JP2006004900A - Alkaline dry battery - Google Patents

Alkaline dry battery Download PDF

Info

Publication number
JP2006004900A
JP2006004900A JP2004237188A JP2004237188A JP2006004900A JP 2006004900 A JP2006004900 A JP 2006004900A JP 2004237188 A JP2004237188 A JP 2004237188A JP 2004237188 A JP2004237188 A JP 2004237188A JP 2006004900 A JP2006004900 A JP 2006004900A
Authority
JP
Japan
Prior art keywords
negative electrode
mol
amount
dry battery
alkaline dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004237188A
Other languages
Japanese (ja)
Inventor
Naoko Yamakawa
直子 山川
Ryosuke Takagi
良介 高木
Kenta Yamamoto
賢太 山本
Masaaki Enoya
匡明 榎屋
Takumi Tahara
匠 太原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004237188A priority Critical patent/JP2006004900A/en
Publication of JP2006004900A publication Critical patent/JP2006004900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline dry battery with excellent leak-resistant characteristic in an overdischarge status as well as undischarge status and partial discharge status by preventing battery internal-pressure from increasing by generation of hydrogen gas. <P>SOLUTION: Electroless tin plating with thickness of 0.050-0.80 μm is applied to the surface of a negative electrode current collector 8. One or more kinds of hydroxide or oxide of a metallic element selected from a group comprising magnesium (Mg), calcium (Ca), barium (Ba) and strontium (Sr) as an additive is added to the inside of the negative electrode mixture 4 in a negative electrode. Thereby, battery internal-pressure is prevented from increasing due to generation of hydrogen gas for preventing destruction of a valve to provided the alkaline dry battery with excellent leak-resistant characteristic in the overdischarge status as well as undischarge status and partial discharge status. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、未放電状態や部分放電状態に加え、過放電状態での耐漏液特性にも優れたアルカリ乾電池に関する。   The present invention relates to an alkaline dry battery excellent in leakage resistance characteristics in an overdischarged state in addition to an undischarged state or a partially discharged state.

昨今アルカリ乾電池の品質は非常に高くなってきているが、リチウム電池などと比べると耐漏液性といった面ではいまだ完全とはいえない。漏液は電池の保存中、亜鉛および負極集電体の腐食反応によって水素ガスが発生し、電池内圧が上昇、その結果、封口部に設置してある安全弁(破裂防止弁)が作動して、電解液である高濃度アルカリ水溶液が電池外部に漏れ出して起こる。   Recently, the quality of alkaline batteries has become very high, but it is still not perfect in terms of leakage resistance compared to lithium batteries. During storage of the battery, hydrogen gas is generated due to the corrosion reaction of zinc and the negative electrode current collector, and the internal pressure of the battery rises.As a result, the safety valve (rupture prevention valve) installed at the sealing part operates, A high concentration alkaline aqueous solution that is an electrolytic solution leaks out of the battery.

このような問題に対しては、亜鉛(Zn)をインジュウム(In)、ビスマス(Bi)、錫(Sn)などの水素過電圧の高い元素(以下、適宜Zn、In、Bi、Snの元素記号のみで示す。)と合金化させる。負極集電体表面を水素過電圧の高い元素で被覆する。有機系・無機系インヒビターを負極合剤中に添加するなど水素ガス発生抑制のための対策が数多くなされてきた。このような改良乾電池における耐漏液特性は大幅に向上している。(下記の特許文献1参照)   For such problems, zinc (Zn) is a high hydrogen overvoltage element such as indium (In), bismuth (Bi), tin (Sn), etc. (hereinafter, only the element symbols of Zn, In, Bi, Sn as appropriate) It is made into an alloy. The surface of the negative electrode current collector is covered with an element having a high hydrogen overvoltage. Many measures have been taken to suppress the generation of hydrogen gas, such as the addition of organic and inorganic inhibitors into the negative electrode mixture. The leakage resistance characteristics in such improved dry batteries are greatly improved. (See Patent Document 1 below)

特開平5−13085号公報Japanese Patent Laid-Open No. 5-13085

しかしながら、上記対策が効果的に作用するのは、電池の未放電状態や部分放電状態においてのみであり、さらに放電深度の深い状態、すなわち過放電状態においては、依然として耐漏液特性は改善されていない。   However, the above countermeasures effectively work only in the undischarged state or the partial discharge state of the battery, and in the deep discharge state, that is, in the overdischarge state, the leakage resistance characteristic is still not improved. .

この発明は正極活物質に二酸化マンガン、負極活物質に亜鉛をそれぞれ主成分として含むアルカリ乾電池において、水素ガス発生による電池内圧上昇を抑制し、未放電状態や部分放電状態に加え、過放電漏液メカニズムの解明と、それに対する有効な解決策をもって、過放電状態での耐漏液特性にも優れたアルカリ乾電池を提供することを目的としている。   The present invention relates to an alkaline dry battery containing manganese dioxide as a positive electrode active material and zinc as a negative electrode active material as main components, suppressing an increase in the internal pressure of the battery due to generation of hydrogen gas, in addition to an undischarged state or a partially discharged state, The purpose of the present invention is to provide an alkaline dry battery with excellent leakage resistance in an overdischarged state by elucidating the mechanism and an effective solution thereto.

