JP2005256047A - SURFACE TREATMENT METHOD AND SURFACE TREATMENT APPARATUS FOR Mg ALLOY MEMBER - Google Patents

SURFACE TREATMENT METHOD AND SURFACE TREATMENT APPARATUS FOR Mg ALLOY MEMBER Download PDF

Info

Publication number
JP2005256047A
JP2005256047A JP2004067175A JP2004067175A JP2005256047A JP 2005256047 A JP2005256047 A JP 2005256047A JP 2004067175 A JP2004067175 A JP 2004067175A JP 2004067175 A JP2004067175 A JP 2004067175A JP 2005256047 A JP2005256047 A JP 2005256047A
Authority
JP
Japan
Prior art keywords
surface treatment
alloy member
alloy
vacuum vessel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004067175A
Other languages
Japanese (ja)
Inventor
Shinya Fujimoto
信也 藤本
Noriaki Tani
典明 谷
Konosuke Inagawa
幸之助 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004067175A priority Critical patent/JP2005256047A/en
Publication of JP2005256047A publication Critical patent/JP2005256047A/en
Ceased legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve corrosion resistance and wear resistance of an Mg alloy. <P>SOLUTION: The surface of an Mg alloy substrate 4 is placed on an electrode plate 2 is subjected to a bombardment treatment and thereafter acetylene which is a gaseous raw material is introduced from a gaseous raw material feeder 9 through a mass flow controller 11 into a vacuum vessel 3 regulated in pressure and a diamond-like carbon film (DLC film) is deposited on the surface of the Mg alloy member 4 by a plasma-enhanced CVD method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、Mg合金部材の耐食性と耐磨耗性を改善するための表面処理方法及び表面処理装置に関する。   The present invention relates to a surface treatment method and a surface treatment apparatus for improving the corrosion resistance and wear resistance of an Mg alloy member.

Mg(マグネシウム)の密度は1.74g/cm3で実用金属の中でも最も小さく、Alの2/3、Znの1/4、銅の1/4であり、軽量面で優位なMgはAlや鋼に比べて比強度が大きい。そのため、電子通信機器部品(例えば、携帯電話、ノート型パソコン、デジタルスチルカメラ、DVDプレーヤーなど)、自動車部品(例えば、シートフレーム、ドアフレーム、ホイールなど)、その他(スポーツ・レジャー品、航空機、ハンド工具、紡績機械部品等の工業部品、日曜雑貨、福祉・医療機器など)等、多くの分野で利用されている。 The density of Mg (magnesium) is 1.74 g / cm 3 , the smallest among practical metals, 2/3 of Al, 1/4 of Zn, and 1/4 of copper. Specific strength is larger than steel. Therefore, electronic communication equipment parts (for example, mobile phones, notebook computers, digital still cameras, DVD players, etc.), automobile parts (for example, seat frames, door frames, wheels, etc.), and others (sports and leisure goods, aircraft, hands, etc.) Tools, industrial parts such as spinning machine parts, sundries, welfare / medical equipment, etc.).

なお、Mgは結晶構造が最密六方相であるため、Alと異なり室温での塑性加工が難しく、また、耐食性に乏しく、硬さも小さいという欠点がある。そのため、実用上はMg合金として使用され、Al、Zn、Mnを合金とするAZ系、AM系等、Zr、RE(希士類元素)を合金成分とするZK系、EZ系、QE系、WE系等が主に用いられている。   Since Mg has a close-packed hexagonal crystal structure, unlike Al, plastic processing at room temperature is difficult, and corrosion resistance is poor and hardness is low. Therefore, it is practically used as an Mg alloy, AZ type, AM type, etc. with Al, Zn, Mn as an alloy, ZK type, EZ type, QE type with Zr, RE (rare elements) as alloy components, The WE system is mainly used.

ところで、Mgを合金化しても完全に解決されていないのが耐食性である。Mgは実用金属の中で最も化学的活性が高く、水生環境で水素を発生しながら腐食する。即ち、Mgは強アルカリ性領域では優れた耐食性を示すが、中性、酸性領域では腐食しやすい。   Incidentally, corrosion resistance is not completely solved even when Mg is alloyed. Mg has the highest chemical activity among practical metals and corrodes while generating hydrogen in an aquatic environment. That is, Mg exhibits excellent corrosion resistance in the strongly alkaline region, but tends to corrode in the neutral and acidic regions.

一方、最近では溶解技術の著しい進歩により、フラックスによる塩化物の混入が要因となる腐食問題も解決されつつある。また、電解法による高純度な地金の生産も可能となり、Fe、Co、Ni、Cu等の不純物によるガルバニ腐食の少ない素材の供給も容易となってきた。   On the other hand, recently, due to remarkable progress in dissolution technology, corrosion problems caused by the inclusion of chloride by flux are being solved. In addition, it has become possible to produce high-purity ingots by electrolysis, and it has become easier to supply materials that are less susceptible to galvanic corrosion due to impurities such as Fe, Co, Ni, and Cu.

