキシカルボニルアルキル基、カルボキシアルキル基、アルカノイルオキシアルキル基、アミノアルキル基、ハロゲン原子、アミノ基、ヒドロキシ基、エステル化されていてもよいカルボキシル基、シアノ基などの他、炭素数1〜4の置換基を有してもよいアルキル基や炭素数1〜6の置換基を有してもよいアルコキシ基などが挙げられる。なお、これらの置換基の置換位置については特に限定されない。   The aryl group, alkyl group, cycloalkyl group, and aralkyl group corresponding to X and Y may have a substituent, specifically, a hydroxyalkyl group, an alkoxyalkyl group, a monoalkylaminoalkyl group, a dialkyl. Aminoalkyl groups, halogen-substituted alkyl groups, alkoxycarbonylalkyl groups, carboxyalkyl groups, alkanoyloxyalkyl groups, aminoalkyl groups, halogen atoms, amino groups, hydroxy groups, carboxyl groups that may be esterified, cyano groups, etc. Other examples include an alkyl group which may have a substituent having 1 to 4 carbon atoms and an alkoxy group which may have a substituent having 1 to 6 carbon atoms. In addition, the substitution position of these substituents is not particularly limited.

次に、一般式(1)で表される化合物におけるZ、Z及びZについて説明する。Z、Z及びZは、それぞれ独立にテトラカルボン酸及びその誘導体を構成する4価の有機基である。4価の有機基としては、脂環式基、脂肪族基、芳香族基、あるいは複数の芳香族基が直接結合、カルボニル基、スルホン基、スルホキシド基、エーテル基またはスルフィド基の架橋員により相互に連結された芳香族基を挙げることができる。 Next, Z 1 , Z 2 and Z 3 in the compound represented by the general formula (1) will be described. Z 1 , Z 2 and Z 3 are each independently a tetravalent organic group constituting tetracarboxylic acid and a derivative thereof. As the tetravalent organic group, an alicyclic group, an aliphatic group, an aromatic group, or a plurality of aromatic groups are directly bonded to each other by a cross-linking member of a carbonyl group, a sulfone group, a sulfoxide group, an ether group, or a sulfide group. An aromatic group linked to can be mentioned.

脂環式基としては、特に制限はないが、中でも炭素数4〜25、好ましくは炭素数4〜10の炭素原子を有する脂環式基が好ましい。具体的には、例えば、テトラカルボン酸及びその誘導体を構成する4価の有機基において、テトラカルボン酸及びその誘導体がテトラカルボン酸二無水物であり、4価の有機基が脂環族基である場合、即ち、脂環式テトラカルボン酸二無水物の具体例として、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’−ジシクロヘキシルテトラカルボン酸二無水物、シス−3,7−ジブチルシクロオクタ−1,5−ジエン−1,2,5,6−テトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、3,5,6−トリカルボキシ−2−カルボキシノルボルナン−2:3,5:6−ジ無水物、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物などが挙げられる。   The alicyclic group is not particularly limited, and among them, an alicyclic group having 4 to 25 carbon atoms, preferably 4 to 10 carbon atoms is preferable. Specifically, for example, in tetravalent organic groups constituting tetracarboxylic acid and derivatives thereof, tetracarboxylic acid and derivatives thereof are tetracarboxylic dianhydrides, and tetravalent organic groups are alicyclic groups. In some cases, ie, as a specific example of alicyclic tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane Tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclohexyl Tet Carboxylic dianhydride, cis-3,7-dibutylcycloocta-1,5-diene-1,2,5,6-tetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride 3,5,6-tricarboxy-2-carboxynorbornane-2: 3,5: 6-dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene-2-succinic acid Anhydride, 2,3,4,5-tetrahydrofuran tetracarboxylic dianhydride, etc. are mentioned.

脂肪族基としては、特に制限はないが、中でも炭素数4〜25、好ましくは炭素数4〜10の炭素原子を有する脂肪族基が好ましい。具体的には、例えば、テトラカルボン酸及びその誘導体を構成する4価の有機基において、テトラカルボン酸及びその誘導体がテトラカルボン酸二無水物であり、4価の有機基が脂肪族基である場合、即ち、脂肪族テトラカルボン酸二無水物の具体例として、ブタンテトラカルボン酸二無水物。ペンタンテトラカルボン酸二無水物などが挙げられる。   The aliphatic group is not particularly limited, and among them, an aliphatic group having 4 to 25 carbon atoms, preferably 4 to 10 carbon atoms is preferable. Specifically, for example, in tetravalent organic groups constituting tetracarboxylic acid and derivatives thereof, tetracarboxylic acid and derivatives thereof are tetracarboxylic dianhydrides, and tetravalent organic groups are aliphatic groups. In other words, as a specific example of an aliphatic tetracarboxylic dianhydride, butanetetracarboxylic dianhydride. Examples include pentanetetracarboxylic dianhydride.

芳香族基としては、特に制限はないが、中でも炭素数6〜30の置換または未置換の炭素環式芳香族基、炭素数3〜25の置換または未置換の複素環式芳香族基が好ましく、炭素数6〜25の置換または未置換の炭素環式芳香族基、炭素数4〜12の置換または未置換の複素環式芳香族基がより好ましく、炭素数6〜22の置換または未置換の炭素環式芳香族基、炭素数4〜10の置換または未置換の複素環式芳香族基がさらに好ましい。   The aromatic group is not particularly limited, but among them, a substituted or unsubstituted carbocyclic aromatic group having 6 to 30 carbon atoms and a substituted or unsubstituted heterocyclic aromatic group having 3 to 25 carbon atoms is preferable. More preferably a substituted or unsubstituted carbocyclic aromatic group having 6 to 25 carbon atoms, a substituted or unsubstituted heterocyclic aromatic group having 4 to 12 carbon atoms, and a substituted or unsubstituted group having 6 to 22 carbon atoms. And a substituted or unsubstituted heterocyclic aromatic group having 4 to 10 carbon atoms is more preferable.

具体的には、例えば、テトラカルボン酸及びその誘導体を構成する4価の有機基において、テトラカルボン酸及びその誘導体がテトラカルボン酸二無水物であり、4価の有機基が芳香族基である場合、即ち、芳香族テトラカルボン酸二無水物の具体例として、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物、1,2,5,6−アントラセンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’−パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4−ビフェニルテトラカルボン酸二無水物、2,3,4,5−ピリジンテトラカルボン酸二無水物、2,6−ビス(3,4−ジカルボキシフェニル)ピリジン二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p−フェニレン−ビス(トリフェニルフタル酸)二無水物、m−フェニレン−ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン二無水物などが挙げられる。   Specifically, for example, in tetravalent organic groups constituting tetracarboxylic acid and derivatives thereof, tetracarboxylic acid and derivatives thereof are tetracarboxylic dianhydrides, and tetravalent organic groups are aromatic groups. In other words, as specific examples of aromatic tetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4 '-Biphenylsulfonetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7 -Naphthalene tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 1,2,5,6-anthracene tetracarboxylic dianhydride, 3,3 ', 4,4' -Bi Phenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilane tetracarboxylic dianhydride, 1 , 2,3,4-furantetracarboxylic dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) ) Diphenylsulfone dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ′, 4,4′-perfluoroisopropylidenediphthalic dianhydride, 3 , 3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 2,3,4,5-pyridinetetracarbonate Boronic acid dianhydride, 2,6-bis (3,4-dicarboxyphenyl) pyridine dianhydride, bis (phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis (triphenylphthalic acid) dianhydride , M-phenylene-bis (triphenylphthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4′-diphenyl ether dianhydride, bis (triphenylphthalic acid) -4,4′-diphenylmethane An anhydride etc. are mentioned.