上述した目的を達成するためにこの発明は、負極集電体表面にめっき厚0.050μm以上0.80μm以下の無電解錫めっきを施し、負極内の負極合剤中に、添加剤としてマグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)、ストロンチウム(Sr)よりなる群からえらばれる金属元素(以下適宜、Mg、Ca、Ba、Srと元素記号のみで示す場合がある。)の水酸化物もしくは酸化物を1種または2種以上添加することで、過放電後の水素ガス発生による電池内圧上昇を抑制して、弁壊裂を防止し、未放電状態や部分放電状態に加え、過放電状態での耐漏液特性にも優れたアルカリ乾電池を提供する。   In order to achieve the above-described object, the present invention provides an electroless tin plating with a plating thickness of 0.050 μm or more and 0.80 μm or less on the negative electrode current collector surface, and magnesium (as an additive) in the negative electrode mixture in the negative electrode Hydroxidation of metal elements selected from the group consisting of Mg), calcium (Ca), barium (Ba), and strontium (Sr) (hereinafter sometimes referred to as only Mg, Ca, Ba, Sr and element symbols as appropriate). By adding one or more substances or oxides, the increase in the internal pressure of the battery due to the generation of hydrogen gas after overdischarge is suppressed, valve rupture is prevented, and in addition to undischarged or partially discharged conditions, Provided is an alkaline dry battery having excellent liquid leakage resistance in a discharged state.

この発明によれば、過放電後ガス発生を大幅に抑制でき、従来の充填量のままで、すなわち、放電特性を維持したまま、過放電漏液発生率を大幅低減できる。さらに、添加剤の効果により、保存後の電池内部の過放電後の水素ガス発生による電池内圧(インピーダンス)上昇を抑制して弁壊裂を防止し、保存特性をも向上させる効果を発現する。   According to the present invention, generation of gas after overdischarge can be significantly suppressed, and the overdischarge leakage rate can be greatly reduced while maintaining the conventional filling amount, that is, while maintaining the discharge characteristics. Furthermore, due to the effect of the additive, an increase in the internal pressure (impedance) of the battery due to the generation of hydrogen gas after overdischarge inside the battery after storage is suppressed, valve collapse is prevented, and the storage characteristics are also improved.

以下、本発明の実施形態として単三アルカリ乾電池の概略構成図を図1に示す。この電池は、電池缶1と、正極部2と、セパレータ3と、負極合剤4と、封口部剤5と、ワッシャー6と、負極端子板7と、集電体8をそなえる。   FIG. 1 is a schematic configuration diagram of an AA alkaline battery as an embodiment of the present invention. This battery includes a battery can 1, a positive electrode portion 2, a separator 3, a negative electrode mixture 4, a sealing member 5, a washer 6, a negative electrode terminal plate 7, and a current collector 8.

電池缶1は、例えば鉄にニッケルめっきが施されており、電池の外部正極端子となる。正極部2は、中空円筒状をしており、正極活物質と、導電剤である黒鉛粉末と、電解液である水酸化カリウム(以下、適宜KOHと略す)水溶液とからなる正極合剤を中空円筒状に成型した正極ペレットが電池缶1の内部に配置される。セパレータ3は、中空円筒状をしており、正極部2の内側に配される。負極合剤4は、例えば、負極活物質となる粒状亜鉛(Zn)と、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)、ストロンチウム(Sr)よりなる群からえらばれた金属元素の1種または2種以上の水酸化物もしくは酸化物と、KOH水溶液を使用した電解液と、負極合剤4をゲル状として粒状亜鉛と電解液を均一に分散させておくためのゲル化剤とからなる。   The battery can 1 is, for example, iron plated with nickel and serves as an external positive terminal of the battery. The positive electrode part 2 has a hollow cylindrical shape, and a positive electrode mixture comprising a positive electrode active material, a graphite powder as a conductive agent, and an aqueous potassium hydroxide (hereinafter abbreviated as KOH) solution as an electrolyte is hollow. A positive electrode pellet molded into a cylindrical shape is disposed inside the battery can 1. The separator 3 has a hollow cylindrical shape and is arranged inside the positive electrode part 2. The negative electrode mixture 4 is, for example, one of metallic elements selected from the group consisting of granular zinc (Zn) serving as a negative electrode active material, magnesium (Mg), calcium (Ca), barium (Ba), and strontium (Sr). From a seed or two or more hydroxides or oxides, an electrolytic solution using an aqueous KOH solution, and a gelling agent for uniformly dispersing granular zinc and the electrolytic solution in a negative electrode mixture 4 in a gel form Become.

正極部2と、負極合剤4が充填されたセパレータ3とが内部に収納された電池缶1の開口部は、封口部材5がこの開口部を封口するために嵌合されている。封口部材5はプラスティックからなり、さらに、封口部材5を覆うようにワッシャー6と負極端子板7とが取り付けられている。   The opening part of the battery can 1 in which the positive electrode part 2 and the separator 3 filled with the negative electrode mixture 4 are housed is fitted so that the sealing member 5 seals the opening part. The sealing member 5 is made of plastic, and a washer 6 and a negative electrode terminal plate 7 are attached so as to cover the sealing member 5.

