JP2005093130A - Negative electrode for battery using zinc alloy powder, and battery - Google Patents

Negative electrode for battery using zinc alloy powder, and battery Download PDF

Info

Publication number
JP2005093130A
JP2005093130A JP2003321929A JP2003321929A JP2005093130A JP 2005093130 A JP2005093130 A JP 2005093130A JP 2003321929 A JP2003321929 A JP 2003321929A JP 2003321929 A JP2003321929 A JP 2003321929A JP 2005093130 A JP2005093130 A JP 2005093130A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
discharge
liquid
hydrocarbon oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003321929A
Other languages
Japanese (ja)
Inventor
Seiji Fuchino
誠治 渕野
Tsuneyoshi Kamata
恒好 鎌田
Koji Morita
浩二 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003321929A priority Critical patent/JP2005093130A/en
Publication of JP2005093130A publication Critical patent/JP2005093130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new negative electrode for a battery, which can reduce the quantity of hydrogen gas generation at the negative electrode, and which maintains or improves the discharge activity of the battery and, to provide the battery. <P>SOLUTION: The negative electrode for the battery contains a zinc alloy powder containing 0.001 to 1 mass% of one or more additional metal kinds selected from among a group of Al, Bi, Ca, In, Mg, Pb, and Sn, a liquid saturated hydrocarbon oil or liquid unsaturated hydrocarbon oil of 0.01 to 10 mass% with respect to the zinc alloy powder, and strontium hydroxide more than 0 mass% to 10 mass %, with respect to the zinc alloy powder. The quantity of hydrogen gas generation can be further reduced, by adding a specified quantity of strontium hydroxide to the liquid saturated hydrocarbon oil or to the liquid unsaturated hydrocarbon oil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、亜鉛合金粉を用いて形成する電池用負極及び電池に関し、詳しくは電池内で発生する水素ガス量を低減でき、且つ放電特性を向上させられる電池(特にアルカリマンガン電池)及びこれに用いる電池用負極に関する。   The present invention relates to a negative electrode for a battery and a battery formed using zinc alloy powder, and more specifically, a battery (particularly an alkaline manganese battery) capable of reducing the amount of hydrogen gas generated in the battery and improving discharge characteristics, and the like. The present invention relates to a negative electrode for a battery to be used.

アルカリマンガン電池は、二酸化マンガン粉末及び黒鉛粉末からなる正極と、亜鉛合金粉末、電解液及びゲル化剤等からなる負極とから構成するのが一般的である。   The alkaline manganese battery is generally composed of a positive electrode made of manganese dioxide powder and graphite powder, and a negative electrode made of zinc alloy powder, an electrolytic solution, a gelling agent, and the like.

負極を構成する「亜鉛合金粉末」は、表面積が大きく、電解液中での反応性に優れており大電流放電に適している反面、電解液中で腐食されやすいため、腐食によってガス発生が促進され、電解液を漏出させる問題を抱えている。
また、近年の携帯型電子機器の発達やその使用環境の多様化が進むに連れ、これら機器に使用されるアルカリマンガン電池には放電特性の向上が益々要求されるようになり、これに伴って負極亜鉛合金粉の小粒子化が進められている。しかし、亜鉛合金粉を小粒子径化すると、放電特性は向上するものの、反応性が良過ぎるために水素ガスの発生量が増加することになる。
このため、この種のアルカリ電池(アルカリ乾電池)並びにこれの原料となる亜鉛合金粉末の開発においては、ガス発生を如何に抑えるかが重要な課題となっている。
"Zinc alloy powder" that constitutes the negative electrode has a large surface area and is excellent in reactivity in the electrolyte and is suitable for large current discharge, but it is easily corroded in the electrolyte, so the gas generation is accelerated by corrosion. And have the problem of leaking electrolyte.
In addition, with the recent development of portable electronic devices and diversification of their use environments, alkaline manganese batteries used in these devices are increasingly required to have improved discharge characteristics. The negative electrode zinc alloy powder is being reduced in size. However, when the zinc alloy powder is reduced in particle diameter, the discharge characteristics are improved, but the reactivity is too good, so that the amount of hydrogen gas generated increases.
For this reason, in the development of this type of alkaline battery (alkaline dry battery) and zinc alloy powder as a raw material thereof, how to suppress gas generation is an important issue.

これまでの様々な研究から、亜鉛中に存在する「微量不純物」が水素ガス発生反応の速度を決定する要因であることが明らかになって来た。
例えば、水銀,鉛,ビスマス、アルミニウム、マグネシウム、インジウム、ガリウム、リチウム、ナトリウム、タリウム、カルシウム、ストロンチウム、カドミウム、錫などは水素ガス発生反応を抑制し、鉄,ニッケルなどは反応を促進することが知られている。このような「微量不純物」は、例えば亜鉛鉱石中に随伴する不純物が精錬工程で除去されないでそのまま極微量残ったり、工業的に生産された亜鉛を使用して製造する場合でも製造工程で使用する器具や器材等から微量の不純物が混入したりする。
Various studies so far have revealed that “minor impurities” present in zinc are factors that determine the rate of hydrogen gas generation reaction.
For example, mercury, lead, bismuth, aluminum, magnesium, indium, gallium, lithium, sodium, thallium, calcium, strontium, cadmium, tin, etc. can suppress the hydrogen gas generation reaction, and iron, nickel, etc. can promote the reaction. Are known. Such “trace impurities” are used in the manufacturing process even when, for example, impurities accompanying zinc ore are not removed in the refining process but remain in a very small amount or are manufactured using industrially produced zinc. Trace amounts of impurities may be mixed in from instruments and equipment.

そこで、水素ガスの発生を抑制するためには、水素ガス発生反応を抑制する元素をより多く含有させ、水素ガス発生反応を促進する元素を極力除去することが提案されている。
例えば、特許文献1〜3は、環境にごく一般的に存在する不純物である鉄を1ppm以下の低いレベルにまで制御して低下させると同時に、特定の元素を添加して合金とした亜鉛合金粉末をアルカリ電池の負極活物質に用いる旨を提案し、無水銀アルカリ電池の初めての商業化に大きく貢献している。
また、特許文献4は、ニッケル、クロム、アンチモンをlppm以下とし、鉄を20ppm以下とする提案を開示し、
特許文献5は、ニッケル、クロムを0.5ppm以下とする提案を開示し、
特許文献6は、10〜10,000ppmのインジウムと、10〜10,000ppmのビスマスとを含有する亜鉛粉末を開示している。
特公平7−054704号公報 米国特許第5108494号明細書 欧州特許第0500313号明細書 特開平3−56637号公報 特開平9−92278号公報 第2926417号公報
Therefore, in order to suppress the generation of hydrogen gas, it has been proposed to contain more elements that suppress the hydrogen gas generation reaction and to remove as much as possible the elements that promote the hydrogen gas generation reaction.
For example, Patent Documents 1 to 3 disclose zinc alloy powders that are made by adding specific elements to an alloy at the same time that iron, which is an impurity present in the environment, is controlled to a low level of 1 ppm or less. Is used for the negative electrode active material of alkaline batteries, and contributes greatly to the commercialization of mercury-free alkaline batteries for the first time.
Patent Document 4 discloses a proposal that nickel, chromium, and antimony are 1 ppm or less and iron is 20 ppm or less,
Patent Document 5 discloses a proposal for making nickel and chromium 0.5 ppm or less,
Patent Document 6 discloses a zinc powder containing 10 to 10,000 ppm indium and 10 to 10,000 ppm bismuth.
Japanese Patent Publication No. 7-0547704 US Pat. No. 5,108,494 European Patent No. 0500313 Japanese Patent Laid-Open No. 3-56637 JP-A-9-92278 No. 2926417

なお、本出願人は、液状飽和炭化水素系或いは液状不飽和炭化水素系の油を使用してなるアルカリマンガン電池について先に特許出願を行っている(特願2002−201018及び特願2003−113358)。   The present applicant has previously filed a patent application for an alkaline manganese battery using a liquid saturated hydrocarbon-based or liquid unsaturated hydrocarbon-based oil (Japanese Patent Application Nos. 2002-201018 and 2003-113358). ).

本発明は、電池の放電活性を維持又は向上させつつ、負極における水素ガス発生量を低減させることができる新たな電池用負極及び電池を提供せんとするものである。   The present invention provides a new negative electrode for a battery and a battery that can reduce the amount of hydrogen gas generated in the negative electrode while maintaining or improving the discharge activity of the battery.

本発明は、負極用電解液と、Al,Bi,Ca,In,Mg,PbおよびSnからなる群から選択される1種以上の添加金属を0.001〜1質量%含有する亜鉛合金粉と、該亜鉛合金粉に対して0.01〜10質量%の液状飽和炭化水素系又は液状不飽和炭化水素系の油と、該亜鉛合金粉に対して0質量%より多く10質量%以下である量の水酸化ストロンチウムとを含有する電池用負極、並びに該負極を含んでなる電池を提案する。   The present invention relates to a negative electrode electrolyte solution, and a zinc alloy powder containing 0.001 to 1% by mass of one or more additive metals selected from the group consisting of Al, Bi, Ca, In, Mg, Pb and Sn. , 0.01 to 10% by mass of liquid saturated hydrocarbon or liquid unsaturated hydrocarbon oil with respect to the zinc alloy powder, and more than 0% by mass and 10% by mass or less with respect to the zinc alloy powder. A negative electrode for a battery containing an amount of strontium hydroxide and a battery comprising the negative electrode are proposed.

