JP2003242990A - Alkaline primary battery - Google Patents

Alkaline primary battery

Info

Publication number
JP2003242990A
JP2003242990A JP2002039156A JP2002039156A JP2003242990A JP 2003242990 A JP2003242990 A JP 2003242990A JP 2002039156 A JP2002039156 A JP 2002039156A JP 2002039156 A JP2002039156 A JP 2002039156A JP 2003242990 A JP2003242990 A JP 2003242990A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel oxyhydroxide
theoretical
primary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002039156A
Other languages
Japanese (ja)
Other versions
JP4243449B2 (en
Inventor
Takeshi Miyazaki
武志 宮崎
Yoshiro Harada
吉郎 原田
Mitsuhiro Nakamura
光宏 中村
Hiroto Sagisaka
博人 鷺坂
Shinichi Ueki
伸一 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2002039156A priority Critical patent/JP4243449B2/en
Publication of JP2003242990A publication Critical patent/JP2003242990A/en
Application granted granted Critical
Publication of JP4243449B2 publication Critical patent/JP4243449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline primary battery using nickel oxyhydroxide that can secure safety and reliability at the over-discharge, while realizing large capacity and improvement in high load characteristics. <P>SOLUTION: The positive electrode molded body 2 of the alkaline primary battery contains in the positive mix cobalt and zinc, or, in addition, nickel oxyhydroxide that contains either one out of Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, and Er, and its theoretical electric capacity ratio is 1.10 or less. Or, it contains in the positive mix further manganese dioxide as a positive active material, and when the filling quantity of nickel oxyhydroxide is called Wng and the filling quantity of manganese dioxide is called Wmg, the theoretical electric capacity ratio is made (1.10×Wn+1.25×Wm)/(Wn+Wm) or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極合剤中にオキ
シ水酸化ニッケルを含むアルカリ一次電池に係わり、特
に高容量化と高負荷特性の向上とを図る技術に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline primary battery containing nickel oxyhydroxide in a positive electrode mixture, and more particularly to a technique for achieving high capacity and high load characteristics.

【0002】[0002]

【従来の技術】現在、高出力特性を有しているアルカリ
一次電池としては、正極活物質に二酸化マンガンを、負
極活物質に亜鉛を、電解液としてアルカリ水溶液をそれ
ぞれ用いたアルカリマンガン電池が主流となっている
が、近年にあっては、デジタルカメラや情報通信端末等
をはじめとする携帯機器の高性能化に伴い、その電源と
して用いられているアルカリマンガン電池に対しても、
高負荷特性の更なる向上、および高容量化の要求が増大
してきている。
2. Description of the Related Art At present, as an alkaline primary battery having a high output characteristic, an alkaline manganese battery using manganese dioxide as a positive electrode active material, zinc as a negative electrode active material and an alkaline aqueous solution as an electrolyte is mainly used. However, in recent years, with the increasing performance of mobile devices such as digital cameras and information communication terminals, even with respect to the alkaline manganese battery used as the power source,
Demands for further improvement of high load characteristics and high capacity are increasing.

【0003】そのような要求に応える有効な手段の一つ
に、活物質充填量の増加が挙げられる。特に負極充填量
を増加することは、高負荷特性を高める手段として有効
である。
One of the effective means to meet such demand is to increase the amount of the active material filled. In particular, increasing the filling amount of the negative electrode is effective as a means for improving the high load characteristics.

【0004】しかし、[負極理論容量/正極理論容量]
で示される理論電気容量比を高くし過ぎると、すなわち
正極充填量に対し負極充填量を高め過ぎると、過放電時
において正極活物質が先に使い果たされることになる。
そして、残った負極活物質による負極反応の対となる電
気化学反応がガス発生を伴う場合には、電池内圧の上昇
により漏液発生が起こる。これ故、電池の安全性・信頼
性を保つためには理論電気容量比を一定値以下にする必
要があり、負極充填量に制限をかけざるを得ない。この
ように、負極側の改善としての充填量増加による高容量
化・高負荷特性向上には上限がある。
However, [negative electrode theoretical capacity / positive electrode theoretical capacity]
If the theoretical electric capacity ratio shown by is too high, that is, if the negative electrode filling amount is too high with respect to the positive electrode filling amount, the positive electrode active material will be used up first during overdischarge.
When the electrochemical reaction, which is a pair of the negative electrode reaction due to the remaining negative electrode active material, is accompanied by gas generation, liquid leakage occurs due to the increase in the battery internal pressure. Therefore, in order to maintain the safety and reliability of the battery, it is necessary to set the theoretical electric capacity ratio to a certain value or less, and there is no choice but to limit the negative electrode filling amount. As described above, there is an upper limit to increase the capacity and the load characteristics by increasing the filling amount as the improvement on the negative electrode side.

【0005】また、もう一つの手段として、正極側の改
善という点から、正極活物質にβ型やγ型のオキシ水酸
化ニッケルを適用することが古くから注目され、アルカ
リ二次電池に適用することが検討されている(特開昭5
3−32347号公報、特開昭55−30133号公報
等参照)。ここで、上記従来のβ型やγ型の従来のオキ
シ水酸化ニッケルは、高温下に長時間放置すると自己放
電のために電池容量が減少してしまうという問題があ
り、当該自己放電による容量減少は一次電池にとって
は、電池機能の消失を意味することになるため、アルカ
リ一次電池の正極材としては採用し得ないものとされ
ていた。
As another means, from the viewpoint of improvement on the positive electrode side, it has been noted for a long time that β-type or γ-type nickel oxyhydroxide is applied to the positive electrode active material, and it is applied to an alkaline secondary battery. Have been studied (JP-A-5
3-32347, JP-A-55-30133, etc.). Here, the conventional β-type or γ-type conventional nickel oxyhydroxide has a problem that the battery capacity decreases due to self-discharge when left at high temperature for a long time. for primary batteries, because that would mean the loss of cell function, as a cathode material cost alkaline primary battery has been assumed to not be employed.

【0006】そこで、本発明者等は、高温下に長時間放
置した場合に生じる自己放電の改善を目的として、オキ
シ水酸化ニッケルに対して詳細な種々の実験などを行っ
て研究開発を進め、検討を重ねた結果、コバルトと亜鉛
とを同時にオキシ水酸化ニッケルに含有させることで、
自己放電の抑制が図れて一次電池への適用が可能になる
ことを知得し、当該コバルトと亜鉛とを含有させたオキ
シ水酸化ニッケルを正極材に適用したアルカリ一次電
池についての提案を既にしている。
Therefore, the inventors of the present invention conducted various kinds of detailed experiments on nickel oxyhydroxide and carried out research and development for the purpose of improving self-discharge which occurs when left at high temperature for a long time. As a result of repeated studies, by containing cobalt and zinc in nickel oxyhydroxide at the same time,
And Hakare suppression of self-discharge become known that it is possible to apply to the primary battery, a proposal for alkaline primary battery employing the cobalt and zinc and nickel oxyhydroxide was contained in positive electrode material fees already is doing.

【0007】そして、上記の二つの手段、つまり負極の
充填量を増加することと、正極活物質にオキシ水酸化ニ
ッケルを使用することとを組み合わせることで、アルカ
リ一次電池のさらなる高容量化と高負荷特性の向上とを
図ることが可能となる。
Then, by combining the above two means, that is, increasing the filling amount of the negative electrode and using nickel oxyhydroxide as the positive electrode active material, the alkaline primary battery is further increased in capacity and high in capacity. It is possible to improve load characteristics.