また、Z、Z及びZに相当するテトラカルボン酸及びその誘導体を構成する4価の有機基はさらに置換基を有していても良く、具体的にはヒドロキシアルキル基、アルコキシアルキル基、モノアルキルアミノアルキル基、ジアルキルアミノアルキル基、ハロゲン置換アルキル基、アルコキシカルボニルアルキル基、カルボキシアルキル基、アルカノイルオキシアルキル基、アミノアルキル基、ハロゲン原子、アミノ基、ヒドロキシ基、エステル化されていてもよいカルボキシル基、シアノ基などの他、炭素数1〜4の置換基を有してもよいアルキル基や炭素数1〜6の置換基を有してもよいアルコキシ基などが挙げられる。なお、これらの置換基の置換位置については特に限定されない。 Further, the tetracarboxylic acid corresponding to Z 1 , Z 2 and Z 3 and the tetravalent organic group constituting the derivative thereof may further have a substituent, specifically, a hydroxyalkyl group, an alkoxyalkyl group. Monoalkylaminoalkyl group, dialkylaminoalkyl group, halogen-substituted alkyl group, alkoxycarbonylalkyl group, carboxyalkyl group, alkanoyloxyalkyl group, aminoalkyl group, halogen atom, amino group, hydroxy group, esterified In addition to a good carboxyl group, cyano group, etc., an alkyl group which may have a substituent having 1 to 4 carbon atoms or an alkoxy group which may have a substituent having 1 to 6 carbon atoms may be mentioned. In addition, the substitution position of these substituents is not particularly limited.

以下に、前記一般式(1)で示される化合物の具体例を挙げるが、これらの化合物に限定されるものではない。   Although the specific example of a compound shown by the said General formula (1) below is given, it is not limited to these compounds.

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

本発明の一般式(1)で示されるテトラカルボン酸誘導体の合成法は特に限定されるものではないが、公知の合成方法(例えば、特開2001−265031号公報やJ.Am.Chem.Soc., 120, 3231(1998).やJ.Tetrahedron Letters, 42, 3559(2001).や特開昭49−69674号公報など)により、例えば下記反応式(スキーム1,2)のごとく合成される。すなわち、テトラカルボン酸もしくはその無水物をアミン類と反応させる方法、あるいはテトラカルボン酸もしくはその無水物を緩衝液によりpH調整して、アミン類と反応させる方法など(スキーム1)によりモノイミド化合物が得られる。   The method for synthesizing the tetracarboxylic acid derivative represented by the general formula (1) of the present invention is not particularly limited, but a known synthesis method (for example, JP 2001-265031 A or J. Am. Chem. Soc). , 120, 3231 (1998), J. Tetrahedron Letters, 42, 3559 (2001), and Japanese Patent Laid-Open No. 49-69694), for example, as shown in the following reaction formulas (Schemes 1 and 2). . That is, a monoimide compound is obtained by a method of reacting tetracarboxylic acid or its anhydride with amines, or a method of adjusting pH of tetracarboxylic acid or its anhydride with a buffer and reacting with amines (Scheme 1). It is done.

次に、モノイミド化したテトラカルボン酸誘導体をN−アミノ化する合成法は特に限定されるものではないが、公知の合成方法(例えば、J.Am.Chem.Soc., 118, 81(1996).など)により合成することができる。すなわち、モノイミド化合物をヒドラジンと反応させジイミドN−アミン化合物が得られ、このジイミドN−アミン化合物とテトラカルボン酸もしくはその無水物を反応させる方法(スキーム2)により、本発明の一般式(1)で示されるテトラカルボン酸誘導体が得られる。   Next, a synthesis method for N-amination of a monoimidated tetracarboxylic acid derivative is not particularly limited, but a known synthesis method (for example, J. Am. Chem. Soc., 118, 81 (1996)). Etc.) can be synthesized. That is, a diimide N-amine compound is obtained by reacting a monoimide compound with hydrazine, and a method (Scheme 2) in which the diimide N-amine compound is reacted with tetracarboxylic acid or an anhydride thereof (Scheme 2). The tetracarboxylic acid derivative shown by is obtained.

スキーム1

Figure 2006028027
Scheme 1
Figure 2006028027

スキーム2

Figure 2006028027
Scheme 2
Figure 2006028027

モノイミド化は、無溶媒もしくは溶媒存在下で行なう。溶媒としては、ベンゼン、トルエン、キシレン、クロロナフタレン、酢酸、ピリジン、ピコリン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルエチレンウレア、ジメチルスルホキサイドなど、原料や生成物と反応せず、50乃至250℃の温度で反応させられるものを用いる。   Monoimidization is carried out without a solvent or in the presence of a solvent. Solvents such as benzene, toluene, xylene, chloronaphthalene, acetic acid, pyridine, picoline, dimethylformamide, dimethylacetamide, dimethylethyleneurea, dimethylsulfoxide, etc. Use what can be reacted in

pH調整には、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性水溶液とリン酸などの酸との混合により作成した緩衝液を用いる。   For pH adjustment, a buffer solution prepared by mixing a basic aqueous solution such as lithium hydroxide, sodium hydroxide or potassium hydroxide with an acid such as phosphoric acid is used.

モノイミド化したテトラカルボン酸誘導体をN−アミノ化する合成は、無溶媒もしくは溶媒存在下で行なう。溶媒としては、ベンゼン、トルエン、キシレン、クロロナフタレン、酢酸、ピリジン、ピコリン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルエチレンウレア、ジメチルスルホキサイドなど、原料や生成物と反応せず、0乃至250℃の温度で反応させられるものを用いる。   The synthesis for N-amination of a monoimidated tetracarboxylic acid derivative is carried out without solvent or in the presence of a solvent. Solvents such as benzene, toluene, xylene, chloronaphthalene, acetic acid, pyridine, picoline, dimethylformamide, dimethylacetamide, dimethylethyleneurea, dimethylsulfoxide, etc. do not react with raw materials and products, and a temperature of 0 to 250 ° C. Use what can be reacted in

そして、N−アミノジイミド化カルボン酸誘導体とテトラカルボン酸誘導体もしくはその無水物の脱水反応は、無溶媒もしくは溶媒存在下で行なう。溶媒としては、ベンゼン、トルエン、キシレン、クロロナフタレン、ブロモナフタレン、無水酢酸など、原料や生成物と反応せず、50乃至250℃の温度で反応させられるものを用いる。   The dehydration reaction of the N-aminodiimidated carboxylic acid derivative and the tetracarboxylic acid derivative or its anhydride is carried out without solvent or in the presence of a solvent. As the solvent, a solvent that does not react with raw materials or products, such as benzene, toluene, xylene, chloronaphthalene, bromonaphthalene, and acetic anhydride, can be reacted at a temperature of 50 to 250 ° C.

いずれの反応も、無触媒もしくは触媒存在下で行なってよく、特に限定されないが、例えばモレキュラーシーブスやベンゼンスルホン酸やp−トルエンスルホン酸などを脱水剤として用いることができる。   Any reaction may be performed without a catalyst or in the presence of a catalyst, and is not particularly limited. For example, molecular sieves, benzenesulfonic acid, p-toluenesulfonic acid, and the like can be used as a dehydrating agent.

本発明の有機電子写真感光体の実施形態について、図面を参照しながら説明する。図1は本発明の感光体の一実施例を示す概念図である。1は導電性基体、2は下引き層、3は感光層、4は保護層であり、下引き層2と保護層4は必要に応じて設けられる。感光層3は、電荷発生機能と電荷輸送機能を併せ持ち、一つの層で両方の機能を有する単層型や、電荷発生層と電荷輸送層とに分離した積層型がある。   Embodiments of the organic electrophotographic photoreceptor of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing an embodiment of the photoreceptor of the present invention. Reference numeral 1 denotes a conductive substrate, 2 denotes an undercoat layer, 3 denotes a photosensitive layer, 4 denotes a protective layer, and the undercoat layer 2 and the protective layer 4 are provided as necessary. The photosensitive layer 3 has a charge generation function and a charge transport function, and includes a single layer type in which both functions are provided in one layer, and a stacked type in which the charge generation layer and the charge transport layer are separated.