本出願人の先特許出願(特願2002−201018及び特願2003−113358)では、亜鉛合金粉に液状飽和炭化水素系の油或いは液状不飽和炭化水素系の油を加えて、亜鉛合金粉を被覆若しくは亜鉛合金粉中に混入させることで、負極からの水素ガス発生量を抑制できることを開示しているが、当該液状飽和炭化水素系の油或いは液状不飽和炭化水素系の油に水酸化ストロンチウムを所定量添加することにより、さらに放電特性を改善でき、しかも放電後の内包ガス量をより一層抑制することができる。   In the prior patent applications of the present applicant (Japanese Patent Application Nos. 2002-201018 and 2003-113358), a liquid saturated hydrocarbon oil or a liquid unsaturated hydrocarbon oil is added to the zinc alloy powder to obtain a zinc alloy powder. Although it is disclosed that the amount of hydrogen gas generated from the negative electrode can be suppressed by mixing in a coating or zinc alloy powder, strontium hydroxide is added to the liquid saturated hydrocarbon oil or liquid unsaturated hydrocarbon oil. By adding a predetermined amount, the discharge characteristics can be further improved, and the amount of encapsulated gas after discharge can be further suppressed.

なお、本発明において「・・・飽和炭化水素を主成分とする油(請求項2、請求項3)」「・・・不飽和炭化水素を主成分とする液状不飽和炭化水素系の油(請求項5)」「・・・不飽和炭化水素を主成分とする油(請求項6)」における「主成分」とは、その成分が少なくとも50質量%以上、特に70質量%以上を占める成分であることを意味する。
また、本発明が特定する数値範囲の上限値及び下限値は、特定する数値範囲から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の範囲に含まる意を包含する。
In the present invention, “... an oil mainly containing a saturated hydrocarbon (Claims 2 and 3)” “... a liquid unsaturated hydrocarbon oil mainly containing an unsaturated hydrocarbon ( [Claim 5)] “... an oil mainly containing an unsaturated hydrocarbon (Claim 6)” means “a main component” is a component that occupies at least 50% by mass, particularly 70% by mass or more. It means that.
Further, the upper and lower limits of the numerical range specified by the present invention are within the scope of the present invention as long as they have the same operational effects as those within the numerical range, even when slightly deviating from the specified numerical range. Includes intent to include.

以下、アルカリマンガン電池に使用する電池用負極について説明するが、本発明の負極はアルカリマンガン電池用に限定されるものではなく、本発明が以下の実施形態に限定されるものではない。   Hereinafter, although the negative electrode for batteries used for the alkaline manganese battery will be described, the negative electrode of the present invention is not limited to the alkaline manganese battery, and the present invention is not limited to the following embodiments.

本発明に係る負極は、電解液と、Al,Bi,Ca,In,Mg,PbおよびSnからなる群から選択される1種以上の添加金属を含有する亜鉛合金粉と、液状飽和炭化水素系又は液状不飽和炭化水素系の油と、水酸化ストロンチウムと、必要に応じてゲル化剤とを含有するものである。   The negative electrode according to the present invention includes an electrolytic solution, a zinc alloy powder containing one or more additional metals selected from the group consisting of Al, Bi, Ca, In, Mg, Pb, and Sn, and a liquid saturated hydrocarbon system. Alternatively, it contains a liquid unsaturated hydrocarbon oil, strontium hydroxide, and, if necessary, a gelling agent.

(電解液)
電解液としては、公知の電解液を用いることができ、特にその種類を限定するものではないが。一般的には水酸化カリウム水溶液、例えば酸化亜鉛を飽和させた40%水酸化カリウム水溶液などを用いることができる。
(Electrolyte)
As the electrolytic solution, a known electrolytic solution can be used, and the type is not particularly limited. In general, an aqueous potassium hydroxide solution such as a 40% aqueous potassium hydroxide solution saturated with zinc oxide can be used.

(亜鉛合金粉)
亜鉛原料としては、例えば蒸留法、電解法、又は蒸留法及び電解法の併用法等のような各種の製法から比較的容易に得られる一般的な高純度の亜鉛金属原料を用いることができる。
但し、ICP発光分光分析法による亜鉛原料中のFe元素濃度が5ppm以下、好ましくは3ppm以下、中でも1ppm以下の亜鉛原料を選別して原料として使用するのが好ましい。
(Zinc alloy powder)
As the zinc raw material, for example, a general high-purity zinc metal raw material that can be obtained relatively easily from various production methods such as a distillation method, an electrolytic method, or a combined method of a distillation method and an electrolytic method can be used.
However, it is preferable to select a zinc raw material having a Fe element concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 1 ppm or less, as a raw material by ICP emission spectroscopic analysis.

亜鉛原料は加熱溶解し、これにAl,Bi,Ca,In,Mg,PbおよびSnからなる群から選択される1種の金属或いは2種類以上の金属を組合わせて所定量添加混合して亜鉛合金元素組成物の熔湯を得、アトマイズ法により粉末化し、篩い分け(例えば20−250メッシュの粒度)して粒度を揃え、その後必要に応じて磁石により磁力選別して付着Fe元素を除去して製造すればよい。
得られた亜鉛合金粉末は、必要に応じてポリアクリル酸ソーダ、カルボキシメチルセルロースなどのゲル化剤と混合してゲル化して電池内に注入するのが一般的であるが、必ずしもゲル化して注入することに限定するものではない。
The zinc raw material is melted by heating, and a predetermined amount of one or more metals selected from the group consisting of Al, Bi, Ca, In, Mg, Pb, and Sn are combined and added to the zinc. Obtain a molten alloy element composition, pulverize by atomizing method, sieve (for example, 20-250 mesh particle size) to make the particle size uniform, and then magnetically select with a magnet as necessary to remove the adhered Fe element Can be manufactured.
The obtained zinc alloy powder is generally mixed with a gelling agent such as sodium polyacrylate or carboxymethylcellulose as necessary to be gelled and injected into the battery, but it is not necessarily gelled and injected. It is not limited to that.

この際、上記添加金属の合計量が、亜鉛合金中に0.001〜1質量%、好ましくは0.005〜0.5質量%、より好ましくは0.01〜0.3質量%含まれ、残部亜鉛から成る合金粉とする。Al等の添加金属は放電特性向上及び水素ガス発生の抑制のために添加され、添加量が0.001質量%未満であると添加効果が充分でなく、1質量%を超えると逆に放電特性が低下する傾向がある。
亜鉛合金中のIn元素及びBi元素の濃度がいずれも10〜10000ppm、好ましくは100〜10000ppmであり、かつ、In元素濃度とBi元素濃度との比率が0.6:1〜5:1、好ましくは1:1〜3:1である時に水素ガス発生量をより一層抑制できる。
なお、Al,Bi,Ca,In,Mg,PbおよびSnなどの添加金属は、元素として所定量添加すればよく、純粋な金属単体のほか、金属水素化物、金属酸化物などの金属化合物であってもよいが、好ましくは金属単体である。
また、アトマイズ法としては、例えば噴出圧5kg/m2の直接高圧空気法のほか、不活性ガスアトマイズ法、回転円板(ディスクアトマイズ)法等のアトマイズ法を適用することが可能である。
At this time, the total amount of the additive metal is 0.001 to 1% by mass, preferably 0.005 to 0.5% by mass, more preferably 0.01 to 0.3% by mass in the zinc alloy. The alloy powder consists of the remaining zinc. Addition metals such as Al are added to improve discharge characteristics and suppress the generation of hydrogen gas. If the addition amount is less than 0.001% by mass, the addition effect is not sufficient, and if it exceeds 1% by mass, the discharge characteristics are reversed. Tends to decrease.
The concentrations of In element and Bi element in the zinc alloy are both 10 to 10000 ppm, preferably 100 to 10000 ppm, and the ratio of In element concentration to Bi element concentration is 0.6: 1 to 5: 1, preferably Can further suppress the generation amount of hydrogen gas when the ratio is 1: 1 to 3: 1.
It should be noted that the additive metal such as Al, Bi, Ca, In, Mg, Pb and Sn may be added in a predetermined amount as an element, and may be a pure metal alone, or a metal compound such as metal hydride or metal oxide. However, it is preferably a single metal.
As the atomizing method, for example, an atomizing method such as an inert gas atomizing method and a rotating disk (disk atomizing) method can be applied in addition to a direct high-pressure air method with an ejection pressure of 5 kg / m 2 .

本発明の亜鉛合金粉末の製造方法が上記の方法に限定されるものではない。   The method for producing the zinc alloy powder of the present invention is not limited to the above method.