【0008】[0008]

【発明が解決しようとする課題】ただし、上記両者で異
なる点としては次のことが挙げられる。即ち、両者の放
電反応を1電子反応とした場合の重量当たり理論容量
は、二酸化マンガン:308mAh/g、オキシ水酸化
ニッケル:292mAh/gとなる。しかし、実際に、
亜鉛を負極活物質として用い、アルカリ一次電池として
構成された場合には、二酸化マンガンの放電反応は1電
子反応よりも大きくなり得る。一方、オキシ水酸化ニッ
ケルの放電反応は1電子反応を超えることはない。よっ
てオキシ水酸化ニッケルを用いる場合には、二酸化マン
ガンを用いる場合よりも理論電気容量比を低く抑える必
要がある。
However, the following points are different from each other. That is, the theoretical capacity per weight when the discharge reaction of both is one electron reaction is manganese dioxide: 308 mAh / g, nickel oxyhydroxide: 292 mAh / g. But in fact,
When zinc is used as the negative electrode active material and configured as an alkaline primary battery, the discharge reaction of manganese dioxide may be larger than the one-electron reaction. On the other hand, the discharge reaction of nickel oxyhydroxide does not exceed one-electron reaction. Therefore, when nickel oxyhydroxide is used, it is necessary to keep the theoretical capacitance ratio lower than when manganese dioxide is used.

【0009】ここで、従来検討されていたコバルトと亜
鉛とを含有させていないオキシ水酸化ニッケルを正極活
物質として構成した電池では、正極利用率、自己放電に
よる正極容量減少などの問題から(特に高温保存された
場合)、その正極容量減少分に見合うだけ負極充填量を
抑えておく必要がある。
[0009] Here, in a battery, which has been studied so far, and which comprises nickel oxyhydroxide containing no cobalt and zinc as a positive electrode active material, there are problems such as positive electrode utilization rate and reduction in positive electrode capacity due to self-discharge (particularly When stored at high temperature), it is necessary to suppress the filling amount of the negative electrode in proportion to the decrease in the positive electrode capacity.

【0010】以上の二つの理由から、正極活物質にオキ
シ水酸化ニッケルを用いた場合には、負極充填量の増加
による高容量化・高負荷特性は抑えて、過放電時の安全
性・信頼性を確保せざるを得なかった。
For the above two reasons, when nickel oxyhydroxide is used as the positive electrode active material, high capacity and high load characteristics due to an increase in the filling amount of the negative electrode are suppressed, and safety and reliability during overdischarge are ensured. I had no choice but to secure the sex.

【0011】即ち、従来検討されていたオキシ水酸化ニ
ッケルを正極活物質として構成した電池では、正極利用
率、自己放電による正極容量減少などの問題から、過放
電時の安全性・信頼性を保つためには電池構成としての
理論電気容量比を低く抑えなければならなかった。その
ため負極活物質の充填量に制限がかかり、高容量化、高
負荷特性などを十分に達成できないものであった。
That is, in the battery which has been conventionally studied and constituted by nickel oxyhydroxide as the positive electrode active material, the safety and the reliability at the time of over-discharging are maintained due to the problems such as the positive electrode utilization rate and the reduction of the positive electrode capacity due to self-discharge. In order to do so, the theoretical electric capacity ratio as a battery configuration had to be kept low. Therefore, the filling amount of the negative electrode active material is limited, and high capacity and high load characteristics cannot be achieved sufficiently.

【0012】本発明は、上記のような従来の課題に鑑み
てなされたものであり、その目的は、高容量化・高負荷
特性の向上を図りつつ、過放電時の安全性・信頼性を確
保し得る、コバルトと亜鉛とを含有させたオキシ水酸化
ニッケルを用いたアルカリ一次電池を提供することにあ
る。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to improve the capacity and the load characteristics while ensuring the safety and reliability during overdischarge. An object is to provide an alkaline primary battery using nickel oxyhydroxide containing cobalt and zinc that can be secured.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る発明では、正極合剤中に、正極活
物質としてコバルトと亜鉛とを含有させたオキシ水酸化
ニッケルを含むアルカリ一次電池を、その理論電気容量
比を1.10以下として構成する。
To achieve the above object, in the invention according to claim 1, the positive electrode mixture contains nickel oxyhydroxide containing cobalt and zinc as a positive electrode active material. An alkaline primary battery is constructed with a theoretical electric capacity ratio of 1.10 or less.

【0014】また、請求項2に係る発明では、前記請求
項1に記載のアルカリ一次電池において、正極合剤中
に、正極活物質としてさらに二酸化マンガンを含み、前
記オキシ水酸化ニッケルの充填量をWng、該二酸化マ
ンガンの充填量をWmgとした場合に、その理論電気容
量比を (1.10×Wn+1.25×Wm)/(Wn+Wm) 以下として構成する。
Further, in the invention according to claim 2, in the alkaline primary battery according to claim 1, the positive electrode mixture further contains manganese dioxide as a positive electrode active material, and the filling amount of the nickel oxyhydroxide is When Wng and the filling amount of the manganese dioxide are Wmg, the theoretical capacitance ratio is (1.10 × Wn + 1.25 × Wm) / (Wn + Wm) or less.

【0015】請求項3に係る発明では、正極合剤中に、
下記のA群に挙げられた元素のうち少なくとも1種類と
コバルトと亜鉛とを含有させたオキシ水酸化ニッケルを
含むアルカリ一次電池を、その理論電気容量比が1.1
0以下として構成する。
In the invention according to claim 3, in the positive electrode mixture,
An alkaline primary battery containing nickel oxyhydroxide containing at least one of the elements listed in Group A below and cobalt and zinc has a theoretical electric capacity ratio of 1.1.
Configured as 0 or less.

【0016】{A群:Al,Ca,Mg,Ti,Sc,
Fe,Mn,Y,Yb,Er} また、請求項4に係る発明では、前記請求項3に記載の
アルカリ一次電池において、正極合剤中に、正極活物質
としてさらに二酸化マンガンを含み、前記オキシ水酸化
ニッケルの充填量をWng、該二酸化マンガンの充填量
をWmgとした場合に、その理論電気容量比を (1.10×Wn+1.25×Wm)/(Wn+Wm) 以下として構成する。
{Group A: Al, Ca, Mg, Ti, Sc,
Fe, Mn, Y, Yb, Er} Also, in the invention according to claim 4, in the alkaline primary battery according to claim 3, manganese dioxide is further contained in the positive electrode mixture as a positive electrode active material, When the filling amount of nickel hydroxide is Wng and the filling amount of the manganese dioxide is Wmg, the theoretical electric capacity ratio is (1.10 × Wn + 1.25 × Wm) / (Wn + Wm) or less.

【0017】即ち、本発明では、コバルトと亜鉛、若し
くは更にAl,Ca,Mg,Ti,Sc,Fe,Mn,
Y,Yb,Erのうちの少なくともいずれか1つを含有
させてなるオキシ水酸化ニッケルをアルカリ一次電池の
正極活物質に用いることで、正極の利用率の向上と自己
放電率の低減化とを図りつつ、従来のコバルトと亜鉛等
とを含有させていないオキシ水酸化ニッケルを用いる場
合よりも理論電気容量比を高めることができ、しかも当
該高容量化・高負荷特性の改善を図った電池構成として
も、過放電時の安全性・信頼性を確保することが可能と
なる。つまり、理論電気容量比には安全性・信頼性を確
保できる上限値があるが、この上限値は用いる活物質に
依存し、コバルトと亜鉛とを含有させたオキシ水酸化ニ
ッケルの方が、従来のコバルトと亜鉛とを含有させてい
ないオキシ水酸化ニッケルよりも上限値が高く、この上
限値が高い分だけ高負荷特性を向上させることができ
る。
That is, in the present invention, cobalt and zinc, or further Al, Ca, Mg, Ti, Sc, Fe, Mn,
By using nickel oxyhydroxide containing at least one of Y, Yb, and Er as the positive electrode active material of the alkaline primary battery, it is possible to improve the utilization rate of the positive electrode and reduce the self-discharge rate. At the same time, the theoretical electric capacity ratio can be increased compared to the case of using conventional nickel oxyhydroxide containing no cobalt and zinc, etc., and further, the battery configuration is designed to have higher capacity and higher load characteristics. Even in this case, it is possible to ensure safety and reliability during overdischarge. In other words, the theoretical electric capacity ratio has an upper limit value that can ensure safety and reliability, but this upper limit value depends on the active material used, and nickel oxyhydroxide containing cobalt and zinc has been conventionally used. The upper limit value is higher than that of nickel oxyhydroxide containing no cobalt and zinc, and the high load characteristics can be improved by the higher the upper limit value.