また、表面処理による腐食防止も従来より行われている。表面処理による腐食対策技術は、湿式法(陽極酸化法、化成処理法)が古くから実用化されている。因みに陽極酸化法は、1926年にL.J.Keelerが重クロム酸溶液で、1928年にG.Pisorが苛性ソーダ溶液を用いて確立している。また、有機物被膜(油あるいはワックスの塗布、塗装)も実用化されている。   Further, corrosion prevention by surface treatment has been conventionally performed. As a countermeasure against corrosion by surface treatment, wet methods (anodic oxidation method, chemical conversion treatment method) have been put into practical use for a long time. Incidentally, the anodic oxidation method was developed in 1926 by L.L. J. et al. Keeler is a dichromic acid solution. Pisor has established with caustic soda solution. Organic coatings (oil or wax coating or painting) have also been put into practical use.

ところで、近年では上記湿式法に勝る耐食性、硬さ、色彩を有するMg合金部材を製造できる表面処理法が望まれている。また、環境汚染の面からも6価クロムを使用しないようにすることが求められている。   By the way, in recent years, a surface treatment method capable of producing an Mg alloy member having corrosion resistance, hardness, and color superior to the above wet method is desired. Moreover, it is calculated | required not to use hexavalent chromium also from the surface of environmental pollution.

このような観点から、真空技術の利用、即ち、乾式法によるMg合金の耐食性を改善する表面処理技術の確立が急務となっており、近年、乾式法によるMg合金の表面処理についての実験報告がなされている(例えば、非特許文献1参照。)。
高谷松文,第一回マグネ表面処理分科会「最近のマグネシウム表面処理技術と耐食性」テキスト、日本マグネシウム協会、1998年、p.32
From this point of view, the use of vacuum technology, that is, the establishment of surface treatment technology that improves the corrosion resistance of Mg alloys by the dry method has become an urgent task. In recent years, experimental reports on the surface treatment of Mg alloys by the dry method have been published. (For example, refer nonpatent literature 1.).
Takafumi Matsufumi, 1st Magne Surface Treatment Subcommittee, “Recent Magnesium Surface Treatment Technology and Corrosion Resistance” text, Japan Magnesium Association, 1998, p. 32

ところで、上記非特許文献1のような乾式法によるMg合金の表面処理方法は実験室的には可能であるが、大量生産のための表面処理に適用しようとした場合、表面処理のプロセスが複雑になり、処理コストが高くなる等の問題があった。   By the way, although the surface treatment method of Mg alloy by the dry method like the said nonpatent literature 1 is possible in a laboratory, when it is going to apply to the surface treatment for mass production, the process of surface treatment is complicated. As a result, there are problems such as high processing costs.

そこで本発明は、湿式法のような6価クロムによる環境汚染のない乾式法で、かつ単純なプロセスによって、生産性よく低コストで耐食性と耐磨耗性に優れた表面処理が可能なMg合金部材の表面処理方法及び表面処理装置を提供することを目的とする。   Accordingly, the present invention provides a Mg alloy that is a dry process free from environmental pollution by hexavalent chromium, such as a wet process, and is capable of surface treatment with high productivity, low cost, and excellent corrosion resistance and wear resistance by a simple process. An object is to provide a surface treatment method and a surface treatment apparatus for a member.

上記目的を達成するために請求項1に記載の発明は、Mg合金部材の表面処理方法であって、圧力調整された真空容器内に放電用ガス又は原料ガスを導入し、PVD法又はCVD法によってMg合金部材表面にダイヤモンド状炭素膜を成膜することを特徴としている。   In order to achieve the above object, the invention described in claim 1 is a surface treatment method for an Mg alloy member, wherein a discharge gas or a raw material gas is introduced into a pressure-adjusted vacuum vessel, and a PVD method or a CVD method. Thus, a diamond-like carbon film is formed on the surface of the Mg alloy member.

また、請求項5に記載の発明は、Mg合金部材に表面処理を行う表面処理装置であって、圧力調整された真空容器内に放電用ガス又は原料ガスを導入し、前記真空容器内に配置したMg合金部材表面にPVD法又はCVD法によってダイヤモンド状炭素膜を成膜することを特徴としている。   The invention according to claim 5 is a surface treatment apparatus for performing a surface treatment on an Mg alloy member, wherein a discharge gas or a raw material gas is introduced into a pressure-adjusted vacuum vessel and disposed in the vacuum vessel. A diamond-like carbon film is formed on the surface of the Mg alloy member by PVD or CVD.

本発明によれば、Mg合金部材表面にダイヤモンド状炭素膜を成膜する単純なプロセスによって、耐食性と耐磨耗性に優れた表面処理を低コストで、かつ生産性よく行うことができる。   According to the present invention, a simple process for forming a diamond-like carbon film on the surface of an Mg alloy member can perform surface treatment with excellent corrosion resistance and wear resistance at low cost and high productivity.

