JP4265685B2 - Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same - Google Patents

Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same Download PDF

Info

Publication number
JP4265685B2
JP4265685B2 JP2007304025A JP2007304025A JP4265685B2 JP 4265685 B2 JP4265685 B2 JP 4265685B2 JP 2007304025 A JP2007304025 A JP 2007304025A JP 2007304025 A JP2007304025 A JP 2007304025A JP 4265685 B2 JP4265685 B2 JP 4265685B2
Authority
JP
Japan
Prior art keywords
photocatalyst
titanium
oxide
titanium oxide
photocatalyst body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007304025A
Other languages
Japanese (ja)
Other versions
JP2008062237A (en
Inventor
顕仙 奥迫
博幸 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007304025A priority Critical patent/JP4265685B2/en
Publication of JP2008062237A publication Critical patent/JP2008062237A/en
Application granted granted Critical
Publication of JP4265685B2 publication Critical patent/JP4265685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は光触媒体、その製造方法およびそれを用いてなる光触媒体コーティング剤に関するものである。詳細には、可視光線の照射によって高い活性を示す光触媒体およびその製造方法、さらには、建材などに光触媒機能を付与するときに使用する光触媒体コーティング剤に関するものである。 The present invention relates to a photocatalyst, a method for producing the same, and a photocatalyst coating agent using the photocatalyst. Specifically, the present invention relates to a photocatalyst exhibiting high activity upon irradiation with visible light, a method for producing the photocatalyst, and a photocatalyst coating used for imparting a photocatalytic function to a building material or the like.

半導体に紫外線を照射すると強い還元作用を持つ電子と強い酸化作用を持つ正孔が生成し、半導体に接触した分子種を酸化還元作用により分解する。このような作用を光触媒作用と呼び、この光触媒作用を利用することによって、大気中の有機溶剤などを分解除去することができる。光触媒作用を示す物質として酸化チタンが注目され、酸化チタンからなる光触媒体が市販されている。 When a semiconductor is irradiated with ultraviolet rays, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and molecular species in contact with the semiconductor are decomposed by the redox action. Such an action is called a photocatalytic action, and by utilizing this photocatalytic action, an organic solvent or the like in the atmosphere can be decomposed and removed. Titanium oxide has attracted attention as a substance exhibiting a photocatalytic action, and a photocatalyst comprising titanium oxide is commercially available.

しかしながら、現在市販されている光触媒体は、可視光線を照射する場合には十分な活性を示すものではなかった。 However, currently commercially available photocatalysts do not exhibit sufficient activity when irradiated with visible light.

本発明の目的は、可視光線の照射によって高い活性を示す光触媒体、その製造方法およびそれを用いてなる光触媒体コーティング剤を提供することにある。 The objective of this invention is providing the photocatalyst body which shows high activity by irradiation of visible light, its manufacturing method, and a photocatalyst body coating agent using the same.

本発明者等は、酸化チタンの光触媒活性の向上について検討した結果、本発明を完成するに至った。 As a result of studying improvement of the photocatalytic activity of titanium oxide, the present inventors have completed the present invention.

すなわち本発明は、酸化チタンの表面に、酸化チタン以外の、酸点をもつ金属酸化物を有し、BET比表面積が55m2/g以上であることを特徴とする光触媒体を提供するものである。 That is, the present invention provides a photocatalyst having a metal oxide having an acid point other than titanium oxide on the surface of titanium oxide and having a BET specific surface area of 55 m 2 / g or more. is there.

また本発明は、チタン化合物の水溶液と塩基を60℃以下で反応させ、得られた生成物を焼成して酸化チタンを得、この酸化チタンをチタン以外の金属化合物の溶液またはスラリーに接触させた後、焼成することを特徴とする前記の光触媒体の製造方法を提供するものである。 Further, in the present invention, an aqueous solution of a titanium compound and a base are reacted at 60 ° C. or lower, the obtained product is baked to obtain titanium oxide, and the titanium oxide is brought into contact with a solution or slurry of a metal compound other than titanium. Then, the method for producing the above-mentioned photocatalyst is characterized by firing.

さらに本発明は、前記の光触媒体と溶媒とを含む光触媒体コーティング剤を提供するものである。 Furthermore, this invention provides the photocatalyst body coating agent containing the said photocatalyst body and a solvent.

本発明の光触媒体は、高い光触媒作用を示し、アセトアルデヒド等のアルデヒド類をはじめ各種有機物を効率よく分解する。本発明の光触媒体コーティング剤は、建築材料、自動車材料等に光触媒体を塗布することを容易にし、これらの材料に高い光触媒作用を付与することを可能とする。また、本発明の光触媒体の製造方法によれば、前記の光触媒体を容易に製造することができる。 The photocatalyst of the present invention exhibits high photocatalytic activity and efficiently decomposes various organic substances including aldehydes such as acetaldehyde. The photocatalyst coating agent of the present invention makes it easy to apply a photocatalyst to building materials, automobile materials, etc., and makes it possible to impart high photocatalytic activity to these materials. Moreover, according to the method for producing a photocatalyst body of the present invention, the photocatalyst body can be easily produced.

以下、本発明を詳細に説明する。本発明の光触媒体は、酸化チタンを基材とするものである。基材である酸化チタンとしては、例えば、TiO2なる組成式で表されるものが挙げられ、結晶構造がアナターゼ型であるものが好ましい。この酸化チタンは、粒子、薄膜のような各種形状のものが適用できる。 Hereinafter, the present invention will be described in detail. The photocatalyst of the present invention is based on titanium oxide. Examples of the titanium oxide as the base material include those represented by a composition formula of TiO 2, and those having a crystal structure of anatase type are preferable. This titanium oxide can be applied in various shapes such as particles and thin films.