【0018】また、既存のアルカリ電池に対し、正極の
二酸化マンガンにオキシ水酸化ニッケルを混合すること
で高負荷特性を増大させることが可能である。その場合
には正極の総理論容量は充填した二酸化マンガンとオキ
シ水酸化ニッケルの各理論容量の和となる。その際に、
本発明のように、コバルトと亜鉛、若しくは更にA群
(A群:Al,Ca,Mg,Ti,Sc,Fe,Mn,
Y,Yb,Er)のうちの少なくともいずれか1つの元
素を含有させたオキシ水酸化ニッケルを用いることで、
従来のコバルトと亜鉛等とを含有させていないオキシ水
酸化ニッケルを用いた場合よりも、理論電気容量比を高
めることが可能となり、このことはオキシ水酸化ニッケ
ルの正極中での割合が増すにつれて、すなわち高性能化
を進めるにつれて、顕著となる。
In addition, it is possible to increase the high load characteristics of the existing alkaline battery by mixing manganese dioxide of the positive electrode with nickel oxyhydroxide. In that case, the total theoretical capacity of the positive electrode is the sum of the theoretical capacities of the filled manganese dioxide and nickel oxyhydroxide. At that time,
As in the present invention, cobalt and zinc, or even group A (group A: Al, Ca, Mg, Ti, Sc, Fe, Mn,
Y, Yb, Er) by using nickel oxyhydroxide containing at least any one of the elements,
It becomes possible to increase the theoretical electric capacity ratio as compared with the case of using conventional nickel oxyhydroxide containing no cobalt and zinc etc., which means that as the proportion of nickel oxyhydroxide in the positive electrode increases. That is, it becomes remarkable as the performance is advanced.

【0019】即ち、前述もしたように、理論電気容量比
には安全性・信頼性を確保できる上限値があり、当該上
限値はいかなる状況でも守らねばならないのであるが、
従来のコバルト、亜鉛及びA群の元素を含有させていな
いオキシ水酸化ニッケルを正極活物質として用いた場合
には、作製直後において理論電気容量比の上限値は守っ
ていても、高温で保存されると、その高温保存中に正極
の自己放電によって正極理論容量が減少するので、高温
保存後にはその正極理論容量が減少した分だけ理論電気
容量比が高くなってしまい、当該高温保存後の理論電気
容量比が上限値を超えると安全性・信頼性が損なわれて
しまうことになる。よって、電池作製時には、高温保存
後にもその理論電気容量比が上限値を超えないように、
高負荷特性を犠牲にしてでも正極理論容量を低く抑えて
おく必要があった。
That is, as described above, the theoretical electric capacity ratio has an upper limit value capable of ensuring safety and reliability, and the upper limit value must be observed under any circumstances.
When nickel oxyhydroxide containing no conventional cobalt, zinc and group A elements is used as the positive electrode active material, it is stored at high temperature even after the upper limit of the theoretical electric capacity ratio is observed immediately after the production. Then, since the positive electrode theoretical capacity decreases due to the self-discharge of the positive electrode during the high temperature storage, the theoretical electrical capacity ratio increases after the high temperature storage due to the decrease in the positive electrode theoretical capacity, and the theoretical capacity after the high temperature storage If the capacitance ratio exceeds the upper limit, safety and reliability will be impaired. Therefore, at the time of battery production, the theoretical electric capacity ratio should not exceed the upper limit even after high temperature storage,
It was necessary to keep the theoretical capacity of the positive electrode low even at the expense of high load characteristics.

【0020】ところが、本発明で用いるコバルトと亜
鉛、若しくは更にA群(A群:Al,Ca,Mg,T
i,Sc,Fe,Mn,Y,Yb,Er)のうちの少な
くともいずれか1つの元素を含有させたオキシ水酸化ニ
ッケルでは、従来のコバルトと亜鉛とを含有させていな
いオキシ水酸化ニッケルに比較して、正極利用率の向上
と自己放電率の低減化が図れるため、高温保存による理
論電気容量比の変化が少なくなり、もって従来のコバル
トと亜鉛とを含有させていないオキシ水酸化ニッケルの
場合ほど、当初から理論気容量比を低く抑えておく必要
はなく、高負荷特性を向上させたアルカリ一次電池が得
られるようになる。このようにして、放電特性などの高
性能化を図りながらも、過放電時の安全性・信頼性を確
保したアルカリ一次電池を提供することが可能になる。
However, cobalt and zinc used in the present invention, or group A (group A: Al, Ca, Mg, T).
(i, Sc, Fe, Mn, Y, Yb, Er) nickel oxyhydroxide containing at least one element is compared with nickel oxyhydroxide containing no conventional cobalt and zinc. Since the positive electrode utilization rate and the self-discharge rate can be reduced, the change in the theoretical electric capacity ratio due to high temperature storage is reduced, and in the case of nickel oxyhydroxide containing no conventional cobalt and zinc. Thus, it is not necessary to keep the theoretical capacity ratio low from the beginning, and an alkaline primary battery with improved high load characteristics can be obtained. In this way, it is possible to provide an alkaline primary battery that secures safety and reliability during overdischarge while achieving high performance such as discharge characteristics.

【0021】[0021]

【発明の実施の形態】以下に、本発明に係るアルカリ一
次電池の好適な実施形態例について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the alkaline primary battery according to the present invention will be described below.

【0022】《第1実施形態》 ===正極の作製=== ニッケルとコバルトと亜鉛との原子量比率が所定の比率
となるように硫酸ニッケルと硫酸コバルトと硫酸亜鉛と
を混合した混合溶液1000mlを、30℃に保持した
状態の反応槽中で、更に水酸化ナトリウム水溶液を加え
て攪拌する。1時間程度攪拌した後、生成した沈殿物を
ろ過して取り出した後、水洗により洗浄を行う。洗浄
後、常温で真空乾燥させて粉体サンプルを得る。
First Embodiment === Production of Positive Electrode === 1000 ml of a mixed solution of nickel sulfate, cobalt sulfate, and zinc sulfate so that the atomic weight ratio of nickel, cobalt, and zinc is a predetermined ratio. Is further added with an aqueous sodium hydroxide solution and stirred in a reaction tank kept at 30 ° C. After stirring for about 1 hour, the generated precipitate is filtered out and washed with water. After washing, vacuum drying is performed at room temperature to obtain a powder sample.

【0023】次いで、10モル/lの水酸化ナトリウム
水溶液に上記の粉体サンプルを100g加えて攪拌し、
溶液温度を30℃〜60℃に保つ。前記溶液を攪拌しな
がら、10重量%の次亜塩素酸ナトリウム水溶液500
mlを加えていき1時間程度攪拌を行った後、沈殿物を
ろ過により取り出し、水洗により洗浄を行った後、60
℃以下の温度にて真空乾燥を行う。
Next, 100 g of the above powder sample was added to a 10 mol / l sodium hydroxide aqueous solution and stirred,
Keep the solution temperature between 30 ° C and 60 ° C. While stirring the solution, 500 wt% aqueous solution of sodium hypochlorite 500
After adding ml and stirring for about 1 hour, the precipitate was taken out by filtration and washed with water, and then 60
Vacuum drying is performed at a temperature of ℃ or less.