以下、本発明を図示の実施形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

図1は、本発明の実施の形態に係る表面処理装置を示す概略断面図であり、本実施形態では、表面処理装置として放電用電源が高周波電源のプラズマCVD装置を用いた。本実施の形態に係る表面処理装置(プラズマCVD装置)1は、基板ホルダを兼ねる電極板2を下部に設置した真空容器3を有しており、この電極板2上にMg合金基板4が載置される。電極板2には、高周波(RF)電源5とブロッキングコンデンサー6が接続されている。   FIG. 1 is a schematic sectional view showing a surface treatment apparatus according to an embodiment of the present invention. In this embodiment, a plasma CVD apparatus having a high-frequency power supply as a discharge power supply is used as the surface treatment apparatus. A surface treatment apparatus (plasma CVD apparatus) 1 according to the present embodiment has a vacuum vessel 3 in which an electrode plate 2 that also serves as a substrate holder is installed at the lower portion, and an Mg alloy substrate 4 is mounted on the electrode plate 2. Placed. A radio frequency (RF) power source 5 and a blocking capacitor 6 are connected to the electrode plate 2.

真空容器3には、原料ガスである炭化水素系ガス(アセチレン、メタンなど)とボンバード処理用ガス(O2、Ar、N2など)が導入されるガス導入ライン7と、排気系(不図示)が接続されている排気口8が設けられている。ガス導入ライン7には、原料ガス供給装置9とボンバードガス供給装置10が各マスフローコントローラ11、12を介して接続されている。なお、真空容器3は接地されている。 The vacuum vessel 3 includes a gas introduction line 7 into which a hydrocarbon gas (acetylene, methane, etc.) and a bombarding gas (O 2 , Ar, N 2, etc.), which are raw material gases, are introduced, and an exhaust system (not shown). ) Is connected to the exhaust port 8. A raw material gas supply device 9 and a bombard gas supply device 10 are connected to the gas introduction line 7 via respective mass flow controllers 11 and 12. The vacuum vessel 3 is grounded.

次に、上記した本実施の形態に係る表面処理装置1によるMg合金基板4の表面処理方法について説明する。   Next, a surface treatment method for the Mg alloy substrate 4 by the surface treatment apparatus 1 according to the above-described embodiment will be described.

電極板2上にMg合金基板4を載置して、真空容器3内を排気系(不図示)によって排気口8から排気して所定の圧力に調整した後、先ず、ボンバードガス供給装置10からボンバード処理用ガスとしての酸素(O2)ガスを供給し、マスフローコントローラ12で流量を調整して真空容器3内に導入する。この際、高周波電源5から電極板2に高周波(RF)を印加して、真空容器3内に導入された酸素(O2)ガスをプラズマ化する。 After the Mg alloy substrate 4 is placed on the electrode plate 2 and the inside of the vacuum vessel 3 is exhausted from the exhaust port 8 by an exhaust system (not shown) and adjusted to a predetermined pressure, first, from the bombard gas supply device 10 Oxygen (O 2 ) gas as bombarding gas is supplied, and the flow rate is adjusted by the mass flow controller 12 and introduced into the vacuum vessel 3. At this time, a high frequency (RF) is applied from the high frequency power source 5 to the electrode plate 2 to convert the oxygen (O 2 ) gas introduced into the vacuum vessel 3 into plasma.

この際、電極板2のMg合金基板4が載置されている表面側にセルフバイアスがかかることによって、酸素イオンがMg合金基板4の表面に衝突し、Mg合金基板4の表面がボンバード処理される。ボンバード処理後、高周波電源5をOFFする。   At this time, self-bias is applied to the surface side of the electrode plate 2 on which the Mg alloy substrate 4 is placed, so that oxygen ions collide with the surface of the Mg alloy substrate 4 and the surface of the Mg alloy substrate 4 is bombarded. The After the bombarding process, the high frequency power supply 5 is turned off.

そして、このボンバード処理が終了した後に、真空容器3内を排気系(不図示)によって排気口8から排気して所定の圧力に調整し、原料ガス供給装置9から原料ガスである炭化水素系ガス(例えばアセチレン(C22))を供給して、マスフローコントローラ11で流量を調整して真空容器3内に導入する。この際、高周波電源5から電極板2に高周波(RF)を印加して、真空容器3内に導入された炭化水素系ガス(例えばアセチレン(C22))をプラズマ化する。 After the bombarding process is completed, the inside of the vacuum vessel 3 is evacuated from the exhaust port 8 by an exhaust system (not shown) and adjusted to a predetermined pressure, and a hydrocarbon-based gas which is a source gas is supplied from the source gas supply device 9. (For example, acetylene (C 2 H 2 )) is supplied, and the flow rate is adjusted by the mass flow controller 11 and introduced into the vacuum vessel 3. At this time, a high frequency (RF) is applied from the high frequency power source 5 to the electrode plate 2 to convert the hydrocarbon-based gas (for example, acetylene (C 2 H 2 )) introduced into the vacuum vessel 3 into plasma.