上記ワッシャー6が取り付けられた封口部材5の貫通孔には、例えば、真鍮に錫(以下、適宜Snと略すことがある)メッキが施された集電体8が上方から圧入されている。   In the through hole of the sealing member 5 to which the washer 6 is attached, for example, a current collector 8 in which brass is plated with tin (hereinafter sometimes abbreviated as Sn as appropriate) is press-fitted from above.

これにより、負極の集電は、負極端子板7に接着された釘状の集電体8が封口部材5の中央部に形成された貫通孔に圧入されて、負極合剤に達することで確保されている。また、正極の集電は、正極部2と電池缶1とが接続されることで確保される。そして、電池缶1の外周面は、図示しない外装ラベルによって覆われており、電池缶1の下部に正極端子が位置している。   Thereby, the current collection of the negative electrode is ensured by the nail-like current collector 8 bonded to the negative electrode terminal plate 7 being press-fitted into the through hole formed in the central portion of the sealing member 5 and reaching the negative electrode mixture. Has been. Moreover, current collection of the positive electrode is ensured by connecting the positive electrode part 2 and the battery can 1. And the outer peripheral surface of the battery can 1 is covered with the exterior label which is not shown in figure, and the positive electrode terminal is located in the lower part of the battery can 1.

ここで、過放電漏液メカニズムを説明する。過放電状態下での漏液は、過放電後に生成する非常に活性な亜鉛からの水素ガス発生が主原因である。このときの水素ガス発生量は未放電状態の亜鉛に比べて極端に多い。   Here, the overdischarge leakage mechanism will be described. The main cause of leakage in an overdischarge state is the generation of hydrogen gas from highly active zinc generated after overdischarge. The amount of hydrogen gas generated at this time is extremely large compared to undischarged zinc.

また、負極電位上昇によってピンから溶出するSnイオンがガス発生を助長させる作用があることを突き止めた。これらの知見より、過放電後の耐漏液特性を向上させる対応策としては、活性な亜鉛生成を抑制すること、活性な亜鉛からの水素ガス発生を抑制すること、ピン溶出を極力抑え込むことが挙げられる。   It was also found that Sn ions eluted from the pins due to the negative electrode potential increase have the effect of promoting gas generation. Based on these findings, countermeasures to improve leakage resistance after overdischarge include suppressing active zinc production, suppressing hydrogen gas generation from active zinc, and suppressing pin elution as much as possible. It is done.

まず、ピンから溶出するSnイオンであるが、集電子上のSnめっき膜厚を0.050μm以上0.80μm以下と薄くすることで、Snの溶出を抑え込み、Snによる亜鉛の活性化の程度を低減させ、ガス発生を抑制することができる。めっき方法は、無電解めっきとすることで成膜状態が非常に平滑となり、電位分布に偏りが小さくなるためSnの溶出速度、溶出量が抑制される。   First, Sn ions eluted from the pin, but by reducing the Sn plating film thickness on the current collector to 0.050 μm or more and 0.80 μm or less, Sn elution is suppressed, and the degree of zinc activation by Sn is suppressed. It is possible to reduce gas generation. When the plating method is electroless plating, the film forming state becomes very smooth and the potential distribution is less biased, so that the elution rate and elution amount of Sn are suppressed.

また、活性な亜鉛の生成に関しては、生成を抑制するのは非常に困難であるが、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)、ストロンチウム(Sr)よりなる群からえらばれる金属元素の水酸化物もしくは酸化物中から選ばれる1種類、もしくは2種類以上を負極合剤中に添加することで、活性な亜鉛からのガス発生を大幅に抑制できる。   In addition, regarding the production of active zinc, it is very difficult to suppress the production, but a metal element selected from the group consisting of magnesium (Mg), calcium (Ca), barium (Ba), and strontium (Sr) The gas generation from active zinc can be significantly suppressed by adding one type or two or more types selected from the hydroxides or oxides of the above to the negative electrode mixture.

以下、実施例に基づいてこの発明をさらに具体的に説明するが、この発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples.