【0024】合成したオキシ水酸化ニッケルは、プラズ
マ発光分光分析装置(セイコー電子工業製 SPS4000)
を用いて定量分析を実施し所定の組成であることを確認
した。
The synthesized nickel oxyhydroxide was used in a plasma emission spectrophotometer (Seiko Denshi Kogyo SPS4000).
Quantitative analysis was carried out using to confirm that the composition was the specified.

【0025】上記手法で得たコバルトと亜鉛のみを含有
させたオキシ水酸化ニッケルでなる正極活物質と、導電
剤(黒鉛粉末)、並びに電解液(40重量% 水酸化カ
リウム水溶液)とを重量比100:10:5の割合で混
合して、混合物を作製し、加圧成型を行うことで中空状
の円筒体を作製して正極とする。
The positive electrode active material made of nickel oxyhydroxide containing only cobalt and zinc obtained by the above-mentioned method, the conductive agent (graphite powder), and the electrolytic solution (40% by weight potassium hydroxide aqueous solution) in a weight ratio. The mixture is mixed at a ratio of 100: 10: 5 to prepare a mixture, which is subjected to pressure molding to prepare a hollow cylindrical body to be a positive electrode.

【0026】===負極の作製=== 負極活物質として、亜鉛粉末と、酸化亜鉛を飽和状態で
含む水酸化カリウム水溶液と、アクリル酸樹脂とを重量
比60:40:1の割合で混合して、ゲル状の負極とす
る。
=== Preparation of Negative Electrode === As a negative electrode active material, zinc powder, an aqueous potassium hydroxide solution containing zinc oxide in a saturated state, and an acrylic resin are mixed at a weight ratio of 60: 40: 1. Then, a gelled negative electrode is obtained.

【0027】===電池の作製=== 図1に示すように、上記正極成形体2を有底筒体状の電
池缶4内に密着させた状態で挿入配置するとともに、そ
の正極成形体2の内側に、ポリプロピレン系不織布を底
側を閉じて円筒状に加工したセパレータ6を挿入配置
し、次に電解液として、40重量%K0H水溶液を注液
した後、このセパレータ6の内側の中心部分に負極8を
注入充填する。
=== Production of Battery === As shown in FIG. 1, the positive electrode molded body 2 is inserted and arranged in a state of being closely attached to a battery can 4 having a bottomed cylindrical shape, and the positive electrode molded body is also placed. Inside, the polypropylene-based non-woven fabric is inserted and arranged in a cylindrical shape with the bottom side closed, and then a 40 wt% K0H aqueous solution is injected as an electrolytic solution. A portion of the negative electrode 8 is injected and filled.

【0028】上記電池缶4の開口は、集電子10、ガス
ケット12、負極蓋14が一体化された負極端子16を
用いて密閉し、目的とする単三サイズのアルカリ電池を
インサイドアウト型に作製する。
The opening of the battery can 4 is sealed by using a negative electrode terminal 16 in which a current collector 10, a gasket 12 and a negative electrode lid 14 are integrated, and a desired size AA alkaline battery is manufactured as an inside-out type. To do.

【0029】そして、実施例1としてCoを5モル%、
Znを8モル%含有させたオキシ水酸化ニッケルを正極
活物質として用いたものを、また実施例2としてCo,
Znをそれぞれ5モル%ずつ含有させたオキシ水酸化ニ
ッケルを正極活物質として用いたものをそれぞれ作製し
た。
Then, as Example 1, 5 mol% of Co,
Nickel oxyhydroxide containing 8 mol% of Zn was used as the positive electrode active material, and as Example 2, Co,
Nickel oxyhydroxide containing 5 mol% of Zn each was used as a positive electrode active material.

【0030】なお、その際に比較例1として、Co,Z
nを含有させていないオキシ水酸化ニッケルを正極活物
質として用いたものも作製した。
At that time, as Comparative Example 1, Co, Z
A nickel oxyhydroxide containing no n was used as a positive electrode active material.

【0031】ここで、正極充填量は一定とし、負極活物
質の充填量を変えて理論電気容量比を変更した。即ち、
当該理論電気容量比は、比較例1では1.19,1.1
0,1.00,0.97,0.95の5種に設定し、実
施例1と実施例2とは1.19,1.15,1.10,
1.06の4種にそれぞれ設定して作製した。
Here, the filling amount of the positive electrode was fixed, and the filling amount of the negative electrode active material was changed to change the theoretical electric capacity ratio. That is,
The theoretical electric capacity ratio is 1.19,1.1 in Comparative Example 1.
5 types of 0, 1.00, 0.97, 0.95 are set, and 1.19, 1.15, 1.10,
It was produced by setting each of four types of 1.06.

【0032】そして、このように作製した各電池につい
て、放電特性評価、過放電時の安全性・信頼性評価を行
った。その結果を下表1、2、3に示す。
Then, with respect to each of the batteries thus manufactured, discharge characteristic evaluation and safety / reliability evaluation during over-discharge were performed. The results are shown in Tables 1, 2, and 3 below.

【0033】[0033]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 注1)(−/+)比は理論電気容量比を示した。 注2)1WCP放電は、1W定電力放電持続時間(終止
電圧1V)について、比較例1(−/+)比0.95の
場合を100とした相対的数値であり、n=3の平均値
を示した。 注3)過放電は10Ω定抵抗1週間連続放電後漏液なし
の場合は○、漏液発生の場合は×で示した。 注4〉理論電気容量比はオキシ水酸化ニッケルの重量当
たり理論電気容量を292mAh/g、亜鉛の重量当た
り理論容量を820mAh/gとして算出した。
[Table 3] Note 1) (-/ +) ratio is the theoretical capacitance ratio. Note 2) 1WCP discharge is a relative numerical value for 1W constant power discharge duration (cutoff voltage 1V) with the case of Comparative Example 1 (-/ +) ratio 0.95 as 100, and the average value of n = 3. showed that. Note 3) Over discharge is indicated by ○ when there is no leakage after continuous discharge of 10 Ω constant resistance for 1 week and by X when leakage occurs. Note 4> The theoretical capacity ratio was calculated assuming that the theoretical capacity per weight of nickel oxyhydroxide was 292 mAh / g and the theoretical capacity per weight of zinc was 820 mAh / g.

【0034】上記の表1〜3にて明らかなように、比較
例1では理論電気容量比が1.00でも、過放電時に漏
液が発生するものが見られているが、実施例1および実
施例2では1.10まで安全性・信頼性が保たれてい
る。また、放電特性においては、比較例1、実施例1,
2ともに理論電気容量比が高くなるにつれて良くなるも
のであった。
As is clear from Tables 1 to 3 above, in Comparative Example 1, even though the theoretical electric capacity ratio is 1.00, it is observed that liquid leakage occurs at the time of overdischarging. In the second embodiment, safety and reliability are maintained up to 1.10. Regarding the discharge characteristics, Comparative Example 1, Example 1,
In both cases, the higher the theoretical electric capacity ratio, the better.