本発明の電子写真感光体は、単層型および積層型のいずれにも適用できるが、本発明のテトラカルボン酸誘導体(1)の使用による効果は単層型感光体において顕著に現れる。単層型感光体は、導電性基体上に、少なくとも、電子輸送剤であるテトラカルボン酸誘導体(1)と電荷発生剤と樹脂バインダーとを含有する単一の感光層を設けたものである。係る単層型の感光層は、単独の構成で正負いずれの帯電にも対応できるが、負極性コロナ放電を用いる必要のない正帯電で使用するのが好ましい。この単層型感光体は、層構成が簡単で生産性に優れていること、感光層の被膜欠陥が発生するのを抑制できること、層間の界面が少ないので光学的特性を向上できること、等の利点を有する。   The electrophotographic photosensitive member of the present invention can be applied to both a single layer type and a laminated type, but the effect of using the tetracarboxylic acid derivative (1) of the present invention is noticeable in the single layer type photosensitive member. The single-layer type photoreceptor is obtained by providing a single photosensitive layer containing at least a tetracarboxylic acid derivative (1) that is an electron transport agent, a charge generating agent, and a resin binder on a conductive substrate. Such a single-layer type photosensitive layer can handle both positive and negative charges with a single structure, but is preferably used with positive charge that does not require negative corona discharge. This single-layer type photoreceptor has advantages such as simple layer structure and excellent productivity, suppression of the occurrence of film defects in the photosensitive layer, and improvement in optical characteristics because there are few interfaces between layers. Have

一方、積層型感光体は、導電性基体上に、電荷発生剤を含有する電荷発生層と、電荷輸送剤を含有する電荷輸送層とをこの順で、あるいは逆の順で積層したものである。但し、電荷発生層は電荷輸送層に比べて膜厚がごく薄いため、その保護のためには、導電性基体上に電荷発生層を形成し、その上に電荷輸送層を形成するのが好ましい。   On the other hand, a multilayer photoreceptor is obtained by laminating a charge generation layer containing a charge generation agent and a charge transport layer containing a charge transfer agent in this order or in the reverse order on a conductive substrate. . However, since the charge generation layer is much thinner than the charge transport layer, it is preferable to form the charge generation layer on the conductive substrate and to form the charge transport layer thereon for protection. .

導電性基体1は、感光体の電極としての機能と同時に他の各層の支持体となっており、円筒状、板状、フィルム状のいずれでもよく、材質的には鉄、アルミニウム、銅、スズ、白金、ステンレス鋼、ニッケルなどの金属単体、上記金属が蒸着またはラミネートされて導電処理を施したプラスチック材料、あるいはヨウ化アルミニウム、酸化スズ、酸化インジウムなどで被覆されたガラスなどが挙げられる。   The conductive substrate 1 serves as a support for each of the other layers simultaneously with the function as the electrode of the photoreceptor, and may be any of a cylindrical shape, a plate shape, and a film shape, and the materials thereof are iron, aluminum, copper, tin And a single metal such as platinum, stainless steel, and nickel, a plastic material obtained by depositing or laminating the above metal and conducting a conductive treatment, or glass coated with aluminum iodide, tin oxide, indium oxide, or the like.

下引き層2は、必要に応じて設けることができ、樹脂を主成分とする層やアルマイト等の酸化皮膜などからなり、導電性基体から感光層への不要な電荷注入を阻止、基体表面の欠陥被覆、感光層の接着性向上等の目的で必要に応じて設けられる。下引き層用の樹脂バインダーとしては、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを適宜組み合わせて使用することが可能である。また、樹脂バインダー中には、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫化バリウム、硫化カルシウム等の金属硫化物、窒化ケイ素、窒化アルミニウム等の金属窒化物、金属酸化物微粒子等を含有してもよい。   The undercoat layer 2 can be provided as necessary, and is composed of a resin-based layer, an anodized oxide film, or the like, and prevents unnecessary charge injection from the conductive substrate to the photosensitive layer. It is provided as necessary for the purpose of defect coating, improvement in adhesion of the photosensitive layer, and the like. As the resin binder for the undercoat layer, polycarbonate resin, polyester resin, polyvinyl acetal resin, polyvinyl butyral resin, vinyl chloride resin, vinyl acetate resin, polyethylene, polypropylene, polystyrene, acrylic resin, polyurethane resin, epoxy resin, melamine resin, Silicone resins, polyamide resins, polystyrene resins, polyacetal resins, polyarylate resins, polysulfone resins, methacrylic ester polymers, copolymers thereof, and the like can be used in appropriate combinations. The resin binder includes silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), metal oxides such as zirconium oxide, metal sulfides such as barium sulfide and calcium sulfide, and silicon nitride. Further, it may contain metal nitride such as aluminum nitride, metal oxide fine particles and the like.

下引き層の膜厚は、下引き層の配合組成にも依存するが、繰り返し連続使用したときに残留電位が増大するなどの悪影響が出ない範囲で任意に設定できる。   Although the thickness of the undercoat layer depends on the composition of the undercoat layer, it can be arbitrarily set within a range where no adverse effect such as an increase in residual potential occurs when it is repeatedly used continuously.

感光層3は、機能分離型の場合は、電荷発生層と電荷輸送層の主として2層からなり、単層型の場合は1層からなる。電荷発生層は、有機光導電性物質を真空蒸着または有機光導電性物質の粒子を樹脂バインダー中に分散させた材料を塗布して形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に発生した電荷の電荷輸送層への注入性が重要であり、電場依存性が少なく低電場でも注入の良いことが望ましい。   In the case of the function separation type, the photosensitive layer 3 is mainly composed of two layers of a charge generation layer and a charge transport layer, and in the case of a single layer type, it is composed of one layer. The charge generation layer is formed by vacuum-depositing an organic photoconductive substance or applying a material in which particles of an organic photoconductive substance are dispersed in a resin binder, and generates charge by receiving light. In addition, the injection efficiency of the generated charges into the charge transport layer is important at the same time as the charge generation efficiency is high, and it is desirable that the injection is good even in a low electric field with little electric field dependency.

電荷発生層は、電荷発生剤を主体として、これに電荷輸送剤などを添加して使用することも可能である。電荷発生剤として、フタロシアニン系顔料、アゾ顔料、アントアントロン顔料、ペリレン顔料、ペリノン顔料、スクアリリウム顔料、チアピリリウム顔料、キナクリドン顔料等を用いることができ、またこれらの顔料を組み合わせて用いてもよい。特にアゾ顔料としては、ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料としては、N,N’−ビス(3,5−ジメチルフェニル)−3,4:9,10−ペリレンビス(カルボキシイミド)、フタロシアニン系顔料としては、無金属フタロシアニン、銅フタロシアニン、チタニルフタロシアニンが好ましく、更には、X型無金属フタロシアニン、τ型無金属フタロシアニン、ε型銅フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、アモルファスチタニルフタロシアニンが好ましい。   The charge generation layer can also be used with a charge generation agent as a main component and a charge transfer agent or the like added thereto. As the charge generating agent, a phthalocyanine pigment, an azo pigment, an anthrone pigment, a perylene pigment, a perinone pigment, a squarylium pigment, a thiapyrylium pigment, a quinacridone pigment, or the like may be used, or these pigments may be used in combination. Especially as azo pigments, disazo pigments, trisazo pigments, as perylene pigments, N, N′-bis (3,5-dimethylphenyl) -3,4: 9,10-perylenebis (carboximide), as phthalocyanine pigments Is preferably metal-free phthalocyanine, copper phthalocyanine, titanyl phthalocyanine, and further X-type metal-free phthalocyanine, τ-type metal-free phthalocyanine, ε-type copper phthalocyanine, α-type titanyl phthalocyanine, β-type titanyl phthalocyanine, Y-type titanyl phthalocyanine, amorphous Titanyl phthalocyanine is preferred.

また、上記例示の電荷発生剤は、所望の領域に吸収波長を有するように、単独でまたは2種以上を混合して用いられる。上記例示の電荷発生剤のうち、特に半導体レーザー等の光源を使用したレーザービームプリンターやファクシミリ等のデジタル光学系の画像形成装置には、700nm以上の波長領域に感度を有する感光体が必要となるため、例えば無金属フタロシアニンやチタニルフタロシアニンなどのフタロシアニン系顔料が好適に用いられる。   Moreover, the charge generators exemplified above are used alone or in admixture of two or more so as to have an absorption wavelength in a desired region. Among the above-exemplified charge generating agents, in particular, a laser beam printer using a light source such as a semiconductor laser or an image forming apparatus of a digital optical system such as a facsimile requires a photoreceptor having sensitivity in a wavelength region of 700 nm or more. Therefore, for example, phthalocyanine pigments such as metal-free phthalocyanine and titanyl phthalocyanine are preferably used.

一方、ハロゲンランプ等の白色光源を使用した静電式複写機等のアナログ光学系の画像形成装置には、可視領域に感度を有する感光体が必要となるため、ペリレン顔料やビスアゾ顔料などが好適に用いられる。   On the other hand, an analog optical image forming apparatus such as an electrostatic copying machine using a white light source such as a halogen lamp requires a photosensitive member having sensitivity in the visible region, so that a perylene pigment or a bisazo pigment is preferable. Used for.