この際、Mg合金基板4が載置されている電極板2にセルフバイアスがかかることによって、プラズマ中のプラスイオン(C+、CH2 +など)がMg合金基板4に引き付けられ、Mg合金基板4のボンバード処理された表面に緻密なダイヤモンド状カーボン膜(以下、DLC膜という)が密着性よく成膜される。 At this time, self-bias is applied to the electrode plate 2 on which the Mg alloy substrate 4 is placed, so that positive ions (C + , CH 2 + etc.) in the plasma are attracted to the Mg alloy substrate 4, and the Mg alloy substrate A dense diamond-like carbon film (hereinafter referred to as DLC film) is formed on the surface subjected to the bombarding treatment 4 with good adhesion.

このように、Mg合金基板4の表面をボンバード処理した後に、プラズマCVD法によって炭化水素系ガス(例えばアセチレン(C22))をイオン化して、Mg合金基板4の表面にDLC膜を密着性よく成膜することによって、耐食性に優れたMg合金基板4を得ることができた。更に、DLC膜は硬質のため、同時に耐磨耗性に優れたMg合金基板4を得ることができる。 As described above, after the surface of the Mg alloy substrate 4 is bombarded, a hydrocarbon gas (for example, acetylene (C 2 H 2 )) is ionized by plasma CVD, and the DLC film is adhered to the surface of the Mg alloy substrate 4. By forming the film with good properties, it was possible to obtain the Mg alloy substrate 4 having excellent corrosion resistance. Furthermore, since the DLC film is hard, an Mg alloy substrate 4 having excellent wear resistance can be obtained at the same time.

また、Mg合金部材4表面にDLC膜を成膜する単純なプロセスによって、耐食性と耐磨耗性に優れた表面処理を生産性よく、かつ低コストで行うことができる。   In addition, a simple process of forming a DLC film on the surface of the Mg alloy member 4 can perform surface treatment with excellent corrosion resistance and wear resistance with high productivity and low cost.

そして、上記のようにして得られるDLC膜の成膜を以下の実施例1〜4の条件で行い、腐食の様子を目視観察した。このときの腐食試験条件は、腐食液として1wt%NaCl水溶液を用い、この腐食液中に24時間浸漬して行った。なお、比較のために、DLC膜を成膜していない未処理のMg合金基板についても同様の腐食試験を行った。
(実施例1)
本実施例では、Mg合金基板4としてAZ31(縦40mm、横20mm、厚さ1mm)を用い、以下の条件でボンバード処理、及びDLC膜を成膜した。
The DLC film obtained as described above was formed under the conditions of Examples 1 to 4 below, and the state of corrosion was visually observed. The corrosion test conditions at this time were performed by using a 1 wt% NaCl aqueous solution as the corrosive liquid and immersing in the corrosive liquid for 24 hours. For comparison, a similar corrosion test was performed on an untreated Mg alloy substrate on which no DLC film was formed.
(Example 1)
In this example, AZ31 (length 40 mm, width 20 mm, thickness 1 mm) was used as the Mg alloy substrate 4, and a bombardment process and a DLC film were formed under the following conditions.

ボンバード処理条件:
ボンバードガス:O2(60sccm)、1.0kW,2min
RF電力:100W(13.56MHz)
真空容器3内の圧力:1.3Pa
DLC膜の成膜条件:
原料ガス:アセチレン(C22)(20sccm)
RF電力:500W(13.56MHz)
真空容器3内の圧力:1.3Pa
成膜時間:10min
膜厚:約1.2μm
上記した条件でボンバード処理、及びDLC膜を成膜したMg合金基板(AZ31)を上記腐食液中に24時間浸漬し、腐食試験を行ったところ、Mg合金基板(AZ31)の表面に目視で観察される若干の腐食が認められたが、実用上問題ないレベルであった。
(実施例2)
本実施例では、Mg合金基板4としてAZ31(縦40mm、横20mm、厚さ1mm)を用い、以下の条件でボンバード処理、及びDLC膜を成膜した。
Bombard processing conditions:
Bombard gas: O 2 (60 sccm), 1.0 kW, 2 min
RF power: 100W (13.56MHz)
Pressure in the vacuum vessel 3: 1.3 Pa
DLC film deposition conditions:
Source gas: Acetylene (C 2 H 2 ) (20 sccm)
RF power: 500W (13.56MHz)
Pressure in the vacuum vessel 3: 1.3 Pa
Deposition time: 10 min
Film thickness: about 1.2μm
The Mg alloy substrate (AZ31) on which the bombardment treatment and the DLC film were formed under the above-mentioned conditions was immersed in the above-mentioned corrosion solution for 24 hours, and the corrosion test was performed. The surface of the Mg alloy substrate (AZ31) was visually observed. Although some corrosion was observed, it was a level with no practical problem.
(Example 2)
In this example, AZ31 (length 40 mm, width 20 mm, thickness 1 mm) was used as the Mg alloy substrate 4, and a bombardment process and a DLC film were formed under the following conditions.