【0035】従って、正極合剤中に、正極活物質として
コバルトと亜鉛のみを含有させたオキシ水酸化ニッケル
を含み、その理論電気容量比を1.10以下となした本
発明の第1実施形態のアルカリ一次電池にあっては、正
極の利用率の向上と自己放電率の低減化とを図りつつ、
従来のコバルトと亜鉛とを含有させていないオキシ水酸
化ニッケルを用いる場合よりも、理論電気容量比を高め
ることができ、しかも当該高容量化・高負荷特性の改善
を図った電池構成としても、過放電時の安全性・信頼性
を確保することができるようになる。
Therefore, the first embodiment of the present invention in which the positive electrode mixture contains nickel oxyhydroxide containing only cobalt and zinc as the positive electrode active material and the theoretical electric capacity ratio thereof is 1.10 or less. In the alkaline primary battery of, while improving the utilization rate of the positive electrode and reducing the self-discharge rate,
Compared with the case of using nickel oxyhydroxide that does not contain conventional cobalt and zinc, the theoretical electric capacity ratio can be increased, and even as a battery configuration aiming to improve the high capacity and high load characteristics, It becomes possible to secure safety and reliability during over-discharge.

【0036】《第2実施形態》第1実施形態の実施例1
における正極活物質を、一般組成Ni0.89Co0.05Zn
0.050.01OOHとして表記されるオキシ水酸化ニッケ
ルに置き換えた単三サイズのアルカリ電池を、第2実施
形態として作製した。ここで、Aは{A1,Ca,M
g,Ti,Sc,Fe,Mn,Y,Yb,Er}の10
種から選ばれる元素であり、Aの各元素に対応させて実
施例3〜12を作製し、かつ各実施例3〜12毎に、理
論電気容量比を1.19,1.15,1.10の3種に
設定したものを用意した。電池構成は用いる正極活物質
を変更した以外は第1実施形態の実施例1と同様とし
た。ここで、正極充填量は一定とし、負極活物質の充填
量を変えて理論電気容量比を変更した。また比較対象と
して第1実施形態の説明で示した比較例1、及び実施例
2を用いた。
<Second Embodiment> Example 1 of the first embodiment
Of the positive electrode active material in Ni 0.89 Co 0.05 Zn
An AA size alkaline battery replaced with nickel oxyhydroxide represented as 0.05 A 0.01 OOH was prepared as a second embodiment. Where A is {A1, Ca, M
g, Ti, Sc, Fe, Mn, Y, Yb, Er} 10
Examples 3 to 12, which are elements selected from the species, are produced corresponding to the respective elements of A, and the theoretical electric capacity ratio is 1.19, 1.15, 1. There were prepared three types of 10 types. The battery configuration was the same as in Example 1 of the first embodiment except that the positive electrode active material used was changed. Here, the positive electrode filling amount was fixed, and the theoretical electric capacity ratio was changed by changing the filling amount of the negative electrode active material. In addition, Comparative Examples 1 and 2 shown in the description of the first embodiment were used as comparison targets.

【0037】なお、当該第2実施形態では、正極は以下
のようにして作製した。即ち、上記Aのいずれかの元素
とニッケル、コバルト、亜鉛とのそれぞれの原子量比率
が所定の比率となるようにA元素の硫酸塩と硫酸ニッケ
ルと硫酸コバルトと硫酸亜鉛とを混合した混合溶液10
00mlを、30℃に保持した状態の反応槽中で、更に
水酸化ナトリウム水溶液を加えて攪拌する。1時間程度
攪拌した後、生成した沈殿物をろ過して取り出し、水洗
による洗浄後、常温で真空乾燥させて粉体サンプルを作
製する。次いで、10モル/lの水酸化ナトリウム水溶
液に上記粉体サンプルを100g加えて攪拌し、溶液温
度を30℃〜60℃に保ちつつ当該溶液を攪拌しなが
ら、10重量%の次亜塩素酸ナトリウム水溶液500m
lを加えていき1時間程度攪拌を行った後、沈殿物をろ
過により取り出し、水洗により洗浄を行った後、60℃
以下の温度にて真空乾燥を行う。そして、上記手法で得
たA元素とコバルトと亜鉛とを含有させたオキシ水酸化
ニッケルでなる正極活物質と、導電剤(黒鉛粉末)、並
びに電解液(40重量% 水酸化カリウム水溶液)とを
重量比100:10:5の割合で混合して、混合物を作
製し、加圧成型を行うことで中空状の円筒体を作製して
正極とした。
In the second embodiment, the positive electrode was manufactured as follows. That is, a mixed solution 10 in which a sulfate of element A, nickel sulfate, cobalt sulfate and zinc sulfate are mixed so that the atomic weight ratios of any of the elements of A to nickel, cobalt and zinc become a predetermined ratio.
In a reaction tank in which 00 ml is maintained at 30 ° C, an aqueous sodium hydroxide solution is further added and the mixture is stirred. After stirring for about 1 hour, the generated precipitate is filtered out, washed with water, and vacuum dried at room temperature to prepare a powder sample. Next, 100 g of the above powder sample was added to a 10 mol / l sodium hydroxide aqueous solution and stirred, and 10% by weight of sodium hypochlorite was added while stirring the solution while maintaining the solution temperature at 30 ° C to 60 ° C. Aqueous solution 500m
l was added and stirred for about 1 hour, then the precipitate was taken out by filtration, washed with water and washed at 60 ° C.
Vacuum drying is performed at the following temperature. Then, the positive electrode active material made of nickel oxyhydroxide containing element A, cobalt, and zinc obtained by the above method, a conductive agent (graphite powder), and an electrolytic solution (40 wt% potassium hydroxide aqueous solution) The mixture was mixed at a weight ratio of 100: 10: 5 to prepare a mixture, and the mixture was pressure-molded to prepare a hollow cylindrical body, which was used as a positive electrode.

【0038】このようにして作製した各電池について、
放電特性評価、過放電時の安全性・信頼性評価を行っ
た。その結果を下表4に示す。
For each of the batteries thus manufactured,
The discharge characteristics were evaluated, and the safety / reliability during over-discharge was evaluated. The results are shown in Table 4 below.

【0039】[0039]

【表4】 注1)(−/+)比は理論電気容量比を示した。 注2)1W CP放電は1W定電力放電持続時間(終止
電圧1V〉について、従来例1の場合を100とした相
対的数値であり、(−/+)比1.10の場合のn=3
での平均値を示した。 注3)過放電は10Ω定抵抗1週間連続放電後漏液なし
の場合は○、漏液発生の場合は×で示した。 注4)理論電気容量比はオキシ水酸化ニッケルの重量当
たり理論容量を292mAh/g、亜鉛の重量当たり理
論容量を820mAh/gとして算出した。
[Table 4] Note 1) (-/ +) ratio is the theoretical capacitance ratio. Note 2) 1W CP discharge is a relative value of 1W constant power discharge duration (cutoff voltage 1V>, where the case of Conventional Example 1 is 100, and n = 3 when the (-/ +) ratio is 1.10.
The average value at is shown. Note 3) Over discharge is indicated by ○ when there is no leakage after continuous discharge of 10 Ω constant resistance for 1 week and by X when leakage occurs. Note 4) The theoretical electric capacity ratio was calculated with the theoretical capacity per weight of nickel oxyhydroxide being 292 mAh / g and the theoretical capacity per weight of zinc being 820 mAh / g.

【0040】上記の表4から明らかなように、当該第2
実施形態に係る構成の実施例3〜12のアルカリ一次電
池では、前述の第1実施形態に係る構成の実施例2に比
較して、放電特性の向上が見られて出力特性が良くなっ
ており、しかも過放電時についても実施例2と同様に、
理論容量比を1.10まで高めても安全性は確保されて
いた。
As is clear from Table 4 above, the second
In the alkaline primary batteries of Examples 3 to 12 having the configuration according to the embodiment, the discharge characteristics were improved and the output characteristics were improved as compared with Example 2 having the configuration according to the first embodiment described above. Moreover, when over-discharging, as in the second embodiment,
Safety was ensured even if the theoretical capacity ratio was increased to 1.10.

