JP2005217344A - Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it - Google Patents

Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it Download PDF

Info

Publication number
JP2005217344A
JP2005217344A JP2004025206A JP2004025206A JP2005217344A JP 2005217344 A JP2005217344 A JP 2005217344A JP 2004025206 A JP2004025206 A JP 2004025206A JP 2004025206 A JP2004025206 A JP 2004025206A JP 2005217344 A JP2005217344 A JP 2005217344A
Authority
JP
Japan
Prior art keywords
metal
layer
printed wiring
metal foil
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004025206A
Other languages
Japanese (ja)
Inventor
Kumiko Hirayama
久美子 平山
Fumio Echigo
文雄 越後
Yoshihiro Tomita
佳宏 冨田
Satoru Tomekawa
悟 留河
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004025206A priority Critical patent/JP2005217344A/en
Publication of JP2005217344A publication Critical patent/JP2005217344A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal foil for a printed circuit board which realizes a stable electric connection with conductive resin composite, and keeps an adhesion capacity with insulating resin layer even when metal foil surface is reduced in roughness. <P>SOLUTION: The metal foil for the printed circuit board is provided to have a second metal layer of at least 1 layer or more which improves the above-mentioned metal layer in rust proofing and in adhesion with the insulating resin layer, and to have a projection of the same kind as a first metal projected upward. Since an adhesion between the metal foil and the insulating resin layer is excellent by using the metal foil for this printed circuit board even when surface roughness is reduced, an excellent connection reliability is realized at the time of interlayer connection. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プリント配線板の配線層として使われる金属箔、特にプリント配線板での絶縁樹脂層との密着強度を高めた金属箔とその製造方法、およびそれを用いたプリント配線板に関するものである。   The present invention relates to a metal foil used as a wiring layer of a printed wiring board, in particular, a metal foil having improved adhesion strength with an insulating resin layer in the printed wiring board, a manufacturing method thereof, and a printed wiring board using the same. is there.

従来のプリント配線板で用いられる金属箔は、金属箔の表面を粗化して全体の表面積を大きくし、突起部を絶縁樹脂層に食い込ませて、絶縁樹脂層と金属箔間の密着力を確保している。その場合における金属箔の粗化方法としては、金属箔の表面に、比較的大きな金属粒子を例えば電解メッキ法で付着させることにより金属箔の表面を粗化する方法が一般的である(例えば特許文献1参照)。   The metal foil used in conventional printed wiring boards increases the overall surface area by roughening the surface of the metal foil, and the protrusions are eroded into the insulating resin layer to ensure adhesion between the insulating resin layer and the metal foil. doing. As a method for roughening the metal foil in such a case, a method of roughening the surface of the metal foil by attaching relatively large metal particles to the surface of the metal foil by, for example, an electrolytic plating method is common (for example, patents). Reference 1).

また、この金属箔は保存安定性を確保するための防錆処理として表面処理をしている。金属箔表面にNi、Cr、Znやこれらの合金層を電解メッキ法で付着させる方法が一般的であり、これらの表面処理は絶縁樹脂層と金属箔間の密着力を上げる効果もある。このようなプリント配線板用金属箔の断面図を図1に示す。第一の金属層1上に突起部2を形成し、さらにその表面に金属箔の防錆と絶縁樹脂層との密着力を高める機能を有する第二の金属層3からなるものであり、このような金属箔を用いたプリント配線板の代表としては、特開平6−268345号に記載されているものが挙げられる(例えば特許文献2参照)。   Moreover, this metal foil is surface-treated as a rust-proofing treatment for ensuring storage stability. Generally, a method of attaching Ni, Cr, Zn or an alloy layer thereof to the surface of the metal foil by an electrolytic plating method is effective, and these surface treatments also have an effect of increasing the adhesion between the insulating resin layer and the metal foil. A cross-sectional view of such a metal foil for printed wiring board is shown in FIG. The protrusion 2 is formed on the first metal layer 1, and the second metal layer 3 having a function of enhancing the adhesion between the rust prevention of the metal foil and the insulating resin layer on the surface thereof, A representative example of the printed wiring board using such a metal foil is that described in JP-A-6-268345 (see, for example, Patent Document 2).

図2にこれら従来の金属箔を用いたプリント配線板の断面図を示す。   FIG. 2 shows a cross-sectional view of a printed wiring board using these conventional metal foils.