電荷発生層用の樹脂バインダーとしては、従来より感光層に使用されている種々の樹脂バインダーを使用することができる。例えば、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを適宜組み合わせて使用することが可能である。   As the resin binder for the charge generation layer, various resin binders conventionally used in the photosensitive layer can be used. For example, polyvinyl acetal resin, polyvinyl butyral resin, vinyl chloride resin, vinyl acetate resin, silicone resin, polycarbonate resin, polyester resin, polyethylene, polypropylene, polystyrene, acrylic resin, polyurethane resin, epoxy resin, melamine resin, polyamide resin, polystyrene resin Polyacetal resins, polyarylate resins, polysulfone resins, methacrylic acid ester polymers, copolymers thereof, and the like can be used in appropriate combinations.

電荷輸送層は樹脂バインダー中に電荷輸送剤を分散させた材料からなる塗膜であり、暗所では絶縁体層として感光体の電荷を保持し、光受容時には電荷発生層から注入される電荷を輸送する機能を発揮する。   The charge transport layer is a coating film made of a material in which a charge transport agent is dispersed in a resin binder. The charge transport layer retains the charge of the photoconductor as an insulator layer in the dark, and the charge injected from the charge generation layer during light reception. Demonstrate the function to transport.

電荷輸送剤としては、ヒドラゾン化合物、ピラゾリン化合物、ピラゾロン化合物、オキサジアゾール化合物、オキサゾール化合物、アリールアミン化合物、ベンジジン化合物、スチルベン化合物、スチリル化合物、ポリビニルカルバゾール、ポリシラン等の正孔輸送剤または、無水コハク酸、無水マレイン酸、ジブロム無水コハク酸、無水フタル酸、3−ニトロ無水フタル酸、4−ニトロ無水フタル酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4−ニトロフタルイミド、テトラシアノエチレン、テトラシアノキノジメタン、クロラニル、ブロマニル、o−ニトロ安息香酸、トリニトロフルオレノン、キノン、ジフェノキノン、ナフトキノン、アントラキノン、スチルベンキノン等の電子輸送剤を使用することが可能である。例えば、以下に(A−1)〜(A−15)で示される構造式の化合物が用いられるが、これらに限定されるものではない。   Examples of the charge transport agent include a hydrazone compound, a pyrazoline compound, a pyrazolone compound, an oxadiazole compound, an oxazole compound, an arylamine compound, a benzidine compound, a stilbene compound, a styryl compound, polyvinyl carbazole, and a polysilane. Acid, maleic anhydride, dibromosuccinic anhydride, phthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, pyromellitic anhydride, pyromellitic acid, trimellitic acid, trimellitic anhydride, phthalimide, 4 -Electrons such as nitrophthalimide, tetracyanoethylene, tetracyanoquinodimethane, chloranil, bromanyl, o-nitrobenzoic acid, trinitrofluorenone, quinone, diphenoquinone, naphthoquinone, anthraquinone, stilbenequinone It is possible to use the Okuzai. For example, compounds having structural formulas represented by (A-1) to (A-15) below are used, but the present invention is not limited thereto.

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

Figure 2006028027
Figure 2006028027

電荷輸送層用の樹脂バインダーとしては、従来より感光層に使用されている種々の樹脂バインダーを使用することができる。例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを適宜組み合わせて使用することが可能である。特には、以下に示す構造単位(B−1)〜(B−3)を1種または2種以上を有するポリカーボネート樹脂や、ポリエステル樹脂が適している。   As the resin binder for the charge transport layer, various resin binders conventionally used in the photosensitive layer can be used. For example, polycarbonate resin, polyester resin, polyvinyl acetal resin, polyvinyl butyral resin, vinyl chloride resin, vinyl acetate resin, polyethylene, polypropylene, polystyrene, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyamide resin, polystyrene resin Polyacetal resins, polyarylate resins, polysulfone resins, methacrylic acid ester polymers, copolymers thereof, and the like can be used in appropriate combinations. In particular, polycarbonate resins and polyester resins having one or more of the structural units (B-1) to (B-3) shown below are suitable.

Figure 2006028027
Figure 2006028027

これらの感光層中には、上記各成分のほかに、電子写真特性に悪影響を与えない範囲で、公知の種々の添加剤を含有させることもできる。具体的には、酸化防止剤、ラジカル捕獲剤、一重項クエンチャー、紫外線吸収剤等の劣化防止剤、軟化剤、可塑剤、表面改質剤、分散安定剤、ワックス、アクセプター、ドナー等を配合することができる。また、感光層の感度を向上させるために、例えば、テレフェニル、ハロナフトキノン類、アセナフチレン等の公知の増感剤を電荷発生剤と併用しても良い。   In addition to the above components, these photosensitive layers may contain various known additives as long as the electrophotographic characteristics are not adversely affected. Specifically, antioxidants, radical scavengers, singlet quenchers, UV absorbers and other deterioration inhibitors, softeners, plasticizers, surface modifiers, dispersion stabilizers, waxes, acceptors, donors, etc. can do. In order to improve the sensitivity of the photosensitive layer, for example, known sensitizers such as terphenyl, halonaphthoquinones, acenaphthylene and the like may be used in combination with the charge generator.

保護層4は、耐刷性を向上させること等を目的とし、必要に応じ設けることができ、樹脂バインダーを主成分とする層や、アモルファスカーボン等の無機薄膜からなる。また樹脂バインダー中には、導電性の向上や、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫化物、窒化ケイ素、窒化アルミニウム等の金属窒化物、金属酸化物微粒子、または4フッ化エチレン樹脂等のフッ素系樹脂粒子、フッ素系クシ型グラフト重合樹脂等を含有してもよい。また、電荷輸送性を付与する目的で、上記感光層に用いられる電荷輸送物質、電子受容物質や、本発明の新規アリールテトラカルボン酸誘導体を含有させることもできる。   The protective layer 4 is provided for the purpose of improving the printing durability and can be provided as necessary, and is composed of a layer mainly composed of a resin binder or an inorganic thin film such as amorphous carbon. In resin binders, silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide are used for the purpose of improving conductivity, reducing friction coefficient, and imparting lubricity. Metal oxides such as barium sulfate and calcium sulfate, metal nitrides such as silicon nitride and aluminum nitride, metal oxide fine particles, or fluorine resin particles such as tetrafluoroethylene resin, fluorine comb type A graft polymerization resin or the like may be contained. In addition, for the purpose of imparting charge transportability, a charge transport material, an electron accepting material used in the photosensitive layer, or the novel aryl tetracarboxylic acid derivative of the present invention may be contained.

次に、本発明の電子写真感光体の製造方法について説明する。本発明における単層型感光体は、一般式(1)で表されるテトラカルボン酸誘導体(電子輸送剤)、電荷発生剤、樹脂バインダー、さらに必要に応じて正孔輸送剤を適当な溶解または分散させ、得られた塗布液を導電性基体上に塗布し、乾燥させることで形成される。   Next, a method for producing the electrophotographic photoreceptor of the present invention will be described. The single-layer type photoreceptor in the present invention is prepared by appropriately dissolving or dissolving a tetracarboxylic acid derivative (electron transport agent) represented by the general formula (1), a charge generator, a resin binder, and, if necessary, a hole transport agent. It is formed by dispersing and applying the obtained coating solution on a conductive substrate and drying.

上記単層感光体において、電荷発生剤は、樹脂バインダー100重量部に対して0.1〜50重量部、好ましくは0.5〜30重量部の割合で配合すれば良い。電子輸送剤は、樹脂バインダー100重量部に対して5〜150重量部、好ましくは10〜100重量部の割合で配合すれば良い。また、正孔輸送剤は、樹脂バインダー100重量部に対して5〜500重量部、好ましくは25〜200重量部の割合で配合すればよい。なお、電子輸送剤と正孔輸送剤とを併用する場合において、電子輸送剤と正孔輸送剤との総量は、樹脂バインダー100重量部に対して20〜500重量部、好ましくは30〜200重量部とするのが適当である。   In the single-layer photoreceptor, the charge generating agent may be blended in an amount of 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight with respect to 100 parts by weight of the resin binder. What is necessary is just to mix | blend an electron carrying agent in the ratio of 5-150 weight part with respect to 100 weight part of resin binders, Preferably it is 10-100 weight part. Moreover, what is necessary is just to mix | blend a hole transport agent in the ratio of 5-500 weight part with respect to 100 weight part of resin binders, Preferably it is 25-200 weight part. In addition, when using together an electron transport agent and a hole transport agent, the total amount of an electron transport agent and a hole transport agent is 20-500 weight part with respect to 100 weight part of resin binders, Preferably it is 30-200 weight. The part is appropriate.