ボンバード処理条件:
ボンバードガス:O2(60sccm)、1.0kW,2min
RF電力:100W(13.56MHz)
真空容器3内の圧力:1.3Pa
DLC膜の成膜条件:
原料ガス:アセチレン(C22)(80sccm)
RF電力:500W(13.56MHz)
真空容器3内の圧力:1.3Pa
成膜時間:16min
膜厚:約5.0μm
上記した条件でボンバード処理、及びDLC膜を成膜したMg合金基板(AZ31)を上記腐食液中に24時間浸漬し、腐食試験を行ったところ、Mg合金基板(AZ31)の表面には目視で観察される腐食はほとんど認められなかった。
(実施例3)
本実施例では、Mg合金基板4としてAZ31(縦40mm、横20mm、厚さ1mm)を用い、以下の条件でボンバード処理、及びDLC膜を成膜した。
Bombard processing conditions:
Bombard gas: O 2 (60 sccm), 1.0 kW, 2 min
RF power: 100W (13.56MHz)
Pressure in the vacuum vessel 3: 1.3 Pa
DLC film deposition conditions:
Source gas: Acetylene (C 2 H 2 ) (80 sccm)
RF power: 500W (13.56MHz)
Pressure in the vacuum vessel 3: 1.3 Pa
Deposition time: 16 min
Film thickness: about 5.0μm
When the Mg alloy substrate (AZ31) on which the bombardment treatment and the DLC film were formed under the above-mentioned conditions was immersed in the corrosion solution for 24 hours and the corrosion test was performed, the surface of the Mg alloy substrate (AZ31) was visually observed. There was little observed corrosion.
(Example 3)
In this example, AZ31 (length 40 mm, width 20 mm, thickness 1 mm) was used as the Mg alloy substrate 4, and a bombardment process and a DLC film were formed under the following conditions.

ボンバード処理条件:
ボンバードガス:O2(60sccm)、1.0kW,2min
RF電力:100W(13.56MHz)
真空容器3内の圧力:1.3Pa
DLC膜の成膜条件:
原料ガス:アセチレン(C22)(20sccm)
RF電力:500W(13.56MHz)
真空容器3内の圧力:1.3Pa
成膜時間:30min
膜厚:約600Å
上記した条件でボンバード処理、及びDLC膜を成膜したMg合金基板(AZ31)を上記腐食液中に3時間浸漬し、腐食試験を行ったところ、Mg合金基板(AZ31)の表面には目視で観察される腐食はほとんど認められなかった。
(実施例4)
本実施例では、Mg合金基板4としてAZ31(縦40mm、横20mm、厚さ1mm)を用い、以下の条件でボンバード処理、及びDLC膜を成膜した。
Bombard processing conditions:
Bombard gas: O 2 (60 sccm), 1.0 kW, 2 min
RF power: 100W (13.56MHz)
Pressure in the vacuum vessel 3: 1.3 Pa
DLC film deposition conditions:
Source gas: Acetylene (C 2 H 2 ) (20 sccm)
RF power: 500W (13.56MHz)
Pressure in the vacuum vessel 3: 1.3 Pa
Deposition time: 30 min
Film thickness: about 600mm
When the Mg alloy substrate (AZ31) on which the bombardment treatment and the DLC film were formed under the above-described conditions was immersed in the corrosion solution for 3 hours and subjected to the corrosion test, the surface of the Mg alloy substrate (AZ31) was visually observed. There was little observed corrosion.
Example 4
In this example, AZ31 (length 40 mm, width 20 mm, thickness 1 mm) was used as the Mg alloy substrate 4, and a bombardment process and a DLC film were formed under the following conditions.

ボンバード処理条件:
ボンバードガス:O2(60sccm)、1.0kW,2min
RF電力:100W(13.56MHz)
真空容器3内の圧力:1.3Pa
DLC膜の成膜条件:
原料ガス:メタン(CH4)(20sccm)
RF電力:500W(13.56MHz)
真空容器3内の圧力:1.3Pa
成膜時間:40min
膜厚:約1.2μm
上記した条件でボンバード処理、及びDLC膜を成膜したMg合金基板(AZ31)を上記腐食液中に24時間浸漬し、腐食試験を行ったところ、Mg合金基板(AZ31)の表面には目視で観察される若干の腐食が認められたが、実用上問題ないレベルであった。
Bombard processing conditions:
Bombard gas: O 2 (60 sccm), 1.0 kW, 2 min
RF power: 100W (13.56MHz)
Pressure in the vacuum vessel 3: 1.3 Pa
DLC film deposition conditions:
Source gas: Methane (CH 4 ) (20 sccm)
RF power: 500W (13.56MHz)
Pressure in the vacuum vessel 3: 1.3 Pa
Deposition time: 40 min
Film thickness: about 1.2μm
When the Mg alloy substrate (AZ31) on which the bombardment treatment and the DLC film were formed under the above-mentioned conditions was immersed in the corrosion solution for 24 hours and the corrosion test was performed, the surface of the Mg alloy substrate (AZ31) was visually observed. Although some corrosion observed was observed, it was a level with no practical problem.