この酸化チタンは、例えば、オキシ硫酸チタン、硫酸チタン、オキシ塩化チタン、塩化チタンのようなチタン化合物の水溶液と塩基を反応させ、得られた生成物を焼成する方法で調製することができる。このときに用いる塩基としては、アンモニア、アミン等が挙げられ、その塩基の使用量は、水溶液中のチタン化合物を水酸化チタンに変えるのに必要な塩基の化学量論量に対し、1.2倍以上、さらには2倍以上が好ましく、また20倍以下、さらには10倍以下が適当である。反応温度は通常60℃以下、好ましくは40℃以下であり、また焼成温度は通常300℃以上、好ましくは350℃以上であり、600℃以下、さらには500℃以下が適当である。また、基材である酸化チタンは、オキシ硫酸チタンを、塩基と反応させることなしに、空気流通下で焼成する方法で調製することもできる。 This titanium oxide can be prepared by, for example, reacting an aqueous solution of a titanium compound such as titanium oxysulfate, titanium sulfate, titanium oxychloride, and titanium chloride with a base, and firing the resulting product. Examples of the base used at this time include ammonia, amine, and the like. The amount of the base used is 1.2 with respect to the stoichiometric amount of the base necessary for changing the titanium compound in the aqueous solution to titanium hydroxide. It is preferably 2 times or more, more preferably 2 times or more, and 20 times or less, more preferably 10 times or less. The reaction temperature is usually 60 ° C. or lower, preferably 40 ° C. or lower, and the firing temperature is usually 300 ° C. or higher, preferably 350 ° C. or higher, and 600 ° C. or lower, more preferably 500 ° C. or lower. Moreover, the titanium oxide which is a base material can also be prepared by a method in which titanium oxysulfate is calcined under air flow without reacting with a base.

基材である酸化チタンの表面には、TiO2なる組成式で表される酸化チタン以外の、酸点をもつ金属酸化物が存在させられる。この金属酸化物は、ブレンステッド酸点、ルイス酸点またはそれらを両方を有するもののいずれであってもよく、具体例としては、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、銅、アルミニウム、ガリウム、インジウム、スズのような金属の1元系酸化物、珪素−亜鉛、珪素−ジルコニウム、珪素−マグネシウム、珪素−カルシウム、珪素−ガリウム、珪素−アルミニウム、珪素−ランタン、珪素−チタン、チタン−亜鉛、チタン−銅、チタン−亜鉛、チタン−アルミニウム、チタン−ジルコニウム、チタン−鉛、チタン−ビスマス、チタン−鉄、亜鉛−マグネシウム、亜鉛−アルミニウム、亜鉛−ジルコニウム、亜鉛−鉛、亜鉛−アンチモンのような2種金属の複合酸化物が挙げられる。また、酸点をもつ金属酸化物であれば3種以上の金属の複合酸化物も適用できる。これらの金属酸化物の中でも、特に、ジルコニウム、バナジウム、ニオブ、タンタル、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、銅、アルミニウム、スズのような金属の1元系酸化物の適用が推奨される。なお、金属酸化物の酸点は、酸性中心と呼ばれることもあり、その存在は金属酸化物表面への気体塩基の吸着量または溶液からの塩基の吸着量を測定することによって確認することができる。また、種々のpKa値をもった指示薬の変色を利用して酸点の酸強度およびその酸強度における酸点の数を求めることもできる。 On the surface of titanium oxide as a base material, a metal oxide having an acid point other than titanium oxide represented by a composition formula of TiO 2 is allowed to exist. This metal oxide may be any of those having a Bronsted acid point, a Lewis acid point, or both. Specific examples include zirconium, hafnium, vanadium, niobium, tantalum, molybdenum, tungsten, manganese, iron. , One-component oxides of metals such as cobalt, nickel, copper, aluminum, gallium, indium, tin, silicon-zinc, silicon-zirconium, silicon-magnesium, silicon-calcium, silicon-gallium, silicon-aluminum, silicon -Lanthanum, silicon-titanium, titanium-zinc, titanium-copper, titanium-zinc, titanium-aluminum, titanium-zirconium, titanium-lead, titanium-bismuth, titanium-iron, zinc-magnesium, zinc-aluminum, zinc-zirconium , Zinc-lead and zinc-antimony Composite oxides of the genus and the like. In addition, a composite oxide of three or more metals can be applied as long as it is a metal oxide having an acid point. Among these metal oxides, it is particularly recommended to use one-component oxides of metals such as zirconium, vanadium, niobium, tantalum, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, aluminum, and tin. The The acid point of the metal oxide is sometimes called an acid center, and its presence can be confirmed by measuring the amount of gaseous base adsorbed on the surface of the metal oxide or the amount of base adsorbed from the solution. . Moreover, the acid strength of an acid point and the number of acid points in the acid strength can also be obtained by using discoloration of indicators having various pKa values.

この金属酸化物は、基材である酸化チタンの表面全体を被覆するように存在してもよいし、酸化チタンの表面の一部を被覆するように存在してもよい。酸化チタンの表面の一部が金属酸化物で被覆されている光触媒体には、例えば、上述した金属酸化物が酸化チタンの上に点として不連続に存在するもの、金属酸化物が酸化チタンの上に線状または格子状に連続して存在するもの等がある。金属酸化物の量は、基材である酸化チタンのチタンに対し金属元素換算で0.05mol%以上、さらには0.1mol%以上であることが好ましい。一方、金属酸化物の量はあまり多くなると、光触媒体の活性が低下することがあるので、50mol%以下、さらには30mol%以下、とりわけ10mol%以下が好ましい。 This metal oxide may exist so that the whole surface of the titanium oxide which is a base material may be coat | covered, and may exist so that a part of surface of a titanium oxide may be coat | covered. In the photocatalyst body in which a part of the surface of titanium oxide is coated with a metal oxide, for example, the above-described metal oxide is present as a discontinuous point on the titanium oxide, and the metal oxide is made of titanium oxide. Some of them are continuously present in a linear or lattice shape. The amount of the metal oxide is preferably 0.05 mol% or more, more preferably 0.1 mol% or more, in terms of metal element, with respect to titanium of titanium oxide as a base material. On the other hand, if the amount of the metal oxide is too large, the activity of the photocatalyst may be lowered. Therefore, it is preferably 50 mol% or less, more preferably 30 mol% or less, and particularly preferably 10 mol% or less.

