JP2005255448A - Method for producing metal inclusion carbon nanocapsule - Google Patents

Method for producing metal inclusion carbon nanocapsule Download PDF

Info

Publication number
JP2005255448A
JP2005255448A JP2004068021A JP2004068021A JP2005255448A JP 2005255448 A JP2005255448 A JP 2005255448A JP 2004068021 A JP2004068021 A JP 2004068021A JP 2004068021 A JP2004068021 A JP 2004068021A JP 2005255448 A JP2005255448 A JP 2005255448A
Authority
JP
Japan
Prior art keywords
carbon
metal
carbon nanocapsules
encapsulated
nanocapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004068021A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshimura
昌弘 吉村
Tomosuke Watanabe
友亮 渡辺
Yasuaki Yamakawa
泰明 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2004068021A priority Critical patent/JP2005255448A/en
Publication of JP2005255448A publication Critical patent/JP2005255448A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing metal inclusion carbon nanocapsules, by which the utilization efficiency of a raw material is improved, and products are easily recovered, and which is suitable for making a production process continuous. <P>SOLUTION: When the metal inclusion carbon nanocapsules are produced, carbon nanocapsules including a metal used as an electrode are obtained by impressing a high-frequency voltage, a direct current voltage, pulses, or the like, between metal electrodes in a carbon-containing liquid compound. By this method, the metal inclusion carbon nanocapsules can be produced in a liquid system with a simple apparatus without necessitating a large-scale apparatus and a large amount of energy, and the product can be easily separated and recovered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属を内包したカーボンナノカプセル、すなわち金属内包カーボンナノカプセルの製造方法に関する。   The present invention relates to a carbon nanocapsule encapsulating a metal, that is, a method for producing a metal-encapsulated carbon nanocapsule.

金属内包カーボンナノカプセル(カーボンナノセル)は、たとえば化学的に非常に安定な磁性材料として注目されおり、炭素棒(炭素電極)同士によるアーク放電法を中心として、レーザー蒸発法、熱分解法、スパッタリング法等の各種の合成方法が提案されているが、真空系および大掛かりな装置が用いられ、炭素源としては炭素電極、ダイアモンド粉末、メタンガス等が用いられている。たとえば、減圧下の反応容器中で2つの炭素電極を用い、その一方に内包させようとする金属元素を含む粉体を混合もしくは埋め込んでおき、炭素電極間にアーク放電を発生させて金属を内包したカーボンナノカプセルを作製する方法がよく知られている(たとえば、非特許文献1)。しかしながら、この方法は気相合成法であり、ナノカプセルは主に反応容器の壁面に堆積するので、生成物の回収が難しく、特に大量作製を行うのに必要な、製造プロセスの連続化が困難である。さらに、その反応生成物は多量のアモルファスカーボン、グラファイト等を含むために、金属内包カーボンナノカプセルの分離が困難である。   Metal-encapsulated carbon nanocapsules (carbon nanocells) are attracting attention as, for example, chemically very stable magnetic materials, focusing on arc discharge methods using carbon rods (carbon electrodes), laser evaporation, thermal decomposition, and sputtering. Various synthesis methods such as a method have been proposed, but a vacuum system and a large-scale apparatus are used, and a carbon electrode, diamond powder, methane gas, or the like is used as a carbon source. For example, two carbon electrodes are used in a reaction vessel under reduced pressure, and a powder containing a metal element to be included is mixed or embedded in one of them, and arc discharge is generated between the carbon electrodes to enclose the metal. A method for producing such carbon nanocapsules is well known (for example, Non-Patent Document 1). However, this method is a gas phase synthesis method, and nanocapsules are mainly deposited on the wall of the reaction vessel. Therefore, it is difficult to recover the product, and it is particularly difficult to continue the manufacturing process necessary for mass production. It is. Furthermore, since the reaction product contains a large amount of amorphous carbon, graphite and the like, it is difficult to separate the metal-encapsulated carbon nanocapsules.

このように、従来の方法では金属内包カーボンナノカプセルを大量に合成するのは困難であり、一次反応生成物に目的物質であるカーボンナノカプセルが極わずかしか含まれず、ほとんどがアモルファスカーボンおよび未反応金属原料で占められる。したがって、原料の利用効率が著しく低く、かつ目的物質のカーボンナノカプセルを精製するのは非常に困難である。さらに、カーボンナノカプセルは非常に微細な粒子であるために均一に分散させることが非常に困難となることである。そして、工業化を想定すると、気相プロセスは連続化が比較的困難であり、大量合成は困難であると考えられる。   In this way, it is difficult to synthesize a large amount of metal-encapsulated carbon nanocapsules by the conventional method, and the primary reaction product contains very few carbon nanocapsules that are the target substance, and most of them are amorphous carbon and unreacted. Occupied with metal raw materials. Therefore, the utilization efficiency of the raw material is remarkably low, and it is very difficult to purify the target material carbon nanocapsules. Furthermore, since carbon nanocapsules are very fine particles, it is very difficult to uniformly disperse them. Assuming industrialization, it is considered that the gas phase process is relatively difficult to be continuous, and mass synthesis is difficult.

このため、液相反応を用いる金属内包カーボンナノカプセルの合成法も提案されているが、炭素棒を電極とする場合、非常に収率が低く、かつナノカプセル同士の結合する、等の難点は避け難かった。   For this reason, a method for synthesizing metal-encapsulated carbon nanocapsules using a liquid phase reaction has also been proposed. However, when using a carbon rod as an electrode, the yield is very low and the difficulties such as bonding between nanocapsules are It was hard to avoid.

Journal of Applied Physics, Vol.76, No.8, 4533 (1994)Journal of Applied Physics, Vol.76, No.8, 4533 (1994)

本発明は、材料の利用効率を改善し、生成物の回収が容易で、製造プロセスの連続化にも適した金属内包カーボンナノカプセルの製造方法を提供する。すなわち、本発明によれば、大掛かりな装置、エネルギーを必要とせず、簡易な装置で金属内包カーボンナノカプセルを液相系で製造し得、分離回収も容易である。   The present invention provides a method for producing metal-encapsulated carbon nanocapsules that improves material utilization efficiency, facilitates product recovery, and is suitable for continuous production processes. That is, according to the present invention, a large-scale apparatus and energy are not required, and the metal-encapsulated carbon nanocapsules can be produced in a liquid phase system with a simple apparatus, and separation and recovery are easy.

本発明は、金属を内包するカーボンナノカプセルを製造するに際し、炭素含有液状化合物中で金属電極間に電圧を印加して、電極に用いた金属を内包したカーボンナノカプセルを得ることを特徴とする金属内包カーボンナノカプセルの製造方法を要旨とする。   The present invention is characterized in that when producing a carbon nanocapsule encapsulating a metal, a voltage is applied between the metal electrodes in a carbon-containing liquid compound to obtain a carbon nanocapsule encapsulating the metal used in the electrode. The gist is a method for producing metal-encapsulated carbon nanocapsules.

本発明によれば、材料の利用効率を改善し、生成物の回収および分離が容易で、製造プロセスの連続化にも適した方法で、金属内包カーボンナノカプセルを得ることができる。   According to the present invention, metal-encapsulated carbon nanocapsules can be obtained by a method that improves material utilization efficiency, facilitates product recovery and separation, and is suitable for continuous production processes.

本発明においては、金属を内包するカーボンナノカプセルを製造するに際し、炭素含有液状化合物中で金属電極間に電圧を印加して、電極に用いた金属を内包したカーボンナノカプセルを得る。金属はカプセルに内包しようとする金属であり、特に制限されないが、磁性金属が好適である。金属としては、たとえば鉄、コバルト、ニッケル、マンガン、モリブデン、タンタル、ニオブ、バナジウム、クロム、白金、タングステン、アルミニウム、マグネシウム、ランタン、ジルコニウム、ハフニウム、パラジウム、亜鉛、銅、鉛、ビスマス、スズ、金、銀、アンチモン、イットリウムの1種以上から選ばれる。金属電極の形状は特に制限されないが、たとえば板状、棒状等が挙げられる。   In the present invention, when producing carbon nanocapsules encapsulating metal, a voltage is applied between metal electrodes in a carbon-containing liquid compound to obtain carbon nanocapsules encapsulating the metal used for the electrodes. The metal is a metal to be included in the capsule and is not particularly limited, but a magnetic metal is preferable. Examples of metals include iron, cobalt, nickel, manganese, molybdenum, tantalum, niobium, vanadium, chromium, platinum, tungsten, aluminum, magnesium, lanthanum, zirconium, hafnium, palladium, zinc, copper, lead, bismuth, tin, gold Selected from one or more of silver, antimony, and yttrium. The shape of the metal electrode is not particularly limited, and examples thereof include a plate shape and a rod shape.

炭素含有液状化合物はカーボン源として使用されるが、炭素を含有する液状有機化合物が好適に使用される。このような炭素含有液状化合物としては、たとえばへキサン等の炭化水素類、エタノール等のアルコール類、アセトン等のケトン類、アセトニトリル等のニトリル類、エチルエーテル等のエーテル類、酢酸等の脂肪酸類、等の1種以上から選ばれる。金属電極間に印加される電圧としては高周波電圧、直流電圧もしくはパルスが好適であり、たとえば高周波電圧の場合には100〜2000W程度から選ばれる。   A carbon-containing liquid compound is used as a carbon source, but a liquid organic compound containing carbon is preferably used. Examples of such carbon-containing liquid compounds include hydrocarbons such as hexane, alcohols such as ethanol, ketones such as acetone, nitriles such as acetonitrile, ethers such as ethyl ether, fatty acids such as acetic acid, It is chosen from 1 or more types. The voltage applied between the metal electrodes is preferably a high frequency voltage, a direct current voltage or a pulse. For example, in the case of a high frequency voltage, it is selected from about 100 to 2000 W.

この金属電極間への印加により、金属を内包したカーボンナノカプセルは炭素含有液状化合物中に生成される。得られる金属内包カーボンナノカプセルの径は通常5〜500nm程度である。   By application between the metal electrodes, carbon nanocapsules encapsulating metal are generated in the carbon-containing liquid compound. The diameter of the metal-encapsulated carbon nanocapsule obtained is usually about 5 to 500 nm.

生成したカーボンナノカプセルが、炭素含有液状化合物から回収され、ついで炭素含有液状化合物は循環使用される。この回収は、固液分離の一般的な方法によることができる。   The produced carbon nanocapsules are recovered from the carbon-containing liquid compound, and then the carbon-containing liquid compound is recycled. This recovery can be performed by a general method of solid-liquid separation.

以下、実施例により本発明を説明するが、本発明はそれらの要旨を超えない限りこれらの実施例に限定されない。
実施例1
図1に示すように、常温常圧でビーカーに約100mLのエタノールを入れ、一対のNi電極をエタノール中に挿入した。このNi電極は厚さ0.5mmのNi基板からなり、シアカッターで10×15mmの大きさに切ったものをアセトン中で超音波洗浄して使用した。図1において、1はNi電極、2はエタノール、3はスペーサーである。Ni基板間距離1mmで、高周波電源(周波数21MHz(数百W))により高周波放電を起こさせてエタノールからすす4を作製した。反応時間は約5分間であり、爆発の危険を避けるためにビーカーには窒素ガスを流し込んだ。反応終了後に、ビーカーのビーカーの底部付近にあるカーボンのすすを走査型電子顕微鏡(SEM)、エネルギー分散型X線分光法(EDS)および透過型電子顕微鏡(TEM)で分析および観察を行った。その結果、SEMおよびEDSにより、すすの中には大量のNi粒子(50〜500nm程度)が含まれていることが確認され、TEM(JEM-2000EXおよび日立製H9000NAR)により、単にすすの中にNi粒子が存在するだけでなく、Ni粒子がカーボンに完全に包まれたものが無数に存在することが確認された。すなわち、Ni粒子を酸処理したところ、Niは溶出しなかった。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples, unless the summary is exceeded.
Example 1
As shown in FIG. 1, about 100 mL of ethanol was put into a beaker at room temperature and normal pressure, and a pair of Ni electrodes were inserted into ethanol. This Ni electrode was made of a Ni substrate having a thickness of 0.5 mm, and was cut into a size of 10 × 15 mm with a shear cutter and used by ultrasonic cleaning in acetone. In FIG. 1, 1 is a Ni electrode, 2 is ethanol, and 3 is a spacer. Soot 4 was produced from ethanol by causing high frequency discharge with a high frequency power source (frequency 21 MHz (several hundreds W)) at a distance of 1 mm between Ni substrates. The reaction time was about 5 minutes, and nitrogen gas was poured into the beaker to avoid the risk of explosion. After the reaction was completed, carbon soot near the bottom of the beaker was analyzed and observed with a scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscope (TEM). As a result, it was confirmed by SEM and EDS that a large amount of Ni particles (about 50 to 500 nm) was contained in the soot, and by TEM (JEM-2000EX and Hitachi H9000NAR) In addition to the presence of Ni particles, it was confirmed that there were an infinite number of Ni particles completely encased in carbon. That is, when Ni particles were acid-treated, Ni did not elute.

本発明によれば、大掛かりな装置、エネルギーを必要とせず、簡易な装置で金属内包カーボンナノカプセルを液相系で製造し得、分離回収も容易である。   According to the present invention, metal-encapsulated carbon nanocapsules can be produced in a liquid phase system with a simple apparatus without requiring a large-scale apparatus and energy, and separation and recovery are also easy.

本発明の金属内包カーボンナノカプセルを製造するための装置の1態様を示す概略図。Schematic which shows 1 aspect of the apparatus for manufacturing the metal inclusion carbon nanocapsule of this invention.

符号の説明Explanation of symbols

1…Ni電極
2…エタノール
3…スペーサー
4…すす
1 ... Ni electrode 2 ... Ethanol 3 ... Spacer 4 ... Soot

Claims (9)

金属を内包するカーボンナノカプセルを製造するに際し、炭素含有液状化合物中で金属電極間に電圧を印加して、電極に用いた金属を内包したカーボンナノカプセルを得ることを特徴とする金属内包カーボンナノカプセルの製造方法。   When producing carbon nanocapsules encapsulating metal, a voltage is applied between metal electrodes in a carbon-containing liquid compound to obtain carbon nanocapsules encapsulating the metal used for the electrodes, to obtain metal-encapsulated carbon nano-characteristics Capsule manufacturing method. 金属が磁性金属である請求項1記載の金属内包カーボンナノカプセルの製造方法。   The method for producing metal-encapsulated carbon nanocapsules according to claim 1, wherein the metal is a magnetic metal. 金属が鉄、コバルト、ニッケル、マンガン、モリブデン、タンタル、ニオブ、バナジウム、クロム、白金もしくはタングステンの1種以上から選ばれる請求項1もしくは2記載の金属内包カーボンナノカプセルの製造方法。   The method for producing metal-encapsulated carbon nanocapsules according to claim 1 or 2, wherein the metal is selected from one or more of iron, cobalt, nickel, manganese, molybdenum, tantalum, niobium, vanadium, chromium, platinum, or tungsten. 炭素含有液状化合物が炭素を含有する液状有機化合物である請求項1〜3のいずれか記載の金属内包カーボンナノカプセルの製造方法。   The method for producing metal-encapsulated carbon nanocapsules according to claim 1, wherein the carbon-containing liquid compound is a liquid organic compound containing carbon. 炭素含有液状化合物が炭化水素類、アルコール類、ケトン類、ニトリル類、エーテル類もしくは脂肪酸類から選ばれる請求項1〜4のいずれか記載の金属内包カーボンナノカプセルの製造方法。   The method for producing metal-encapsulated carbon nanocapsules according to any one of claims 1 to 4, wherein the carbon-containing liquid compound is selected from hydrocarbons, alcohols, ketones, nitriles, ethers or fatty acids. 金属を内包したカーボンナノカプセルが、炭素含有液状化合物中に生成する請求項1〜5のいずれか記載の金属内包カーボンナノカプセルの製造方法。   The method for producing metal-encapsulated carbon nanocapsules according to any one of claims 1 to 5, wherein carbon nanocapsules encapsulating metal are produced in a carbon-containing liquid compound. 生成したカーボンナノカプセルが、炭素含有液状化合物から回収され、ついで炭素含有液状化合物は循環使用される請求項1〜6のいずれか記載の金属内包カーボンナノカプセルの製造方法。   The method for producing metal-encapsulated carbon nanocapsules according to any one of claims 1 to 6, wherein the produced carbon nanocapsules are recovered from the carbon-containing liquid compound, and then the carbon-containing liquid compound is recycled. 金属内包カーボンナノカプセルの径が5〜500nmである請求項1〜7のいずれか記載の金属内包カーボンナノカプセルの製造方法。   The method for producing metal-encapsulated carbon nanocapsules according to any one of claims 1 to 7, wherein the diameter of the metal-encapsulated carbon nanocapsules is 5 to 500 nm. 電圧が高周波電圧、直流電圧もしくはパルスである請求項1〜8のいずれか記載の金属内包カーボンナノカプセルの製造方法。   The method for producing metal-encapsulated carbon nanocapsules according to any one of claims 1 to 8, wherein the voltage is a high-frequency voltage, a DC voltage, or a pulse.
JP2004068021A 2004-03-10 2004-03-10 Method for producing metal inclusion carbon nanocapsule Pending JP2005255448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068021A JP2005255448A (en) 2004-03-10 2004-03-10 Method for producing metal inclusion carbon nanocapsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068021A JP2005255448A (en) 2004-03-10 2004-03-10 Method for producing metal inclusion carbon nanocapsule

Publications (1)

Publication Number Publication Date
JP2005255448A true JP2005255448A (en) 2005-09-22

Family

ID=35081547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068021A Pending JP2005255448A (en) 2004-03-10 2004-03-10 Method for producing metal inclusion carbon nanocapsule

Country Status (1)

Country Link
JP (1) JP2005255448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938987B2 (en) 2006-05-01 2011-05-10 Yazaki Corporation Organized carbon and non-carbon assembly and methods of making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938987B2 (en) 2006-05-01 2011-05-10 Yazaki Corporation Organized carbon and non-carbon assembly and methods of making

Similar Documents

Publication Publication Date Title
JP5746207B2 (en) Method for producing high-purity copper powder using thermal plasma
JP2001348215A (en) Manufacturing method of carbon nanotube and/or fullerene and manufacturing device therefor
WO2010104200A1 (en) Onion-like carbon and method for producing same
JP2009215146A (en) Metal-containing nanoparticle, carbon nanotube structure grown by using the same, electronic device using the carbon nanotube structure, and method for manufacturing the device
Omurzak et al. Synthesis method of nanomaterials by pulsed plasma in liquid
KR100746311B1 (en) A preparing method of carbon nanotube from liquid phased-carbon source
JP5534456B2 (en) Method for producing carbon nanotube
JP2010247108A (en) Gold nano cluster uniformly controlled in size on metal oxide, method for manufacturing the same and catalyst using the same
JP2005255448A (en) Method for producing metal inclusion carbon nanocapsule
JP4529504B2 (en) Method and apparatus for producing endohedral fullerene
Shen et al. Spark plasma sintering assisted diamond formation from carbon nanotubes at very low pressure
JP5117675B2 (en) Carbon nanotube synthesis method
CA3099835C (en) A method for the manufacture of reduced graphene oxide from electrode graphite scrap
KR102003766B1 (en) Method for manufacturing tantalum powder
JP2006069850A (en) Method of refining carbon nanotube and carbon nanotube obtained by the refining method
KR102014845B1 (en) Method for manufacturing tantalum powder
JPH11349307A (en) Production of functional carbonaceous material
Dighore et al. Nanosized MoO as a reusable heterogeneous catalyst for the synthesis of 2, 6-bis (benzylidene) cyclohexanones
JP2002249306A (en) Method and apparatus for manufacturing carbon nanotube
JP2008100852A (en) Carbide-occluding carbon nanocapsule and its producing method
Wu et al. Top-down chemical etching to complex Ag microstructures
JP2006219364A (en) Manufacturing unit for fullerene base material, and its manufacturing method
CN1301213C (en) Laser preparation and in-situ dispersion method for nanometer carbon granular material
JP5272136B2 (en) Method for producing nanocarbon material
JP2005060116A (en) Method for manufacturing fine particle and manufacturing apparatus for fine particle