一方、DLC膜を成膜していない未処理のMg合金基板(AZ31)を上記腐食液中に24時間浸漬し、同様に腐食試験を行ったところ、Mg合金基板(AZ31)の表面に著しい腐食が認められた。   On the other hand, when an untreated Mg alloy substrate (AZ31) on which no DLC film was formed was immersed in the above-mentioned corrosion solution for 24 hours and a corrosion test was conducted in the same manner, the surface of the Mg alloy substrate (AZ31) was significantly corroded. Was recognized.

これらの実施例から明らかなように、Mg合金基板表面にDLC膜を約600Å〜約1.2μmの膜厚で形成した場合には、良好な耐食性を得ることができた。また、同じ成膜条件であれば、原料ガスとしてメタンを使用した場合よりもアセチレンを使用した場合の方が4倍近い成膜レートが得られた。   As is clear from these examples, when a DLC film having a thickness of about 600 to 1.2 μm was formed on the surface of the Mg alloy substrate, good corrosion resistance could be obtained. Further, under the same film formation conditions, a film formation rate nearly four times higher was obtained when acetylene was used than when methane was used as the source gas.

また、Mg合金基板表面に成膜するDLC膜の膜厚が上記実施例3の約600Åよりも薄い場合における腐性を調べたところ、500Å程度以上の膜厚でDLC膜が成膜されていれば、腐食状態を実用上問題ないレベルに抑制することができた。   Further, when the corrosion property of the DLC film formed on the surface of the Mg alloy substrate is less than about 600 mm in Example 3, the DLC film is formed with a film thickness of about 500 mm or more. As a result, the corrosion state could be suppressed to a level where there was no practical problem.

また、成膜されるDLC膜の膜厚を厚くするほど耐腐食性は向上するが、DLC膜の膜厚が厚くなると密着性が低下する。そこで、成膜されるDLC膜の膜厚を厚くした場合におけるMg合金基板表面との密着性を調べたところ、上記のようにMg合金基板表面をボンバード処理した場合において、DLC膜の膜厚が15μm程度以下であれば良好な密着性を得ることができた。   In addition, the corrosion resistance improves as the film thickness of the DLC film formed increases, but the adhesion decreases as the film thickness of the DLC film increases. Therefore, when the adhesion with the surface of the Mg alloy substrate when the film thickness of the formed DLC film was increased was examined, the film thickness of the DLC film was found when the Mg alloy substrate surface was bombarded as described above. If it is about 15 μm or less, good adhesion could be obtained.

なお、上記した実施形態では、DLC膜をプラズマCVD法によって成膜する構成であったが、これ以外にもイオン化蒸着法、陰極アーク法、ホローカソード放電法、スパッタリング法などのPVD法を用いてDLC膜を成膜することもできる。   In the above-described embodiment, the DLC film is formed by the plasma CVD method. However, other than this, PVD methods such as ionized vapor deposition, cathodic arc, hollow cathode discharge, and sputtering are used. A DLC film can also be formed.

本発明の実施形態に係る表面処理方法によってMg合金基板に表面処理を行う表面処理装置を示す概略断面図。The schematic sectional drawing which shows the surface treatment apparatus which performs a surface treatment to Mg alloy board | substrate by the surface treatment method which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 表面処理装置
2 電極板
3 真空容器
4 Mg合金基板(Mg合金部材)
5 高周波電源
9 原料ガス供給装置
10 ボンバードガス供給装置

DESCRIPTION OF SYMBOLS 1 Surface treatment apparatus 2 Electrode plate 3 Vacuum container 4 Mg alloy substrate (Mg alloy member)
5 High frequency power supply 9 Raw material gas supply device 10 Bombard gas supply device

Claims (8)