酸化チタンの表面に酸点をもつ金属酸化物を存在させてなる本発明の光触媒体が高い活性を示す機構については必ずしも明らかではないが、酸化チタンの表面に存在する金属酸化物のもつ酸点に優先的に有機化合物が吸着する一方、光照射によって酸化チタンに生成した電子と正孔が、この酸点に吸着した有機化合物を効率よく還元または酸化して分解することが影響しているものと考えられる。金属酸化物のもつ酸点には、ブレンステッド酸点、ルイス酸点がある。通常、ブレンステッド酸点には塩基性化合物、またルイス酸点には含酸素化合物および含硫黄化合物が選択的に吸着する傾向があるので、光触媒体で分解しようとする対象物質に応じて、ブレンステッド酸点またはルイス酸点の量、さらにブレンステッド酸点とルイス酸点の両方が存在するときにはそれらの量と割合を適宜決定すればよい。酸点の種類とその量は、上述した金属酸化物の種類、量を選定することにより調節することができる。 The mechanism of the high activity of the photocatalyst of the present invention in which a metal oxide having an acid point is present on the surface of titanium oxide is not necessarily clear, but the acid point of the metal oxide existing on the surface of titanium oxide is not clear. While organic compounds are preferentially adsorbed on the surface, electrons and holes generated in titanium oxide by light irradiation are affected by the efficient reduction or oxidation of organic compounds adsorbed on this acid point and decomposition. it is conceivable that. The acid points of metal oxides include Bronsted acid points and Lewis acid points. Usually, a basic compound tends to be adsorbed to the Bronsted acid point, and an oxygen-containing compound and a sulfur-containing compound tend to be selectively adsorbed to the Lewis acid point. Therefore, depending on the target substance to be decomposed by the photocatalyst, The amount of the Sted acid point or the Lewis acid point, and when both the Bronsted acid point and the Lewis acid point exist, the amount and ratio thereof may be determined as appropriate. The kind and amount of the acid point can be adjusted by selecting the kind and amount of the metal oxide described above.

本発明の光触媒体は、上で述べた基材である酸化チタンの表面に酸点をもつ金属酸化物が存在するものであって、BET比表面積が55m2/g以上である。BET比表面積が55m2/g未満であると、たとえ、表面に酸点をもつ金属酸化物が存在するものであっても、可視光線の照射により十分な光触媒活性を示さない。光触媒体のBET比表面積は高いほど、その光触媒活性は高くなる傾向にあるが、比表面積があまり大きくなると、溶媒と混合してコーティング剤を調製するとき、溶媒中に分散させることが困難になる。よって、BET比表面積は250m2/g以下、さらには200m2/g以下であることが好ましい。 In the photocatalyst of the present invention, a metal oxide having an acid point is present on the surface of titanium oxide, which is the base material described above, and the BET specific surface area is 55 m 2 / g or more. If the BET specific surface area is less than 55 m 2 / g, even if a metal oxide having an acid point is present on the surface, sufficient photocatalytic activity is not exhibited by irradiation with visible light. The higher the BET specific surface area of the photocatalyst body, the higher the photocatalytic activity tends to be. However, when the specific surface area becomes too large, it becomes difficult to disperse in a solvent when mixing with a solvent to prepare a coating agent. . Therefore, the BET specific surface area is preferably 250 m 2 / g or less, more preferably 200 m 2 / g or less.

本発明の光触媒体は、紫外可視拡散反射スペクトルを測定して、波長220nm〜800nmの吸光度の積分値をAとし、波長400nm〜800nmの吸光度の積分値をBとしたとき、式(I)
X=B/A (I)
により算出される指数Xが0.2以上であることが好ましい。尚、吸光度の積分値は、縦軸に吸光度、横軸に波長とした紫外可視拡散反射スペクトルにおいて、指定された波長の範囲内で横軸と拡散反射スペクトルとで囲まれた領域の面積を示す。
The photocatalyst of the present invention is obtained by measuring an ultraviolet-visible diffuse reflection spectrum, wherein the integrated value of the absorbance at wavelengths of 220 nm to 800 nm is A, and the integrated value of the absorbance at wavelengths of 400 nm to 800 nm is B.
X = B / A (I)
It is preferable that the index X calculated by the above is 0.2 or more. The integrated value of absorbance indicates the area of the region surrounded by the abscissa and the diffuse reflectance spectrum within the specified wavelength range in the UV-visible diffuse reflectance spectrum with the ordinate indicating the absorbance and the abscissa indicating the wavelength. .

本発明の光触媒体は、X線光電子分光法により4回分析し、チタンの電子状態について、2回目と4回目の分析のスペクトルを求め、それぞれのスペクトルのうち結合エネルギー458eV〜460eVにあるピークを求め、2回目の分析のスペクトルにあるピークの半価幅をCとし、4回目のスペクトルにあるピークの半価幅をDとしたとき、式(II)
Y=(C−D)/C (II)
により算出される指数Yが0.05以上、さらには0.08以上であることが好ましい。
The photocatalyst of the present invention is analyzed four times by X-ray photoelectron spectroscopy, the spectra of the second and fourth analysis are obtained for the electronic state of titanium, and a peak at a binding energy of 458 eV to 460 eV in each spectrum is obtained. When the half-width of the peak in the spectrum of the second analysis is C and the half-width of the peak in the fourth spectrum is D, the formula (II)
Y = (C−D) / C (II)
The index Y calculated by the above is preferably 0.05 or more, more preferably 0.08 or more.