このプリント配線板は、絶縁樹脂層6に形成された貫通孔内に充填された導電性樹脂組成物7によって配線層4及び5の間の電気的接続を実現している。
特開平5−243711号公報 特開平6−268345号公報
This printed wiring board realizes electrical connection between the wiring layers 4 and 5 by the conductive resin composition 7 filled in the through holes formed in the insulating resin layer 6.
Japanese Patent Application Laid-Open No. 5-243711 JP-A-6-268345

近年、高速データ通信、モバイルネットワークのクオリティ向上に伴って高速、高周波伝送に対応したプリント配線板に対する要望が高まっている。   In recent years, with the improvement of high-speed data communication and mobile network quality, there is an increasing demand for printed wiring boards that support high-speed and high-frequency transmission.

ここでプリント配線板を構成する金属箔に関して言えば、金属箔の粗度は配線を伝送する信号の損失度合いに影響する。粗度が大きくなるにつれて伝送損失が大きくなり、高周波伝送に不向きなプリント配線板となる。   Here, regarding the metal foil constituting the printed wiring board, the roughness of the metal foil affects the degree of loss of the signal transmitted through the wiring. As the roughness increases, the transmission loss increases and the printed wiring board becomes unsuitable for high-frequency transmission.

従って高速高周波伝送に対応したプリント配線板を提供するためには、金属箔の粗度を小さくする必要がある。   Therefore, in order to provide a printed wiring board compatible with high-speed and high-frequency transmission, it is necessary to reduce the roughness of the metal foil.

しかし低粗度の金属箔を使用した場合、金属箔と絶縁基材間の接着力が低下し、配線層の剥離等の問題が発生する。   However, when a low-roughness metal foil is used, the adhesive strength between the metal foil and the insulating substrate is reduced, and problems such as peeling of the wiring layer occur.

上記した問題を解決するためには絶縁基材と金属箔との接着力を高める機能を有する第二金属層を厚く形成することが考えられる。   In order to solve the above problems, it is conceivable to form a thick second metal layer having a function of increasing the adhesive force between the insulating base and the metal foil.

しかしこのような金属箔を図2に示したプリント配線板に用いた場合、第二金属層を形成するNi、Cr、Zn等の金属は導電性が低いため、配線層4、5と導電性樹脂組成物7間の電気的接続は不安定になる。   However, when such a metal foil is used for the printed wiring board shown in FIG. 2, the metal such as Ni, Cr, Zn, etc. forming the second metal layer has low conductivity, so The electrical connection between the resin compositions 7 becomes unstable.

このように従来の金属箔では粗度を小さくした場合に絶縁基材との密着力と、導電性樹脂組成物との電気的接続を両立することが困難になる。   As described above, in the conventional metal foil, when the roughness is reduced, it is difficult to achieve both the adhesion with the insulating base material and the electrical connection with the conductive resin composition.

本発明のプリント配線板用金属箔とその製造方法、およびそれを用いたプリント配線板は、大きく分けて下記の2種の構造の金属箔を提供することにより、前記従来の課題を解決するものである。   The metal foil for printed wiring board of the present invention, the manufacturing method thereof, and the printed wiring board using the same are roughly divided to provide the following two types of metal foil to solve the above-mentioned conventional problems. It is.

(1)一金属層上に、第一の金属層の防錆及び絶縁樹脂層との密着性を高めることを可能にする少なくとも1層以上の第二金属層をもち、さらに前記の第二の金属層上に、離散的に存在する第一の金属と同種の突起を持つことを特徴とするプリント配線板用金属箔
(2)突起を持った第一金属層上に、第一の金属層の防錆及び絶縁樹脂層との密着性を高めることを可能にする、少なくとも1層以上の第二金属層が前記突起先端を露出するように形成されていることを特徴とするプリント配線板用金属箔
(1)、(2)の構造を持つ金属箔をプリント配線板に使用した場合、導電性組成物との電気的接続に関係する突起には突起上に第二の金属層が存在しないために安定した電気的接合を得ることができる。また一方で粗度を小さくした場合でも充分に厚い第二の金属層を形成できるため、絶縁樹脂層との密着力を確保することができる。
(1) On one metal layer, it has at least one second metal layer that makes it possible to enhance the rust prevention of the first metal layer and the adhesion with the insulating resin layer. Metal foil for printed wiring board characterized by having the same type of protrusion as the discretely present first metal on the metal layer. (2) The first metal layer on the first metal layer having the protrusion. For printed wiring boards, characterized in that at least one or more second metal layers are formed so as to expose the tips of the protrusions. Metal foil When a metal foil having the structure of (1) and (2) is used for a printed wiring board, the second metal layer does not exist on the protrusion in the protrusion related to the electrical connection with the conductive composition. Therefore, a stable electrical connection can be obtained. On the other hand, even when the roughness is reduced, a sufficiently thick second metal layer can be formed, so that adhesion with the insulating resin layer can be ensured.