Mg合金部材の表面処理方法であって、圧力調整された真空容器内に放電用ガス又は原料ガスを導入し、PVD法又はCVD法によってMg合金部材表面にダイヤモンド状炭素膜を成膜する、
ことを特徴とするMg合金部材の表面処理方法。
A surface treatment method for an Mg alloy member, in which a discharge gas or a raw material gas is introduced into a pressure-controlled vacuum vessel, and a diamond-like carbon film is formed on the surface of the Mg alloy member by a PVD method or a CVD method.
A surface treatment method for an Mg alloy member.
前記Mg合金部材表面をボンバード処理した後に、前記ダイヤモンド状炭素膜を成膜する、
ことを特徴とする請求項1に記載のMg合金部材の表面処理方法。
After the bombarding of the Mg alloy member surface, forming the diamond-like carbon film,
The surface treatment method for an Mg alloy member according to claim 1.
前記ボンバード処理に使用されるガスは、O2、Ar、N2のいずれかである、
ことを特徴とする請求項2に記載のMg合金部材の表面処理方法。
The gas used for the bombardment treatment is any one of O 2 , Ar, and N 2 .
The surface treatment method for an Mg alloy member according to claim 2.
成膜される前記ダイヤモンド状炭素膜の膜厚は、500Å〜15μmである、
ことを特徴とする請求項1乃至3のいずれか1項に記載のMg合金部材の表面処理方法。
The film thickness of the diamond-like carbon film to be formed is 500 to 15 μm.
The surface treatment method for an Mg alloy member according to any one of claims 1 to 3.
Mg合金部材に表面処理を行う表面処理装置であって、圧力調整された真空容器内に放電用ガス又は原料ガスを導入し、前記真空容器内に配置したMg合金部材表面にPVD法又はCVD法によってダイヤモンド状炭素膜を成膜する、
ことを特徴とするMg合金部材の表面処理装置。
A surface treatment apparatus for performing a surface treatment on an Mg alloy member, wherein a discharge gas or a raw material gas is introduced into a pressure-controlled vacuum vessel, and a PVD method or a CVD method is applied to the surface of the Mg alloy member disposed in the vacuum vessel. To form a diamond-like carbon film,
A surface treatment apparatus for an Mg alloy member.
圧力調整された真空容器内にボンバード処理用ガスを導入し、前記真空容器内に配置したMg合金部材表面をボンバード処理した後に、PVD法又はCVD法によって前記ダイヤモンド状炭素膜を成膜する、
ことを特徴とする請求項5に記載のMg合金部材の表面処理装置。
A gas for bombarding treatment is introduced into the pressure-adjusted vacuum vessel, and the surface of the Mg alloy member disposed in the vacuum vessel is bombarded, and then the diamond-like carbon film is formed by PVD or CVD.
The surface treatment apparatus for an Mg alloy member according to claim 5.
前記ボンバード処理に使用されるガスは、O2、Ar、N2のいずれかである、
ことを特徴とする請求項6に記載のMg合金部材の表面処理装置。
The gas used for the bombardment treatment is any one of O 2 , Ar, and N 2 .
The surface treatment apparatus for an Mg alloy member according to claim 6.
成膜される前記ダイヤモンド状炭素膜の膜厚は、500Å〜15μmである、
ことを特徴とする請求項5乃至7のいずれか1項に記載のMg合金部材の表面処理装置。

The film thickness of the diamond-like carbon film to be formed is 500 to 15 μm.
The surface treatment apparatus for an Mg alloy member according to any one of claims 5 to 7.

JP2004067175A 2004-03-10 2004-03-10 SURFACE TREATMENT METHOD AND SURFACE TREATMENT APPARATUS FOR Mg ALLOY MEMBER Ceased JP2005256047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067175A JP2005256047A (en) 2004-03-10 2004-03-10 SURFACE TREATMENT METHOD AND SURFACE TREATMENT APPARATUS FOR Mg ALLOY MEMBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067175A JP2005256047A (en) 2004-03-10 2004-03-10 SURFACE TREATMENT METHOD AND SURFACE TREATMENT APPARATUS FOR Mg ALLOY MEMBER

Publications (1)

Publication Number Publication Date
JP2005256047A true JP2005256047A (en) 2005-09-22

Family

ID=35082079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067175A Ceased JP2005256047A (en) 2004-03-10 2004-03-10 SURFACE TREATMENT METHOD AND SURFACE TREATMENT APPARATUS FOR Mg ALLOY MEMBER

Country Status (1)