酸化チタンの表面に特定の金属酸化物を有し、かつ特定の比表面積を有する、本発明の光触媒体は、例えば、上述した基材である酸化チタンを金属化合物の溶液またはスラリーに接触させた後、焼成する方法(含浸法)で製造することができる。含浸法で用いる金属化合物には、酸点をもつ金属酸化物の他、焼成によって上述した酸点をもつ金属酸化物になるものが挙げられ、例えば、金属酸アンモニウム塩、硫酸塩、炭酸塩、塩化物、有機酸塩、水酸化物、またはアルコキシド等、焼成することにより金属酸化物を構成するものがある。このときの焼成は、通常、200℃以上、さらには250℃以上で行われることが好ましく、また600℃以下、さらには500℃以下で行われることが適当である。 In the photocatalyst of the present invention having a specific metal oxide on the surface of titanium oxide and a specific specific surface area, for example, the above-described base material, titanium oxide, is brought into contact with a solution or slurry of a metal compound. Thereafter, it can be produced by a firing method (impregnation method). Examples of the metal compound used in the impregnation method include, in addition to metal oxides having acid sites, those that become metal oxides having acid sites by firing, such as metal acid ammonium salts, sulfates, carbonates, There are some which constitute a metal oxide by firing, such as chloride, organic acid salt, hydroxide or alkoxide. The firing at this time is usually preferably performed at 200 ° C. or higher, more preferably 250 ° C. or higher, and is suitably performed at 600 ° C. or lower, more preferably 500 ° C. or lower.

また、酸化チタンの表面に金属酸化物を存在させるには、酸素分圧を調整した密閉容器内に、基材である酸化チタンと、金属酸化物、その塩またはその金属酸化物を構成する金属とを入れ、後者の金属酸化物等を融解、蒸発させて、その蒸気を酸化チタンの表面に膜として凝着させる方法(蒸着法)等、公知の種々の方法を適用するもできる。 In addition, in order to make the metal oxide exist on the surface of the titanium oxide, the titanium oxide which is the base material and the metal oxide, its salt or the metal constituting the metal oxide are placed in a sealed container in which the oxygen partial pressure is adjusted. In addition, various known methods such as a method in which the latter metal oxide or the like is melted and evaporated and the vapor is deposited as a film on the surface of titanium oxide (evaporation method) can be applied.

得られる光触媒体は、通常、粒子状であるが、必要に応じて、高分子樹脂、結合剤、成形助剤、帯電防止剤、吸着剤等を添加された後、成形されてペレット、繊維またはシートとすることもできる。 The obtained photocatalyst is usually in the form of particles, but if necessary, after adding a polymer resin, a binder, a molding aid, an antistatic agent, an adsorbent, etc., it is molded into pellets, fibers or It can also be a sheet.

この光触媒体を使用するときの具体例としては、可視光線を透過するガラス容器内に光触媒体と被処理物とを入れ、光源を用いて光触媒体に波長430nm以上である可視光線を照射する方法等が挙げられる。照射時間は、光源の光線強度および被処理物の種類や量により適宜選択すればよい。用いる光源は、波長が430nm以上である可視光線を照射できるものであれば制限されるものではなく、太陽光線、蛍光灯、ハロゲンランプ、ブラックライト、キセノンランプ、水銀灯またはナトリウムランプ等が適用できる。 As a specific example when using this photocatalyst, a method of putting a photocatalyst and an object to be processed in a glass container that transmits visible light, and irradiating the photocatalyst with visible light having a wavelength of 430 nm or more using a light source Etc. The irradiation time may be appropriately selected depending on the light intensity of the light source and the type and amount of the object to be processed. The light source to be used is not limited as long as it can irradiate visible light having a wavelength of 430 nm or more, and sunlight, fluorescent lamp, halogen lamp, black light, xenon lamp, mercury lamp, sodium lamp, or the like can be applied.

本発明の光触媒体コーティング剤は、前述した特定の光触媒体と溶媒とを含む。 The photocatalyst coating agent of the present invention contains the specific photocatalyst described above and a solvent.

光触媒体コーティング剤は、建築材料、自動車材料等に光触媒体を塗布することを容易にし、かつこれらの材料に高い光触媒活性を付与することを可能とする。このようにして得られた建築材料および自動車材料は、大気中のNOxを分解したり、居住空間や作業空間での悪臭物質(例えば、煙草臭)を分解したり、水中の有機溶剤、農薬、界面活性剤を分解したり、または細菌(例えば、放射菌)、藻類、黴類等の増殖を抑制することに適用できる。光触媒体コーティング剤の調製に用いる溶媒としては、酸化チタンの表面に存在する金属酸化物を溶解せず、かつ塗布後に蒸発して光触媒体に残存しないものが好ましく、例えば、水、塩酸、アルコール類、ケトン類等が挙げられる。この光触媒体コーティング剤は、例えば、上で示した光触媒体を水、アルコール類、ケトン類のような溶媒に分散させてスラリー化する方法、または光触媒体を希塩酸で解膠させる方法等によって製造することができる。光触媒体コーティング剤は、必要に応じて分散剤を添加し調製してもよい。 A photocatalyst body coating agent makes it easy to apply a photocatalyst body to building materials, automobile materials, etc., and makes it possible to impart high photocatalytic activity to these materials. Building materials and automobile materials obtained in this way decompose NOx in the atmosphere, decompose malodorous substances (for example, tobacco odor) in living spaces and work spaces, organic solvents in water, agricultural chemicals, The present invention can be applied to decompose a surfactant or suppress the growth of bacteria (for example, radioactive bacteria), algae, mosses and the like. As the solvent used for the preparation of the photocatalyst coating agent, a solvent that does not dissolve the metal oxide present on the surface of titanium oxide and does not evaporate after application and remain in the photocatalyst is preferable. For example, water, hydrochloric acid, alcohols And ketones. The photocatalyst coating agent is produced by, for example, a method of dispersing the photocatalyst shown above in a solvent such as water, alcohols, or ketones to make a slurry, or a method of peptizing the photocatalyst with dilute hydrochloric acid. be able to. The photocatalyst coating agent may be prepared by adding a dispersant as required.