本発明の請求項2、11に関する金属箔は上記(1)、(2)記載の金属箔において第二の金属層が1層以上の金属層からなり、Ni、Cr、Znから選ばれる少なくとも一つ以上の元素を含む材料であることを特徴としている。   The metal foil according to claims 2 and 11 of the present invention is the metal foil according to the above (1) and (2), wherein the second metal layer is composed of one or more metal layers, and at least one selected from Ni, Cr, and Zn. It is characterized by being a material containing two or more elements.

本発明の請求項5、6、14、15に関する金属箔は上記(1)、(2)に記載の金属箔において有機防錆層が金属箔の最表面にあることを特徴としている。シランカップリング剤やベンゾトリアゾール系樹脂は、金属箔表面にあっても電気的接続に対して影響を及ぼさない。さらに、金属表面の酸化を防ぎ、金属箔と絶縁樹脂層との密着力を上げることができ有用である。   The metal foil according to claims 5, 6, 14, and 15 of the present invention is characterized in that in the metal foil according to the above (1) and (2), an organic rust preventive layer is present on the outermost surface of the metal foil. Even if the silane coupling agent or the benzotriazole-based resin is on the surface of the metal foil, it does not affect the electrical connection. Furthermore, the metal surface is prevented from being oxidized, and the adhesion between the metal foil and the insulating resin layer can be increased, which is useful.

次に本発明の請求項7に関する金属箔の製造方法は、第一の金属上に、第二の金属層をメッキにて形成した後にさらに第一の金属の突起を電解メッキにて形成する工程を有することを特徴としている。このような製造方法により、上記(1)に記載のプリント配線板用金属箔を製造することができる。   Next, in the metal foil manufacturing method according to the seventh aspect of the present invention, the second metal layer is formed on the first metal by plating, and then the first metal protrusion is further formed by electrolytic plating. It is characterized by having. By such a manufacturing method, the metal foil for printed wiring boards as described in said (1) can be manufactured.

本発明の請求項16に関する金属箔の製造方法は、金属上に、上記金属と同種の突起を電解メッキにて形成して第一の金属層を得る工程と突起先端よりも低い位置に第二の金属層を形成する工程を有することを特徴としている。このような製造方法により、上記(2)に記載のプリント配線板用金属箔を製造することができる。   According to a sixteenth aspect of the present invention, there is provided a method for producing a metal foil, comprising: forming a projection of the same type as the metal on the metal by electrolytic plating to obtain a first metal layer; A step of forming a metal layer. By such a manufacturing method, the metal foil for printed wiring boards as described in said (2) can be manufactured.

第二の金属層及び突起は第一の金属層の両側にあってもよい。両面処理箔は、特に多層基板の内層配線において、良好な電気的接続と密着強度を確保する。   The second metal layer and the protrusion may be on both sides of the first metal layer. The double-sided treated foil ensures good electrical connection and adhesion strength, particularly in the inner layer wiring of the multilayer substrate.

本発明の請求項8、17に関するプリント配線板は、上記(1)、(2)に記載の金属箔から構成されており、絶縁樹脂層との密着部が第二の金属層であって、かつ突起が絶縁樹脂層に食い込む構造であることを特徴としている。このようなプリント配線板は、粗度を小さくした場合でも上述したように配線層と絶縁樹脂層との密着力を確保することができる。   The printed wiring board according to claims 8 and 17 of the present invention is composed of the metal foil according to the above (1) and (2), and the close contact portion with the insulating resin layer is a second metal layer, And it is the structure characterized by the protrusion biting into the insulating resin layer. Such a printed wiring board can ensure adhesion between the wiring layer and the insulating resin layer as described above even when the roughness is reduced.

本発明の請求項9、18に関するプリント配線板は、請求項8、17に関するプリント配線板と類似の形態である。異なる点は、絶縁樹脂層の厚さ方向に、貫通孔が形成され、前記貫通孔には導電性樹脂組成物が充填されおり、前記絶縁樹脂層の両側に配置された配線層間が前記導電性樹脂組成物によって電気接続されている事を特徴としている点である。金属箔の突起が導電性樹脂組成物に食い込んでいるために、安定した電気的接続が可能であり、かつ粗度を小さくした場合でも配線層と絶縁樹脂層との密着強度を確保できる。   The printed wiring board according to the ninth and eighteenth aspects of the present invention is similar in form to the printed wiring board according to the eighth and seventeenth aspects. The difference is that a through hole is formed in the thickness direction of the insulating resin layer, and the through hole is filled with a conductive resin composition, and the wiring layers disposed on both sides of the insulating resin layer are electrically conductive. It is the point characterized by being electrically connected by the resin composition. Since the protrusions of the metal foil bite into the conductive resin composition, stable electrical connection is possible, and the adhesion strength between the wiring layer and the insulating resin layer can be ensured even when the roughness is reduced.