なお、実施例中のめっき膜厚、水素ガス発生量、添加剤の添加量、漏液率の測定は下記(1)〜(4)の方法に従って測定した。
(1)めっき膜厚
蛍光X線分析装置 RIX3000(Rigaku製)にて測定した。
(2)水素ガス発生量(過放電状態)
ガス発生量測定は容量30mlでガス発生量が分かるように目盛りの付いた試験管を流動パラフィン中に設置し、試験管内に正極端子側に穴をあけた過放電後セルを入れ、60℃で10日間のガス発生量を測定した。測定数はn=10とし、その平均値を算出した。
(3)水素ガス発生量(未放電状態)
ガス発生量測定は容量5mlでガス発生量が分かるように目盛りの付いた試験管を流動パラフィン中に設置し、試験管内に正極端子側に穴をあけた未放電セルを入れ、60℃で10日間のガス発生量を測定した。測定数はn=10とし、その平均値を算出した。
(4)添加剤の添加量
負極合剤の一部を塩酸中に溶解させ、高周波誘導結合プラズマ分光分析法(Inductively Coupled Plasma;以下、ICPと略す)によって添加元素と亜鉛の絶対量を測定し、元素換算で亜鉛量に対するモル比率(mol%)で測定した。このとき使用した発光分析装置は、JY238 ULTRACE(HORIBA製)である。
In addition, the plating film thickness, hydrogen gas generation amount, additive addition amount, and leakage rate in the examples were measured according to the following methods (1) to (4).
(1) Plating thickness Measured with a fluorescent X-ray analyzer RIX3000 (manufactured by Rigaku).
(2) Hydrogen gas generation amount (over discharge state)
For the gas generation amount measurement, a test tube with a scale of 30 ml capacity is provided in the liquid paraffin so that the gas generation amount can be seen. The amount of gas generated for 10 days was measured. The number of measurements was n = 10, and the average value was calculated.
(3) Hydrogen gas generation amount (undischarged state)
For the gas generation amount measurement, a test tube with a scale of 5 ml is provided in the liquid paraffin so that the gas generation amount can be understood, and an undischarged cell with a hole on the positive electrode terminal side is put in the test tube, and 10 ° C. at 60 ° C. Daily gas generation was measured. The number of measurements was n = 10, and the average value was calculated.
(4) Additive amount of additive A part of the negative electrode mixture was dissolved in hydrochloric acid, and the absolute amount of the additive element and zinc was measured by high frequency inductively coupled plasma spectroscopy (hereinafter abbreviated as ICP). The molar ratio (mol%) with respect to the amount of zinc in terms of elements was measured. The emission analyzer used at this time is JY238 ULTRACE (manufactured by HORIBA).

実施例1
集電子上へのSnめっき厚を検討するための実施例1に関して記述する。
直径1.5mm長さ35mmに加工された釘状の真鍮棒を脱脂処理した後、硫酸スズ10g/l、チオ尿素50g/l、クエン酸50g/lを含むめっき液に浸漬させ、めっき厚が0.050μ、0.10μm、0.50μm、0.80μmである負極集電体を作製した。膜厚測定は(1)の測定方法を用いた。
この負電極集電体を用いて、実施例1の単三形アルカリ乾電池のサンプル(A〜D)を作製した。
Example 1
Reference is made to Example 1 for studying the Sn plating thickness on the current collector.
After degreasing a nail-shaped brass rod processed to a diameter of 1.5 mm and a length of 35 mm, it was immersed in a plating solution containing 10 g / l tin sulfate, 50 g / l thiourea and 50 g / l citric acid, and the plating thickness was Negative electrode current collectors having 0.050 μm, 0.10 μm, 0.50 μm, and 0.80 μm were prepared. The measurement method (1) was used for film thickness measurement.
Samples (A to D) of the AA alkaline batteries of Example 1 were prepared using this negative electrode current collector.

作製した実施例1の単三形アルカリ乾電池を、40Ωで0.1Vまで放電することで過放電状態を作製し、(2)記載の方法でガス発生量測定を行った。また、(3)記載の方法で、未放電状態でのガス発生量も測定した。   The produced AA alkaline battery of Example 1 was discharged at 40Ω to 0.1 V to produce an overdischarged state, and the amount of gas generated was measured by the method described in (2). Further, the amount of gas generated in an undischarged state was also measured by the method described in (3).

比較例1
めっき厚が0.00μm、0.010μm、1.00μm、2.00μmである以外は実施例1と同様にして単三形アルカリ乾電池(E〜H)を作製し測定を行った。
Comparative Example 1
AA alkaline batteries (E to H) were prepared and measured in the same manner as in Example 1 except that the plating thickness was 0.00 μm, 0.010 μm, 1.00 μm, and 2.00 μm.

表1にその際のガス発生量を示す。表より、Snのめっき厚が増えるに従ってガス発生量が増大する方向であり、めっき処理を施さなかった0.00μmで最もガス発生量が少ないが、無電解めっき、0.010μm、0.050μm、0.50μm、0.80μmでもガス発生量が少なくなっていることが分かる。逆にめっき厚が1.00μm、2.00μmと厚くなると顕著にガス発生量が増大することがわかる。   Table 1 shows the amount of gas generated at that time. From the table, the amount of gas generation increases as the Sn plating thickness increases, and the amount of gas generation is the smallest at 0.00 μm where the plating treatment was not performed, but electroless plating, 0.010 μm, 0.050 μm It can be seen that the gas generation amount is reduced even at 0.50 μm and 0.80 μm. Conversely, it can be seen that the amount of gas generated increases remarkably when the plating thickness is increased to 1.00 μm and 2.00 μm.

一方、錫めっき厚が0.050μm未満では、未放電状態でのガス発生量が極端に増加してしまうことが分かる。これは、膜厚が小さすぎると真鍮製集電体に含まれる不純物元素を完全に被覆できていないこと、また真鍮表面が露呈してしまうことで水素過電圧が低くなってしまうことが原因と考えられる。よって、過放電と未放電量状態でのガス発生量を考慮するとめっき膜厚が極度に薄くなることは避け、膜厚は0.050μm以上0.80μm以下とすることが好ましい。   On the other hand, it can be seen that when the tin plating thickness is less than 0.050 μm, the amount of gas generated in an undischarged state is extremely increased. The reason for this is that if the film thickness is too small, the impurity element contained in the brass current collector is not completely covered, and the hydrogen overvoltage is lowered by exposing the brass surface. It is done. Therefore, considering the amount of gas generated in the overdischarged and undischarged state, it is preferable that the plating film thickness is prevented from becoming extremely thin, and the film thickness is preferably 0.050 μm or more and 0.80 μm or less.