以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。なお、光触媒体の物性測定は以下の方法で行った。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these. The physical properties of the photocatalyst were measured by the following method.

(1)BET比表面積(m2/g):
窒素吸着法により求めた。
(1) BET specific surface area (m 2 / g):
Determined by nitrogen adsorption method.

(2)指数X〔=B/A〕:
紫外可視分光光度計(商品名“UV−2500PC”、島津製作所製)を用い、硫酸バリウムを標準白板として紫外可視拡散反射スペクトルを測定し、このスペクトルから波長220〜800nmの吸光度の積分値Aと400〜800nmの吸光度の積分値Bを求めた。これらの値をもとに、前記式(I)から指数Xを算出した。
(2) Index X [= B / A]:
Using an ultraviolet-visible spectrophotometer (trade name “UV-2500PC”, manufactured by Shimadzu Corporation), an ultraviolet-visible diffuse reflection spectrum was measured using barium sulfate as a standard white plate. From this spectrum, an integrated value A of absorbance at wavelengths of 220 to 800 nm and An integrated value B of absorbance at 400 to 800 nm was determined. Based on these values, the index X was calculated from the formula (I).

(3)指数Y〔=(C−D)/C〕:
光電子分光測定装置(商品名"XPS−7000"、理学電機製)を用い、X線源 MgKα 8kV 30mA、ナロースキャン、pass E=10eV、step E=0.04eVの条件で、チタンの電子状態(Ti2p2/3)を1回あたり60秒で2回分析(1回目、2回目)、酸素の電子状態を1回あたり47秒で2回分析、炭素の電子状態(C1s)を1回あたり47秒で2回分析、チタンの電子状態を1回あたり60秒で2回分析(3回目、4回目)、酸素の電子状態(O1s)を1回あたり47秒で2回分析、炭素の電子状態を1回あたり47秒で2回分析、を順に行ってスペクトルを測定し、2回目のスペクトルのピークの中で結合エネルギー458eV〜460eVにあるチタンのピークの半価幅Cと、4回目のスペクトルのピークの中で結合エネルギー458eV〜460eVにあるチタンのピークの半価幅Dを求めた。これらの値をもとに前記式(II)により指数Yを算出した。前記の一連の分析は、分析時及び分析と分析との間、光触媒体を大気中に暴露させることなく行った。
(3) Index Y [= (C−D) / C]:
Using a photoelectron spectrometer (trade name “XPS-7000”, manufactured by Rigaku Corporation), an X-ray source MgKα 8 kV 30 mA, narrow scan, pass E = 10 eV, step E = 0.04 eV, the electronic state of titanium ( Ti2p 2/3 ) analyzed twice at 60 seconds per time (first and second times), electronic state of oxygen twice analyzed at 47 seconds per time, and electronic state of carbon (C1s) 47 times per time Analyzed twice per second, analyzed the electronic state of titanium twice at 60 seconds per time (third and fourth times), analyzed the electronic state of oxygen (O1s) twice per 47 seconds per time, electronic state of carbon The second half of the spectrum was measured at 47 seconds per time, and the half-width C of the titanium peak at the binding energy 458 eV to 460 eV in the second peak of the spectrum and the fourth spectrum No pic It was determined half width D of the peak of titanium at the binding energy 458eV~460eV in click. Based on these values, the index Y was calculated by the formula (II). The series of analyzes described above was performed without exposing the photocatalyst to the atmosphere during and between analyses.

実施例1
酸化チタンの調製〕
オキシ硫酸チタン(添川理化学製)90gを水360gに溶解させた。このオキシ硫酸チタン水溶液に25%アンモニア水(試薬1級、和光純薬工業製)104gを、氷冷下、200rpmで攪拌しながら、5ml/minで添加して加水分解させスラリーを得た。このとき使用したアンモニア水の量は、オキシ硫酸チタンを水酸化チタンに変えるために必要な量の2倍であった。上で得られたスラリーを濾過し、得られた固形物を温水で洗浄し、乾燥して粉末を得た。この粉末を390℃の空気中で1時間焼成した後、室温まで冷却して、含水率15重量%の粒子状アナターゼ型酸化チタンを得た。
Example 1
Preparation of titanium oxide)
90 g of titanium oxysulfate (manufactured by Soekawa Rikagaku) was dissolved in 360 g of water. To this titanium oxysulfate aqueous solution, 104 g of 25% aqueous ammonia (reagent grade 1, manufactured by Wako Pure Chemical Industries, Ltd.) was added at 5 ml / min while stirring at 200 rpm under ice cooling to obtain a slurry. The amount of ammonia water used at this time was twice the amount necessary to change titanium oxysulfate to titanium hydroxide. The slurry obtained above was filtered, and the resulting solid was washed with warm water and dried to obtain a powder. This powder was calcined in air at 390 ° C. for 1 hour and then cooled to room temperature to obtain particulate anatase-type titanium oxide having a water content of 15% by weight.