本発明の金属箔を用いて図2に示したプリント配線板を形成した場合では、導電性樹脂組成物と安定した電気的接続を実現することができ、かつ、金属箔表面の粗度が小さい場合でも、絶縁樹脂層との密着力を確保できる。   When the printed wiring board shown in FIG. 2 is formed using the metal foil of the present invention, stable electrical connection with the conductive resin composition can be realized, and the roughness of the surface of the metal foil is small. Even in this case, it is possible to ensure adhesion with the insulating resin layer.

本発明の実施の形態について図3〜15を用いて説明する。   An embodiment of the present invention will be described with reference to FIGS.

(実施の形態1)
図3には本発明における実施の形態1に関わる金属箔の断面図を示す。
(Embodiment 1)
FIG. 3 shows a cross-sectional view of the metal foil according to the first embodiment of the present invention.

この金属箔は、第一の金属層1、第一の金属層の防錆及び絶縁樹脂層との密着性を高めることを可能にする少なくとも1層以上の第二金属層3、さらに前記の第二の金属層上に第一の金属と同種材料よりなる突起8より構成されている。   The metal foil includes at least one second metal layer 3 that makes it possible to enhance the first metal layer 1, the rust prevention of the first metal layer, and the adhesion with the insulating resin layer, and the first metal layer On the second metal layer, a projection 8 made of the same material as the first metal is formed.

金属箔を構成する第一の金属には、Cu、Ag、Au、Ptから選ばれる少なくとも一つ以上の元素を含む材料等を、第二の金属層としては、Ni、Cr、Znから選ばれる少なくとも一つ以上の元素を含む材料の金属等を用いることができる。   The first metal constituting the metal foil is made of a material containing at least one element selected from Cu, Ag, Au, and Pt, and the second metal layer is selected from Ni, Cr, and Zn. A metal or the like of a material containing at least one element can be used.

このような金属箔を図2に示すプリント配線板の配線層として用いた場合、突起8上に第二の金属層が存在しないため、導電性樹脂組成物と良好な電気接続が可能となる。   When such a metal foil is used as the wiring layer of the printed wiring board shown in FIG. 2, since the second metal layer does not exist on the protrusion 8, good electrical connection with the conductive resin composition is possible.

また一方金属箔の粗度が低い場合でも、従来の金属箔のように第二の金属層を薄く形成する必要がないため、絶縁樹脂層との密着力を高めることも可能である。   On the other hand, even when the roughness of the metal foil is low, it is not necessary to form the second metal layer as thinly as the conventional metal foil, so that the adhesion with the insulating resin layer can be increased.

(実施の形態2)
図4には本発明における実施の形態2に関わる金属箔の断面図を示す。この金属箔は、第1の実施の形態の類似の形態である。異なる点は、第一の金属層の両面に第二の金属層と突起を持つ点である。このような金属箔を図2に示すプリント配線板の配線層、特に内層配線5として用いた場合、金属箔の両面で導電性樹脂組成物と良好な電気接続が可能となる上、接着性も向上し、層間剥離等に対する信頼性向上と電気的な特性向上の効果がある。
(Embodiment 2)
FIG. 4 shows a cross-sectional view of a metal foil according to Embodiment 2 of the present invention. This metal foil is a similar form of the first embodiment. The difference is that the first metal layer has a second metal layer and protrusions on both sides. When such a metal foil is used as the wiring layer of the printed wiring board shown in FIG. 2, particularly the inner layer wiring 5, good electrical connection with the conductive resin composition is possible on both sides of the metal foil, and the adhesiveness is also good. This improves the reliability of delamination and the like and improves the electrical characteristics.

(実施の形態3)
図5には本発明における実施の形態3に関わる金属箔の断面図を示す。この金属箔は、第1の実施の形態に類似しているが、異なる点は、実施の形態1の金属箔の最外層に有機防錆層9が構成されている点である。有機防錆層はシランカップリング剤やベンゾトリアゾール系防錆剤等を含む材料を用いることが好ましい。これらの有機防錆層は、金属箔と導電性樹脂組成物の電気的接続に影響を及ぼさず、かつ金属表面の酸化を防ぎ、金属箔と絶縁樹脂層との密着力を上げることができる。
(Embodiment 3)
FIG. 5 shows a cross-sectional view of a metal foil according to Embodiment 3 of the present invention. Although this metal foil is similar to the first embodiment, the difference is that an organic rust preventive layer 9 is formed on the outermost layer of the metal foil of the first embodiment. The organic rust preventive layer is preferably made of a material containing a silane coupling agent or a benzotriazole rust preventive agent. These organic rust preventive layers do not affect the electrical connection between the metal foil and the conductive resin composition, prevent oxidation of the metal surface, and increase the adhesion between the metal foil and the insulating resin layer.