【0041】《第3実施形態》第3実施形態では、C
o,Znをそれぞれ5モル%ずつ含有させたオキシ水酸
化二ッケルと二酸化マンガンとを50:50で混合した
ものを正極活物質に用いた実施例13と、75:25で
混合したものを正極活物質に用いた実施例14とを作製
した。電池構成としては、用いる正極活物質に二酸化マ
ンガンを更に加えて変更した点以外は、第1実施形態と
同様にして、単三サイズのアルカリ電池を作製した。
<< Third Embodiment >> In the third embodiment, C
Example 13 in which a mixture of 50:50 of nickel oxide oxyhydroxide containing 5 mol% each of o and Zn and 50:50 of manganese dioxide was used as a positive electrode active material, and a mixture of 75:25 in Example Example 14 used as the active material was produced. Regarding the battery configuration, an AA size alkaline battery was produced in the same manner as in the first embodiment, except that manganese dioxide was further added to the positive electrode active material used.

【0042】その際に、Co,Znを含有させていない
オキシ水酸化ニッケルと二酸化マンガンとを0:100
で混合した正極活物質(つまり二酸化マンガンのみ)を
用いたものを比較例2として作製し、また50:50で
混合したものを比較例3として作製し、さらに75:2
5で混合したものを比較例4として作製した。
At that time, nickel oxyhydroxide containing no Co and Zn and manganese dioxide were mixed at 0: 100.
The one using the positive electrode active material (that is, only manganese dioxide alone) mixed in 1. was prepared as Comparative Example 2, and the mixture using 50:50 was prepared as Comparative Example 3, and further 75: 2.
What was mixed in No. 5 was prepared as Comparative Example 4.

【0043】また、正極充填量は一定とし、負極活物質
の充填量を変えて理論電気容量比を変更した。ここで、
当該理論電気容量比は、比較例2では1.30,1.2
5,1.20,1.15の4種に、比較例3と実施例1
3では1.20,1.15,1.12,1.08の4種
に、比較例4と実施例14では1.17,1.12,
1.05,1.00の4種にそれぞれ設定した。
Further, the filling amount of the positive electrode was kept constant, and the filling amount of the negative electrode active material was changed to change the theoretical electric capacity ratio. here,
The theoretical electric capacity ratio is 1.30, 1.2 in Comparative Example 2.
Comparative Example 3 and Example 1 in four kinds of 5, 1.20 and 1.15
No. 3 was 1.20, 1.15, 1.12, 1.08, and Comparative Example 4 and Example 14 were 1.17, 1.12.
Four types of 1.00 and 1.00 were set respectively.

【0044】そして、このように作製した各電池につい
て、放電特性評価、過放電時の安全性・信頼性評価を行
った。その結果を下表5、6、7に示す。
Then, with respect to each of the batteries thus manufactured, discharge characteristic evaluation and safety / reliability evaluation during over-discharge were performed. The results are shown in Tables 5, 6 and 7 below.

【0045】[0045]

【表5】 *)放電特性は、1W定電力放電持続時問(終止電圧1
V)について、比較例2(−/+)比1.15の場合を
100とした相対的数値であり、n=3の平均値を示し
た。
[Table 5] *) Discharge characteristics are as long as 1 W constant power discharge continues (end voltage 1
V) is a relative numerical value with the case of Comparative Example 2 (− / +) ratio of 1.15 as 100, and shows an average value of n = 3.

【0046】[0046]

【表6】 *)放電特性は、1W定電力放電持続時間〈終止電圧1
V)について、比較例3(−/+)比1.08の場合を
100とした相対的数値であり、n=3の平均値を示し
た。
[Table 6] *) Discharge characteristics are 1W constant power discharge duration <end voltage 1
V) is a relative numerical value with 100 in the case of the comparative example 3 (-/ +) ratio of 1.08, and shows the average value of n = 3.

【0047】[0047]

【表7】 *)放電特性は、1W定電力放電持続時間〈終止電圧1
V)について、比較例4(−/+)比1.00の場合を
100とした相対的数値であり、n=3の平均値を示し
た。 注1)(−/+)比は理論電気容量比を示した。 注2)過放電は10Ω定抵抗1週間連続放電後に漏液な
しの場合は○、漏液発生の場合は×を示した。 注3)理論電気容量比はオキシ水酸化ニッケルの重量当
たり理論電気容量を292mAh/g、二酸化マンガン
の重量当たり理論容量を308mAh/g、亜鉛の重量
当たり理論容量を820mAh/gとして算出した。
[Table 7] *) Discharge characteristics are 1W constant power discharge duration <end voltage 1
V) is a relative numerical value with 100 in the case of the comparative example 4 (− / +) ratio of 1.00, and shows the average value of n = 3. Note 1) (-/ +) ratio is the theoretical capacitance ratio. Note 2) Over discharge is indicated by ○ when there is no leakage after continuous discharge of 10 Ω constant resistance for 1 week, and × when leakage occurs. Note 3) The theoretical capacity ratio was calculated assuming that the theoretical capacity per weight of nickel oxyhydroxide is 292 mAh / g, the theoretical capacity per weight of manganese dioxide is 308 mAh / g, and the theoretical capacity per weight of zinc is 820 mAh / g.

【0048】上記の表5〜7にて明らかなように、当該
第3実施形態の構成に係るアルカリ一次電池の実施例1
3,14はともに、前述の第1実施形態の実施例1と同
様に、比較例3,4では過放電時に漏液が発生するよう
な高い理論電気容量比であっても、過放電時の安全性・
信頼性が保たれている。また、放電特性においては、両
実施例13,14ともに理論電気容量比が大きくなるに
つれて良くなっていた。
As is clear from Tables 5 to 7 above, Example 1 of the alkaline primary battery according to the constitution of the third embodiment.
Similar to Example 1 of the above-described first embodiment, Comparative Examples 3 and 4 have high theoretical electric capacity ratios in which liquid leakage occurs during overdischarging, but in Comparative Examples 3 and 4, safety·
Reliable. In addition, the discharge characteristics were improved in both Examples 13 and 14 as the theoretical electric capacity ratio increased.

【0049】《第4実施形態》単三サイズのアルカリ電
池を作製した。その際に一般組成Ni0.89Co0.05Zn
0.050.01OOHとして表記されるオキシ水酸化ニッケ
ルと二酸化マンガンを50:50で混合したものを正極
活物質に用いたものを、実施例15〜24として作製し
た。ここで、Aは{Al,Ca,Mg,Ti,Sc,F
e,Mn,Y,Yb,Er}の10種から選ばれる元素
である。また比較対象として第3実施形態で示した比較
例3と実施例13とを用いた。第4実施形態の電池構成
としては、用いる正極活物質に二酸化マンガンを更に加
えて変更した点以外は、第2実施形態と同様とした。ま
た、正極充填量は一定とし、負極活物質の充填量を変え
て理論電気容量比を変更した。ここで、当該理論電気容
量比は、1.20,1.15,1.12,の3種にそれ
ぞれ設定した。
<< Fourth Embodiment >> AA size alkaline batteries were prepared. At that time, the general composition Ni 0.89 Co 0.05 Zn
Examples in which nickel oxyhydroxide represented by 0.05 A 0.01 OOH and manganese dioxide mixed at 50:50 were used as positive electrode active materials were manufactured as Examples 15 to 24. Here, A is {Al, Ca, Mg, Ti, Sc, F
e, Mn, Y, Yb, Er} is an element selected from 10 types. Moreover, the comparative example 3 and the example 13 shown in 3rd Embodiment were used as a comparison object. The battery configuration of the fourth embodiment was the same as that of the second embodiment except that manganese dioxide was further added to the positive electrode active material used. Further, the filling amount of the positive electrode was kept constant, and the filling amount of the negative electrode active material was changed to change the theoretical electric capacity ratio. Here, the theoretical electric capacity ratio was set to each of three types, 1.20, 1.15, 1.12.