(液状炭化水素系の油)
液状飽和炭化水素系の油としては、炭素数12〜18の飽和炭化水素からなる群から選択される1種の飽和炭化水素又は2種類以上の組合わせからなる混合物、具体的には、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカンの群から選択される1種の飽和炭化水素又は2種類以上の組合わせからなる混合物を主成分とする油が好ましい。中でも炭素数12〜18の飽和炭化水素の混合物である流動パラフィンが特に好ましい。流動パラフィンは市販されているものを使用することができる。
(Liquid hydrocarbon oil)
Examples of the liquid saturated hydrocarbon oil include one kind of saturated hydrocarbon selected from the group consisting of saturated hydrocarbons having 12 to 18 carbon atoms, or a mixture of two or more kinds, specifically, dodecane, Oils mainly composed of one kind of saturated hydrocarbon selected from the group of tridecane, tetradecane, pentadecane, hexadecane, heptadecane, and octadecane or a mixture of two or more kinds are preferred. Of these, liquid paraffin, which is a mixture of saturated hydrocarbons having 12 to 18 carbon atoms, is particularly preferred. A commercially available liquid paraffin can be used.

液状不飽和炭化水素系の油としては、炭素数12〜18の直鎖状又は分枝状の脂肪族液状不飽和炭化水素を主成分とする油が好ましい。例えばドデセン、トリデセン、テトラデセン、ペンタデセン、ヘキサデセン、ヘプタデセン、オクタデセンの群から選択される1種以上の不飽和炭化水素を主成分とする油を好ましい例として挙げることができる。   The liquid unsaturated hydrocarbon oil is preferably an oil mainly composed of a linear or branched aliphatic liquid unsaturated hydrocarbon having 12 to 18 carbon atoms. For example, preferred examples include oils mainly composed of one or more unsaturated hydrocarbons selected from the group consisting of dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene and octadecene.

なお、液状飽和炭化水素系の油及び液状不飽和炭化水素系の油を負極に添加するタイミングとしては、亜鉛合金粉に直接混合するようにしてもよいし、電解液と亜鉛合金粉とを混合する際に水酸化ストロンチウムと同時に添加するようにしてもよいし、亜鉛合金粉をゲル化する際に水酸化ストロンチウムと同時に添加するようにしてもよいし、又、負極を電池容器内に充填した後に負極中に添加するようにしてもよく、特に添加するタイミングを限定するものではない。言い換えれば、液状飽和炭化水素系の油、液状不飽和炭化水素系の油及び水酸化ストロンチウムは必ずしも亜鉛合金粉を被覆するように存在している必要はなく、負極中に存在していればよい。ただし、好ましくは亜鉛合金粉表面を直接被覆するように存在するのがよい。   The timing of adding the liquid saturated hydrocarbon oil and the liquid unsaturated hydrocarbon oil to the negative electrode may be mixed directly with the zinc alloy powder, or the electrolyte solution and the zinc alloy powder may be mixed. May be added at the same time as strontium hydroxide, or may be added at the same time as strontium hydroxide when the zinc alloy powder is gelled, or the negative electrode is filled in the battery container It may be added later to the negative electrode, and the timing of addition is not particularly limited. In other words, the liquid saturated hydrocarbon oil, the liquid unsaturated hydrocarbon oil, and strontium hydroxide do not necessarily need to be present so as to cover the zinc alloy powder, and may be present in the negative electrode. . However, it should preferably exist so as to directly coat the surface of the zinc alloy powder.

液状飽和炭化水素系の油及び液状不飽和炭化水素系の油で亜鉛合金粉を被覆する場合の被覆率(X)は、0<X≦10%、好ましくは0.5%≦X≦5%、中でも特に0.1%≦X≦3%である。
ここで、被覆率は、負極に充填される亜鉛合金粉に対する油の質量比率で示される。
The coverage (X) when coating zinc alloy powder with liquid saturated hydrocarbon oil and liquid unsaturated hydrocarbon oil is 0 <X ≦ 10%, preferably 0.5% ≦ X ≦ 5% In particular, 0.1% ≦ X ≦ 3%.
Here, the coverage is indicated by the mass ratio of oil to the zinc alloy powder filled in the negative electrode.

液状飽和炭化水素系の油及び液状不飽和炭化水素系の油の添加量は、亜鉛合金粉に対して0.01〜10質量%、好ましくは0.05〜5質量%、より好ましくは0.1〜3質量%である。添加量が0.01質量%未満では水素ガス発生の抑制効果が不充分であり、10質量%を超えると水素ガス発生の抑制効果が殆ど上昇しないのに対し、放電特性が低下する傾向が生じる。   The addition amount of the liquid saturated hydrocarbon oil and the liquid unsaturated hydrocarbon oil is 0.01 to 10% by mass, preferably 0.05 to 5% by mass, and more preferably 0.005% by mass with respect to the zinc alloy powder. It is 1-3 mass%. If the amount added is less than 0.01% by mass, the effect of suppressing hydrogen gas generation is insufficient, and if it exceeds 10% by mass, the effect of suppressing hydrogen gas generation hardly increases, whereas the discharge characteristics tend to be reduced. .

(水酸化ストロンチウム)
水酸化ストロンチウムとしては、Sr(OH)2若しくはSr(OH)2・8H2Oのいずれでもよく、市販の水酸化ストロンチウムを使用することができる。通常、白色結晶状で分解温度は375℃(無水)である。
水酸化ストロンチウムは、負極電解液と亜鉛合金粉を混合する際、或いは亜鉛合金粉をゲル化際に添加すればよく、添加量は、亜鉛合金粉に対して0質量%より多く10質量%以下の量、好ましくは0.05〜5質量%、より好ましくは0.1〜3質量%である。
(Strontium hydroxide)
As strontium hydroxide, either Sr (OH) 2 or Sr (OH) 2 .8H 2 O may be used, and commercially available strontium hydroxide can be used. Usually, it is white crystalline and has a decomposition temperature of 375 ° C. (anhydrous).
The strontium hydroxide may be added when the negative electrode electrolyte and the zinc alloy powder are mixed or when the zinc alloy powder is gelled. The addition amount is more than 0% by mass and not more than 10% by mass with respect to the zinc alloy powder. The amount is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass.

(アルカリマンガン電池)
次に、本発明に係わるアルカリマンガン電池の一例について説明する。
図1のアルカリマンガン電池1は、セパレータ2により分割された正極3と負極4が正極缶5内に収容されて成り、前記負極4は、活物質である亜鉛合金粉がゲル状の電解液に分散されて構成されている。前記正極3には前記正極缶5から給電され、前記負極4には、該負極4を保持する封ロキャップ6の下に位置する負極端子7から前記封ロキャップ6を貫通して負極4に達する負極集電子8により給電される。なお符号9は、前記正極缶5と負極端子7間を絶縁するためのガスケットである。
(Alkaline manganese battery)
Next, an example of the alkaline manganese battery according to the present invention will be described.
1 includes a positive electrode 3 and a negative electrode 4 which are divided by a separator 2, and is accommodated in a positive electrode can 5. In the negative electrode 4, a zinc alloy powder as an active material is formed into a gel electrolyte. It is distributed and configured. The positive electrode 3 is fed from the positive electrode can 5, and the negative electrode 4 passes through the sealing cap 6 from the negative terminal 7 located under the sealing cap 6 that holds the negative electrode 4 and reaches the negative electrode 4. Power is supplied by the current collector 8. Reference numeral 9 denotes a gasket for insulating between the positive electrode can 5 and the negative electrode terminal 7.

本発明のアルカリマンガン電池1では、液状炭化水素系の油及び水酸化ストロンチウムが負極4の活物質である亜鉛合金粉を被覆しているか、或いは、負極中に液状炭化水素系の油及び水酸化ストロンチウムが混入しているかしており、これら液状炭化水素系の油と水酸化ストロンチウムとの作用(相乗的な作用)によって負極4表面で発生する水素ガス発生を効果的に抑制することができる。しかも、この液状炭化水素系の油と水酸化ストロンチウムとの添加によって電池本来の特性である放電特性が劣化することもなく、水素ガス発生量の低減という目的を達成することができる。   In the alkaline manganese battery 1 of the present invention, the liquid hydrocarbon oil and strontium hydroxide cover the zinc alloy powder, which is the active material of the negative electrode 4, or the liquid hydrocarbon oil and hydroxide in the negative electrode. Strontium is mixed in, and generation of hydrogen gas generated on the surface of the negative electrode 4 can be effectively suppressed by the action (synergistic action) of these liquid hydrocarbon oils and strontium hydroxide. In addition, the addition of the liquid hydrocarbon oil and strontium hydroxide does not deteriorate the discharge characteristics, which are the original characteristics of the battery, and the object of reducing the amount of hydrogen gas generated can be achieved.

次に本発明に係わるアルカリマンガン電池用亜鉛合金粉の製造、及び該亜鉛合金粉を使用して製造したアルカリマンガン電池の評価に関する実施例及び比較例に関して説明するが、本発明はこれらに限定されるものではない。
なお、本実施例で「試料A」とは、Alが0.0035質量%、Biが0.013質量%、Inが0.05質量%及び残部Znからなる35〜200メッシュの亜鉛合金粉である。
また、「試料B」は、Caが0.013質量%、Biが0.025質量%、Inが0.025質量%、及び残部Znから成る−35メッシュの亜鉛合金粉である。
Next, examples of the production of zinc alloy powder for alkaline manganese batteries according to the present invention and evaluation of alkaline manganese batteries produced using the zinc alloy powder will be described, but the present invention is limited to these examples. It is not something.
In this example, “sample A” is 35 to 200 mesh zinc alloy powder composed of 0.0035 mass% Al, 0.013 mass% Bi, 0.05 mass% In and the balance Zn. is there.
“Sample B” is a −35 mesh zinc alloy powder composed of 0.013 mass% Ca, 0.025 mass% Bi, 0.025 mass% In, and the balance Zn.