また、3の金属層、4の突起、5の有機防錆層は両面にあってもよい。   The three metal layers, the four protrusions, and the five organic rust preventive layers may be provided on both sides.

両面にあった場合は図2の配線基板の内層配線にも用いることができ、金属箔の両面で導電性樹脂組成物と良好な電気接続が可能となる上、接着性も向上し、層間剥離等に対する信頼性向上と電気的な特性が向上するという効果がある。   If it is on both sides, it can also be used for the inner layer wiring of the wiring board of FIG. 2, and good electrical connection can be made with the conductive resin composition on both sides of the metal foil, and the adhesion is also improved, delamination As a result, there is an effect that the reliability and the electrical characteristics are improved.

(実施の形態4)
図6には本発明における実施の形態4に関わるプリント配線板用金属箔の製造方法を示す。
(Embodiment 4)
FIG. 6 shows a method for manufacturing a metal foil for printed wiring board according to Embodiment 4 of the present invention.

まず、図6(a)に示した、金属箔である第一の金属層1を用意する。次に図6(b)に示したように第一の金属層1上に、メッキ等で第二の金属からなる金属層を形成する。次に図6(c)に示したように第一の金属層と同じ金属を電解メッキ等で突起を形成する。   First, the 1st metal layer 1 which is metal foil shown in Fig.6 (a) is prepared. Next, as shown in FIG. 6B, a metal layer made of the second metal is formed on the first metal layer 1 by plating or the like. Next, as shown in FIG. 6C, the same metal as the first metal layer is formed by electrolytic plating or the like.

上記方法により、上記実施の形態1に関わる金属箔を製造することができる。   By the above method, the metal foil according to the first embodiment can be manufactured.

この工程を第一の金属層の両面に施すことで、上記実施の形態2に関わる両面処理金属箔を得ることができる。両面に施した場合は図2の配線基板の内層配線にも用いることができ、金属箔の両面で導電性樹脂組成物と良好な電気接続が可能となる上、接着性も向上し、層間剥離等に対する信頼性向上と電気的な特性が向上するという効果がある。   By applying this process to both surfaces of the first metal layer, the double-sided metal foil according to the second embodiment can be obtained. When applied to both sides, it can also be used for the inner layer wiring of the wiring board of FIG. 2, and it enables good electrical connection with the conductive resin composition on both sides of the metal foil, and also improves adhesion, delamination As a result, there is an effect that the reliability and the electrical characteristics are improved.

(実施の形態5)
図7には、本発明における実施の形態5に関わるプリント配線板の断面図を示す。
(Embodiment 5)
In FIG. 7, sectional drawing of the printed wiring board in connection with Embodiment 5 in this invention is shown.

このプリント配線板は配線層が第一の金属層1からなり、絶縁樹脂層6との密着面が第二の金属層3であり、第一の金属からなる突起8が絶縁樹脂層6に食い込んでいる構成である。   In this printed wiring board, the wiring layer is made of the first metal layer 1, the contact surface with the insulating resin layer 6 is the second metal layer 3, and the protrusion 8 made of the first metal bites into the insulating resin layer 6. It is the composition which is.

第二の金属層が絶縁樹脂層と接触することで、高い密着強度が得られる。従って上記プリント配線板は、金属層表面の粗度が小さい場合でも、絶縁樹脂層との密着力が高く、高信頼性の基板となる。   High adhesion strength is obtained by the second metal layer being in contact with the insulating resin layer. Therefore, even when the roughness of the metal layer surface is small, the printed wiring board has a high adhesion to the insulating resin layer and becomes a highly reliable substrate.

(実施の形態6)
図8には、本発明における実施の形態6に関わるプリント配線板の断面図を示す。このプリント配線板は、第5の実施の形態の類似の形態である。異なる点は、突起が導電性樹脂組成物7にも食い込んでいる点である。
(Embodiment 6)
In FIG. 8, sectional drawing of the printed wiring board in connection with Embodiment 6 in this invention is shown. This printed wiring board is a similar form of the fifth embodiment. The difference is that the protrusions also bite into the conductive resin composition 7.

表面処理されていない金属突起が導電性樹脂組成物に接触することで、安定した電気的接合ができる。また、従来の金属箔のように第二の金属層を薄く形成する必要がないため、厚い第二の金属層が絶縁樹脂層と接触でき、高い密着強度が得られる。従って上記プリント配線板は、金属箔表面の粗度が小さい場合でも、絶縁樹脂層との密着力が高く導電性樹脂組成物での層間接続時に高接続信頼性を実現できる基板である。   Stable electrical bonding can be achieved by bringing the metal protrusions that are not surface-treated into contact with the conductive resin composition. In addition, since it is not necessary to form the second metal layer as thinly as the conventional metal foil, the thick second metal layer can contact the insulating resin layer, and high adhesion strength can be obtained. Therefore, the printed wiring board is a substrate that has high adhesion to the insulating resin layer and can achieve high connection reliability when connected with the conductive resin composition even when the roughness of the metal foil surface is small.