単層型感光体における感光層の膜厚は、実用的に有効な表面電位を維持するためには、5〜80μmの範囲が好ましく、より好ましくは10〜50μmである。   In order to maintain a practically effective surface potential, the thickness of the photosensitive layer in the single-layer type photoreceptor is preferably in the range of 5 to 80 μm, more preferably 10 to 50 μm.

本発明における積層型感光体は、まず導電性基体上に、蒸着または塗布などの手段によって、電荷発生剤を含有する電荷発生層を形成し、次いでこの電荷発生層上に、一般式(1)で表されるテトラカルボン酸誘導体(電子輸送剤)と樹脂バインダーとを含む塗布液を塗布し、乾燥させて電荷輸送層を形成することによって作製される。   In the multilayer photoreceptor of the present invention, a charge generation layer containing a charge generation agent is first formed on a conductive substrate by means of vapor deposition or coating, and then the general formula (1) is formed on the charge generation layer. It is produced by applying a coating solution containing a tetracarboxylic acid derivative (electron transport agent) represented by the formula (I) and a resin binder, and drying to form a charge transport layer.

上記積層型感光体において、電荷発生層を構成する電荷発生剤と樹脂バインダーとは、種々の割合で使用することができるが、樹脂バインダー100重量部に対して電荷発生剤を5〜1000重量部、好ましくは30〜500重量部の割合で配合するのが適当である。電荷発生層に正孔輸送剤を含有させる場合は、正孔輸送剤の割合を結着樹脂100重量部に対して10〜500重量部、好ましくは50〜200重量部とするのが適当である。   In the laminated photoconductor, the charge generating agent and the resin binder constituting the charge generating layer can be used in various ratios, but the charge generating agent is 5 to 1000 parts by weight with respect to 100 parts by weight of the resin binder. It is preferable to add 30 to 500 parts by weight. In the case where a hole transport agent is contained in the charge generation layer, the ratio of the hole transport agent is 10 to 500 parts by weight, preferably 50 to 200 parts by weight with respect to 100 parts by weight of the binder resin. .

電荷輸送層を構成する電子輸送剤と樹脂バインダーとは、電荷の輸送を阻害しない範囲および結晶化しない範囲で種々の割合で使用することができるが、光照射により電荷発生層で生じた電荷が容易に輸送できるように、樹脂バインダー100重量部に対して、電子輸送剤を10〜500重量部、好ましくは25〜200樹脂の割合で配合するのが適当である。電荷輸送層に、所定の酸化還元電位を有する他の電子輸送剤を含有させる場合は、当該他の電子輸送剤の割合を結着樹脂100重量部に対して0.1〜40重量部、好ましくは0.5〜20重量部とするのが適当である。   The electron transporting agent and the resin binder constituting the charge transporting layer can be used in various proportions within a range that does not inhibit the transport of charges and a range that does not crystallize. It is appropriate to blend the electron transport agent in an amount of 10 to 500 parts by weight, preferably 25 to 200 resins with respect to 100 parts by weight of the resin binder so that it can be easily transported. When the charge transport layer contains another electron transport agent having a predetermined oxidation-reduction potential, the proportion of the other electron transport agent is 0.1 to 40 parts by weight, preferably 100 parts by weight of the binder resin. Is suitably 0.5 to 20 parts by weight.

積層型感光体における感光層の厚さは、電荷発生層が0.01〜5μm程度、好ましくは0.1〜3μm程度であり、電荷輸送層が5〜80μm、好ましくは10〜50μm程度である。単層型感光体においては、導電性基体と感光層との間に、また積層型感光体においては、導電性基体と電荷発生層との間、導電性基体と電荷輸送層との間または電荷発生層と電荷輸送層との間に、感光体の特性を阻害しない範囲でバリア層が形成されていてもよい。また、感光体の表面には、保護層が形成されていてもよい。   The thickness of the photosensitive layer in the multilayer photoreceptor is about 0.01 to 5 μm, preferably about 0.1 to 3 μm for the charge generation layer, and about 5 to 80 μm, preferably about 10 to 50 μm for the charge transport layer. . In a single layer type photoreceptor, between a conductive substrate and a photosensitive layer, and in a laminated type photoreceptor, between a conductive substrate and a charge generation layer, between a conductive substrate and a charge transport layer, or a charge. A barrier layer may be formed between the generation layer and the charge transport layer in a range that does not impair the characteristics of the photoreceptor. Further, a protective layer may be formed on the surface of the photoreceptor.

前記感光層を塗布の方法により形成する場合には、前記例示の電荷発生剤、電荷輸送剤、樹脂バインダー等を適当な溶剤とともに、公知の方法、例えばロールミル、ボールミル、アトライタ、ペイントシェーカーあるいは超音波分散機等を用いて分散混合して分散液を調整し、これを公知の手段により塗布して乾燥させればよい。   When the photosensitive layer is formed by a coating method, the charge generator, charge transport agent, resin binder and the like exemplified above together with a suitable solvent, a known method such as a roll mill, ball mill, attritor, paint shaker or ultrasonic wave A dispersion liquid may be prepared by dispersing and mixing using a disperser or the like, and this may be applied and dried by a known means.

上記分散液を作るための溶剤としては、種々の有機溶剤が使用可能であり、例えばメタノール、エタノール、イソプロパノール、ブタノール等のアルコール類;n−ヘキサン、オクタン、シクロヘキサン等の脂肪族系炭化水素;ベンゼン、トルエン、キシレン等の芳香族系炭化水素、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸メチルなどのエステル類;ジメチルホルムアルデヒド、ジメチルホルムアミド、ジメチルスルホキシド等があげられる。これらの溶剤は単独でまたは2種以上を混合して用いられる。   As the solvent for preparing the dispersion, various organic solvents can be used, for example, alcohols such as methanol, ethanol, isopropanol and butanol; aliphatic hydrocarbons such as n-hexane, octane and cyclohexane; benzene , Aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride and chlorobenzene; ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; acetone, Ketones such as methyl ethyl ketone and cyclohexanone; esters such as ethyl acetate and methyl acetate; dimethylformaldehyde, dimethylformamide, dimethyl sulfoxide, etc. It is below. These solvents are used alone or in admixture of two or more.

以下、本発明を実施例により具体的に説明する。
以下の実施例の出発物質である一無水物モノイミドを、J.Am.Chem.Soc., 120, 3231(1998).に述べられた方法によって、またはそこに述べられたプロセスを僅かに変更することによって調整した。
Hereinafter, the present invention will be specifically described by way of examples.
The monoanhydride monoimide, which is the starting material for the following examples, was prepared as described in J. Am. Am. Chem. Soc. , 120, 3231 (1998). Was adjusted by the method described in or by making slight changes to the process described therein.