(実施例1)
流動パラフィンと試料Aを混合し、試料Aの表面に0〜10質量%の範囲で流動パラフィンを被覆した亜鉛合金粉を負極に用い、陽極として二酸化マンガンと黒鉛を加圧成形したペレットを用いて、それぞれ図1に示すようなアルカリマンガン電池を構成した(図に示すようにJIS規格LR6形式とした)。
このアルカリマンガン電池を20℃で7日間保持し、放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間の測定を行った。その結果を0.9V到達時間相対値として図2に示す。
又、間欠放電後の電池を60℃で3日間保存後、ガス捕集器を備えた水槽中で開封し、放電後の電池内包ガス量の測定を行った。その結果を図3に示した。
(Example 1)
Liquid paraffin and sample A are mixed, zinc alloy powder coated with liquid paraffin in the range of 0 to 10% by mass on the surface of sample A is used for the negative electrode, and pellets obtained by pressure-molding manganese dioxide and graphite are used as the anode. The alkaline manganese batteries as shown in FIG. 1 were respectively constructed (as shown in the figure, JIS standard LR6 format).
This alkaline manganese battery was held at 20 ° C. for 7 days, intermittent discharge was performed at a discharge current of 1.5 A, and the discharge duration to a cut voltage of 0.9 V was measured. The results are shown in FIG. 2 as 0.9V arrival time relative values.
The battery after intermittent discharge was stored at 60 ° C. for 3 days, then opened in a water tank equipped with a gas collector, and the amount of gas contained in the battery after discharge was measured. The results are shown in FIG.

図2から明らかなように、流動パラフィンで被覆すると放電電流1.5Aの間欠放電持続時間が長くなることが分かる。この持続時間は被覆率2%で最も長く、それ以上に被覆すると低下する傾向を示した。又、図3から、流動パラフィンの被覆率の増加に伴って放電後の電池内包ガス量が減少することが分かった。
しかし、被覆率2%を超えると内包ガス量の減少率が減少するため、過剰な被覆を行う必要性が少ないことも分かる。又過剰に被覆すると、アルカリマンガン電池負極内の空間容量が減少し、短絡の危険があるため、適正量は2質量%前後であると考えられる。
As is apparent from FIG. 2, it can be seen that the intermittent discharge duration with a discharge current of 1.5 A becomes longer when coated with liquid paraffin. This duration was the longest at a coverage of 2% and showed a tendency to decrease when the coating was further applied. Further, FIG. 3 shows that the amount of gas contained in the battery after discharge decreases as the liquid paraffin coverage increases.
However, it can also be seen that when the coating rate exceeds 2%, the rate of decrease in the amount of encapsulated gas decreases, so that it is less necessary to perform excessive coating. Moreover, since the space capacity in an alkaline manganese battery negative electrode will reduce and there exists a danger of a short circuit when it coat | covers excessively, it is thought that an appropriate amount is about 2 mass%.

(実施例2)
液状飽和炭化水素系の油である流動パラフィン、ペンタデカン、ヘプタデカンのそれぞれと試料Aとを混合し、各液状飽和炭化水素系の油で2質量%被覆した亜鉛合金粉を負極に用い、陽極として二酸化マンガンと黒鉛を加圧成形したペレットを用いて、それぞれ図1に示すようなアルカリマンガン電池を構成し(図に示すようにJIS規格LR6形式とした)、この電池の初期の特性評価を行った。
このアルカリマンガン電池を20℃で7日間保持し、放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間の測定を行った。その結果を0.9V到達時間相対指数として表1に示す。
又、間欠放電後の電池を60℃で3日間保存後、ガス捕集器を備えた水槽中で開封し、放電後の電池内包ガス量の測定を行った。その結果を表1に示した。
同様に、試料Aの代わりに試料Bを使用して同じ条件で、放電持続時間と放電後の電池内包ガス量の測定を行った。その結果を表1に示した。
(Example 2)
Liquid paraffin, pentadecane, and heptadecane, which are liquid saturated hydrocarbon oils, are mixed with sample A, and zinc alloy powder coated with 2% by mass of each liquid saturated hydrocarbon oil is used as the negative electrode, and carbon dioxide as the anode. An alkaline manganese battery as shown in FIG. 1 was constructed using pellets obtained by pressure-molding manganese and graphite (in the form of JIS standard LR6 as shown in the figure), and the initial characteristics of this battery were evaluated. .
This alkaline manganese battery was held at 20 ° C. for 7 days, intermittent discharge was performed at a discharge current of 1.5 A, and the discharge duration to a cut voltage of 0.9 V was measured. The results are shown in Table 1 as 0.9V arrival time relative index.
The battery after intermittent discharge was stored at 60 ° C. for 3 days, then opened in a water tank equipped with a gas collector, and the amount of gas contained in the battery after discharge was measured. The results are shown in Table 1.
Similarly, using Sample B instead of Sample A, the discharge duration and the amount of gas contained in the battery after discharge were measured under the same conditions. The results are shown in Table 1.

Figure 2005093130
Figure 2005093130

(実施例3)
液状飽和炭化水素系の油である流動パラフィン、ペンタデカン、ヘプタデカンのそれぞれと試料Bとを混合し、これと酸化亜鉛を溶解させた40%水酸化カリウム溶液にゲル化剤を添加した負極用ゲル状電解液とを混合して負極用活物質を得た。この活物質を使用して、陽極として二酸化マンガンと黒鉛を加圧成形したペレットを用いて、それぞれ図1に示すようなアルカリマンガン電池を構成し(図に示すようにJIS規格LR6形式とした)、実施例2と同様に電池の初期の特性評価を行った。結果を表2に示す。
(Example 3)
Liquid-state saturated hydrocarbon oils, liquid paraffin, pentadecane, heptadecane, and sample B are mixed with gel B, and a gelling agent is added to a 40% potassium hydroxide solution in which zinc oxide is dissolved. The negative electrode active material was obtained by mixing with the electrolytic solution. Using this active material, an alkaline manganese battery as shown in FIG. 1 was constructed using pellets obtained by pressure-molding manganese dioxide and graphite as anodes (in the JIS standard LR6 format as shown in the figure). In the same manner as in Example 2, the initial characteristics of the battery were evaluated. The results are shown in Table 2.

(実施例4)
酸化亜鉛を溶解させた40%水酸化カリウム溶液にゲル化剤を添加した負極用ゲル状電解液と試料Bとを混合して負極を作製し、アルカリマンガン電池に充填後、当該負極に対して0.5質量%の流動パラフィンを負極内に注入し、陽極として二酸化マンガンと黒鉛を加圧成形したペレットを用いて、それぞれ図1に示すようなアルカリマンガン電池を構成し(図に示すようにJIS規格LR6形式とした)、実施例2と同様に電池の初期の特性評価を行った。結果を表2に示す。
Example 4
A negative electrode is prepared by mixing a gel electrolyte solution for negative electrode in which a gelling agent is added to a 40% potassium hydroxide solution in which zinc oxide is dissolved, and sample B, and after filling an alkaline manganese battery, An alkaline manganese battery as shown in FIG. 1 was constructed using 0.5 mass% liquid paraffin injected into the negative electrode and pellets obtained by pressure-molding manganese dioxide and graphite as the anode (as shown in the figure). In the same manner as in Example 2, the initial characteristics of the battery were evaluated. The results are shown in Table 2.

Figure 2005093130
Figure 2005093130

(比較例1)
液状飽和炭化水素系の油を使用しなかったこと以外は、実施例2における試料A及び試料Bを別々に使用して負極を構成した操作を行い、実施例2と同様にして放電持続時間相対値と放電後の電池内包ガス量の測定を行った。その結果を、表1の「未処理品」として示す。
(Comparative Example 1)
Except that liquid saturated hydrocarbon oil was not used, an operation was performed in which the negative electrode was configured by separately using Sample A and Sample B in Example 2, and the discharge duration was relative as in Example 2. The value and the amount of gas contained in the battery after discharge were measured. The result is shown as “Untreated product” in Table 1.