(実施の形態7)
図9には本発明における実施の形態7に関わる金属箔の断面図を示す。
(Embodiment 7)
FIG. 9 shows a cross-sectional view of a metal foil according to Embodiment 7 of the present invention.

この金属箔は、第一の金属層1、第一の金属と同種の突起8、さらに、突起間は第一の金属層の防錆及び絶縁樹脂層との密着性を高めることを可能にする少なくとも1層以上の第二の金属層3より構成されている。   This metal foil makes it possible to improve the first metal layer 1, the same type of protrusions 8 as the first metal, and the rust prevention of the first metal layer and the adhesion between the protrusions and the insulating resin layer. It is composed of at least one second metal layer 3.

金属箔の構成物および効果は、第1の実施の形態と同様であり、金属箔を構成する第一の金属層には、Cu、Ag、Au、Pt等から選ばれる少なくとも一つ以上の元素を含む材料を、第二の金属層としては、Ni、Cr、Zn等から選ばれる少なくとも一つ以上の元素を含む材料の金属種を用いることができる。   The composition and effects of the metal foil are the same as those of the first embodiment, and the first metal layer constituting the metal foil has at least one element selected from Cu, Ag, Au, Pt, and the like. As the second metal layer, a metal species of a material containing at least one element selected from Ni, Cr, Zn, or the like can be used.

このような金属箔を図2に示すプリント配線板の配線層として用いた場合、突起8上に第二の金属層が存在しないため、導電性樹脂組成物と良好な電気接続が可能となる。   When such a metal foil is used as the wiring layer of the printed wiring board shown in FIG. 2, since the second metal layer does not exist on the protrusion 8, good electrical connection with the conductive resin composition is possible.

また一方金属箔の粗度が低い場合でも、従来の金属箔のように第二の金属層を薄く形成する必要がないため、絶縁樹脂層との密着力を高めることも可能である。   On the other hand, even when the roughness of the metal foil is low, it is not necessary to form the second metal layer as thinly as the conventional metal foil, so that the adhesion with the insulating resin layer can be increased.

(実施の形態8)
図10には本発明における実施の形態8に関わる金属箔の断面図を示す。この金属箔は、第7の実施の形態の類似の形態である。異なる点は、第一の金属層の両面に第二の金属層と突起を持つ点である。このような金属箔を図2に示すプリント配線板の配線層、特に内層配線5として用いた場合、金属箔の両面で導電性樹脂組成物と良好な電気接続が可能となる上、接着性も向上し、層間剥離等に対する信頼性向上と電気的な特性向上の効果がある。
(Embodiment 8)
FIG. 10 shows a cross-sectional view of a metal foil according to the eighth embodiment of the present invention. This metal foil is a similar form of the seventh embodiment. The difference is that the first metal layer has a second metal layer and protrusions on both sides. When such a metal foil is used as the wiring layer of the printed wiring board shown in FIG. 2, particularly the inner layer wiring 5, good electrical connection with the conductive resin composition is possible on both sides of the metal foil, and the adhesiveness is also good. This improves the reliability of delamination and the like and improves the electrical characteristics.

(実施の形態9)
図11には本発明における実施の形態9に関わる金属箔の断面図を示す。この金属箔は、第7の実施の形態の類似の形態である。異なる点は、実施の形態7の金属箔の最外層に有機防錆層9が構成されている点である。有機防錆層はシランカップリング剤やベンゾトリアゾール系防錆剤等の材料を用いることが好ましい。これらの有機防錆層は、金属箔と導電性樹脂組成物の電気的接続に影響を及ぼさず、かつ金属表面の酸化を防ぎ、金属箔と絶縁樹脂層との密着力を上げることができる。
(Embodiment 9)
FIG. 11 shows a cross-sectional view of a metal foil according to the ninth embodiment of the present invention. This metal foil is a similar form of the seventh embodiment. The difference is that an organic rust preventive layer 9 is formed on the outermost layer of the metal foil of the seventh embodiment. The organic rust preventive layer is preferably made of a material such as a silane coupling agent or a benzotriazole rust preventive agent. These organic rust preventive layers do not affect the electrical connection between the metal foil and the conductive resin composition, prevent oxidation of the metal surface, and increase the adhesion between the metal foil and the insulating resin layer.