〔金属酸化物の被覆〕
パラタングステン酸アンモニウム5水和物((NH4)101241・5H2O、和光純薬工業製)を水に溶解させて、タングステン濃度1重量%のパラタングステン酸アンモニウム水溶液を得た。水100gに、このパラタングステン酸アンモニウム水溶液17.6gを添加した後、上で得られた粒子状アナターゼ型酸化チタン3gを添加し、常温常圧下で20分間攪拌した。この混合物をさらに攪拌しながら減圧し、50℃で水分を蒸発させて乾燥した後、390℃の空気中で1時間焼成して、光触媒体を得た。この光触媒体は、酸化チタンの上に、該酸化チタンのチタンに対しタングステン換算で3mol%の酸化タングステンを有するものであり、BET比表面積が65m2/gであった。この光触媒体の紫外可視拡散反射スペクトルを図1に示し、スペクトルの吸光度の積分値および指数Xを表1に示し、また2回目のX線光電子分光スペクトル(以下、XPSスペクトルという。)を図2に、4回目のXPSスペクトルを図3に示し、それらのXPSスペクトルにあるチタンのピークの半価幅および指数Yを表2に示す。
[Metal oxide coating]
Ammonium paratungstate pentahydrate a ((NH 4) 10 W 12 O 41 · 5H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in water to obtain a tungsten concentration of 1% by weight of ammonium paratungstate aqueous solution . After adding 17.6 g of this ammonium paratungstate aqueous solution to 100 g of water, 3 g of the particulate anatase-type titanium oxide obtained above was added, and the mixture was stirred at room temperature and normal pressure for 20 minutes. The mixture was further decompressed with stirring, dried by evaporating moisture at 50 ° C., and then calcined in air at 390 ° C. for 1 hour to obtain a photocatalyst. This photocatalyst has 3 mol% of tungsten oxide in terms of tungsten with respect to titanium of the titanium oxide on the titanium oxide, and the BET specific surface area was 65 m 2 / g. The ultraviolet-visible diffuse reflection spectrum of this photocatalyst is shown in FIG. 1, the integrated value of the absorbance of the spectrum and the index X are shown in Table 1, and the second X-ray photoelectron spectrum (hereinafter referred to as XPS spectrum) is shown in FIG. FIG. 3 shows the fourth XPS spectrum, and Table 2 shows the half width of the titanium peak and the index Y in the XPS spectrum.

〔光触媒体の活性評価〕
直径8cm、高さ10cm、容量約0.5リットルの密閉式ガラス製容器内に、直径5cmのガラス製シャーレを設置し、そのシャーレ上に、上で得られた光触媒体0.3gを置いた。容器内を酸素20容量%と窒素80容量%とからなる混合ガスで満たし、アセトアルデヒドを13.4μmol封入し、容器の外から可視光線を照射した。可視光線の照射には、500Wキセノンランプ(商品名“オプティカルモジュレックスSX−UI500XQ”、“ランプUXL−500SX”、ウシオ電機製)に、波長約430nm以下の紫外線をカットするフィルター(商品名“Y−45”、旭テクノガラス製)と波長約830nm以上の赤外線をカットするフィルター(商品名“スーパーコールドフィルター”、ウシオ電機製)とを装着したものを光源として用いた。可視光線の照射によりアセトアルデヒドが分解すると、二酸化炭素が発生するので二酸化炭素の濃度を光音響マルチガスモニタ(型番“1312型”、INNOVA製)で経時的に測定し、濃度変化より算出した二酸化炭素の生成速度により、光触媒体をアセトアルデヒドに対する光分解作用を評価した。この例における二酸化炭素の生成速度は光触媒体1gあたり112.9μmol/hであった。
[Evaluation of photocatalytic activity]
A glass petri dish having a diameter of 5 cm was placed in a sealed glass container having a diameter of 8 cm, a height of 10 cm, and a capacity of about 0.5 liter, and 0.3 g of the photocatalyst obtained above was placed on the petri dish. . The inside of the container was filled with a mixed gas composed of 20 volume% oxygen and 80 volume% nitrogen, 13.4 μmol of acetaldehyde was sealed, and visible light was irradiated from the outside of the container. For visible light irradiation, a 500 W xenon lamp (trade name “Optical Modlex SX-UI500XQ”, “Lamp UXL-500SX”, manufactured by USHIO ELECTRIC CO., LTD.) Is a filter (trade name “Y” -45 ", manufactured by Asahi Techno Glass Co., Ltd.) and a filter (trade name" Super Cold Filter ", manufactured by Ushio Inc.) that cuts infrared rays having a wavelength of about 830 nm or more were used as a light source. When acetaldehyde is decomposed by irradiation with visible light, carbon dioxide is generated, so the concentration of carbon dioxide is measured over time with a photoacoustic multi-gas monitor (model number “1312”, manufactured by INNOVA), and the carbon dioxide concentration calculated from the change in concentration is measured. The photodegradation action of the photocatalyst on acetaldehyde was evaluated based on the production rate. The carbon dioxide production rate in this example was 112.9 μmol / h per gram of photocatalyst.