< 表1の例示化合物(4)のテトラカルボン酸誘導体の合成 >

Figure 2006028027
<Synthesis of Tetracarboxylic Acid Derivative of Example Compound (4) in Table 1>
Figure 2006028027

[ナフタレンモノイミド体(1)の合成]
ナフタレン−1,4,5,8−テトラカルボン酸二無水物27.0g(0.1mol),DMF600mlを装入した反応器を,加熱還流させた.これに,DMF100mlに溶解させた3−アミノペンタン 9.00g(0.103mol)を,撹拌しながら30分で滴下した.滴下終了後,更に10時間加熱還流させた.冷却後,減圧濃縮し,残渣をトルエン150gで希釈して,不溶分を濾去した.シリカゲルカラムクロマトグラフィー精製して目的の淡黄色のモノイミド体(1)を 25.0g得た.
純度:99%(HPLC)
収率:73%
[Synthesis of Naphthalene Monoimide (1)]
A reactor charged with 27.0 g (0.1 mol) of naphthalene-1,4,5,8-tetracarboxylic dianhydride and 600 ml of DMF was heated to reflux. To this, 9.00 g (0.103 mol) of 3-aminopentane dissolved in 100 ml of DMF was added dropwise over 30 minutes with stirring. After completion of dropping, the mixture was further heated to reflux for 10 hours. After cooling, the mixture was concentrated under reduced pressure, the residue was diluted with 150 g of toluene, and the insoluble matter was removed by filtration. Purification by silica gel column chromatography gave 25.0 g of the desired pale yellow monoimide (1).
Purity: 99% (HPLC)
Yield: 73%

[ナフタレンテトラカルボン酸ジイミドN−アミン体(2)の合成]
ナフタレンモノイミド体(1)10g(29,6mmol)、DMF300mlを装入し溶解させる。次に、ヒドラジン・一水和物1.65g(1.1mol比)を30分で滴下し、100℃で5時間反応させた。析出した結晶を濾過、メタノール洗浄、乾燥してジイミドN−アミン体(2)9.5gを得た。
純度:98.3%(HPLC)
収率:91%
[Synthesis of Naphthalenetetracarboxylic Acid Diimide N-Amine (2)]
10 g (29, 6 mmol) of naphthalene monoimide (1) and 300 ml of DMF are charged and dissolved. Next, 1.65 g (1.1 mol ratio) of hydrazine monohydrate was added dropwise in 30 minutes and reacted at 100 ° C. for 5 hours. The precipitated crystals were filtered, washed with methanol, and dried to obtain 9.5 g of a diimide N-amine compound (2).
Purity: 98.3% (HPLC)
Yield: 91%

[ナフタレンテトラカルボン酸ジイミド2量体の合成]
ナフタレンジイミドN−アミン体(2)3g(8.54mmol)、ピロメリット酸無水物(3)0.93g(0.5mol比)、DMF100mlを装入した反応器を還流下で10時間反応させた。析出した結晶を濾過後、クロロホルムで再結晶して目的物のナフタレンテトラカルボン酸ジイミド2量体(例示化合物(4))3.6gを得た。
純度:99.8%(HPLC)
収率:95%
融点:DSC測定 400℃以上
[Synthesis of naphthalenetetracarboxylic acid diimide dimer]
A reactor charged with 3 g (8.54 mmol) of naphthalenediimide N-amine (2), 0.93 g (0.5 mol ratio) of pyromellitic anhydride (3) and 100 ml of DMF was reacted for 10 hours under reflux. . The precipitated crystals were filtered and recrystallized with chloroform to obtain 3.6 g of the target naphthalenetetracarboxylic acid diimide dimer (Exemplary Compound (4)).
Purity: 99.8% (HPLC)
Yield: 95%
Melting point: DSC measurement 400 ° C or higher

FD−MSによる質量分析の結果、m/z=884および元素分析の結果から目的物であることを確認した。
元素分析(C483212
C H N
計算値(%) 65,16 3.65 9.50
分析値(%) 65.19 3.61 9.48
As a result of mass spectrometry by FD-MS, m / z = 884 and the result of elemental analysis confirmed that it was the target product.
Elemental analysis (C 48 H 32 N 6 O 12)
C H N
Calculated value (%) 65,16 3.65 9.50
Analytical value (%) 65.19 3.61 9.48

単層型電子写真感光体の作成及び評価
《単層型電子写真感光体の作製》
電荷発生剤としてα型TiOフタロシアニン、ホール輸送剤として例示化合物(A−8)、電子輸送剤として実施例1で合成した例示化合物(4)を選択し、樹脂バインダーおよび溶媒と共に以下に示す割合で配合し、ボールミルで50時間混合分散した。この分散液を、表面を鏡面処理した30mm径のアルミニウム製ドラム(導電性基材)表面上にディップコート法にて塗工、乾燥して単層型電子写真感光体を作製した。
Preparation and evaluation of single layer type electrophotographic photoreceptor << Preparation of single layer type electrophotographic photoreceptor >>
Α-type TiO 2 phthalocyanine as a charge generator, Exemplified compound (A-8) as a hole transport agent, Exemplified compound (4) synthesized in Example 1 as an electron transport agent are selected, and the ratio shown below together with a resin binder and a solvent And mixed and dispersed with a ball mill for 50 hours. This dispersion was coated on a 30 mm diameter aluminum drum (conductive substrate) surface having a mirror-finished surface by a dip coating method and dried to prepare a single layer type electrophotographic photosensitive member.

(成分) (重量部)
電荷発生剤 5
ホール輸送剤 50
電子輸送剤 30
樹脂バインダー(ポリカーボネート) 100
溶媒(テトラヒドロフラン) 800
(Ingredients) (Parts by weight)
Charge generator 5
Hole transport agent 50
Electron transfer agent 30
Resin binder (polycarbonate) 100
Solvent (tetrahydrofuran) 800

《単層型電子写真感光体の評価》
得られた電子写真感光体の実用性を検証するために、正帯電型の電子写真感光体を使用する市販のレーザープリンターに搭載し、常温常湿環境(20℃50%HR)下、A4横方向に5000枚連続印字後の印字サンプルに対して、目視観察により、画質および耐久性の評価を行った。結果を表1にまとめた。
<Evaluation of single-layer electrophotographic photoreceptor>
In order to verify the practicality of the obtained electrophotographic photosensitive member, it is mounted on a commercially available laser printer using a positively charged electrophotographic photosensitive member, and is A4 horizontal under a normal temperature and humidity environment (20 ° C., 50% HR). Image quality and durability were evaluated by visual observation on the print sample after continuous printing of 5000 sheets in the direction. The results are summarized in Table 1.

《有機電子写真感光体の作成及び評価》
実施例2で使用した電子輸送材料(例示化合物(4))を例示化合物(10)で示されるナフタレンカルボン酸誘導体に代えた以外は実施例2と同様に感光体を作製し、実施例2と同様にして当該感光体の評価を行った。結果を表1にまとめた。
<< Creation and evaluation of organic electrophotographic photoreceptor >>
A photoconductor was prepared in the same manner as in Example 2 except that the electron transport material (Exemplary Compound (4)) used in Example 2 was replaced with the naphthalenecarboxylic acid derivative represented by Exemplary Compound (10). Similarly, the photoreceptor was evaluated. The results are summarized in Table 1.

[比較例1]
《有機電子写真感光体の作成及び評価》
実施例2で使用した電子輸送材料(例示化合物(4))を下記式(a)で示されるジフェノキノン化合物(東京化成工業(株)製)に代えた以外は実施例3と同様に感光体を作製し、実施例3と同様にして当該感光体の評価を行った。結果を表1にまとめた。
[Comparative Example 1]
<< Creation and evaluation of organic electrophotographic photoreceptor >>
A photoconductor was prepared in the same manner as in Example 3 except that the electron transport material (Exemplary Compound (4)) used in Example 2 was replaced with a diphenoquinone compound (manufactured by Tokyo Chemical Industry Co., Ltd.) represented by the following formula (a). The photoreceptor was prepared and evaluated in the same manner as in Example 3. The results are summarized in Table 1.

Figure 2006028027
(a)
Figure 2006028027
(A)

Figure 2006028027
Figure 2006028027

積層型電子写真感光体の作成及び評価
《積層型電子写真感光体の作製》
電荷発生剤としてα型TiOフタロシアニン100重量部、樹脂バインダーとしてポリビニルブチラール100重量部、溶媒(テトラヒドロフラン)2000重量部をボールミルで50時間混合分散し、電荷発生層用の塗布液を調製した。この塗布液を導電性基材であるアルミニウム基板の表面にディップコート法にて塗布し、100℃で60分間熱風乾燥させて電荷発生層を形成した。
Preparation and evaluation of multilayer electrophotographic photoreceptor << Preparation of multilayer electrophotographic photoreceptor >>
100 parts by weight of α-type TiO 2 phthalocyanine as a charge generating agent, 100 parts by weight of polyvinyl butyral as a resin binder, and 2000 parts by weight of a solvent (tetrahydrofuran) were mixed and dispersed in a ball mill for 50 hours to prepare a coating solution for a charge generating layer. This coating solution was applied to the surface of an aluminum substrate, which is a conductive base material, by dip coating, and dried in hot air at 100 ° C. for 60 minutes to form a charge generation layer.