また、3の金属層、4の突起、5の有機防錆層は第一の金属層の両面にあってもよい。両面にあった場合は金属箔の両面で導電性樹脂組成物と良好な電気接続が可能となる上、接着性も向上し、層間剥離等に対する信頼性向上と電気的な特性向上の効果がある。   Further, the three metal layers, the four protrusions, and the five organic rust preventive layers may be provided on both surfaces of the first metal layer. If it is on both sides, it will be possible to make good electrical connection with the conductive resin composition on both sides of the metal foil, as well as improving adhesion, improving the reliability against delamination and improving the electrical characteristics. .

(実施の形態10)
図12には本発明における実施の形態10に関わるプリント配線板用金属箔の製造方法を示す。
(Embodiment 10)
FIG. 12 shows a method for manufacturing a metal foil for printed wiring board according to Embodiment 10 of the present invention.

まず、図12(a)に示した、第一の金属層1を用意する。次に図12(b)に示したように第一の金属層1上に、第一の金属層1と同じ金属を電解メッキにより突起8を形成する。突起形成としては、導電性粒子を塗布して焼結してもよい。次に図12(c)に示したようにメッキ等で第二の金属からなる金属層3を形成する。次に図12(d)に示したように上記金属箔表面をエッチング等の方法で突起表面の第二の金属層を除去する。この際にエッチングスピード等のプロセス条件を適宜選んでやれば、突起上に存在する第二の金属層のみを除去することが可能である。   First, the first metal layer 1 shown in FIG. Next, as shown in FIG. 12B, protrusions 8 are formed on the first metal layer 1 by electrolytic plating with the same metal as the first metal layer 1. As the protrusion formation, conductive particles may be applied and sintered. Next, as shown in FIG. 12C, the metal layer 3 made of the second metal is formed by plating or the like. Next, as shown in FIG. 12D, the second metal layer on the surface of the protrusion is removed by etching or the like on the surface of the metal foil. At this time, if process conditions such as etching speed are appropriately selected, it is possible to remove only the second metal layer present on the protrusions.

上記方法により、上記実施の形態7に関わる金属箔を製造することができる。   With the above method, the metal foil according to the seventh embodiment can be manufactured.

この工程を第一の金属層の両面に施すことで、上記実施の形態8に関わる両面処理金属箔を得ることができる。   By applying this process to both surfaces of the first metal layer, the double-sided metal foil according to the eighth embodiment can be obtained.

(実施の形態11)
図13には本発明における実施の形態11に関わるプリント配線板用金属箔の製造方法を示す。
(Embodiment 11)
FIG. 13 shows a method for manufacturing a metal foil for printed wiring board according to Embodiment 11 of the present invention.

まず、図13(a)に示した、第一の金属層1を用意する。次に図13(b)に示したようにメッキ等で第二の金属からなる金属層を形成する次に図13(c)に示したように第二の金属からなる金属層上にマスクをし、エッチング等で第二の金属層に貫通孔を形成する。次に図13(d)に示したように第一の金属層と同じ金属を電解メッキ等で突起を形成、マスクの除去を行う。   First, the first metal layer 1 shown in FIG. 13A is prepared. Next, a metal layer made of a second metal is formed by plating or the like as shown in FIG. 13B. Next, a mask is formed on the metal layer made of the second metal as shown in FIG. Then, a through hole is formed in the second metal layer by etching or the like. Next, as shown in FIG. 13 (d), protrusions are formed by electrolytic plating or the like of the same metal as the first metal layer, and the mask is removed.

上記方法により、上記実施の形態7に関わる金属箔を製造することができる。   With the above method, the metal foil according to the seventh embodiment can be manufactured.

この工程を第一の金属層の両面に施すことで、両面処理金属箔も得ることができる。   By applying this step to both sides of the first metal layer, a double-sided metal foil can also be obtained.

(実施の形態12)
図14には、本発明における実施の形態12に関わるプリント配線板の断面図を示す。
(Embodiment 12)
In FIG. 14, sectional drawing of the printed wiring board in connection with Embodiment 12 in this invention is shown.

このプリント配線板は、第5の実施の形態の類似の形態である。異なる点は、突起が第二の金属層を介さず第一の金属層と接合している点である。   This printed wiring board is a similar form of the fifth embodiment. The difference is that the protrusion is joined to the first metal layer without the second metal layer.

実施の形態5と同様の効果をもち、さらにこの場合突起と第一の金属層の間に電気伝導度の低い第2の金属層を有していないため、より良好な電気的接続を得ることができる。   The same effect as in the fifth embodiment is obtained, and in this case, since the second metal layer having low electrical conductivity is not provided between the protrusion and the first metal layer, a better electrical connection can be obtained. Can do.

(実施の形態13)
図15には、本発明における実施の形態13に関わるプリント配線板の断面図を示す。
(Embodiment 13)
FIG. 15 is a sectional view of a printed wiring board according to the thirteenth embodiment of the present invention.