Country Link
JP (1) JP2005256047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094016A (en) * 2015-11-18 2017-06-01 学校法人加計学園 Bioabsorbable medical instrument and method for adjusting decomposition rate of the same
JP2020138068A (en) * 2020-06-09 2020-09-03 学校法人加計学園 Surface treatment method of living body absorbing medical equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289227A (en) * 1988-09-26 1990-03-29 Sony Corp Production of magnetic recording medium
JPH09259492A (en) * 1996-03-19 1997-10-03 Sony Corp Rotary magnetic head device and film forming device
JPH11120535A (en) * 1997-10-16 1999-04-30 Kao Corp Magnetic recording medium
JPH11161935A (en) * 1997-12-01 1999-06-18 Kao Corp Magnetic recording medium
JP2000008155A (en) * 1998-06-25 2000-01-11 Sumitomo Electric Ind Ltd Hard carbon film-coated member
JP2000178737A (en) * 1998-12-15 2000-06-27 Tdk Corp Member coated with diamond-like carbon film
JP2001107220A (en) * 1999-09-30 2001-04-17 Osaka Shinku Kogyo Kk Machine parts coated with hard carbon film and its production method
JP2001524603A (en) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー Method and apparatus for coating diamond-like carbon on particles
JP2002021863A (en) * 2000-07-05 2002-01-23 Nsk Ltd Rolling bearing
JP2002047556A (en) * 2000-05-26 2002-02-15 Japan Science & Technology Corp Dlc film deposition method, and dlc coated aluminum alloy and dlc coated magnesium alloy using the method
JP2003247060A (en) * 2001-12-17 2003-09-05 Sumitomo Electric Ind Ltd Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
JP2003336542A (en) * 2002-05-21 2003-11-28 Toyota Central Res & Dev Lab Inc High abrasion resistance and high seizure resistance slide member, and method for manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289227A (en) * 1988-09-26 1990-03-29 Sony Corp Production of magnetic recording medium
JPH09259492A (en) * 1996-03-19 1997-10-03 Sony Corp Rotary magnetic head device and film forming device
JPH11120535A (en) * 1997-10-16 1999-04-30 Kao Corp Magnetic recording medium
JP2001524603A (en) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー Method and apparatus for coating diamond-like carbon on particles
JPH11161935A (en) * 1997-12-01 1999-06-18 Kao Corp Magnetic recording medium
JP2000008155A (en) * 1998-06-25 2000-01-11 Sumitomo Electric Ind Ltd Hard carbon film-coated member
JP2000178737A (en) * 1998-12-15 2000-06-27 Tdk Corp Member coated with diamond-like carbon film
JP2001107220A (en) * 1999-09-30 2001-04-17 Osaka Shinku Kogyo Kk Machine parts coated with hard carbon film and its production method
JP2002047556A (en) * 2000-05-26 2002-02-15 Japan Science & Technology Corp Dlc film deposition method, and dlc coated aluminum alloy and dlc coated magnesium alloy using the method
JP2002021863A (en) * 2000-07-05 2002-01-23 Nsk Ltd Rolling bearing
JP2003247060A (en) * 2001-12-17 2003-09-05 Sumitomo Electric Ind Ltd Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
JP2003336542A (en) * 2002-05-21 2003-11-28 Toyota Central Res & Dev Lab Inc High abrasion resistance and high seizure resistance slide member, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094016A (en) * 2015-11-18 2017-06-01 学校法人加計学園 Bioabsorbable medical instrument and method for adjusting decomposition rate of the same
JP2020138068A (en) * 2020-06-09 2020-09-03 学校法人加計学園 Surface treatment method of living body absorbing medical equipment
JP7041902B2 (en) 2020-06-09 2022-03-25 学校法人加計学園 Surface treatment method for bioabsorbable medical equipment

Similar Documents

Publication Publication Date Title
JP4796464B2 (en) Aluminum alloy member with excellent corrosion resistance
CN107326414B (en) Plastic substrate chromium-free metallization method
CN102234834A (en) Electrolytic stripping liquid, and method for removing titanium-containing film by using electrolytic stripping liquid
CN108385148B (en) Semiconductor reactor and method for forming coating of metal base material for semiconductor reactor
JP2006052435A (en) Member of device for processing semiconductor, and manufacturing method therefor
TWI534926B (en) Semiconductor processing device and manufacturing method thereof
CN113046703A (en) High-hardness nano composite coating and preparation method and application thereof
JP2005256047A (en) SURFACE TREATMENT METHOD AND SURFACE TREATMENT APPARATUS FOR Mg ALLOY MEMBER
JP2008075114A (en) Method for removing coating film and method for reproducing coated member
TWI490372B (en) Electrode for electrolytic processes with controlled crystalline structure
CN111254476A (en) Preparation method of pure copper surface corrosion-resistant black micro-arc oxidation film
CN110318050A (en) A kind of aluminium base/anode oxide film composite coating and its preparation method and application
JP4599371B2 (en) Amorphous carbon hydrogen solid coating member and method for producing the same
JP2007327350A (en) Member for vacuum pump and method for manufacturing same
Kim et al. Characteristics of Boron-Doped Diamond Electrodes Deposited on Titanium Substrate with TiN x Interlayer
CN109402422B (en) Aluminum-magnesium-zirconium alloy wire and manufacturing method thereof
JP2002302793A (en) Conductor roller and producing method thereof
JP2006169094A (en) Diamond-coated porous composite substrate and liquid treatment apparatus and liquid treatment method using same
CN113881917B (en) Port crane anticorrosive coating and preparation method thereof
Park et al. The effect of pre-treatment methods for the life time of the insoluble electrodes
JP5205606B2 (en) DLC film coated member and method for manufacturing the same
US20240133073A1 (en) A process to protect light metal substrates
US10030300B2 (en) Substrate coating on one or more sides
KR20240005679A (en) How to Protect Light Metal Substrates
EP1923487B1 (en) Method of reactivating electrode for electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070205

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20070518

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Effective date: 20081127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A02 Decision of refusal

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20100426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A313 Final decision of rejection without a dissenting response from the applicant

Free format text: JAPANESE INTERMEDIATE CODE: A313

Effective date: 20101115

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20101224

Free format text: JAPANESE INTERMEDIATE CODE: A912