次いで、電子輸送材剤として例示化合物(30)100重量部、樹脂バインダーとしてポリカーボネート100重量部、溶媒(トルエン)800重量部をボールミルで50時間混合分散し、電荷輸送層用の塗布液を調製した。そして、この塗布液を上記電荷発生層上にディップコート法にて塗布し、100℃で60分間熱風乾燥させて電荷輸送層を形成し、積層型電子写真感光体を作製した。   Next, 100 parts by weight of the exemplary compound (30) as an electron transport material agent, 100 parts by weight of a polycarbonate as a resin binder, and 800 parts by weight of a solvent (toluene) were mixed and dispersed in a ball mill for 50 hours to prepare a coating solution for a charge transport layer. . Then, this coating solution was applied onto the charge generation layer by a dip coating method, and dried with hot air at 100 ° C. for 60 minutes to form a charge transport layer, whereby a multilayer electrophotographic photoreceptor was produced.

《積層型電子写真感光体の評価》
得られた電子写真感光体の実用性を検証するために、正帯電型の電子写真感光体を使用する市販のレーザープリンターに搭載し、常温常湿環境(20℃50%HR)下、A4横方向に5000枚連続印字後の印字サンプルに対して、目視観察により、画質および耐久性の評価を行った。結果を表2にまとめた。
<< Evaluation of Laminated Electrophotographic Photoconductor >>
In order to verify the practicality of the obtained electrophotographic photosensitive member, it is mounted on a commercially available laser printer using a positively charged electrophotographic photosensitive member, and is A4 horizontal under a normal temperature and humidity environment (20 ° C., 50% HR). Image quality and durability were evaluated by visual observation on the print sample after continuous printing of 5000 sheets in the direction. The results are summarized in Table 2.

[比較例2]
《有機電子写真感光体の評価》
実施例4で使用した電子輸送剤(例示化合物(30))を下記式(b)で示される化合物(4H−チオピラン−1,1−ジオキシド誘導体)に代えた以外は実施例4と同様に感光体を作製し、実施例4と同様にして当該感光体の評価を行った。結果を表2にまとめた。
[Comparative Example 2]
<< Evaluation of organic electrophotographic photoreceptor >>
Photosensitive in the same manner as in Example 4 except that the electron transfer agent (Exemplary Compound (30)) used in Example 4 was replaced with the compound represented by the following formula (b) (4H-thiopyran-1,1-dioxide derivative). The photoconductor was evaluated in the same manner as in Example 4. The results are summarized in Table 2.

Figure 2006028027
(b)
Figure 2006028027
(B)

Figure 2006028027
Figure 2006028027

本発明により得られる一般式(1)で表されるテトラカルボン酸誘導体は電子輸送性に優れ、該化合物を電子写真感光体に用いた場合には、樹脂への分散性が改善され、かつ電気特性、繰り返し安定性にも優れた高耐久性の電子写真感光体が得られる。   The tetracarboxylic acid derivative represented by the general formula (1) obtained by the present invention is excellent in electron transporting property, and when the compound is used in an electrophotographic photoreceptor, the dispersibility in the resin is improved and the electrical property is improved. A highly durable electrophotographic photoreceptor excellent in characteristics and repetitive stability can be obtained.

本発明に係る電子写真感光体の模式的断面図である。1 is a schematic cross-sectional view of an electrophotographic photoreceptor according to the present invention.

符号の説明Explanation of symbols

1:導電性基体
2:下引き層
3:感光層
4:保護層
1: Conductive substrate 2: Undercoat layer 3: Photosensitive layer 4: Protective layer

Claims (3)

下記式(1)で表されるテトラカルボン酸誘導体。
Figure 2006028027
[式中、X、Yは、それぞれ独立に水素原子、置換または未置換のアリール基、置換または未置換のアルキル基、置換または未置換のシクロアルキル基、置換または未置換のアラルキル基からなる群より選ばれる基を表す。また、式中、Z、Z、Zは、それぞれ独立にテトラカルボン酸及びその誘導体を構成する4価の有機基を表す。]
A tetracarboxylic acid derivative represented by the following formula (1).
Figure 2006028027
[Wherein X and Y are each independently a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, or a substituted or unsubstituted aralkyl group. Represents a group selected from In the formula, Z 1 , Z 2 and Z 3 each independently represents a tetravalent organic group constituting tetracarboxylic acid and a derivative thereof. ]
導電性基体上に感光層が設けられた電子写真感光体において、該感光層中に、請求項1記載の化合物を含有することを特徴とする電子写真感光体。 An electrophotographic photoreceptor having a photosensitive layer on a conductive substrate, wherein the photosensitive layer contains the compound according to claim 1. 請求項2記載の電子写真感光体を備えた電子写真装置。

An electrophotographic apparatus comprising the electrophotographic photosensitive member according to claim 2.

JP2004204929A 2004-07-12 2004-07-12 Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus Pending JP2006028027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204929A JP2006028027A (en) 2004-07-12 2004-07-12 Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204929A JP2006028027A (en) 2004-07-12 2004-07-12 Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus

Publications (1)

Publication Number Publication Date
JP2006028027A true JP2006028027A (en) 2006-02-02

Family

ID=35894804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204929A Pending JP2006028027A (en) 2004-07-12 2004-07-12 Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus

Country Status (1)