表1から明らかなように、比較例1の未処理品と比較して、流動パラフィンを用いた場合、実施例2の試料Aで11%、試料Bで10%放電持続時間が向上し、優れた放電特性を示した。
また、ペンタデカンを用いた場合、実施例2の試料Aで8%、試料Bで7%、へプタデカンを用いた場合、実施例2の試料Aで7%、試料Bで8%放電持続時間が向上し、優れた放電特性を示した。
同様に、放電後の電池内包ガス量も、流動パラフィンを用いた場合、比較例1の未処理品と比較して、試料Aで14%、試料Bで19%減少し、ペンタデカンを用いた場合、実施例2の試料Aで14%、試料Bで16%、へプタデカンを用いた場合、実施例2の試料Aで11%、試料Bで15%減少しており、優れたガス発生抑制効果もあることが分かる。
As is apparent from Table 1, when liquid paraffin was used, the discharge duration was improved by 11% for sample A of sample 2 and 10% for sample B, compared with the untreated product of comparative example 1. Discharge characteristics were shown.
When pentadecane is used, the discharge duration time is 8% for sample A in Example 2, 7% for sample B, 7% for sample A in Example 2, and 8% for sample B. Improved and showed excellent discharge characteristics.
Similarly, the amount of gas contained in the battery after discharge is reduced by 14% for sample A and 19% for sample B when liquid paraffin is used, compared to the untreated product of Comparative Example 1, and when pentadecane is used. In the case of using 14% for sample A in Example 2, 16% for sample B, and 11% for sample A in Example 2 and 15% for sample B, the gas generation suppression effect is excellent. You can see that

(比較例2)
液状飽和炭化水素系の油を使用しなかったこと以外は、実施例3及び4における試料Bを使用して負極を構成した操作を行い、実施例3及び4と同様にして放電持続時間と放電後の電池内包ガス量の測定を行った。その結果を表2の「未処理品」として示す。
(Comparative Example 2)
Except that no liquid saturated hydrocarbon oil was used, an operation was performed in which a negative electrode was constructed using Sample B in Examples 3 and 4, and the discharge duration and discharge were the same as in Examples 3 and 4. The later measurement of the amount of gas contained in the battery was performed. The result is shown as “Unprocessed product” in Table 2.

表2から明らかなように、未処理品と比較して、流動パラフィンを用いた場合、実施例3の試料Bで9%、実施例4の試料Bで7%放電持続時間が向上し、優れた放電特性を示した。
また、ペンタデカンを用いた場合、実施例3の試料Bで6%、実施例4の試料Bで5%、へプタデカンを用いた場合、実施例3の試料Bで7%、実施例4の試料Bで4%放電持続時間が向上し、優れた放電特性を示した。
同様に、放電後の電池内包ガス量も、流動パラフィンを用いた場合、未処理品と比較して、実施例3の試料Bで15%、実施例4の試料Bで10%減少し、ペンタデカンを用いた場合、実施例3の試料Bで14%、実施例4の試料Bで10%、へプタデカンを用いた場合、実施例3の試料Bで10%、実施例4の試料Bで8%減少しており、優れたガス発生抑制効果もあることが分かる。
As is apparent from Table 2, when liquid paraffin is used, the discharge duration is improved by 9% in the sample B of Example 3 and 7% in the sample B of Example 4 as compared with the untreated product. Discharge characteristics were shown.
When pentadecane is used, the sample B of Example 3 is 6%, the sample B of Example 4 is 5%, and when heptadecane is used, the sample B of Example 3 is 7%. The sample of Example 4 B improved the discharge duration by 4% and showed excellent discharge characteristics.
Similarly, the amount of gas contained in the battery after discharge was reduced by 15% in sample B of Example 3 and 10% in sample B of Example 4 when liquid paraffin was used, compared to untreated products, and pentadecane. 14% for sample B in Example 3, 10% for sample B in Example 4, and 10% for sample B in Example 3 and 8% for sample B in Example 4 when heptadecane is used. %, It can be seen that there is also an excellent gas generation suppression effect.

(比較例3)
液状飽和炭化水素系の油の代わりに、ワセリン2質量%を試料Aに被覆した負極を使用して実施例1と同様にアルカリマンガン電池を組立て、この電池の放電後電池内ガス量、放電時間及び内部抵抗を測定し、その結果を表3に示す。
更に、ワセリンを使用しなかったこと以外は実施例1と同様にアルカリマンガン電池を組立て、この電池の放電後電池内ガス量、放電時間及び内部抵抗を測定し、その結果を、表3の試料Aの「未処理品」として示す。
(Comparative Example 3)
An alkaline manganese battery was assembled in the same manner as in Example 1 using a negative electrode in which 2% by mass of petrolatum was coated on sample A instead of liquid saturated hydrocarbon oil, and the amount of gas in the battery and the discharge time after discharge of this battery. The internal resistance was measured, and the results are shown in Table 3.
Further, an alkaline manganese battery was assembled in the same manner as in Example 1 except that no petroleum jelly was used, and the amount of gas in the battery, the discharge time, and the internal resistance were measured after the discharge of this battery. Shown as “unprocessed product” of A.

(比較例4)
液状飽和炭化水素系の油の代わりに、ワセリン2質量%又は植物油2質量%を試料Bに被覆した負極を使用して実施例1と同様にアルカリマンガン電池を組立て、この電池の放電後電池内ガス量、放電時間及び内部抵抗を測定し、その結果を表3に示す。
更に、ワセリン又は植物油を使用しなかったこと以外は実施例1と同様にアルカリマンガン電池を組立て、この電池の放電後電池内ガス量、放電時間及び内部抵抗を測定し、その結果を、表3の試料Bの「未処理品」として示す。
(Comparative Example 4)
An alkaline manganese battery was assembled in the same manner as in Example 1 using a negative electrode in which 2% by mass of petroleum jelly or 2% by mass of vegetable oil was coated on the sample B instead of the liquid saturated hydrocarbon oil. The gas amount, discharge time and internal resistance were measured, and the results are shown in Table 3.
Further, an alkaline manganese battery was assembled in the same manner as in Example 1 except that no petroleum jelly or vegetable oil was used, and after discharge of this battery, the amount of gas in the battery, the discharge time, and the internal resistance were measured. Sample B is shown as “untreated product”.

Figure 2005093130
Figure 2005093130

比較例3から、グリセリン又は植物油を使用すると内部抵抗が増大し、放電持続時間が低下したことが分かる。   From Comparative Example 3, it can be seen that when glycerin or vegetable oil is used, the internal resistance increases and the discharge duration decreases.

(実施例5)
液状不飽和炭化水素系の油であるドデセン、トリデセン、ペンタデセン及びオクタデセンをそれぞれ別個に試料Bと混合し、試料Bの表面に0〜10質量%の範囲で各液状不飽和炭化水素系の油を被覆した亜鉛合金粉を負極に用い、陽極として二酸化マンガンと黒鉛を加圧成形したペレットを用いて、それぞれ図1に示すようなアルカリマンガン電池を構成した(図に示すようにJIS規格LR6形式とした)。
これらの各アルカリマンガン電池を20℃で7日間保持し、放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間の測定を行った。その結果を0.9V到達時間相対値として図4に示す。
又、間欠放電後の電池を60℃で3日間保存後、ガス捕集器を備えた水槽中で開封し、放電後の電池内包ガス量の測定を行った。その結果を図5に示した。
(Example 5)
Liquid unsaturated hydrocarbon oils dodecene, tridecene, pentadecene and octadecene are mixed separately with sample B, and each liquid unsaturated hydrocarbon oil is added to the surface of sample B in the range of 0 to 10% by mass. An alkaline manganese battery as shown in FIG. 1 was constructed using the coated zinc alloy powder as the negative electrode and pellets formed by pressure-compressing manganese dioxide and graphite as the anode (as shown in the JIS standard LR6 format). did).
Each of these alkaline manganese batteries was held at 20 ° C. for 7 days, intermittent discharge was performed at a discharge current of 1.5 A, and the discharge duration to a cut voltage of 0.9 V was measured. The results are shown in FIG. 4 as 0.9V arrival time relative values.
The battery after intermittent discharge was stored at 60 ° C. for 3 days, then opened in a water tank equipped with a gas collector, and the amount of gas contained in the battery after discharge was measured. The results are shown in FIG.

図4から明らかなように、液状不飽和炭化水素系の油を被覆すると放電電流1.5Aの間欠放電持続時間が長くなることが分かる。この持続時間は被覆率2%で最も長く、それ以上に被覆すると低下する傾向を示した。又、図5から、液状不飽和炭化水素系の油の被覆率の増加に伴って放電後の電池内包ガス量が減少することが分かった。
しかし、被覆率2%を超えると内包ガス量の減少率が減少するため、過剰な被覆を行う必要性が少ないことも分かる。又過剰に被覆すると、アルカリマンガン電池負極内の空間容量が減少し、短絡の危険があるため、適正量は2質量%前後であると考えられる。
As can be seen from FIG. 4, when the liquid unsaturated hydrocarbon oil is coated, the intermittent discharge duration of the discharge current of 1.5 A is increased. This duration was the longest at a coverage of 2% and showed a tendency to decrease when the coating was further applied. Further, it was found from FIG. 5 that the amount of gas contained in the battery after discharge decreased with an increase in the coverage of the liquid unsaturated hydrocarbon oil.
However, it can also be seen that when the coating rate exceeds 2%, the rate of decrease in the amount of encapsulated gas decreases, so that it is less necessary to perform excessive coating. Moreover, since the space capacity in an alkaline manganese battery negative electrode will reduce and there exists a danger of a short circuit when it coat | covers excessively, it is thought that an appropriate amount is about 2 mass%.

(実施例6)
実施例5と同じ液状不飽和炭化水素系の油(試料Bに対して2質量%)と、酸化亜鉛を溶解させた40%水酸化カリウム水溶液にゲル化剤を添加した負極用ゲル状電解液を混合し、更に試料Bを混合して負極用活物質を得た。この活物質を使用してアルカリマンガン電池を構成し、実施例5と同様に、放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間相対値と放電後の電池内包ガス量の測定を行った。その結果を表4に示す。
(Example 6)
The same liquid unsaturated hydrocarbon oil as in Example 5 (2% by mass with respect to Sample B) and a gel electrolyte solution for negative electrode in which a gelling agent is added to 40% potassium hydroxide aqueous solution in which zinc oxide is dissolved Were mixed, and sample B was further mixed to obtain a negative electrode active material. Using this active material, an alkaline manganese battery was constructed, and, as in Example 5, intermittent discharge was performed at a discharge current of 1.5 A, the discharge duration relative value up to a Cut voltage of 0.9 V, and the battery inclusion after discharge. The amount of gas was measured. The results are shown in Table 4.

(実施例7)
酸化亜鉛を溶解させた40%水酸化カリウム水溶液にゲル化剤を添加した負極用ゲル状電解液と試料Bを混合し、アルカリマンガン電池に充填後、前記負極中の亜鉛合金粉に対して0.5質量%の液状不飽和炭化水素系の油を負極内に注入してアルカリマンガン電池を得た。この電池を使用して、実施例6と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間相対値と放電後の電池内包ガス量の測定を行った。その結果を表4に示す。
(Example 7)
A negative electrode gel electrolyte solution in which a gelling agent is added to a 40% aqueous potassium hydroxide solution in which zinc oxide is dissolved and sample B are mixed, filled in an alkaline manganese battery, and then 0% of zinc alloy powder in the negative electrode. An alkaline manganese battery was obtained by injecting 5% by mass of liquid unsaturated hydrocarbon oil into the negative electrode. Using this battery, intermittent discharge was performed at a discharge current of 1.5 A in the same manner as in Example 6, and the discharge duration relative value up to a Cut voltage of 0.9 V and the amount of gas contained in the battery after discharge were measured. The results are shown in Table 4.

(比較例5)
液状不飽和炭化水素系の油と負極用ゲル電解液を混合しなかったこと以外は、実施例6における試料Bを使用して負極を構成した操作を行い、実施例6及び7と同様にして放電持続時間相対値と放電後の電池内包ガス量の測定を行った。その結果を、表4の「未処理品」として示す。
(Comparative Example 5)
Except that the liquid unsaturated hydrocarbon oil and the gel electrolyte for the negative electrode were not mixed, the same procedure as in Examples 6 and 7 was performed, except that Sample B in Example 6 was used to form the negative electrode. The relative value of discharge duration and the amount of gas contained in the battery after discharge were measured. The result is shown as “Unprocessed product” in Table 4.

Figure 2005093130
Figure 2005093130

表4から明らかなように、比較例5の未処理品と比較して、実施例6のドデセンで13%、トリデセンで5%、ペンタデセンで10%、オクタデセンで5%放電持続時間が向上し、優れた放電特性を示した。同様に、放電後の電池内包ガス量も、比較例5の未処理品と比較して、ドデセンで17%、トリデセンで13%、ペンタデセンで20%、オクタデセンで11%減少しており、優れたガス発生抑制効果もあることが分かる。   As is apparent from Table 4, compared to the untreated product of Comparative Example 5, the discharge duration of 13% for dodecene of Example 6, 5% for tridecene, 10% for pentadecene, and 5% for octadecene is improved. Excellent discharge characteristics were shown. Similarly, the amount of gas contained in the battery after discharge was reduced by 17% for dodecene, 13% for tridecene, 20% for pentadecene and 11% for octadecene, compared to the untreated product of Comparative Example 5. It can be seen that there is also a gas generation suppressing effect.

(比較例6)
液状不飽和炭化水素系の油を負極内に注入しなかったこと以外は、実施例7における試料Bを使用して負極を構成した操作を行い、実施例6及び7と同様にして放電持続時間と放電後の電池内包ガス量の測定を行った。その結果を表4の「未処理品」として示す通り、比較例5と同じであった。
(Comparative Example 6)
Except that the liquid unsaturated hydrocarbon oil was not injected into the negative electrode, the operation for forming the negative electrode was performed using the sample B in Example 7, and the discharge duration was the same as in Examples 6 and 7. The amount of gas contained in the battery after discharge was measured. The result was the same as that of Comparative Example 5 as shown as “Untreated product” in Table 4.

表4から明らかなように、比較例6の未処理品と比較して、実施例7のドデセンで7%、トリデセンで5%、ペンタデセンで5%、オクタデセンで4%放電持続時間が向上し、優れた放電特性を示した。同様に、放電後の電池内包ガス量も、比較例5の未処理品と比較して、ドデセンで8%、トリデセンで8%、ペンタデセンで17%、オクタデセンで25%減少しており、優れたガス発生抑制効果もあることが分かる。   As is clear from Table 4, compared to the untreated product of Comparative Example 6, the discharge duration of 7% for dodecene of Example 7, 5% for tridecene, 5% for pentadecene, and 4% for octadecene is improved. Excellent discharge characteristics were shown. Similarly, the amount of gas contained in the battery after discharging was 8% for dodecene, 8% for tridecene, 17% for pentadecene, and 25% for octadecene, compared to the untreated product of Comparative Example 5. It can be seen that there is also a gas generation suppressing effect.

(比較例7)
液状不飽和炭化水素系の油の代わりに、同じ液状不飽和炭化水素の油で炭素数が10であるデセン2質量%、又はグリセリン2質量%、又は植物油2質量%を試料Bに被覆した負極を使用して実施例5と同様にアルカリマンガン電池を組立て、この電池の放電持統時間と放電の電池内包ガス量の測定を行った。その結果を表5に示す。
更に、液状の油を使用しなかったこと以外は実施例5と同様にアルカリマンガン電池を組立て、この電池の放電持続時間と放電後の電池内包ガス量の測定を行った。その結果を、表5に「未処理品」として示す。
(Comparative Example 7)
A negative electrode in which sample B is coated with 2% by mass of decene having the same liquid unsaturated hydrocarbon oil and 10 carbon atoms, 2% by mass of glycerin, or 2% by mass of vegetable oil instead of the liquid unsaturated hydrocarbon oil Was used to assemble an alkaline manganese battery in the same manner as in Example 5 and measured the discharge duration of the battery and the amount of gas contained in the discharge battery. The results are shown in Table 5.
Further, an alkaline manganese battery was assembled in the same manner as in Example 5 except that liquid oil was not used, and the discharge duration of the battery and the amount of gas contained in the battery after discharge were measured. The results are shown in Table 5 as “unprocessed products”.

Figure 2005093130
Figure 2005093130

表5から、デセン、グリセリン又は植物油を使用すると、放電持続時間が低下したことが分かる。   From Table 5, it can be seen that the use of decene, glycerin or vegetable oil decreased the discharge duration.

(実施例8)
液状飽和炭化水素系の油である流動パラフィンを試料Aに対して0.5質量%と酸化亜鉛を溶解させた40%水酸化カリウム水溶液にゲル化剤を添加した負極用ゲル電解液を混合し、さらに試料Aと水酸化ストロンチウムを0〜10質量%を混合して負極活物質を得た。この活物質を使用してアルカリマンガン電池を構成し、上記実施例2と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間と放電後の電池内包ガス量の測定を行った。そこで流動パラフィンの被覆量および水酸化ストロンチウムの添加量が0のときの放電持続時間を100%としたときの0.9V到達時間相対指数を図6、放電後電池内包ガス量結果を図7に示す。
(Example 8)
Liquid electrolyte paraffin, which is a liquid saturated hydrocarbon oil, is mixed with 0.5% by mass of sample A and 40% potassium hydroxide aqueous solution in which zinc oxide is dissolved, and a negative electrode gel electrolyte solution is added. Sample A and strontium hydroxide were mixed in an amount of 0 to 10% by mass to obtain a negative electrode active material. Using this active material, an alkaline manganese battery was constructed, and intermittent discharge was performed at a discharge current of 1.5 A in the same manner as in Example 2. The discharge duration up to a cut voltage of 0.9 V and the amount of gas contained in the battery after discharge Was measured. Therefore, the relative index of 0.9V arrival time when the discharge duration when the coating amount of liquid paraffin and the addition amount of strontium hydroxide is 0 is 100% is shown in FIG. 6, and the result of the amount of gas contained in the battery after discharge is shown in FIG. Show.

(実施例9)
液状飽和炭化水素系の油である流動パラフィンを試料Aに対して1質量%と酸化亜鉛を溶解させた40%水酸化カリウム水溶液にゲル化剤を添加した負極用ゲル電解液を混合し、さらに試料Aと水酸化ストロンチウムを0〜10質量%を混合して負極活物質を得た。
この活物質を使用してアルカリマンガン電池を構成し、上記実施例2と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間と放電後の電池内包ガス量の測定を行った。
そこで、流動パラフィンの被覆量および水酸化ストロンチウムの添加量が0のときの放電持続時間を100%としたときの0.9V到達時間相対指数を図6、放電後電池内包ガス量結果を図7に示す。
Example 9
1% by mass of liquid paraffin, which is a liquid saturated hydrocarbon oil, is mixed with 40% potassium hydroxide aqueous solution in which zinc oxide is dissolved, and a gel electrolyte for negative electrode added with a gelling agent. Sample A and strontium hydroxide were mixed in an amount of 0 to 10% by mass to obtain a negative electrode active material.
Using this active material, an alkaline manganese battery was constructed, and intermittent discharge was performed at a discharge current of 1.5 A in the same manner as in Example 2. The discharge duration up to a cut voltage of 0.9 V and the amount of gas contained in the battery after discharge Was measured.
Therefore, the relative index of 0.9V arrival time when the discharge duration when the coating amount of liquid paraffin and the addition amount of strontium hydroxide is 0 is 100% is shown in FIG. 6, and the result of the amount of gas contained in the battery after discharge is shown in FIG. Shown in

図6及び図7のとおり、流動パラフィンを添加し、さらに水酸化ストロンチウムを10質量%以下添加することで、さらに0.9V到達時間が改善され、放電後電池内包ガス量を抑制することが出来る。さらに5質量%以下添加することで、流動パラフィンのみの添加よりも0.9V到達時間が改善され、とおり、放電後電池内包ガス量を抑制することが出来る。   As shown in FIGS. 6 and 7, by adding liquid paraffin and further adding 10% by mass or less of strontium hydroxide, the time to reach 0.9V is further improved and the amount of gas contained in the battery after discharge can be suppressed. . Further, by adding 5% by mass or less, 0.9V arrival time is improved as compared with the addition of liquid paraffin alone, and as a result, the amount of gas contained in the battery after discharge can be suppressed.

(実施例10〜16)
水酸化ストロンチウムの1質量%とし、液状飽和炭化水素系の油をドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカンとした以外は実施例8と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間と放電後の電池内包ガス量の測定を行った。そこで液状飽和炭化水素種々の被覆量および水酸化ストロンチウムの添加量が0のときの放電持続時間を100%としたときの0.9V到達時間相対指数および放電後電池内包ガス量結果を表6に示す。
(Examples 10 to 16)
An intermittent discharge was performed at a discharge current of 1.5 A in the same manner as in Example 8 except that the content was 1% by mass of strontium hydroxide, and the liquid saturated hydrocarbon oil was dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, and octadecane. The discharge duration to a cut voltage of 0.9 V and the amount of gas contained in the battery after discharge were measured. Accordingly, Table 6 shows the relative index of 0.9V arrival time and the amount of gas contained in the battery after discharge when the discharge duration when the various coating amounts of liquid saturated hydrocarbons and the addition amount of strontium hydroxide are 0 is 100%. Show.

(比較例8〜9)
水酸化ストロンチウムの1質量%とし、液状飽和炭化水素系の油をデカン、エイコサンとした以外は実施例8と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間と放電後の電池内包ガス量の測定を行った。そこで、液状飽和炭化水素種々の被覆量および水酸化ストロンチウムの添加量が0のときの放電持続時間を100%としたときの0.9V到達時間相対指数および放電後電池内包ガス量結果を表6に示す。
(Comparative Examples 8-9)
Except for using 1% by mass of strontium hydroxide and using liquid saturated hydrocarbon oil as decane or eicosane, intermittent discharge was performed at a discharge current of 1.5 A in the same manner as in Example 8, and the discharge continued to a cut voltage of 0.9V. The time and the amount of gas contained in the battery after discharge were measured. Accordingly, Table 6 shows the relative index of the 0.9 V arrival time and the amount of gas contained in the battery after discharge when the discharge duration when the various coating amounts of liquid saturated hydrocarbons and the addition amount of strontium hydroxide are 0 is 100%. Shown in

Figure 2005093130
Figure 2005093130

表6より炭素数12〜18のドデセン、トリデセン、テトラデセン、ペンタデセン、ヘキサデセン、ヘプタデセン、オクタデサンでも、0.9V到達時間が改善され、放電後電池内包ガス量を抑制することが出来ることが分かる。   From Table 6, it can be seen that even when the dodecene, tridecene, tetradecene, tetradecene, pentadecene, hexadecene, heptadecene, and octadesan having 12 to 18 carbon atoms are used, the time to reach 0.9 V is improved and the amount of gas contained in the battery after discharge can be suppressed.

(実施例17〜23)
水酸化ストロンチウムの1質量%とし、液状不飽和炭化水素系の油をドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカンとした以外は実施例8と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間と放電後の電池内包ガス量の測定を行った。
そこで、液状飽和炭化水素種々の被覆量および水酸化ストロンチウムの添加量が0のときの放電持続時間を100%としたときの0.9V到達時間相対指数および放電後電池内包ガス量結果を表7に示す。
(Examples 17 to 23)
As in Example 8, intermittent discharge was performed at a discharge current of 1.5 A, except that 1 mass% of strontium hydroxide was used and the liquid unsaturated hydrocarbon oil was dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, and octadecane. The discharge duration to a cut voltage of 0.9 V and the amount of gas contained in the battery after discharge were measured.
Accordingly, Table 7 shows the relative index of 0.9 V arrival time and the amount of gas contained in the battery after discharge when the discharge duration when the amount of various liquid saturated hydrocarbon coatings and the addition amount of strontium hydroxide is 0 is 100%. Shown in

(比較例10〜11)
水酸化ストロンチウムの1質量%とし、液状不飽和炭化水素系の油をデセン、エイコセンとした以外は実施例8と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間と放電後の電池内包ガス量の測定を行った。そこで液状飽和炭化水素種々の被覆量および水酸化ストロンチウムの添加量が0のときの放電持続時間を100%としたときの0.9V到達時間相対指数および放電後電池内包ガス量結果を表7に示す。
(Comparative Examples 10-11)
Except for using 1% by mass of strontium hydroxide and using liquid unsaturated hydrocarbon oil as decene or eicosene, intermittent discharge was performed at a discharge current of 1.5 A in the same manner as in Example 8, and discharge to a cut voltage of 0.9V The duration and the amount of gas contained in the battery after discharge were measured. Accordingly, Table 7 shows the relative index of the 0.9 V arrival time and the amount of gas contained in the battery after discharge when the discharge duration when the coating amount of various liquid saturated hydrocarbons and the addition amount of strontium hydroxide is 0 is 100%. Show.

Figure 2005093130
Figure 2005093130

表7より炭素数12〜18のドデセン、トリデセン、テトラデセン、ペンタデセン、ヘキサデセン、ヘプタデセン、オクタデサンでも0.9V到達時間が改善され、放電後電池内包ガス量を抑制することが出来る。   From Table 7, the time to reach 0.9 V is improved even with dodecene, tridecene, tetradecene, tetradecene, hexadecene, heptadecene, and octadesan having 12 to 18 carbon atoms, and the amount of gas contained in the battery after discharge can be suppressed.

(実施例24)
亜鉛合金粉に対して1質量%の液状飽和炭化水素系の油として流動パラフィンを亜鉛合金粉試料Aに直接混合した後に、酸化亜鉛を溶解させた40%水酸化カリウム水溶液にゲル化剤を添加した負極用ゲル電解液を混合し、さらに水酸化ストロンチウムを1質量%を混合して負極活物質を得た。この活物質を使用してアルカリマンガン電池を構成し、上記実施例2と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間と放電後の電池内包ガス量の測定を行った。そこで、液状飽和炭化水素種々の被覆量および水酸化ストロンチウムの添加量が0のときの放電持続時間を100%としたときの0.9V到達時間相対指数および放電後電池内包ガス量結果を表8に示す。
(Example 24)
Liquid paraffin as a liquid saturated hydrocarbon oil of 1% by mass with respect to zinc alloy powder is directly mixed with zinc alloy powder sample A, and then a gelling agent is added to 40% potassium hydroxide aqueous solution in which zinc oxide is dissolved. The negative electrode gel electrolyte solution was mixed, and further 1% by mass of strontium hydroxide was mixed to obtain a negative electrode active material. Using this active material, an alkaline manganese battery was constructed, and intermittent discharge was performed at a discharge current of 1.5 A in the same manner as in Example 2. The discharge duration up to a cut voltage of 0.9 V and the amount of gas contained in the battery after discharge Was measured. Accordingly, the relative index of 0.9V arrival time and the amount of gas contained in the battery after discharge when the discharge duration when the various coating amounts of liquid saturated hydrocarbons and the addition amount of strontium hydroxide are 0 are set to 100% are shown in Table 8. Shown in

(実施例25)
亜鉛合金粉試料Aと、酸化亜鉛を溶解させた40%水酸化カリウム水溶液にゲル化剤を添加した負極用ゲル電解液を混合し、さらに水酸化ストロンチウム1質量%を混合して負極活物質を得た。これを電池容器に充填し、亜鉛合金粉に対して1質量%の液状飽和炭化水素系の油として流動パラフィンを添加した。この活物質を使用してアルカリマンガン電池を構成し、上記実施例2と同様に放電電流1.5Aで間欠放電を行い、Cut電圧0.9Vまでの放電持続時間と放電後の電池内包ガス量の測定を行った。そこで流動パラフィンの被覆量および水酸化ストロンチウムの添加量が0のときの放電持続時間を100%としたときの0.9V到達時間相対指数および放電後電池内包ガス量結果を表8に示す。
(Example 25)
The zinc alloy powder sample A and a negative electrode gel electrolyte solution in which a gelling agent is added to a 40% potassium hydroxide aqueous solution in which zinc oxide is dissolved are mixed, and further 1% by mass of strontium hydroxide is mixed to obtain a negative electrode active material. Obtained. This was filled in a battery container, and liquid paraffin was added as a liquid saturated hydrocarbon oil of 1 mass% with respect to the zinc alloy powder. Using this active material, an alkaline manganese battery was constructed, and intermittent discharge was performed at a discharge current of 1.5 A in the same manner as in Example 2. The discharge duration up to a cut voltage of 0.9 V and the amount of gas contained in the battery after discharge Was measured. Accordingly, Table 8 shows the relative index of 0.9 V arrival time and the amount of gas contained in the battery after discharge when the discharge duration when the coating amount of liquid paraffin and the addition amount of strontium hydroxide is 0 is 100%.

Figure 2005093130
Figure 2005093130

表8より、流動パラフィンは直接亜鉛合金粉に混合しても、負極ゲル作製時に添加しても、電池作製時に負極に添加しても同様に0.9V到達時間が改善され、放電後電池内包ガス量を抑制することが出来る。   From Table 8, liquid paraffin was mixed directly with zinc alloy powder, added at the time of negative electrode gel preparation, or added to the negative electrode at the time of battery preparation, and 0.9V arrival time was similarly improved. The amount of gas can be suppressed.

本発明に係わるアルカリマンガン電池の一実施形態例を示す断面図である。It is sectional drawing which shows one embodiment of the alkaline manganese battery concerning this invention. 実施例1における流動パラフィン被覆率と放電持続時間との関係を示すグラフである。It is a graph which shows the relationship between the liquid paraffin coverage in Example 1, and discharge duration. 実施例1における流動パラフィン被覆率と電池内包ガス量との関係を示すグラフである。It is a graph which shows the relationship between the liquid paraffin coverage in Example 1, and the amount of battery inclusion gas. 実施例5における液状不飽和炭化水素系の油の被覆率と放電持続時間の関係を示すグラフである。It is a graph which shows the relationship between the coverage of the liquid unsaturated hydrocarbon type oil in Example 5, and discharge duration. 実施例5における液状不飽和炭化水素被覆率と電池内包ガス量の関係を示すグラフである。It is a graph which shows the relationship between the liquid unsaturated hydrocarbon coverage in Example 5, and the amount of battery inclusion gas. 流動パラフィンの被覆量及び水酸化ストロンチウムの添加量が0の時の放電持続時間を100%とした時の0.9V到達時間相対指数と、水酸化ストロンチウム添加量との関係示したグラフである。It is the graph which showed the relationship between the 0.9V arrival time relative index when the discharge duration when the coating amount of liquid paraffin and the addition amount of strontium hydroxide is 0 is 100%, and the addition amount of strontium hydroxide. 放電後電池内包ガス量と、水酸化ストロンチウム添加量との関係示したグラフである。It is the graph which showed the relationship between the battery inclusion gas amount after discharge, and the strontium hydroxide addition amount.

符号の説明Explanation of symbols

1 アルカリマンガン電池
2 セパレータ
3 正極
4 負極
5 正極缶
6 封ロキャップ
7 負極端子
8 負極集電子
9 ガスケット

DESCRIPTION OF SYMBOLS 1 Alkaline manganese battery 2 Separator 3 Positive electrode 4 Negative electrode 5 Positive electrode can 6 Sealing cap 7 Negative electrode terminal 8 Negative electrode collector 9 Gasket

Claims (8)

負極用電解液と、Al,Bi,Ca,In,Mg,PbおよびSnからなる群から選択される1種以上の添加金属を0.001〜1質量%含有する亜鉛合金粉と、該亜鉛合金粉に対して0.01〜10質量%の液状飽和炭化水素系の油と、該亜鉛合金粉に対して0質量%より多く10質量%以下である量の水酸化ストロンチウムとを含有する電池用負極。   Electrolytic solution for negative electrode, zinc alloy powder containing 0.001 to 1% by mass of one or more additive metals selected from the group consisting of Al, Bi, Ca, In, Mg, Pb and Sn, and the zinc alloy For a battery containing 0.01 to 10% by mass of a liquid saturated hydrocarbon oil with respect to the powder and strontium hydroxide in an amount of more than 0% and not more than 10% by mass with respect to the zinc alloy powder Negative electrode. 液状飽和炭化水素系の油は、炭素数12〜18の飽和炭化水素からなる群から選択される1種以上の飽和炭化水素を主成分とする油であることを特徴とする請求項1に記載の電池用負極。   The liquid saturated hydrocarbon oil is an oil mainly composed of one or more saturated hydrocarbons selected from the group consisting of saturated hydrocarbons having 12 to 18 carbon atoms. Negative electrode for batteries. 液状飽和炭化水素系の油は、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカンの群から選択される1種以上の飽和炭化水素を主成分とする油であることを特徴とする請求項2に記載の電池用負極。   The liquid saturated hydrocarbon oil is an oil mainly composed of one or more saturated hydrocarbons selected from the group consisting of dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, and octadecane. 2. The negative electrode for a battery according to 2. 液状飽和炭化水素系の油が、流動パラフィンであることを特徴とする請求項1に記載の電池用負極。   The negative electrode for a battery according to claim 1, wherein the liquid saturated hydrocarbon oil is liquid paraffin. 液状飽和炭化水素系の油の代わりに、炭素数12〜18の不飽和炭化水素からなる群から選択される1種以上の不飽和炭化水素を主成分とする液状不飽和炭化水素系の油を含むことを特徴とする請求項1記載の電池用負極。   Instead of liquid saturated hydrocarbon oil, liquid unsaturated hydrocarbon oil mainly composed of one or more unsaturated hydrocarbons selected from the group consisting of unsaturated hydrocarbons having 12 to 18 carbon atoms is used. The negative electrode for a battery according to claim 1, comprising: 液状不飽和炭化水素系の油が、ドデセン、トリデセン、テトラデセン、ペンタデセン、ヘキサデセン、ヘプタデセン、オクタデセンの群から選択される1種以上の不飽和炭化水素を主成分とする油であることを特徴とする請求項5に記載の電池用負極。   The liquid unsaturated hydrocarbon oil is an oil mainly composed of one or more unsaturated hydrocarbons selected from the group consisting of dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene and octadecene. The negative electrode for a battery according to claim 5. 液状飽和炭化水素系の油又は液状不飽和炭化水素系の油による亜鉛合金粉の被覆率が0.5〜5%であることを特徴とする請求項1〜6のいずれかに記載の電池用負極。   The battery coverage according to any one of claims 1 to 6, wherein the coverage of the zinc alloy powder with liquid saturated hydrocarbon oil or liquid unsaturated hydrocarbon oil is 0.5 to 5%. Negative electrode. 請求項1〜7のいずれかに記載の負極を含んでなる電池。




A battery comprising the negative electrode according to claim 1.




JP2003321929A 2003-09-12 2003-09-12 Negative electrode for battery using zinc alloy powder, and battery Pending JP2005093130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321929A JP2005093130A (en) 2003-09-12 2003-09-12 Negative electrode for battery using zinc alloy powder, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321929A JP2005093130A (en) 2003-09-12 2003-09-12 Negative electrode for battery using zinc alloy powder, and battery

Publications (1)

Publication Number Publication Date
JP2005093130A true JP2005093130A (en) 2005-04-07

Family

ID=34453454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321929A Pending JP2005093130A (en) 2003-09-12 2003-09-12 Negative electrode for battery using zinc alloy powder, and battery

Country Status (1)

Country Link
JP (1) JP2005093130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004900A (en) * 2004-05-20 2006-01-05 Sony Corp Alkaline dry battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004900A (en) * 2004-05-20 2006-01-05 Sony Corp Alkaline dry battery

Similar Documents

Publication Publication Date Title
EP0457354B1 (en) Method of manufacturing zinc-alkaline batteries
EP0510239A1 (en) Zinc-alkaline batteries
JP3317526B2 (en) Alkaline battery
JP5172181B2 (en) Zinc alkaline battery
JP2005093130A (en) Negative electrode for battery using zinc alloy powder, and battery
JPS61203564A (en) Alkaline battery
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JPH0119622B2 (en)
JPH1040926A (en) Electrolyte, negative electrode material and zinc alloy powder for alkaline manganese battery
JPH0562683A (en) Alkaline battery
JP2004014306A (en) Electrolytic solution for alkaline battery and alkaline battery using this electrolytic solution
JPH0513070A (en) Alkaline battery
JP2002373651A (en) Alkaline battery
JPH0620687A (en) Alkaline battery
JP2563106B2 (en) Alkaline battery
JPH09161781A (en) Negative electrode active material for alkaline battery
JPH0562682A (en) Alkaline battery
JP2805486B2 (en) Alkaline battery and its negative electrode active material
JP2004095509A (en) Zinc alloy powder for manganese dioxide zinc alkaline cell, and manganese dioxide zinc alkaline cell using the powder
JPH0513073A (en) Alkaline battery
JPH0636764A (en) Zinc-alkaline battery
JPH0513071A (en) Alkaline battery
JPH0513072A (en) Alkaline battery
JPH0665040B2 (en) Alkaline battery
JPH03122235A (en) Zinc electrode for alkaline storage battery