Figure 2006004900
Figure 2006004900

実施例2〜71
負極中に添加するマグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)、ストロンチウム(Sr)よりなる群からえらばれる1種または2種以上の酸化物もしくは水酸化物の添加量を検討するための実施例に関して記述する。
Examples 2-71
In order to examine the addition amount of one or more oxides or hydroxides selected from the group consisting of magnesium (Mg), calcium (Ca), barium (Ba), and strontium (Sr) added to the negative electrode Examples will be described.

添加量は、(4)に記載の通り負極合剤の一部を塩酸中に溶解させ、ICP法によって添加元素と亜鉛の絶対量を測定し、元素換算で亜鉛量に対するモル比率(mol%)で規定される。   As described in (4), a part of the negative electrode mixture is dissolved in hydrochloric acid, the absolute amount of the additive element and zinc is measured by the ICP method, and the addition amount is a molar ratio (mol%) to the zinc amount in terms of element. It is prescribed by.

まず、水酸化カルシウム(Ca(OH)2)を負極合剤中の亜鉛に対して0.00mol%、0.100mol%、0.150mol%、0.400mol%、0.800mol%、1.00mol%、1.30mol%添加し、実施例2〜15の単三形アルカリ乾電池を作製した。 First, calcium hydroxide (Ca (OH) 2 ) is 0.00 mol%, 0.100 mol%, 0.150 mol%, 0.400 mol%, 0.800 mol%, 1.00 mol with respect to zinc in the negative electrode mixture. %, 1.30 mol% were added, and AA alkaline batteries of Examples 2 to 15 were produced.

負極集電子はSnめっき膜厚0.10μmと2.0μmのものを使用し、過放電状態の作製方法およびガス発生量の測定方法は実施例1と同様とした。   The negative electrode current collectors used were Sn plating film thicknesses of 0.10 μm and 2.0 μm, and the method for producing the overdischarged state and the method for measuring the amount of gas generation were the same as in Example 1.

作製した実施例2〜15の単三形アルカリ乾電池の過放電後ガス発生量を表2に示す。表2より、水酸化カルシウム(Ca(OH)2)を0.100mol%以上1.00mol%以下加えることでガス発生量を減少させることができ、特にSnめっき膜厚0.10?mと組み合わせて使用した場合、従来に比べ大幅にガス発生量が減少することが分かる。逆に、1.30mol%とCa(OH)2添加量を多くすることでガス発生量は増大しており、この程度の添加量から放電特性へも悪影響が出始める。 Table 2 shows the gas generation amount after overdischarge of the produced AA alkaline batteries of Examples 2 to 15. From Table 2, the amount of gas generation can be reduced by adding 0.100 mol% or more and 1.00 mol% or less of calcium hydroxide (Ca (OH) 2 ), especially in combination with Sn plating film thickness of 0.10? M. It can be seen that the amount of gas generated is greatly reduced compared to the conventional case. Conversely, increasing the amount of 1.30 mol% and Ca (OH) 2 added increases the amount of gas generated, and this amount of addition starts to have an adverse effect on the discharge characteristics.

Ca(OH)2に代わって水酸化マグネシウム(Mg(OH)2)、水酸化バリウム(Ba(OH)2)および水酸化ストロンチウム(Sr(OH)2)を、0.100mol%、0.800mol%、1.30mol%添加し、実施例16〜39の単三形アルカリ乾電池を作製した。負極集電子はSnめっき膜厚0.10μmと2.0μmのものを使用し、過放電状態の作製方法およびガス発生量の測定方法は実施例1と同様とした。作製した実施例16〜39のアルカリ乾電池の過放電後ガス発生量を表3に示す。 Instead of Ca (OH) 2 , magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) and strontium hydroxide (Sr (OH) 2 ) were added in 0.100 mol% and 0.800 mol. %, 1.30 mol% were added, and AA alkaline batteries of Examples 16 to 39 were produced. The negative electrode current collectors used were Sn plating film thicknesses of 0.10 μm and 2.0 μm, and the method for producing the overdischarged state and the method for measuring the amount of gas generation were the same as in Example 1. Table 3 shows the amount of gas generated after overdischarge of the produced alkaline batteries of Examples 16 to 39.

水酸化マグネシウム(Mg(OH)2)添加の場合、ややガス発生抑制効果は小さいが、その他の水酸化物に関しては水酸化カルシウム(Ca(OH)2)添加の場合とほぼ同様の効果が認められている。 When magnesium hydroxide (Mg (OH) 2 ) is added, the effect of suppressing gas generation is slightly small, but with respect to other hydroxides, almost the same effect as when calcium hydroxide (Ca (OH) 2 ) is added is recognized. It has been.

次にそれぞれの酸化物、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化バリウム(BaO)および酸化ストロンチウム(SrO)を0.100mol%、0.800mol%、1.30mol%添加し、実施例40〜71の単三形アルカリ乾電池を作製した。負極集電子はSnめっき膜厚0.10μmと2.0μmのものを使用し、過放電状態の作製方法およびガス発生量の測定方法は実施例1と同様とした。作製した実施例40〜71のアルカリ乾電池の過放電後ガス発生量を表4に示す。   Next, each oxide, magnesium oxide (MgO), calcium oxide (CaO), barium oxide (BaO) and strontium oxide (SrO) were added at 0.100 mol%, 0.800 mol%, and 1.30 mol%. 40-71 AA alkaline batteries were prepared. The negative electrode current collectors used were Sn plating film thicknesses of 0.10 μm and 2.0 μm, and the method for producing the overdischarged state and the method for measuring the amount of gas generation were the same as in Example 1. Table 4 shows the amount of gas generated after overdischarge of the produced alkaline batteries of Examples 40 to 71.

酸化マグネシウム(MgO)添加の場合、ややガス発生抑制効果は小さいが、酸化物の場合も水酸化物の場合とほぼ同様の効果が認められている。   In the case of adding magnesium oxide (MgO), the effect of suppressing gas generation is slightly small, but in the case of oxide, the same effect as that of hydroxide is recognized.

次に、上記実施例のうちSnめっき膜厚を0.10μmと2.0μmとし、添加量を0.00mol%、0.800mol%、1.00mol%、1.30mol%としたCaの酸化物もしくは水酸化物、添加量を0.800mol%としたMg、Ba、Srの酸化物もしくは水酸化物の過放電漏液率を表5に、10Ω放電時の0.9V終止放電容量比を表6に示す。   Next, in the above examples, the Sn oxide film thicknesses were 0.10 μm and 2.0 μm, and the addition amounts were 0.00 mol%, 0.800 mol%, 1.00 mol%, and 1.30 mol%. Table 5 shows the overdischarge leakage rate of Mg, Ba, Sr oxide or hydroxide with an addition amount of hydroxide and 0.800 mol%, and Table 9 shows the 0.9V end discharge capacity ratio at 10Ω discharge. It is shown in FIG.

なお、過放電漏液率は電池内のガス発生量および空隙量の2因子が支配的であるため、負極充填量を調整することで空隙量を変化させ、従来の充填量に対する充填量比1.0、0.90、0.80、0.70、それぞれにおいて60℃、10日間保後の漏液率を調べた。   Since the overdischarge leakage rate is dominated by two factors, the amount of gas generated in the battery and the amount of voids, the amount of voids is changed by adjusting the negative electrode filling amount, and the filling amount ratio 1 relative to the conventional filling amount is 1 0.0, 0.90, 0.80, and 0.70, respectively, and the leakage rate after holding at 60 ° C. for 10 days was examined.

過放電状態の作製方法は実施例1と同様とし、測定本数は各20本とした。表6より、過放電漏液率は上記実施例のガス発生試験結果をよく反映しており、めっき膜厚を薄くすることと、さらにMg、Ca、Ba、Srよりなる群からえらばれる金属元素の酸化物もしくは水酸化物を添加することにより過放電漏液発生率が低くなっている。特に、両者の効果を合せることで過放電漏液発生率は大幅に低減されていることがわかる。   The method for producing the overdischarged state was the same as in Example 1, and the number of measurements was 20 each. From Table 6, the overdischarge leakage rate well reflects the gas generation test results of the above examples, and the metal elements selected from the group consisting of Mg, Ca, Ba, and Sr with a thinner plating film thickness. The overdischarge leakage rate is reduced by adding the oxide or hydroxide. In particular, it can be seen that the overdischarge leakage rate is greatly reduced by combining both effects.

さらに、負極充填量比を下げていくにつれて漏液発生率は低減しているが、これは電池内の空隙量が多くなったという効果による。しかしながら、表6が示すように負極充填量比の低減は放電容量の低下につながるため好ましくない。   Furthermore, the rate of liquid leakage decreases as the negative electrode filling ratio is lowered, which is due to the effect that the amount of voids in the battery is increased. However, as Table 6 shows, a reduction in the negative electrode filling ratio leads to a decrease in discharge capacity, which is not preferable.

めっき膜厚を0.10μmとし、添加量を0.800mol%とした添加剤の60℃で20日保存後の10Ω放電容量維持率を表7に示す。表7よりMg、Ca、Ba、Srよりなる群からえらばれる1種または2種以上の酸化物もしくは水酸化物を添加することで放電容量維持率が向上していることが分かる。   Table 7 shows the 10Ω discharge capacity retention rate after storage for 20 days at 60 ° C. of the additive with a plating film thickness of 0.10 μm and an addition amount of 0.800 mol%. From Table 7, it can be seen that the discharge capacity retention rate is improved by adding one or more oxides or hydroxides selected from the group consisting of Mg, Ca, Ba, and Sr.

以上,表1から表7より総合的に考えた結果として、めっき膜厚を0.050μm以上0.80μm以下と薄くし、負極中にMg、Ca、Ba、Srの酸化物もしくは水酸化物を負極合剤中の亜鉛に対し元素換算で0.100mol%以上1.00mol%以下添加することで、過放電後ガス発生を大幅に抑制でき、従来の充填量のままで、すなわち、放電特性を維持したまま、過放電漏液発生率を大幅低減できる。さらには、単三形アルカリ電池保存後の電池内部のインピーダンス上昇を抑制し、保存特性をも向上できる。   As a result of comprehensive consideration from Table 1 to Table 7, the plating film thickness is reduced to 0.050 μm or more and 0.80 μm or less, and an oxide or hydroxide of Mg, Ca, Ba, Sr is added to the negative electrode. By adding 0.100 mol% or more and 1.00 mol% or less in terms of element to zinc in the negative electrode mixture, gas generation after overdischarge can be significantly suppressed, and the discharge characteristics can be maintained with the conventional filling amount. While maintaining it, the overdischarge leakage rate can be greatly reduced. Furthermore, the increase in impedance inside the battery after storage of AA alkaline batteries can be suppressed, and the storage characteristics can be improved.