実施例2
シュウ酸水素ニオブ(Nb(HC24)5、Nb25として14.6重量%、三津和化学製)1.45gを水100gに溶解させて、ニオブ濃度0.15重量%のシュウ酸水素ニオブ水溶液を得た。この水溶液100gに、実施例1と同じ方法で調製した粒子状アナターゼ型酸化チタン5gを添加し、常温室圧下で20分間攪拌して混合した。この混合物をさらに攪拌しながら減圧し、50℃で水分を蒸発させて乾燥した後、300℃の空気中で1時間焼成して、光触媒体を得た。この光触媒体は、酸化チタンの上に、該酸化チタンのチタンに対しニオブ換算で3mol%の酸化ニオブを有するものであり、BET比表面積が65m2/gであった。この光触媒体の紫外可視拡散反射スペクトルを図4に示し、スペクトルの吸光度の積分値および指数Xを表1に示し、また2回目のXPSスペクトルを図5に、4回目のXPSスペクトルを図6に示し、それらのXPSスペクトルにあるチタンのピークの半価幅および指数Yを表2に示す。
Example 2
Niobium hydrogen oxalate (Nb (HC 2 O 4 ) 5 , 14.6% by weight as Nb 2 O 5 , manufactured by Mitsuwa Chemical Co., Ltd.) 1.45 g was dissolved in 100 g of water to obtain a niobium concentration of 0.15% by weight. An aqueous niobium oxyhydrogen solution was obtained. To 100 g of this aqueous solution, 5 g of particulate anatase-type titanium oxide prepared by the same method as in Example 1 was added, and the mixture was stirred for 20 minutes at room temperature and mixed. The mixture was further decompressed with stirring, dried by evaporating water at 50 ° C., and then calcined in air at 300 ° C. for 1 hour to obtain a photocatalyst. The photocatalyst had 3 mol% niobium oxide in terms of niobium on the titanium oxide, and had a BET specific surface area of 65 m 2 / g. The UV-visible diffuse reflection spectrum of this photocatalyst is shown in FIG. 4, the integrated value of the absorbance of the spectrum and the index X are shown in Table 1, the second XPS spectrum is shown in FIG. 5, and the fourth XPS spectrum is shown in FIG. The full width at half maximum and the index Y of the titanium peaks in their XPS spectra are shown in Table 2.

上で得られた光触媒体について、実施例1と同一条件で活性評価を行った。この例における二酸化炭素の生成速度は光触媒体1gあたり74.8μmol/hであった。 The activity of the photocatalyst obtained above was evaluated under the same conditions as in Example 1. The production rate of carbon dioxide in this example was 74.8 μmol / h per 1 g of the photocatalyst.

実施例3
パラタングステン酸アンモニウム5水和物((NH4)101241・5H2O、和光純薬工業製)を水に溶解させて、タングステン濃度1重量%のパラタングステン酸アンモニウム水溶液を得た。水100gに、このパラタングステン酸アンモニウム水溶液58.69gを添加した後、実施例1と同じ方法で調製した粒子状アナターゼ型酸化チタン3gを添加し、常温常圧下で20分間攪拌した。この混合物をさらに攪拌しながら減圧し、50℃で水分を蒸発させて乾燥した後、390℃の空気中で1時間焼成して、光触媒体を得た。この光触媒体は、酸化チタンの上に、該酸化チタンのチタンに対しタングステン換算で10mol%の酸化タングステンを有するものであり、BET比表面積が65m2/gであった。この光触媒体の紫外可視拡散反射スペクトルの吸光度の積分値および指数Xを表1に示す。
Example 3
Ammonium paratungstate pentahydrate a ((NH 4) 10 W 12 O 41 · 5H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in water to obtain a tungsten concentration of 1% by weight of ammonium paratungstate aqueous solution . After adding 58.69 g of this ammonium paratungstate aqueous solution to 100 g of water, 3 g of particulate anatase-type titanium oxide prepared by the same method as in Example 1 was added and stirred at room temperature and normal pressure for 20 minutes. The mixture was further decompressed with stirring, dried by evaporating moisture at 50 ° C., and then calcined in air at 390 ° C. for 1 hour to obtain a photocatalyst. This photocatalyst had 10 mol% tungsten oxide in terms of tungsten with respect to titanium of the titanium oxide on the titanium oxide, and had a BET specific surface area of 65 m 2 / g. Table 1 shows the integrated value of the absorbance and the index X of the ultraviolet-visible diffuse reflection spectrum of this photocatalyst.

上で得られた光触媒体について、実施例1と同一条件で活性評価を行った。この例における二酸化炭素の生成速度は触媒1gあたり81.0μmol/hであった。 The activity of the photocatalyst obtained above was evaluated under the same conditions as in Example 1. The carbon dioxide production rate in this example was 81.0 μmol / h per gram of catalyst.

比較例1
市販の酸化チタン(商品名“P−25”、デグッサ製)を用い、これを実施例1の〔金属酸化物の被覆〕と同様の操作を施して、光触媒体を製造した。この光触媒体は、酸化チタンの上に、該酸化チタンのチタンに対しタングステン換算で3mol%の酸化タングステンを有するものであり、BET比表面積が48m2/gであった。この光触媒体の紫外可視拡散反射スペクトルを図7に示し、スペクトルの吸光度の積分値および指数Xを表1に示す。
Comparative Example 1
Using a commercially available titanium oxide (trade name “P-25”, manufactured by Degussa), the same operation as in [Coating of metal oxide] in Example 1 was performed to produce a photocatalyst. This photocatalyst had 3 mol% tungsten oxide in terms of tungsten with respect to titanium of the titanium oxide on titanium oxide, and had a BET specific surface area of 48 m 2 / g. The ultraviolet-visible diffuse reflection spectrum of this photocatalyst is shown in FIG. 7, and the integrated value of the absorbance of the spectrum and the index X are shown in Table 1.

上で得られた光触媒体について、実施例1と同一条件で活性評価を行った。この例における二酸化炭素の生成速度は触媒1gあたり4.9μmol/hであった。 The activity of the photocatalyst obtained above was evaluated under the same conditions as in Example 1. The production rate of carbon dioxide in this example was 4.9 μmol / h per gram of catalyst.