【0050】そして、このように作製した各電池につい
て、放電特性評価、過放電時の安全性・信頼性評価を行
った。その結果を下表8に示す。
Then, with respect to each of the batteries thus manufactured, discharge characteristic evaluation and safety / reliability evaluation at the time of over-discharge were carried out. The results are shown in Table 8 below.

【0051】[0051]

【表8】 注1)(−/+)比は理論電気容量比を示した。 注2)1W CP放電は、1W定電力放電持続時間(終
止電圧1V)について、比較例3の場合を100とした
相対的数値であり、(−/+)比1.15の場合のn=
3での平均値を示した。 注3〉過放電は10Ω定抵抗1週間連続放電後漏液なし
の場合は○、漏液発生の場合は×で示した。 注4)理論電気容量比はオキシ水酸化ニッケルの重量当
たり理論電気容量を292mAh/g、亜鉛の重量当た
り理論容量を820mAh/g、二酸化マンガンの重量
当たり理論容量を308mAh/gとして算出した。
[Table 8] Note 1) (-/ +) ratio is the theoretical capacitance ratio. Note 2) 1W CP discharge is a relative numerical value of 1W constant power discharge duration (cutoff voltage 1V) with 100 in the case of Comparative Example 3, and n = when the (-/ +) ratio is 1.15.
The average value of 3 is shown. Note 3> Over discharge is indicated by ○ when there is no leakage after continuous discharge of 10 Ω constant resistance for 1 week, and by × when leakage occurs. Note 4) The theoretical capacity ratio was calculated with the theoretical capacity per weight of nickel oxyhydroxide being 292 mAh / g, the theoretical capacity per weight of zinc being 820 mAh / g, and the theoretical capacity per weight of manganese dioxide being 308 mAh / g.

【0052】上記の表8にて明らかなように、当該第4
実施形態の構成に係るアルカリ一次電池の実施例15〜
24では、第3実施形態の実施例13に比較して、放電
特性の更なる向上が見られて出力特性が良くなってお
り、しかも過放電時についても、実施例13と同様に理
論容量比を1.15まで高めても安全性は確保されてい
た。
As is clear from Table 8 above, the fourth
Example 15 of alkaline primary battery according to configuration of embodiment
24, compared with Example 13 of the third embodiment, the discharge characteristics were further improved and the output characteristics were improved, and the theoretical capacity ratio was the same as in Example 13 even during overdischarge. The safety was secured even if the value was increased to 1.15.

【0053】なお、上記各実施例1〜24及び比較例1
〜4において、理論電気容量比を変更するにあたって
は、正極合剤の充填量を一定にして負極材料の充填量を
変更するようにしているが、具体的には以下のような手
法により理論電気容量比の調節を行った。
The above-mentioned Examples 1 to 24 and Comparative Example 1
4 to 4, when changing the theoretical electric capacity ratio, the filling amount of the positive electrode mixture is made constant and the filling amount of the negative electrode material is changed. Specifically, the theoretical electric capacity ratio is changed by the following method. The volume ratio was adjusted.

【0054】即ち、正極合剤の充填量と配合組成から、
正極活物質であるオキシ水酸化ニッケル、二酸化マンガ
ンのそれぞれの充填量Wn,Wmを求める。求めた充填
量と重量当たり理論容量から(オキシ水酸化ニッケル:
292mAh/g、二酸化マンガン:308mAh/g
として)充填されたオキシ水酸化ニッケルと二酸化マン
ガンの各理論容量を求め、その和を正極の総理論容量と
する。そして、この正極の総理論容量に対して負極理論
容量、つまり負極充填量を調節して理論電気容量比を所
望値に合致させることになる。即ち、正極理論容量と所
望の理論電気容量比から負極理論容量が決定される。こ
の負極理論容量と亜鉛の重量当たり理論容量から(82
0mAh/gとして)、亜鉛充填量が決定される。さら
に亜鉛充填量と負極配合組成から負極ゲル充填量が決定
され、当該負極ゲル重量を充填することになる。
That is, from the filling amount and the compounding composition of the positive electrode mixture,
The filling amounts Wn and Wm of nickel oxyhydroxide and manganese dioxide, which are positive electrode active materials, are determined. From the calculated filling amount and theoretical capacity per weight (nickel oxyhydroxide:
292 mAh / g, manganese dioxide: 308 mAh / g
As the respective theoretical capacities of the filled nickel oxyhydroxide and manganese dioxide, the sum of the theoretical capacities is taken as the total theoretical capacity of the positive electrode. Then, the negative electrode theoretical capacity, that is, the negative electrode filling amount is adjusted with respect to the total theoretical capacity of the positive electrode to match the theoretical electric capacity ratio to a desired value. That is, the negative electrode theoretical capacity is determined from the positive electrode theoretical capacity and the desired theoretical electric capacity ratio. From the theoretical capacity of the negative electrode and the theoretical capacity per weight of zinc (82
Zinc loading is determined) (as 0 mAh / g). Further, the negative electrode gel filling amount is determined from the zinc filling amount and the negative electrode composition, and the negative electrode gel weight is filled.

【0055】[0055]

【発明の効果】以上に説明したように、本発明によれば
コバルトと亜鉛、若しくは更にAl,Ca,Mg,T
i,Sc,Fe,Mn,Y,Yb,Erのうちのいずれ
か1つを含有させてなるオキシ水酸化ニッケルをアルカ
リ一次電池の正極活物質に用いることで、正極の利用率
の向上と自己放電率の低減化とを図りつつ、従来のコバ
ルトと亜鉛等とを含有させていないオキシ水酸化ニッケ
ルを用いる場合よりも理論電気容量比を高めることがで
き、しかも当該高容量化・高負荷特性の改善を図った電
池構成としても、過放電時の安全性・信頼性を確保する
ことが可能となる。
As described above, according to the present invention, cobalt and zinc, or further Al, Ca, Mg, T
By using nickel oxyhydroxide containing any one of i, Sc, Fe, Mn, Y, Yb, and Er as a positive electrode active material of an alkaline primary battery, the utilization rate of the positive electrode is improved and While reducing the discharge rate, it is possible to increase the theoretical electric capacity ratio compared to the case of using conventional nickel oxyhydroxide that does not contain cobalt and zinc, and the high capacity and high load characteristics. Even if the battery configuration is improved, it is possible to secure safety and reliability during overdischarge.

【0056】また、既存のアルカリ電池に対し、正極の
二酸化マンガンにオキシ水酸化ニッケルを混合すること
で高負荷特性を向上させることが可能になり、この場合
には、正極の総理論容量は充填した二酸化マンガンとオ
キシ水酸化ニッケルの各理論容量の和となる。
Further, by mixing nickel oxyhydroxide with manganese dioxide of the positive electrode in the existing alkaline battery, it becomes possible to improve the high load characteristics. In this case, the total theoretical capacity of the positive electrode is filled. It is the sum of the theoretical capacities of manganese dioxide and nickel oxyhydroxide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアルカリ一次電池の縦断面図であ
る。
FIG. 1 is a vertical sectional view of an alkaline primary battery according to the present invention.

【符号の説明】[Explanation of symbols]

2 正極成形体 4 電池缶 6 セパレータ 8 負極 10 集電子 12 ガスケット 14 負極蓋 16 負極端子 2 Positive electrode molding 4 battery cans 6 separator 8 Negative electrode 10 Collective Electronics 12 gasket 14 Negative electrode lid 16 Negative electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 光宏 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 (72)発明者 鷺坂 博人 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 (72)発明者 植木 伸一 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 Fターム(参考) 5H024 AA02 AA03 AA14 BB07 CC02 CC14 FF07 HH01 HH04 5H050 AA02 AA08 AA15 BA04 CA04 CB13 GA10 HA01 HA19    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsuhiro Nakamura             F-de, 5-36-1 Shimbashi, Minato-ku, Tokyo             K.K Co., Ltd. (72) Inventor Hiroto Sagisaka             F-de, 5-36-1 Shimbashi, Minato-ku, Tokyo             K.K Co., Ltd. (72) Inventor Shinichi Ueki             F-de, 5-36-1 Shimbashi, Minato-ku, Tokyo             K.K Co., Ltd. F term (reference) 5H024 AA02 AA03 AA14 BB07 CC02                       CC14 FF07 HH01 HH04                 5H050 AA02 AA08 AA15 BA04 CA04                       CB13 GA10 HA01 HA19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極合剤中に、正極活物質としてコバル
トと亜鉛のみを含有するオキシ水酸化ニッケルを含み、
理論電気容量比が1.10以下であることを特徴とするア
ルカリ一次電池。
1. The positive electrode mixture contains nickel oxyhydroxide containing only cobalt and zinc as a positive electrode active material,
An alkaline primary battery having a theoretical electric capacity ratio of 1.10 or less.
【請求項2】 請求項1に記載のアルカリ一次電池にお
いて、正極合剤中に、正極活物質としてさらに二酸化マ
ンガンを含み、前記オキシ水酸化ニッケルの充填量をW
ng、該二酸化マンガンの充填量をWmgとした場合
に、理論電気容量比が (1.10×Wn+1.25×Wm)/(Wn+Wm) 以下であることを特徴とするアルカリ一次電池。
2. The alkaline primary battery according to claim 1, wherein the positive electrode material mixture further contains manganese dioxide as a positive electrode active material, and the filling amount of the nickel oxyhydroxide is W.
Alkaline primary battery having a theoretical electric capacity ratio of (1.10 × Wn + 1.25 × Wm) / (Wn + Wm) or less, where ng is Wmg.
【請求項3】 正極合剤中に、下記のA群に挙げられた
元素のうち少なくとも1種類とコバルトと亜鉛とを含有
するオキシ水酸化ニッケルを含み、理論電気容量比が
1.10以下であることを特徴とするアルカリ一次電
池。 {A群:Al,Ca,Mg,Ti,Sc,Fe,Mn,
Y,Yb,Er}
3. The positive electrode mixture contains nickel oxyhydroxide containing at least one element selected from the following group A and cobalt and zinc, and has a theoretical electric capacity ratio of 1.10 or less. Alkaline primary battery characterized by being. {Group A: Al, Ca, Mg, Ti, Sc, Fe, Mn,
Y, Yb, Er}
【請求項4】 請求項3に記載のアルカリ一次電池にお
いて、正極合剤中に、正極活物質としてさらに二酸化マ
ンガンを含み、前記オキシ水酸化ニッケルの充填量をW
ng、該二酸化マンガンの充填量をWmgとした場合
に、理論電気容量比が (1.10×Wn+1.25×Wm)/(Wn+Wm) 以下であることを特徴とするアルカリ一次電池。
4. The alkaline primary battery according to claim 3, wherein the positive electrode mixture further contains manganese dioxide as a positive electrode active material, and the filling amount of the nickel oxyhydroxide is W.
Alkaline primary battery having a theoretical electric capacity ratio of (1.10 × Wn + 1.25 × Wm) / (Wn + Wm) or less, where ng is Wmg.
JP2002039156A 2002-02-15 2002-02-15 Alkaline primary battery Expired - Lifetime JP4243449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039156A JP4243449B2 (en) 2002-02-15 2002-02-15 Alkaline primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039156A JP4243449B2 (en) 2002-02-15 2002-02-15 Alkaline primary battery

Publications (2)

Publication Number Publication Date
JP2003242990A true JP2003242990A (en) 2003-08-29
JP4243449B2 JP4243449B2 (en) 2009-03-25

Family

ID=27780269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039156A Expired - Lifetime JP4243449B2 (en) 2002-02-15 2002-02-15 Alkaline primary battery

Country Status (1)

Country Link
JP (1) JP4243449B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103080A1 (en) * 2002-05-31 2003-12-11 東芝電池株式会社 Sealed nickel-zinc primary cell
JP2005327564A (en) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd Alkaline battery, and manufacturing method of cathode activator for the same
JP2006004900A (en) * 2004-05-20 2006-01-05 Sony Corp Alkaline dry battery
WO2006001210A1 (en) * 2004-06-24 2006-01-05 Matsushita Electric Industrial Co., Ltd. Alkaline cell
WO2006040907A1 (en) * 2004-10-15 2006-04-20 Matsushita Electric Industrial Co., Ltd. Alkaline battery
WO2007142131A1 (en) * 2006-06-07 2007-12-13 Panasonic Corporation Alkaline primary battery
WO2008096559A1 (en) * 2007-02-09 2008-08-14 Panasonic Corporation Manganese dry cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103080A1 (en) * 2002-05-31 2003-12-11 東芝電池株式会社 Sealed nickel-zinc primary cell
US7763383B2 (en) 2002-05-31 2010-07-27 Toshiba Battery Co., Ltd. Sealed nickel-zinc primary cell
JP2005327564A (en) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd Alkaline battery, and manufacturing method of cathode activator for the same
JP2006004900A (en) * 2004-05-20 2006-01-05 Sony Corp Alkaline dry battery
KR100882403B1 (en) * 2004-06-24 2009-02-05 파나소닉 주식회사 Alkaline cell
CN100431206C (en) * 2004-06-24 2008-11-05 松下电器产业株式会社 Alkaline cell
WO2006001210A1 (en) * 2004-06-24 2006-01-05 Matsushita Electric Industrial Co., Ltd. Alkaline cell
AU2005293057B2 (en) * 2004-10-15 2008-11-20 Panasonic Corporation Alkaline battery
WO2006040907A1 (en) * 2004-10-15 2006-04-20 Matsushita Electric Industrial Co., Ltd. Alkaline battery
AU2005293057C1 (en) * 2004-10-15 2009-04-02 Panasonic Corporation Alkaline battery
KR100904349B1 (en) * 2004-10-15 2009-06-23 파나소닉 주식회사 Alkaline battery
WO2007142131A1 (en) * 2006-06-07 2007-12-13 Panasonic Corporation Alkaline primary battery
WO2008096559A1 (en) * 2007-02-09 2008-08-14 Panasonic Corporation Manganese dry cell

Also Published As

Publication number Publication date
JP4243449B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP2001015106A (en) Alkaline battery
WO1998057386A1 (en) Non-aqueous electrolytic secondary cell
CA2533075C (en) Nickel-manganese battery comprising manganese dioxide and nickel oxyhydroxide
US20020172758A1 (en) Alkaline storage battery
KR100882403B1 (en) Alkaline cell
JP4243449B2 (en) Alkaline primary battery
JP3568408B2 (en) Positive electrode active material for alkaline secondary batteries and alkaline secondary batteries
KR20000069898A (en) Alkaline storage battery and method for charging battery
CN100589263C (en) Positve electrode material, positve electrode and battery containing the material and preparing process thereof
JPH11111330A (en) Nickel-hydrogen storage battery
JP2003234101A (en) Alkaline primary cell
JP2004139909A (en) Sealed nickel-zinc primary battery
JP2000311703A (en) Sealed alkaline storage battery
JP2000251883A (en) Sealed alkaline zinc storage battery
JPH0945323A (en) Active material for alkaline secondary battery and its manufacture and electrode for alkaline secondary battery and alkaline secondary battery
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode
JP2002075436A (en) Alkali storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP2000251925A (en) Sealed alkaline zinc storage battery
JPH10255788A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH07262980A (en) Nickel-hydrogen storage battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JP2004164863A (en) Sealed type nickel zinc primary cell

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4243449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term