なお、実施例には単三形アルカリ乾電池を用いたが、本発明は正極にオキシ水酸化ニッケル、マンガン・チタン酸化物、酸化銀、鉄複合酸化物やこれらと二酸化マンガンの混合物を用いてもよく、ニッケル乾電池、ニッケルマンガン乾電池、空気電池,酸化銀乾電池等にも適用可能である。また、電池形状も単一、単二、単三、単四、単五などの筒型に加え、ボタン型、コイン型、角型などに適用可能であるが、もっとも好ましく形は、円筒型である。   In addition, although the AA alkaline battery was used for the Example, the present invention may use nickel oxyhydroxide, manganese / titanium oxide, silver oxide, iron composite oxide or a mixture of these and manganese dioxide for the positive electrode. It can be applied to nickel batteries, nickel manganese batteries, air batteries, silver oxide batteries, and the like. In addition to single, single, single, single, single, and single cylinder shapes, the battery shape can be applied to button types, coin types, square types, etc., but the most preferable shape is a cylindrical type. is there.

Figure 2006004900
Figure 2006004900

Figure 2006004900
Figure 2006004900

Figure 2006004900
Figure 2006004900

Figure 2006004900
Figure 2006004900

Figure 2006004900
Figure 2006004900

Figure 2006004900
Figure 2006004900

本発明の単三形アルカリ乾電池の構造を説明する断面側面図である。It is a sectional side view explaining the structure of the AA alkaline battery of this invention.

符号の説明Explanation of symbols

1 正極缶
2 正極合剤
3 セパレータ
4 負極合剤
5 封口部材
6 金属ワッシャー
7 負極端子
8 集電体

DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Positive electrode mixture 3 Separator 4 Negative electrode mixture 5 Sealing member 6 Metal washer 7 Negative electrode terminal 8 Current collector

Claims (4)

正極活物質に二酸化マンガンを、負極活物質に亜鉛をそれぞれ主成分として含み、負極内に集電体として挿入された銅または亜鉛合金を主体とする負極集電体を備えるアルカリ乾電池において、
負極集電体表面にめっき厚0.050μm以上0.80μm以下の無電解錫めっきを施し、
負極内の負極合剤中に、添加剤としてMg、Ca、Ba、Srよりなる群からえらばれる金属元素の水酸化物もしくは酸化物を1種または2種以上添加することを特徴とするアルカリ乾電池。
In an alkaline dry battery comprising a negative electrode current collector mainly composed of copper or a zinc alloy containing manganese dioxide as a positive electrode active material and zinc as a main component in a negative electrode active material and inserted as a current collector in the negative electrode,
Electroless tin plating with a plating thickness of 0.050 μm or more and 0.80 μm or less is applied to the surface of the negative electrode current collector,
An alkaline dry battery characterized in that one or more metal element hydroxides or oxides selected from the group consisting of Mg, Ca, Ba, and Sr are added to the negative electrode mixture in the negative electrode. .
上記添加剤の添加量は、負極合剤中の亜鉛に対しMg、Ca、Ba、Sr元素換算で0.100mol%以上1.00mol%以下であることを特徴とする請求項1記載のアルカリ乾電池。   2. The alkaline dry battery according to claim 1, wherein the additive is added in an amount of 0.100 mol% or more and 1.00 mol% or less in terms of Mg, Ca, Ba, and Sr elements with respect to zinc in the negative electrode mixture. . 上記添加剤が水酸化カルシウムまたは酸化カルシウムであって、負極合剤中の亜鉛に対しその元素換算で0.100mol%以上1.00mol%以下である請求項1記載のアルカリ乾電池。   The alkaline dry battery according to claim 1, wherein the additive is calcium hydroxide or calcium oxide, and is 0.100 mol% or more and 1.00 mol% or less in terms of element with respect to zinc in the negative electrode mixture. 円筒型であることを特徴とする請求項1記載のアルカリ乾電池。   2. The alkaline dry battery according to claim 1, wherein the alkaline dry battery is a cylindrical type.
JP2004237188A 2004-05-20 2004-08-17 Alkaline dry battery Pending JP2006004900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237188A JP2006004900A (en) 2004-05-20 2004-08-17 Alkaline dry battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004150320 2004-05-20
JP2004237188A JP2006004900A (en) 2004-05-20 2004-08-17 Alkaline dry battery

Publications (1)

Publication Number Publication Date
JP2006004900A true JP2006004900A (en) 2006-01-05

Family

ID=35773094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237188A Pending JP2006004900A (en) 2004-05-20 2004-08-17 Alkaline dry battery

Country Status (1)

Country Link
JP (1) JP2006004900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001813A1 (en) 2006-06-28 2008-01-03 Panasonic Corporation Alkaline dry cell
JP2021002439A (en) * 2019-06-20 2021-01-07 Fdk株式会社 Alkaline battery
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109411A (en) * 1991-10-17 1993-04-30 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH05242895A (en) * 1992-02-26 1993-09-21 Matsushita Electric Ind Co Ltd Manufacture of zinc alkaline battery
JPH0620694A (en) * 1992-07-07 1994-01-28 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH06231757A (en) * 1993-02-04 1994-08-19 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPH0729573A (en) * 1993-07-07 1995-01-31 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery
JPH07254407A (en) * 1994-03-15 1995-10-03 Toshiba Battery Co Ltd Unamalgamated zinc alkaline battery
JP2000173602A (en) * 1998-12-08 2000-06-23 Toshiba Battery Co Ltd Cylindrical alkaline battery
JP2001060458A (en) * 1999-08-23 2001-03-06 Toshiba Battery Co Ltd Alkaline battery
JP2001297776A (en) * 2000-04-13 2001-10-26 Sony Corp Alkali cell
JP2002198060A (en) * 2000-12-26 2002-07-12 Sony Corp Battery
JP2002367606A (en) * 2001-06-11 2002-12-20 Dowa Mining Co Ltd Negative electrode component for alkali cell, zinc alloy powder used for the same, and alkali cell using the component
JP2003242990A (en) * 2002-02-15 2003-08-29 Fdk Corp Alkaline primary battery
JP2004030969A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Manganese dry battery
JP2005093130A (en) * 2003-09-12 2005-04-07 Mitsui Mining & Smelting Co Ltd Negative electrode for battery using zinc alloy powder, and battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109411A (en) * 1991-10-17 1993-04-30 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH05242895A (en) * 1992-02-26 1993-09-21 Matsushita Electric Ind Co Ltd Manufacture of zinc alkaline battery
JPH0620694A (en) * 1992-07-07 1994-01-28 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH06231757A (en) * 1993-02-04 1994-08-19 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPH0729573A (en) * 1993-07-07 1995-01-31 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery
JPH07254407A (en) * 1994-03-15 1995-10-03 Toshiba Battery Co Ltd Unamalgamated zinc alkaline battery
JP2000173602A (en) * 1998-12-08 2000-06-23 Toshiba Battery Co Ltd Cylindrical alkaline battery
JP2001060458A (en) * 1999-08-23 2001-03-06 Toshiba Battery Co Ltd Alkaline battery
JP2001297776A (en) * 2000-04-13 2001-10-26 Sony Corp Alkali cell
JP2002198060A (en) * 2000-12-26 2002-07-12 Sony Corp Battery
JP2002367606A (en) * 2001-06-11 2002-12-20 Dowa Mining Co Ltd Negative electrode component for alkali cell, zinc alloy powder used for the same, and alkali cell using the component
JP2003242990A (en) * 2002-02-15 2003-08-29 Fdk Corp Alkaline primary battery
JP2004030969A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Manganese dry battery
JP2005093130A (en) * 2003-09-12 2005-04-07 Mitsui Mining & Smelting Co Ltd Negative electrode for battery using zinc alloy powder, and battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001813A1 (en) 2006-06-28 2008-01-03 Panasonic Corporation Alkaline dry cell
US8080336B2 (en) 2006-06-28 2011-12-20 Panasonic Corporation Alkaline dry battery
JP2021002439A (en) * 2019-06-20 2021-01-07 Fdk株式会社 Alkaline battery
JP7274952B2 (en) 2019-06-20 2023-05-17 Fdk株式会社 alkaline battery
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Similar Documents

Publication Publication Date Title
EP1187236B1 (en) Alkaline battery
CN100514714C (en) Alkaline battery including nickel oxyhydroxide cathode and zinc anode
US5445908A (en) Alkaline dry cell
JP4888088B2 (en) Electrolytic manganese dioxide
JP4936502B2 (en) Cylindrical alkaline battery and manufacturing method thereof
US20090263710A1 (en) Aa alkaline battery
JP2003502808A (en) Alkaline battery with improved anode
EP2479824A1 (en) Cylindrical alkaline battery
JP2005197230A (en) Button type alkaline battery and method of manufacturing the same
JP2009170157A (en) Aa alkaline battery
US20090220861A1 (en) Method for producing alkaline battery, and alkaline battery
EP1780821B1 (en) Cylindrical alkaline battery
JP2770396B2 (en) Zinc alkaline battery
JP2006004900A (en) Alkaline dry battery
JP2008034370A (en) Electrochemical element
JP2009043417A (en) Cylindrical alkaline battery
EP1293002B1 (en) Electrochemical cells with an anode containing sulfur
JP4717222B2 (en) Alkaline battery
JP2006040701A (en) Alkaline dry battery
JP2002117859A (en) Alkaline battery
JP3505824B2 (en) Flat alkaline battery
JP2011076978A (en) Alkaline dry battery, and method of manufacturing the same
JPH0750612B2 (en) Zinc alkaline battery
JP2007048623A (en) Alkaline dry cell
JP5400498B2 (en) Alkaline primary battery and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060209

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A521 Written amendment

Effective date: 20061222

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070122

A621 Written request for application examination

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091001

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316