Country Link
JP (1) JP2006028027A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094360A (en) * 2005-09-02 2007-04-12 Ricoh Co Ltd Electrophotographic apparatus
JP2007108645A (en) * 2005-09-16 2007-04-26 Ricoh Co Ltd Image forming apparatus and process cartridge
JP2007108644A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Image forming apparatus and process cartridge
JP2007108665A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, full-color image forming apparatus, and process cartridge
JP2007108636A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic apparatus, electrophotographic image forming method and process cartridge
JP2007108671A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2007108649A (en) * 2005-09-16 2007-04-26 Ricoh Co Ltd Process cartridge, image forming apparatus and image forming method
JP2007108646A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic apparatus
JP2007108670A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic photoconductor, image forming apparatus, full-color image forming apparatus and process cartridge
JP2007108667A (en) * 2005-09-14 2007-04-26 Ricoh Co Ltd Process cartridge and image forming apparatus
JP2007108719A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic photoconductor, image forming apparatus, full-color image forming apparatus and process cartridge
JP2007108643A (en) * 2005-09-16 2007-04-26 Ricoh Co Ltd Image forming apparatus and process cartridge
JP2007108647A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic apparatus
JP2007108650A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Image forming apparatus, image forming method and process cartridge
JP2007108651A (en) * 2005-09-16 2007-04-26 Ricoh Co Ltd Photoreceptor, image forming apparatus, and process cartridge
JP2007108682A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Image forming apparatus
JP2007187728A (en) * 2006-01-11 2007-07-26 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2007264589A (en) * 2005-09-15 2007-10-11 Ricoh Co Ltd Image forming method and image forming apparatus
JP2008033207A (en) * 2005-09-15 2008-02-14 Ricoh Co Ltd Electrophotographic photoconductor, image forming apparatus, full-color image forming apparatus and process cartridge
JP2008052014A (en) * 2006-08-24 2008-03-06 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2008065115A (en) * 2006-09-08 2008-03-21 Ricoh Co Ltd Image forming apparatus
WO2008051552A2 (en) * 2006-10-25 2008-05-02 Northwestern University Organic semiconductor materials and methods of preparing and use thereof
JP2008122740A (en) * 2006-11-14 2008-05-29 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus and process cartridge
JP2008216713A (en) * 2007-03-06 2008-09-18 Ricoh Co Ltd Image forming method and image forming apparatus
JP2008224785A (en) * 2007-03-09 2008-09-25 Ricoh Co Ltd Image forming apparatus and process cartridge
JP2008281800A (en) * 2007-05-11 2008-11-20 Ricoh Co Ltd Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same
JP2009015304A (en) * 2007-06-04 2009-01-22 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
US20090180804A1 (en) * 2008-01-11 2009-07-16 Ricoh Company, Ltd. Image forming apparatus and process cartridge
JP2009292802A (en) * 2007-09-10 2009-12-17 Ricoh Co Ltd Naphthalenetetracarboxylic acid diimide derivative and electrophotographic photoreceptor using the same
US7671202B2 (en) 2004-01-26 2010-03-02 Northwestern University Perylene n-type semiconductors and related devices
US7893265B2 (en) 2007-01-08 2011-02-22 Polyera Corporation Methods for preparing arene-BIS (dicarboximide)-based semiconducting materials and related intermediates for preparing same
US7902363B2 (en) 2006-11-17 2011-03-08 Polyera Corporation Diimide-based semiconductor materials and methods of preparing and using the same
US8022214B2 (en) 2007-01-24 2011-09-20 Polyera Corporation Organic semiconductor materials and precursors thereof
US8192905B2 (en) 2006-04-20 2012-06-05 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus, and process cartridge
US8227156B2 (en) 2005-09-13 2012-07-24 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus, image forming method, and process cartridge
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982039B2 (en) 2004-01-26 2011-07-19 Northwestern University N-type semiconductors and related devices
US7671202B2 (en) 2004-01-26 2010-03-02 Northwestern University Perylene n-type semiconductors and related devices
JP2007094360A (en) * 2005-09-02 2007-04-12 Ricoh Co Ltd Electrophotographic apparatus
US8227156B2 (en) 2005-09-13 2012-07-24 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus, image forming method, and process cartridge
JP2007108667A (en) * 2005-09-14 2007-04-26 Ricoh Co Ltd Process cartridge and image forming apparatus
JP4726716B2 (en) * 2005-09-14 2011-07-20 株式会社リコー Process cartridge and image forming apparatus
JP4741440B2 (en) * 2005-09-15 2011-08-03 株式会社リコー Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP4741441B2 (en) * 2005-09-15 2011-08-03 株式会社リコー Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2007108670A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic photoconductor, image forming apparatus, full-color image forming apparatus and process cartridge
JP2007108644A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Image forming apparatus and process cartridge
JP2007108719A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic photoconductor, image forming apparatus, full-color image forming apparatus and process cartridge
JP4728919B2 (en) * 2005-09-15 2011-07-20 株式会社リコー Image forming method and image forming apparatus
JP2007108647A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic apparatus
JP2007108650A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Image forming apparatus, image forming method and process cartridge
JP4726715B2 (en) * 2005-09-15 2011-07-20 株式会社リコー Electrophotographic photosensitive member, image forming apparatus, full-color image forming apparatus, and process cartridge
JP2007108682A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Image forming apparatus
JP2007108665A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, full-color image forming apparatus, and process cartridge
JP2007264589A (en) * 2005-09-15 2007-10-11 Ricoh Co Ltd Image forming method and image forming apparatus
JP2008033207A (en) * 2005-09-15 2008-02-14 Ricoh Co Ltd Electrophotographic photoconductor, image forming apparatus, full-color image forming apparatus and process cartridge
JP2007108646A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic apparatus
JP2007108636A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic apparatus, electrophotographic image forming method and process cartridge
JP2007108671A (en) * 2005-09-15 2007-04-26 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2007108651A (en) * 2005-09-16 2007-04-26 Ricoh Co Ltd Photoreceptor, image forming apparatus, and process cartridge
JP2007108643A (en) * 2005-09-16 2007-04-26 Ricoh Co Ltd Image forming apparatus and process cartridge
JP2007108649A (en) * 2005-09-16 2007-04-26 Ricoh Co Ltd Process cartridge, image forming apparatus and image forming method
JP2007108645A (en) * 2005-09-16 2007-04-26 Ricoh Co Ltd Image forming apparatus and process cartridge
JP4709014B2 (en) * 2006-01-11 2011-06-22 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007187728A (en) * 2006-01-11 2007-07-26 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
US8192905B2 (en) 2006-04-20 2012-06-05 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus, and process cartridge
JP2008052014A (en) * 2006-08-24 2008-03-06 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP4731426B2 (en) * 2006-08-24 2011-07-27 株式会社リコー Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2008065115A (en) * 2006-09-08 2008-03-21 Ricoh Co Ltd Image forming apparatus
JP4641991B2 (en) * 2006-09-08 2011-03-02 株式会社リコー Image forming apparatus
WO2008051552A2 (en) * 2006-10-25 2008-05-02 Northwestern University Organic semiconductor materials and methods of preparing and use thereof
US7947837B2 (en) 2006-10-25 2011-05-24 Polyera Corporation Organic semiconductor materials and methods of preparing and use thereof
WO2008051552A3 (en) * 2006-10-25 2009-03-19 Univ Northwestern Organic semiconductor materials and methods of preparing and use thereof
JP2008122740A (en) * 2006-11-14 2008-05-29 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus and process cartridge
US7902363B2 (en) 2006-11-17 2011-03-08 Polyera Corporation Diimide-based semiconductor materials and methods of preparing and using the same
US7893265B2 (en) 2007-01-08 2011-02-22 Polyera Corporation Methods for preparing arene-BIS (dicarboximide)-based semiconducting materials and related intermediates for preparing same
US8022214B2 (en) 2007-01-24 2011-09-20 Polyera Corporation Organic semiconductor materials and precursors thereof
JP2008216713A (en) * 2007-03-06 2008-09-18 Ricoh Co Ltd Image forming method and image forming apparatus
JP2008224785A (en) * 2007-03-09 2008-09-25 Ricoh Co Ltd Image forming apparatus and process cartridge
JP2008281800A (en) * 2007-05-11 2008-11-20 Ricoh Co Ltd Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same
JP2009015304A (en) * 2007-06-04 2009-01-22 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
JP2009292802A (en) * 2007-09-10 2009-12-17 Ricoh Co Ltd Naphthalenetetracarboxylic acid diimide derivative and electrophotographic photoreceptor using the same
US20090180804A1 (en) * 2008-01-11 2009-07-16 Ricoh Company, Ltd. Image forming apparatus and process cartridge
US8380109B2 (en) * 2008-01-11 2013-02-19 Ricoh Company, Ltd. Image forming apparatus and process cartridge
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Similar Documents

Publication Publication Date Title
JP2006028027A (en) Tetracarboxylic acid derivative, electrophotographic photoconductor using the compound and electrohptographic apparatus
JP2006284843A (en) Electrophotographic photoreceptor using tetracarboxylic acid derivative and electrophotographing device
JP2005320288A (en) Tetracarboxylic acid derivative, electrophotographic photoreceptor given by using the compound, and electrophotographic device
EP0244780B1 (en) Photoconductive phthalocyanine pigments, electrophotographic elements containing them, and a method of use
JP4547201B2 (en) Novel naphthalenecarboxylic acid derivative, and electrophotographic photosensitive member and electrophotographic apparatus using the compound
EP2600199A1 (en) Methof of producing gallium phthalocyanine crystal and method of producing photosensitive meber using the gallium phthalocyanine crystal
EP0443566A1 (en) Method for preparing coating compositions containing photoconductive perylene pigments
JP4256365B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
US5952140A (en) Bipolar charge transport materials useful in electrophotography
KR20010107588A (en) Electrophotography photosensitive body and a electrophotography device equipped with the same
JPH0753892A (en) Production of hydroxygalliumphthalocyanin crystal and electrophotographic photoreceptor using the same
JP2006045165A (en) Tetracarboxylic acid derivative and electrophotographic photoreceptor and electrophotographic apparatus using the same compound
EP0353067B1 (en) Electrophotographic photosensitive material containing m-phenylenediamine compound
EP0349219B1 (en) 1,2,4,5-benzoylenebis(naphtho[1,8-de]pyrimidine) compounds and their use
JP2005126367A (en) Naphthalenecarboxylic acid derivative, electrophotographic photoreceptor using the compound, and electrophotographic device
EP0320201B1 (en) 1,2,4,5-Benzoylenebis (naphto [2,3-d] imidazole) compounds and photosensitive members containing them
KR100474118B1 (en) Electrophotographic photoconductor and method of manufacturing the same
JP6528729B2 (en) Electrophotographic photoreceptor
JP4523767B2 (en) Naphthalenecarboxylic acid derivative, electrophotographic photosensitive member and electrophotographic apparatus using the compound
EP1235117B1 (en) Imaging members
JP2005121887A (en) Fluorenone derivative, electrophotographic photoreceptor using the compound and electrophotographic apparatus
JP4263560B2 (en) Naphthoquinone derivative, and electrophotographic photoreceptor and electrophotographic apparatus using the compound
JP4233388B2 (en) Novel quinone compound, electrophotographic photosensitive member and electrophotographic apparatus using the compound
JP4460224B2 (en) Novel imide compound, electrophotographic photosensitive member and electrophotographic apparatus using the compound
KR101327122B1 (en) Photoreceptor for electrophotography