Figure 0004265685
Figure 0004265685

Figure 0004265685
Figure 0004265685

実施例1で得られた光触媒体の紫外可視拡散反射スペクトル。The ultraviolet visible diffuse reflection spectrum of the photocatalyst obtained in Example 1. 実施例1で得られた光触媒体の2回目のXPSスペクトル。The second XPS spectrum of the photocatalyst obtained in Example 1. 実施例1で得られた光触媒体の4回目のXPSスペクトル。4 is the fourth XPS spectrum of the photocatalyst obtained in Example 1. 実施例2で得られた光触媒体の紫外可視拡散反射スペクトル。The ultraviolet visible diffuse reflection spectrum of the photocatalyst obtained in Example 2. 実施例2で得られた光触媒体の2回目のXPSスペクトル。The second XPS spectrum of the photocatalyst obtained in Example 2. 実施例2で得られた光触媒体の4回目のXPSスペクトル。4 is the fourth XPS spectrum of the photocatalyst obtained in Example 2. 比較例1で得られた光触媒体の紫外可視拡散反射スペクトル。The ultraviolet-visible diffuse reflection spectrum of the photocatalyst obtained in Comparative Example 1.

Claims (3)

酸化チタンの表面に酸化タングステンまたは酸化ニオブを有し、BET比表面積が55m2/g以上である光触媒体を製造する方法であり、チタン化合物の水溶液と、チタン化合物を水酸化チタンに変えるのに必要な化学量論量に対し1.2倍以上のアンモニアまたはアミンを60℃以下で反応させ、得られた生成物を600℃以下で焼成して酸化チタンを得、得られた酸化チタンをタングステン化合物またはニオブ化合物の溶液またはスラリーに接触させた後、600℃以下で焼成することを特徴とする前記光触媒体の製造方法。 This is a method for producing a photocatalyst having tungsten oxide or niobium oxide on the surface of titanium oxide and having a BET specific surface area of 55 m 2 / g or more, and for changing an aqueous solution of a titanium compound and the titanium compound into titanium hydroxide. 1.2 times or more of the required stoichiometric amount of ammonia or amine is reacted at 60 ° C. or lower, and the obtained product is baked at 600 ° C. or lower to obtain titanium oxide. The obtained titanium oxide is converted into tungsten. The method for producing a photocatalyst according to the above, characterized by calcining at 600 ° C. or lower after contacting with a compound or niobium compound solution or slurry. 光触媒体における前記酸化タングステンまたは酸化ニオブの量が、酸化チタンのチタンに対し金属元素換算で0.05mol%以上である請求項1に記載の製造方法。 The production method according to claim 1, wherein the amount of the tungsten oxide or niobium oxide in the photocatalyst is 0.05 mol% or more in terms of a metal element with respect to titanium of titanium oxide. 請求項1または請求項2に記載の製造方法により光触媒体を得、得られた光触媒体を溶媒に分散させる光触媒体コーティング剤の製造方法。 A manufacturing method of a photocatalyst body coating agent which obtains a photocatalyst body by the manufacturing method according to claim 1 or 2, and disperses the obtained photocatalyst body in a solvent.
JP2007304025A 2007-11-26 2007-11-26 Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same Expired - Fee Related JP4265685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304025A JP4265685B2 (en) 2007-11-26 2007-11-26 Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304025A JP4265685B2 (en) 2007-11-26 2007-11-26 Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000321026A Division JP2002126517A (en) 2000-10-20 2000-10-20 Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same

Publications (2)

Publication Number Publication Date
JP2008062237A JP2008062237A (en) 2008-03-21
JP4265685B2 true JP4265685B2 (en) 2009-05-20

Family

ID=39285394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304025A Expired - Fee Related JP4265685B2 (en) 2007-11-26 2007-11-26 Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same

Country Status (1)

Country Link
JP (1) JP4265685B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267308B2 (en) * 2009-04-28 2013-08-21 信越化学工業株式会社 Photocatalyst coating liquid that provides a photocatalytic thin film excellent in photoresponsiveness and the photocatalytic thin film
JP2011005475A (en) * 2009-05-29 2011-01-13 Sumitomo Chemical Co Ltd Photocatalyst dispersion liquid and photocatalyst functional product using the same
JP6046732B2 (en) * 2012-09-19 2016-12-21 株式会社ダイセル Method for producing transition metal compound-supported titanium oxide suspension, and method for producing transition metal compound-supported titanium oxide
US20190045793A1 (en) * 2016-03-01 2019-02-14 Toagosei Co., Ltd. Antiviral agent, coating composition, resin composition and antiviral product

Also Published As

Publication number Publication date
JP2008062237A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
AU783565B2 (en) Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same
KR101500593B1 (en) Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
AU775049B2 (en) Titanium oxide, photocatalyst comprising same and photocatalytic coating agent
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
JP4495162B2 (en) Rutile-type titanium oxide ultrafine particles
US7011808B2 (en) Titanium oxide and photocatalyst
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
US6645460B2 (en) Titanium hydroxide and photocatalytic coating agent
US10507454B2 (en) Photocatalyst material and method for producing same
JP2002126517A (en) Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same
US20090305879A1 (en) Photocatalyst dispersion liquid and process for producing the same
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP5627006B2 (en) Photocatalyst and method for producing the same
JP2011079713A (en) Copper ion-modified titanium oxide, method for producing the same, and photocatalyst
JP4048775B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
JP2003055841A (en) Titanium oxide fiber and photocatalyst body using the same
JP2010149046A (en) Method for producing visible light-responsive photocatalyst and visible light-responsive photocatalyst
JP2002029749A (en) Titanium dioxide, photocatalytic body using the same and photocatalytic body coating agent
JP2002143691A (en) Photocatalyst, method for manufacturing the same and photocatalyst coating agent prepared from the same
WO2020196329A1 (en) Photocatalyst production method and photocatalyst
JP2005272259A (en) Method for producing visible light responsive titanium oxide photocatalyst precursor generating active species from oxygen in lattice

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080205

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees