JP2010139341A - Method for analyzing ti-based precipitate in welding part of steel member - Google Patents

Method for analyzing ti-based precipitate in welding part of steel member Download PDF

Info

Publication number
JP2010139341A
JP2010139341A JP2008315122A JP2008315122A JP2010139341A JP 2010139341 A JP2010139341 A JP 2010139341A JP 2008315122 A JP2008315122 A JP 2008315122A JP 2008315122 A JP2008315122 A JP 2008315122A JP 2010139341 A JP2010139341 A JP 2010139341A
Authority
JP
Japan
Prior art keywords
solution
filter
dispersibility
precipitates
based precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008315122A
Other languages
Japanese (ja)
Other versions
JP5257041B2 (en
Inventor
Jiro Nakamichi
治郎 仲道
Tetsushi Jodai
哲史 城代
Katsumi Yamada
克美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008315122A priority Critical patent/JP5257041B2/en
Publication of JP2010139341A publication Critical patent/JP2010139341A/en
Application granted granted Critical
Publication of JP5257041B2 publication Critical patent/JP5257041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of analyzing a Ti-based precipitate in a welding part of a steel member. <P>SOLUTION: The method for analyzing a Ti-based precipitate in a welding part of a steel member includes the steps of sampling collecting a sample from at least one site in a welded metal part and a welding heat affected part in a steel member containing a Ti-precipitate welded or subjected to heat-treatment equivalent to welding, dissolving the sample collected using a Br-methanol solution, filtering the Br-methanol solution obtained after dissolving the sample, soaking a collecting filter after the filtration in a solution with dispersibility to recover the Ti-based precipitate separated on the collecting filter in the solution with dispersibility, and filtering the solution with dispersibility containing the Ti-based precipitate separated one or more steps with the separation filter to analyze the Ti-based precipitate recovered on a separation filter or in a filtrate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、厚鋼板などの溶接部、すなわち溶接金属部や溶接熱影響部(HAZ:Heat Affected Zone)の靭性に大きく影響するTi系析出物を大きさ別に分析する方法に関するものである。   The present invention relates to a method for analyzing, by size, Ti-based precipitates that greatly affect the toughness of welds such as thick steel plates, that is, weld metal parts and weld heat affected zones (HAZ).

厚鋼板の溶接部の靭性を向上させるひとつの手段として、溶接における高温加熱時のγ粒の粗大化の抑制があげられる。γ粒成長の抑制方法の一つとして、析出物や介在物によるγ粒ピニング法が利用されている。このときのピニングする介在物・析出物としては、1300℃以上の高温でも母材中に固溶しないTi系析出物(Tiの窒化物やその一部がC、Nb、Mo、V等に置換してなる析出物を総称したものを指す、以下同様。)が広く利用されている。このTi系析出物のピンニング効果は、その析出量や大きさに強く依存することが知られている。このため、走査電子顕微鏡(SEM)や透過電子顕微鏡(TEM)により析出物の析出量や大きさの測定がなされているが、観察領域が狭いことや、研摩条件によってエッチング条件が異なることなどのため、精度よく測定することが困難である。また、抽出残渣による析出量の測定も行われているが、大きさに対する知見が得られない。さらに、SEMもしくはTEMによる大きさの測定と、抽出残さによる析出量の測定を組み合わせた手法も検討されているが、測定場所を完全に一致させる事が不可能であるため、測定精度が低下したり、測定操作の煩雑さも増加するなどの問題がある。   One means for improving the toughness of the welded portion of the thick steel plate is to suppress the coarsening of γ grains during high temperature heating in welding. As one method for suppressing γ grain growth, a γ grain pinning method using precipitates and inclusions is used. The inclusions / precipitates to be pinned at this time are Ti-based precipitates that do not dissolve in the base metal even at high temperatures of 1300 ° C or higher (Ti nitrides and some of them are replaced by C, Nb, Mo, V, etc. Are generally used, and the same shall apply hereinafter). It is known that the pinning effect of this Ti-based precipitate strongly depends on the amount and size of the precipitate. For this reason, the amount and size of precipitates are measured by scanning electron microscope (SEM) and transmission electron microscope (TEM), but the observation area is narrow and the etching conditions differ depending on the polishing conditions. Therefore, it is difficult to measure accurately. Moreover, although the amount of precipitation by extraction residue is also measured, the knowledge with respect to a magnitude | size cannot be obtained. Furthermore, a method that combines the measurement of the size by SEM or TEM and the measurement of the precipitation amount by extraction residue has been studied, but it is impossible to completely match the measurement location, so the measurement accuracy decreases. And the complexity of the measurement operation increases.

一方、金属中の析出物や介在物を大きさ別に分析する方法として、特許文献1には、鋼材試料を電解液槽中に浸漬して非金属介在物を化学的に抽出し、そのままポリテトラフルオロエチレン製の網に収納し、50〜1000μmの大きさの非金属介在物を分離回収し、分析する方法が提案されている。しかし、析出物や介在物は、大きさが小さくなるほど液体中で凝集する傾向があるため、特許文献1に記載された方法では、フィルタ孔径より小さい非金属介在物も捕集されることになり、大きさ別の分析を正確に行うことはできない。特に、鋼材溶接部の靭性向上の観点から重要なサブミクロンメートルからナノメートルサイズ(溶接部の靭性制御の点からは、大きさ1μm以下、より望ましくは大きさ200nm以下)のTi系析出物の場合は、液体中で容易に凝集してしまい、大きさ別に分析を行うことができない。   On the other hand, as a method for analyzing precipitates and inclusions in a metal according to size, Patent Document 1 discloses that a steel sample is immersed in an electrolytic bath to chemically extract non-metallic inclusions, and is directly polytetrafluoroethylene. A method has been proposed in which non-metallic inclusions having a size of 50 to 1000 μm are separated and recovered and analyzed in a fluoroethylene net. However, since the precipitates and inclusions tend to aggregate in the liquid as the size decreases, the method described in Patent Document 1 also collects nonmetallic inclusions smaller than the filter pore diameter. However, it is not possible to accurately perform analysis according to size. In particular, from the viewpoint of improving the toughness of steel welds, Ti-based precipitates of submicrometer to nanometer size (in terms of controlling the toughness of welds, 1 μm or less, more preferably 200 nm or less) are important. In such a case, the liquid easily aggregates in the liquid and cannot be analyzed by size.

特許文献2には、液体中に抽出した析出物や介在物に超音波を付与しながらろ過することで、析出物や介在物の凝集を防止して分離する技術が提案されている。しかし、この技術においても、特許文献1の場合と同様に、凝集乖離が容易な1μm以上の析出物や介在物を対象としており、サブミクロンメートルからナノメートルサイズの領域の析出物や介在物に適用するのは困難である。   Patent Document 2 proposes a technique for separating the precipitates and inclusions by preventing them from aggregating by filtering while applying ultrasonic waves to the precipitates and inclusions extracted into the liquid. However, even in this technology, as in Patent Document 1, it is intended for precipitates and inclusions with a size of 1 μm or more that are easy to disaggregate, and is applicable to precipitates and inclusions in the submicrometer to nanometer size region. It is difficult to apply.

特許文献3には、フィルタ孔径1μm以下の有機質フィルタで超音波振動によるろ過によって1μm以下の析出物や介在物を分離する技術が提案されている。しかし、この技術においても、超音波による1μm以下の微細な析出物や介在物の凝集を完全に防止するのは困難である。   Patent Document 3 proposes a technique for separating precipitates and inclusions having a size of 1 μm or less by filtration using ultrasonic vibration with an organic filter having a filter pore diameter of 1 μm or less. However, even with this technique, it is difficult to completely prevent aggregation of fine precipitates and inclusions of 1 μm or less due to ultrasonic waves.

非特許文献1には、銅合金中の析出物や介在物を抽出して、フィルタ孔径の異なるフィルタによって2回ろ過して、析出物や介在物を大きさ別に分ける技術が開示されている。しかし、凝集に関する問題が解決されておらず、フィルタ孔径より小さい析出物や介在物が捕集されて、大きさ別の正確な分析を阻害している。
特開昭59-141035号公報 特公昭56-10083号公報 特開昭58-119383号公報 日本金属学会「まてりあ」第45巻第1号52頁(2006)
Non-Patent Document 1 discloses a technique in which precipitates and inclusions in a copper alloy are extracted and filtered twice with filters having different filter pore diameters to separate the precipitates and inclusions according to size. However, the problem relating to aggregation has not been solved, and precipitates and inclusions smaller than the filter pore diameter are collected, which hinders accurate analysis by size.
JP 59-141035 A Japanese Patent Publication No. 56-10083 JP 58-119383 A The Japan Institute of Metals “Materia” Vol. 45, No. 1, p. 52 (2006)

本発明は、かかる事情を鑑みてなされたもので、鋼材溶接部におけるTi系析出物を大きさ別に分析可能な方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the method which can analyze the Ti type | system | group precipitate in a steel-material weld part according to a magnitude | size.

発明者らは、溶接部におけるTi系析出物を大きさ別に分析する方法について鋭意検討を行った結果、溶接金属部やHAZの少なくとも1以上の領域より試料を採取し、Br-メタノール溶液を用いて溶解後ろ過し、捕集したTi系析出物を分散性を有する溶液中に回収して、分別フィルタにてろ過して、分別フィルタ上またはろ液中に回収されたTi系析出物を分析すれば、Ti系析出物を大きさ別に分析できることを見出した。   As a result of intensive studies on the method of analyzing the Ti-based precipitates in the welds by size, the inventors collected samples from at least one region of the weld metal and HAZ, and used a Br-methanol solution. The Ti-based precipitates collected by filtration after being dissolved are collected in a dispersible solution, filtered through a separation filter, and the Ti-based precipitates collected on the separation filter or in the filtrate are analyzed. It was found that Ti precipitates can be analyzed by size.

本発明は、以上の知見に基づきなされたもので、溶接された、または溶接に相当する熱処理を受けたTi系析出物を含む鋼材において、溶接金属部、HAZの少なくとも1つの部位の領域より試料を採取する工程と、前記採取した試料を、Br-メタノール溶液を用いて溶解する工程と、前記試料を溶解した後に得られたBr-メタノール溶液を、捕集用フィルタにてろ過する工程と、前記ろ過後の捕集用フィルタを分散性を有する溶液中に浸漬して、前記捕集用フィルタ上に分離したTi系析出物を前記分散性を有する溶液中に回収する工程と、前記分離されたTi系析出物を含んだ分散性を有する溶液を、分別フィルタにて1段以上ろ過し、分別フィルタ上またはろ液中に回収されたTi系析出物を分析する工程とを有することを特徴とする鋼材溶接部におけるTi系析出物の分析方法を提供する。   The present invention has been made on the basis of the above knowledge, and in a steel material containing a Ti-based precipitate that has been welded or subjected to a heat treatment equivalent to welding, a sample from a region of at least one part of the weld metal part, HAZ. Collecting the sample collected using a Br-methanol solution, filtering the Br-methanol solution obtained after dissolving the sample using a collection filter, The step of immersing the filter for collection after filtration in a solution having dispersibility and recovering the Ti-based precipitate separated on the filter for collection in the solution having dispersibility; and the separation. And a step of filtering one or more stages of a dispersible solution containing Ti-based precipitates with a separation filter and analyzing the Ti-based precipitates collected on the separation filter or in the filtrate. Ti-based steel welds To provide an analytical method of the distillate.

本発明の分析方法では、分散性を有する溶液は、Ti系析出物に対するゼータ電位の絶対値が30mV以上であることが好ましい。   In the analysis method of the present invention, the dispersible solution preferably has an absolute value of zeta potential with respect to the Ti-based precipitate of 30 mV or more.

本発明の分析方法によれば、鋼材溶接部におけるTi系析出物を大きさ別に分析できるようになった。また、この分析結果を利用すれば、溶接部の靭性を向上させるための溶接条件や鋼材の製造条件の最適化が図れる。   According to the analysis method of the present invention, it has become possible to analyze Ti-based precipitates in steel welds by size. Moreover, if this analysis result is utilized, the optimization of the welding conditions for improving the toughness of a welding part and the manufacturing conditions of steel materials can be aimed at.

図1および図2に、本発明である鋼材溶接部におけるTi系析出物の分析方法のフローチャートを示す。ここで、図2は、図1のステップ(4)からステップ(8)へ移行する前に、ステップ(5)とステップ(6)により分散性を有する溶液を最適化するためのフローチャートを示している。以下に、これらのフローチャートの各ステップについて詳細に説明する。
ステップ(1):溶接線などを基準とした溶接部の任意の位置から試料を採取する。このとき、溶接線から等距離にある領域のある幅領域について、分析を行うことで、熱影響によるTi系析出物の大きさの違いについて評価できることがわかった。具体的には、溶接線が直線に近い場合には、切り出し等により溶接線から等距離の約10x10mm平面について厚さ約1mmの薄片試料の切り出しを行う。また、溶接線が曲線の場合には、曲線の法線方向から任意の距離の領域において、ドリル等で加工した試料について分析すれば、同様の結果を得られることがわかった。領域の大きさとしては、分析精度と空間分解能のバランスから1x1mm2の領域について、10〜20mm程度の深さとすれば、分析精度、分析時間、空間分解能の点で問題が少ないことがわかった。なお、試料採取は、放電加工機や超音波加工機による打ち抜きや、ドリルで対象領域を削り、その切粉を用いればよい。何れの方法でも、0.01〜1g程度の試料の重量が必要である。幅については1mmとしたが、分析精度と空間分解能のバランスにより適宜変更してもよい。この幅が広くなると、試料採取やハンドリングに有利であるが空間分解能が減少し、幅を狭くすると、空間分解能は向上するが、試料作製が困難となるため実際的ではない。以上のように、溶接線からの距離、分析領域の大きさを決定し、以下の分析で行う。
ステップ(2):次の試料を電解液にて溶解する前に、Ti系析出物の分離用として、分散性を有する溶液を準備する。なお、分散性を有する溶液については、後述する。
ステップ(3):試料を溶解液にて所定量だけ溶解する。ここで、所定量とは、適宜設定されるものであり、後述するゼータ電位の測定や元素分析を行える程度の量のことである。また、溶解液としては、Ti系析出物を優先的に溶液中に取り出すことが可能なBr-メタノール溶液を用いる。このとき、10vol%Br-メタノール溶液を用いることが望ましいが、試料の溶解性やTi系析出物の性質によって濃度を変化させることも可能である。
ステップ(4):Br-メタノール溶液中のTi系析出物がある程度の凝集体を形成した後、捕集用フィルタを用いて溶解液のろ過を行い、固液分離し、Ti系析出物を捕集する。次に、捕集用フィルタを分散性を有する溶液に浸漬して、フィルタ上に分離したTi系析出物を分散性を有する溶液中に回収する。このとき、分散性を有する溶液中に浸漬したまま超音波を照射することが好ましい。これは、超音波を照射することでフィルタ表面に付着しているTi系析出物を剥離して、より効率よく分散性を有する溶液中に回収できるためである。ここで、捕集用フィルタは、後述する分別フィルタとは異なり、Br-メタノール溶液中の凝集したTi系析出物をすべて捕集する必要がある。孔径の大きいフィルタを用いればろ過に要する時間は短くできるが、ろ過漏れの懸念が大きくなるので、時間とろ過漏れ防止の両者を満足するには、孔径が小さく、かつ空隙率(全体積に対するフィルタ孔の体積割合)の大きい捕集用フィルタが好ましい。捕集用フィルタとしては、有機質フィルタやアルミナフィルタを用いて行えば、化学的に不安定な析出物等を溶解液中に溶解させることなく捕集することができる。また、後の工程で析出物等を大きさ別に分別するため、捕集した析出物等は、分散性溶液中に分散させる必要がある。よって、析出物等が強固にフィルタに付着しないことも重要な要素である。すなわち、他のフィルタと比較して極めて短時間でろ過操作を行えるため、化学的に不安定なTi系析出物を溶解液に溶解させることなく捕集することができる。また、後の工程でTi系析出物を大きさ別に分別するため、捕集したTi系析出物は、分散性溶液中に分散させる必要がある。よって、Ti系析出物が強固にフィルタに付着しないことも重要な要素であり、アルミナフィルタはこの観点から好ましい。
ステップ(5):ステップ(4)後のTi系析出物を含んだ分散性を有する溶液のゼータ電位を計測する。このとき、試料からTi系析出物を分離した分散性を有する溶液のTi系析出物に対するゼータ電位を計測する。
ステップ(6):ステップ(5)で計測したゼータ電位の絶対値が30mVに満たない場合には、分散剤の種類や濃度を変えてステップ(2)からステップ(6)までを繰り返す。一方、ゼータ電位の絶対値が30mV以上に達した場合には、その時の分散剤と濃度を、Ti系析出物に対する分散性を有する溶液の最適条件と決定し、操作を終了する。なお、図2においては、ゼータ電位を測定し、ゼータ電位が30mV以上に達した場合に、その時の分散剤と濃度を、Ti系析出物に対する分散性を有する溶液の最適条件と決定したが、本発明の分析方法においては、Ti系析出物が分散性を有する溶液中で凝集することなく十分に分散していれば問題ないので、分散性を有する溶液の最適化の指標としては、ゼータ電位に限定されるものではない。また、分散性を有する溶液とゼータ電位に関して、詳細は後述する。
ステップ(7):図2の操作で最適化された分散性を有する溶液を用い、図2と同様なステップ(1)〜(4)によりTi系析出物を分散性を有する溶液に分離する。
ステップ(8):Ti系析出物を含む分散性を有する溶液を、1つ以上の分別フィルタでろ過して、フィルタ上に捕集された残渣とろ液を回収する。Ti系析出物を(n+1)の区分の大きさに分別する場合には、n個のフィルタ孔径の異なる分別フィルタを用い、フィルタ孔径の大きい分別フィルタからフィルタ孔径の小さい分別フィルタで順次n回ろ過を行って、各回ごとに捕集されたフィルタ上の残渣とn回目のろ液を回収する。例えば、フィルタ孔径D1とD2の分別フィルタを用いてろ過する場合、このフィルタ孔径D1の分別フィルタ上に残ったTi系析出物が大きさD1以上であり、フィルタ孔径D1を通過しかつフィルタ孔径D2のフィルタ上に残ったTi系析出物が大きさD1未満、D2以上であり、さらにフィルタ孔径D2の分別フィルタをろ液と共に通過したTi系析出物が大きさD2未満である。なお、分別フィルタとしては、目詰まりせずに析出物等の大きさに応じた分別が行えればよく、特に限定しない。しかし、比較的大きなTi系析出物により分別フィルタのフィルタ孔の閉塞が進行し、本来通過するべき大きさのTi系析出物がこの分別フィルタを通過せずに捕集されることがある。このような状態での分析結果は、正しい分析値より、分別フィルタに捕集されたTi系析出物の分析値の場合高く、反対にろ液の分析値の場合低くなる。そこで、分別フィルタとして、直孔(一定の開口形状でフィルタ面を貫通しているフィルタ孔)を有し、かつ4%以上の空隙率を有する分別フィルタを用いることで、フィルタ孔径より小さいTi系析出物が捕集されることなく、より正確なTi系析出物の大きさ別分離が可能となり、より好適な結果が得られる。
ステップ(9):ステップ(8)の操作で得られたフィルタ上に捕集された残渣とろ液を、それぞれ酸で溶解し、元素分析を行い、大きさ別に分別されたTi系析出物に含有される元素の含有量を測定する。このとき、ろ過後のフィルタ上の残渣とろ液に対しては、誘導結合プラズマ(ICP)発光分光分析法、ICP質量分析法、および原子吸光分析法等から適宜選択して分析し、各大きさ毎に含まれるTi系析出物を形成するTiの含有量を求める。なお、Br-メタノール溶液で溶解した試料の量は、溶解前の試料重量とする。
FIG. 1 and FIG. 2 show a flowchart of a method for analyzing a Ti-based precipitate in a steel weld according to the present invention. Here, FIG. 2 shows a flowchart for optimizing the solution having dispersibility by step (5) and step (6) before moving from step (4) to step (8) in FIG. Yes. Hereinafter, each step of these flowcharts will be described in detail.
Step (1): A sample is taken from an arbitrary position of the welded part based on the weld line. At this time, it was found that the difference in the size of Ti-based precipitates due to thermal effects can be evaluated by analyzing a width region having a region equidistant from the weld line. Specifically, when the weld line is close to a straight line, a thin sample having a thickness of about 1 mm is cut out on an about 10 × 10 mm plane equidistant from the weld line by cutting or the like. Further, when the weld line is a curve, it was found that the same result can be obtained by analyzing a sample processed with a drill or the like in a region at an arbitrary distance from the normal direction of the curve. As for the size of the region, it was found that there are few problems in terms of analysis accuracy, analysis time, and spatial resolution if the depth is about 10 to 20 mm in the region of 1x1 mm 2 from the balance of analysis accuracy and spatial resolution. Note that sampling may be performed by punching with an electric discharge machine or an ultrasonic machine, or by cutting a target region with a drill and using the chips. In any method, a sample weight of about 0.01 to 1 g is required. The width is 1 mm, but may be changed as appropriate depending on the balance between analysis accuracy and spatial resolution. If this width is wide, it is advantageous for sampling and handling, but the spatial resolution is reduced. If the width is narrow, the spatial resolution is improved, but it is not practical because sample preparation becomes difficult. As described above, the distance from the weld line and the size of the analysis region are determined, and the following analysis is performed.
Step (2): Before the next sample is dissolved in the electrolytic solution, a solution having dispersibility is prepared for separation of Ti-based precipitates. The solution having dispersibility will be described later.
Step (3): Dissolve the sample in a predetermined amount with the lysis solution. Here, the predetermined amount is set as appropriate, and is an amount capable of performing zeta potential measurement and elemental analysis described later. Further, as the solution, a Br-methanol solution capable of preferentially taking Ti-based precipitates into the solution is used. At this time, it is desirable to use a 10 vol% Br-methanol solution, but it is also possible to change the concentration depending on the solubility of the sample and the properties of the Ti-based precipitate.
Step (4): After the Ti-based precipitates in the Br-methanol solution form a certain amount of agglomerates, the solution is filtered using a collection filter, solid-liquid separated, and Ti-based precipitates are captured. Gather. Next, the collection filter is immersed in a solution having dispersibility, and the Ti-based precipitate separated on the filter is recovered in the solution having dispersibility. At this time, it is preferable to irradiate ultrasonic waves while being immersed in a solution having dispersibility. This is because the Ti-based precipitate adhering to the filter surface can be peeled off by irradiating with ultrasonic waves and recovered more efficiently in a solution having dispersibility. Here, unlike the fractionation filter described later, the collection filter needs to collect all the aggregated Ti-based precipitates in the Br-methanol solution. If a filter with a large pore size is used, the time required for filtration can be shortened, but the risk of filtration leakage increases.Therefore, in order to satisfy both time and prevention of filtration leakage, the pore size is small and the porosity (filter for the total volume) A collection filter having a large pore volume ratio) is preferred. If an organic filter or an alumina filter is used as the collection filter, it is possible to collect chemically unstable precipitates or the like without dissolving them in the solution. In addition, in order to separate precipitates and the like by size in a later step, the collected precipitates and the like need to be dispersed in a dispersible solution. Therefore, it is also an important factor that precipitates do not adhere firmly to the filter. That is, since the filtration operation can be performed in an extremely short time compared to other filters, it is possible to collect chemically unstable Ti-based precipitates without dissolving them in the solution. In addition, in order to separate the Ti-based precipitates according to size in the subsequent step, the collected Ti-based precipitates need to be dispersed in the dispersible solution. Therefore, it is also an important factor that Ti-based precipitates do not adhere firmly to the filter, and an alumina filter is preferable from this viewpoint.
Step (5): The zeta potential of the dispersible solution containing the Ti-based precipitate after step (4) is measured. At this time, the zeta potential with respect to the Ti-based precipitate of the solution having dispersibility obtained by separating the Ti-based precipitate from the sample is measured.
Step (6): If the absolute value of the zeta potential measured in step (5) is less than 30 mV, the type and concentration of the dispersant are changed and steps (2) to (6) are repeated. On the other hand, when the absolute value of the zeta potential reaches 30 mV or more, the dispersant and the concentration at that time are determined as the optimum conditions for the solution having dispersibility with respect to the Ti-based precipitate, and the operation is terminated. In FIG. 2, when the zeta potential was measured and the zeta potential reached 30 mV or more, the dispersant and concentration at that time were determined as the optimum conditions for the solution having dispersibility with respect to the Ti-based precipitate. In the analysis method of the present invention, there is no problem if the Ti-based precipitate is sufficiently dispersed without agglomerating in the solution having dispersibility. Therefore, as an index for optimization of the solution having dispersibility, the zeta potential is used. It is not limited to. Details of the dispersible solution and the zeta potential will be described later.
Step (7): Using the solution having dispersibility optimized in the operation of FIG. 2, the Ti-based precipitate is separated into the solution having dispersibility by the same steps (1) to (4) as in FIG.
Step (8): The dispersible solution containing the Ti-based precipitate is filtered through one or more fractionation filters, and the residue and filtrate collected on the filter are collected. When separating Ti-based precipitates into the size of (n + 1) sections, use n separation filters with different filter pore diameters, and sequentially separate the separation filters with larger filter pore diameters into the separation filters with smaller filter pore diameters. Filtration is performed to collect the residue on the filter and the nth filtrate collected each time. For example, when filtering using a filter with a filter pore size D1 and D2, the Ti-based precipitate remaining on the filter with the filter pore size D1 is not less than size D1, passes through the filter pore size D1, and passes through the filter pore size D2. The Ti-based precipitates remaining on the filter are less than D1 and D2 or larger, and the Ti-based precipitates that have passed through the separation filter having the filter pore diameter D2 together with the filtrate are less than D2. The separation filter is not particularly limited as long as the separation filter can be separated according to the size of the precipitate without clogging. However, the filter pores of the separation filter may be blocked by relatively large Ti-based precipitates, and Ti-based precipitates having a size that should pass originally may be collected without passing through the separation filter. The analysis result in such a state is higher in the analysis value of the Ti-based precipitate collected in the separation filter than in the correct analysis value, and is lower in the analysis value of the filtrate. Therefore, by using a separation filter having a straight hole (a filter hole penetrating the filter surface with a constant opening shape) and a porosity of 4% or more as a separation filter, a Ti system smaller than the filter hole diameter Without collecting precipitates, more accurate separation of Ti-based precipitates by size is possible, and more favorable results can be obtained.
Step (9): The residue and filtrate collected on the filter obtained in step (8) are each dissolved in acid, subjected to elemental analysis, and contained in Ti-based precipitates separated by size. The content of the element to be measured is measured. At this time, the residue and filtrate on the filter after filtration are appropriately selected and analyzed from inductively coupled plasma (ICP) emission spectroscopy, ICP mass spectrometry, atomic absorption spectrometry, etc. The content of Ti that forms Ti-based precipitates contained for each time is determined. The amount of the sample dissolved with the Br-methanol solution is the sample weight before dissolution.

このように、図1および図2に示す手順により、Ti系析出物の大きさ別の組成に関する分析結果が得られる。そして、得られた分析結果と溶接部の靭性を関連付ければ、靭性を向上する上での指針に大いに役立つことになる。   As described above, the analysis results relating to the composition of each Ti-based precipitate are obtained by the procedure shown in FIG. 1 and FIG. If the analysis results obtained are associated with the toughness of the welded portion, it will greatly serve as a guideline for improving the toughness.

なお、ここで、上記における分散性を有する溶液について、補足する。大きさ1μm以下(特に200nm以下)のオーダーの微細なTi系析出物については、上述したように、現在、公知技術として、溶液中に凝集させずに分離する明確な方法は無い。そのため、例えば粒径が1μm以上の粒子等に実際に使用されている分散剤を水溶液化した物を順番に試すことで分散性を有する溶液についての知見を得ようと試みた。その結果、分散剤の種類と濃度については、Ti系析出物の組成や粒径、液中のTi系析出物の密度等との間に明確な相関は得られなかった。例えば、水溶液系の分散剤としては、酒石酸ナトリウム、クエン酸ナトリウム、ケイ酸ナトリウム、正リン酸カリウム、ポリリン酸ナトリウム、ポリメタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウムなどが好適であり、分散性をよくするために適切な濃度を調整する。この場合、適切濃度を超えた添加はTi系析出物の分散に逆効果であるという知見が得られた。   In addition, it supplements about the solution which has the dispersibility in the above here. As described above, there is no clear method for separating fine Ti-based precipitates having a size of 1 μm or less (particularly 200 nm or less) as a well-known technique without aggregating them in a solution. For this reason, for example, an attempt was made to obtain knowledge about a solution having dispersibility by sequentially testing an aqueous solution of a dispersant actually used for particles having a particle diameter of 1 μm or more. As a result, regarding the kind and concentration of the dispersant, no clear correlation was obtained between the composition and particle size of the Ti-based precipitate, the density of the Ti-based precipitate in the liquid, and the like. For example, as an aqueous dispersion agent, sodium tartrate, sodium citrate, sodium silicate, potassium orthophosphate, sodium polyphosphate, sodium polymetaphosphate, sodium hexametaphosphate, sodium pyrophosphate, and the like are suitable. Adjust the appropriate concentration to improve. In this case, it was found that the addition exceeding the appropriate concentration has an adverse effect on the dispersion of the Ti-based precipitate.

以上より、本発明において、分散性を有する溶液は、Ti系析出物が当該溶液中にあるときに、凝集することなく分散していればよく、特に限定しない。そして、分散性を有する溶液を決定するにあたっては、Ti系析出物の性質や密度、あるいはその後の分析手法に応じて分散性を有する溶液の種類や濃度を適宜最適化することとする。ここで、分散性を有する溶液についてさらに検討する中で、分散性を有する溶液の溶媒が水の場合には、Ti系析出物の表面電荷と分散性には密接な相関があるため、例えば、ゼータ電位計などを利用してTi系析出物表面の電荷状態を把握すると、最適な分散性を有する溶液の条件(分散剤の種類や適切な添加濃度等)を確定することができることがわかった。このとき、ゼータ電位計の測定値が、概ね絶対値で30mV程度以上の値であれば、凝集が防止でき、正確な分析が行えることがわかった。   From the above, in the present invention, the dispersible solution is not particularly limited as long as it is dispersed without agglomeration when the Ti-based precipitate is in the solution. In determining a solution having dispersibility, the type and concentration of the solution having dispersibility are appropriately optimized according to the properties and density of the Ti-based precipitates or the subsequent analysis method. Here, in further studying the solution having dispersibility, when the solvent of the solution having dispersibility is water, the surface charge of the Ti-based precipitate and the dispersibility have a close correlation. It was found that the conditions of the solution with the optimum dispersibility (type of dispersant, appropriate additive concentration, etc.) can be determined by grasping the charge state of the Ti-based precipitate surface using a zeta electrometer. . At this time, it was found that if the measured value of the zeta electrometer is approximately 30 mV or more in absolute value, aggregation can be prevented and accurate analysis can be performed.

表1に示す成分の鋼A、Bを溶製し、鋳造によりスラブを作製した。スラブを1150℃に加熱後、950〜850℃で熱間圧延を行い、板厚25mmの鋼板を製造した。熱間圧延後は、鋼板を750℃から450℃まで約10℃/sで冷却した。冷却後の鋼板から、図3に示すような12x12x120mmの試料を複数個作製し、グリーブル試験により試料の中央部(図3の0mm部)に、鋼Aの試料については60kJ/cm、鋼Bの試料については40kJ/cmの入熱量で溶接に相当する熱処理を施した。そして、熱処理後の試料の中央部(0mm)および中央部から2、5、および10mm離れた箇所からシャルピー試験用のVノッチを入れた試験片を作製し、試験片1〜8とした。試験片1〜4については-20℃で、試験片5〜8については-10℃でシャルピー試験を行い、吸収エネルギーを測定した。また、鋼Aについてはグリーブル試験片の中央部および中央部から2、5および10mm離れた位置から1x10x10mmの分析用試験片を作製し、また、鋼Bについては、上記と同様な位置からφ1mmx10mmの円柱状の試験片を放電加工機で作製し、10vol%Br-メタノール溶液中で全量溶解させ、溶液中に残存するTi系析出物の分析を以下の手順で行った。分析前に試験片の質量を測定し、溶解後のBr-メタノール溶液を捕集用フィルタにてろ過し、捕集用フィルタ上にTi系析出物を捕集した。捕集用フィルタとして、孔径0.2μmの有機質フィルタを用いた。捕集後は、捕集用フィルタを500mg/lのヘキサメタリン酸水溶液(SHMP)に浸漬し、捕集用フィルタ上に捕集したTi系析出物をヘキサメタリン酸水溶液中に回収した。このTi系析出物を含んだSHMP水溶液を、フィルタ孔径200nm、100nm、50nm、20nmの分別フィルタで順次ろ過を行い、各残渣を分別フィルタ上に捕集した。各残渣を分別フィルタとともに、硝酸、過塩素酸並びに硫酸の混合溶液で加熱溶解して溶液化したのち、ICP発光分光分析装置で分析して残渣中のTi絶対量を測定した。各残渣中のTi絶対量を溶解重量で除して、分別フィルタを通過しなかった、すなわち大きさ200nm以上、100nm以上200nm未満、50nm以上100nm未満、20nm以上50nm未満のTi系析出物におけるそれぞれのTi含有量を得た。次に、全分別フィルタを通過したろ液を、80℃のホットプレート上で加温して乾燥させた。乾燥後に残った乾燥残留物を、硝酸、過塩素酸並びに硫酸の混合溶液で加熱溶解して溶液化したのち、ICP発光分光分析装置およびICP質量分析装置でろ液中のTi絶対量を測定した。ろ液中のTi絶対量を溶解重量で除して、大きさ20nm未満のTi系析出物におけるTi含有量を得た。   Steels A and B having the components shown in Table 1 were melted and slabs were produced by casting. The slab was heated to 1150 ° C. and then hot-rolled at 950 to 850 ° C. to produce a steel plate having a thickness of 25 mm. After hot rolling, the steel sheet was cooled from 750 ° C. to 450 ° C. at about 10 ° C./s. A plurality of 12x12x120mm samples as shown in Fig. 3 were prepared from the cooled steel plate, and in the center part of the sample (0 mm portion in Fig. 3) by the greeble test, the steel A sample was 60 kJ / cm, and the steel B The sample was heat-treated corresponding to welding with a heat input of 40 kJ / cm. And the test piece which put the V notch for a Charpy test from the center part (0mm) of the sample after heat processing, and the place 2, 5, and 10mm away from the center part was produced, and it was set as test pieces 1-8. The test pieces 1 to 4 were subjected to Charpy test at −20 ° C., and the test pieces 5 to 8 were subjected to −10 ° C. to measure the absorbed energy. In addition, for steel A, an analytical test piece of 1 × 10 × 10 mm was prepared from a central portion of the greeble test piece and a position 2, 5 and 10 mm away from the central portion, and for steel B, φ1 mm × 10 mm from the same position as described above. Cylindrical test pieces were prepared with an electric discharge machine, dissolved in a 10 vol% Br-methanol solution, and the Ti-based precipitates remaining in the solution were analyzed according to the following procedure. The mass of the test piece was measured before analysis, and the dissolved Br-methanol solution was filtered with a collection filter, and Ti-based precipitates were collected on the collection filter. An organic filter having a pore size of 0.2 μm was used as a collection filter. After collection, the collection filter was immersed in a 500 mg / l hexametaphosphoric acid aqueous solution (SHMP), and the Ti-based precipitate collected on the collection filter was collected in the hexametaphosphoric acid aqueous solution. The SHMP aqueous solution containing the Ti-based precipitate was sequentially filtered through a separation filter having a filter pore size of 200 nm, 100 nm, 50 nm, and 20 nm, and each residue was collected on the separation filter. Each residue was dissolved in a mixed solution of nitric acid, perchloric acid and sulfuric acid together with a separation filter, and then analyzed by an ICP emission spectrophotometer to measure the absolute amount of Ti in the residue. The absolute amount of Ti in each residue was divided by the dissolved weight and did not pass through the separation filter, that is, each of the Ti-based precipitates having a size of 200 nm or more, 100 nm or more and less than 200 nm, 50 nm or more and less than 100 nm, or 20 nm or more and less than 50 nm. Ti content of was obtained. Next, the filtrate that passed through the entire fractionation filter was dried by heating on a hot plate at 80 ° C. The dried residue remaining after drying was dissolved by heating with a mixed solution of nitric acid, perchloric acid and sulfuric acid, and then the absolute amount of Ti in the filtrate was measured with an ICP emission spectrometer and ICP mass spectrometer. The absolute Ti content in the filtrate was divided by the dissolved weight to obtain a Ti content in the Ti-based precipitate having a size of less than 20 nm.

表2に、各試験片のシャルピー吸収エネルギーと、析出Ti量およびTi系析出物における大きさ別Ti含有量を示す。HAZの位置によって析出Ti量およびTi系析出物における大きさ別Ti含有量に変化が観察され、析出Ti量が多く、かつ小さなTi系析出物が多いものほどシャルピーの吸収エネルギーが高いことが確認された。よって、本発明法によるTi系析出物の大きさ別分析により、溶接部の靭性向上に対し有意義な指針が得られることわかる。   Table 2 shows the Charpy absorbed energy of each test piece, the amount of precipitated Ti, and the Ti content by size in the Ti-based precipitate. Changes in the amount of precipitated Ti and Ti content by size in the Ti-based precipitates were observed depending on the HAZ position, and it was confirmed that the larger the amount of precipitated Ti and the smaller the Ti-based precipitates, the higher the Charpy absorbed energy. It was done. Therefore, it can be seen that a meaningful guideline for improving the toughness of the weld zone can be obtained by analyzing the Ti-based precipitates according to the size of the present invention.

Figure 2010139341
Figure 2010139341

Figure 2010139341
Figure 2010139341

本発明である溶接部におけるTi系析出物の分析方法のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the analysis method of the Ti type precipitate in the welding part which is this invention. 本発明である分散性を有する溶液を最適化するフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart which optimizes the solution which has the dispersibility which is this invention. 実施例で用いた試験片の採取位置を示す図である。It is a figure which shows the collection position of the test piece used in the Example.

Claims (2)

溶接された、または溶接に相当する熱処理を受けたTi系析出物を含む鋼材において、
溶接金属部、溶接熱影響部(HAZ:Heat Affected Zone)の少なくとも1つの部位の領域より試料を採取する工程と、
前記採取した試料を、Br-メタノール溶液を用いて溶解する工程と、
前記試料を溶解した後に得られたBr-メタノール溶液を、捕集用フィルタにてろ過する工程と、
前記ろ過後の捕集用フィルタを分散性を有する溶液中に浸漬して、前記捕集用フィルタ上に分離したTi系析出物を前記分散性を有する溶液中に回収する工程と、
前記分離されたTi系析出物を含んだ分散性を有する溶液を、分別フィルタにて1段以上ろ過し、分別フィルタ上またはろ液中に回収されたTi系析出物を分析する工程と、
を有することを特徴とする鋼材溶接部におけるTi系析出物の分析方法。
In steel materials containing Ti-based precipitates that have been welded or subjected to heat treatment equivalent to welding,
A step of taking a sample from the region of at least one part of the weld metal part, weld heat affected zone (HAZ: Heat Affected Zone);
Dissolving the collected sample with a Br-methanol solution;
A step of filtering the Br-methanol solution obtained after dissolving the sample with a collection filter;
The step of immersing the filter for collection after filtration in a solution having dispersibility and recovering the Ti-based precipitate separated on the filter for collection in the solution having dispersibility;
The step of separating the solution having dispersibility containing the separated Ti-based precipitates by one or more stages through a separation filter, and analyzing the Ti-based precipitates collected on the separation filter or in the filtrate;
A method for analyzing Ti-based precipitates in a steel weld zone, comprising:
分散性を有する溶液は、Ti系析出物に対するゼータ電位の絶対値が30mV以上であることを特徴とする請求項1に記載の鋼材溶接部におけるTi系析出物の分析方法。   2. The method for analyzing a Ti-based precipitate in a steel weld according to claim 1, wherein the dispersible solution has an absolute value of zeta potential with respect to the Ti-based precipitate of 30 mV or more.
JP2008315122A 2008-12-11 2008-12-11 Method for analyzing Ti-based precipitates in steel welds Active JP5257041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008315122A JP5257041B2 (en) 2008-12-11 2008-12-11 Method for analyzing Ti-based precipitates in steel welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008315122A JP5257041B2 (en) 2008-12-11 2008-12-11 Method for analyzing Ti-based precipitates in steel welds

Publications (2)

Publication Number Publication Date
JP2010139341A true JP2010139341A (en) 2010-06-24
JP5257041B2 JP5257041B2 (en) 2013-08-07

Family

ID=42349603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008315122A Active JP5257041B2 (en) 2008-12-11 2008-12-11 Method for analyzing Ti-based precipitates in steel welds

Country Status (1)

Country Link
JP (1) JP5257041B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337595B1 (en) * 1970-09-11 1978-10-09
JPH01149907A (en) * 1987-12-07 1989-06-13 Sumitomo Metal Ind Ltd Method for blowing iron oxide water slurry in blast furnace
JPH06199524A (en) * 1992-06-03 1994-07-19 Ishihara Sangyo Kaisha Ltd Titanium oxide powder and production thereof
JPH07257923A (en) * 1994-03-15 1995-10-09 Ishihara Sangyo Kaisha Ltd High concentration titanium dioxide aqeous dispersion
JPH0859241A (en) * 1993-12-07 1996-03-05 Tioxide Group Services Ltd Slurry of titanium dioxide
JPH10130778A (en) * 1996-10-31 1998-05-19 Kawasaki Steel Corp Fine grain dispersed type steel for large heat input welding
JP2004303394A (en) * 2003-03-14 2004-10-28 Sony Corp Method for evaluating fine particle dispersion state in non-aqueous paint
JP2005235533A (en) * 2004-02-19 2005-09-02 Sumitomo Electric Ind Ltd Metal particle dispersion liquid and circuit forming method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337595B1 (en) * 1970-09-11 1978-10-09
JPH01149907A (en) * 1987-12-07 1989-06-13 Sumitomo Metal Ind Ltd Method for blowing iron oxide water slurry in blast furnace
JPH06199524A (en) * 1992-06-03 1994-07-19 Ishihara Sangyo Kaisha Ltd Titanium oxide powder and production thereof
JPH0859241A (en) * 1993-12-07 1996-03-05 Tioxide Group Services Ltd Slurry of titanium dioxide
JPH07257923A (en) * 1994-03-15 1995-10-09 Ishihara Sangyo Kaisha Ltd High concentration titanium dioxide aqeous dispersion
JPH10130778A (en) * 1996-10-31 1998-05-19 Kawasaki Steel Corp Fine grain dispersed type steel for large heat input welding
JP2004303394A (en) * 2003-03-14 2004-10-28 Sony Corp Method for evaluating fine particle dispersion state in non-aqueous paint
JP2005235533A (en) * 2004-02-19 2005-09-02 Sumitomo Electric Ind Ltd Metal particle dispersion liquid and circuit forming method using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012058400; E. U. U. ITUEN et al.: 'PARTICLE SIZE CHARACTERIZATION OF SELECTED GRAINS UNDER WET GRINDING' Journal of Food Process Engineering Vol.7,No.4, 1985, 287-305 *
JPN6012058403; J. Hidaka et al.: 'Fractionation and particle size analysis of fine powders by microsieve' Powder Technology Vol.24,No.2, 1979, 159-166 *

Also Published As

Publication number Publication date
JP5257041B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
KR101163299B1 (en) Method for analysis of metal sample
JP4572001B2 (en) Method for measuring particle size distribution of fine particles in metal materials
JP2010127791A (en) Method for analyzing precipitate and/or inclusion in metal material
Harooni et al. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis
KR101152438B1 (en) Method for analysis of metallic material
JP5223665B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
CN103901019A (en) Method for detecting content of heavy metal elements in metal or alloy material
JP5257041B2 (en) Method for analyzing Ti-based precipitates in steel welds
JP5298810B2 (en) Method for quantifying precipitates and / or inclusions in metal materials
JP5163451B2 (en) Steel design method
JP2010127790A (en) Method of measuring particle size distribution of particulate
JP2004198144A (en) Method for analyzing composition and/or particle size of nonmetallic inclusion in metal sample
JP5088305B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
JP2010139394A (en) Method for controlling quality of steel material, and method for manufacturing steel material
JP2010145164A (en) Quality control method of steel product
JP2009008584A (en) Analysis method of particulate in steel
JP2018130670A (en) Dispersant, dispersant for field flow fractionation, fractionation method of fine particle in steel material and analysis method of fine particle in steel material
Li et al. Characterization of oxide+ TiN inclusions in Fe-16 mass Pct Cr ferritic alloy using automatic SEM-EDS analysis
JP7010411B2 (en) A method for extracting precipitates and / or inclusions, a method for quantitative analysis of precipitates and / or inclusions, and an electrolytic solution.
JP5324141B2 (en) Method for analyzing inclusions containing CaO in steel
JP6919775B1 (en) Method for extracting precipitates and / or inclusions, method for quantitative analysis of precipitates and / or inclusions, method for preparing electrolytic solution, and replica sample.
Stock NbC and TiN precipitation in continuously cast microalloyed steels
Lu et al. Quantification of nano-sized precipitates in microalloyed steels by matrix dissolution
Dubben et al. Micro-analysis of welds using the field-ion microscope/atom probe
JP5163450B2 (en) Steel manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20121115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250