このプリント配線板は、第12の実施の形態の類似の形態である。異なる点は、突起が導電性樹脂組成物7にも食い込んでいる点である。   This printed wiring board is similar to the twelfth embodiment. The difference is that the protrusions also bite into the conductive resin composition 7.

表面処理されていない金属突起が導電性樹脂組成物に接触することで、安定した電気的接合ができる。さらにこの場合突起と第一の金属層の間に電気伝導度の低い第二の金属層を有していないため、より良好な電気的接続を得ることができる。また、従来の金属箔のように第二の金属層を薄く形成する必要がないため、厚い第二の金属層が絶縁樹脂層と接触でき、高い密着強度が得られる。従って上記プリント配線板は、金属箔表面の粗度が小さい場合でも、絶縁樹脂層との密着力が高く導電性樹脂組成物での層間接続時に高接続信頼性を実現できる基板である。   Stable electrical bonding can be achieved by bringing the metal protrusions that are not surface-treated into contact with the conductive resin composition. Furthermore, in this case, since the second metal layer having low electrical conductivity is not provided between the protrusion and the first metal layer, a better electrical connection can be obtained. In addition, since it is not necessary to form the second metal layer as thinly as the conventional metal foil, the thick second metal layer can contact the insulating resin layer, and high adhesion strength can be obtained. Therefore, the printed wiring board is a substrate that has high adhesion to the insulating resin layer and can achieve high connection reliability when connected with the conductive resin composition even when the roughness of the metal foil surface is small.

(比較例1)
12μm圧延銅箔(日立電線株式会社製 HCL−02Z)上に電解メッキにて銅突起を形成し、さらにNi、Cr、Znの順で第二金属層を形成しプリント配線板用銅箔を得た。Ni、Cr、Znの付着量は、順に0.15mg/dm、0.20mg/dm、0.04mg/dmとした。上記銅箔の表面粗さを表面粗さ計(ランクテーラーホブソン株式会社製 Form Talysurf−120)を用いて測定した。Rz=2μmであった。
(Comparative Example 1)
Copper protrusions are formed by electrolytic plating on 12 μm rolled copper foil (HCL-02Z, manufactured by Hitachi Cable Ltd.), and a second metal layer is formed in the order of Ni, Cr, and Zn to obtain a copper foil for a printed wiring board. It was. Ni, Cr, the adhesion amount of Zn in turn 0.15mg / dm 2, 0.20mg / dm 2, was 0.04 mg / dm 2. The surface roughness of the copper foil was measured using a surface roughness meter (Form Talysurf-120 manufactured by Rank Taylor Hobson Co., Ltd.). Rz = 2 μm.

十点平均粗さRzの測定方法について説明する。粗さ曲線から、その平均線方向に基準長さLだけ抜き取り、この抜き取り部分の平均線から、最も高い山頂から5番目までの山頂の標高(Yp)の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高(Yv)の絶対値の平均との和である。(数1)で求められる値をマイクロメートル(μm)で表したものを言う。   A method for measuring the ten-point average roughness Rz will be described. From the roughness curve, only the reference length L is extracted in the direction of the average line, and from the average line of this extracted part, the average value of the absolute values (Yp) of the highest summit (Yp) from the highest summit to the lowest summit To the sum of the absolute values of the elevations (Yv) of the valley bottom from the fifth to the fifth. The value obtained by (Equation 1) is expressed in micrometers (μm).

Figure 2005217344
Figure 2005217344

次に、プリプレグ(日立化成工業株式会社製 MCL−E−679F)に炭酸ガスレーザーで150μm径の貫通孔を形成し、導電性樹脂組成物を印刷法にてその貫通孔に充填した。導電性樹脂組成物は、平均粒径5μmの銅粒子85重量%と、ビスフェノールA型エポキシ樹脂(エピコート828 油化シェルエポキシ製)3重量%とダイマー酸をグルシジルエステル化したエポキシ樹脂(YD−171 東都化成製)9重量%および硬化剤としてアミンアダクト硬化剤(MY−24 味の素製)3重量%を三本ロールにて混練し、作成した。   Next, 150 μm diameter through holes were formed in a prepreg (MCL-E-679F manufactured by Hitachi Chemical Co., Ltd.) with a carbon dioxide laser, and the through holes were filled with the conductive resin composition by a printing method. The conductive resin composition was composed of 85% by weight of copper particles having an average particle diameter of 5 μm, 3% by weight of a bisphenol A type epoxy resin (manufactured by Epicoat 828 oiled shell epoxy), and an epoxy resin (YD- 171 manufactured by Toto Kasei) and 3% by weight of an amine adduct curing agent (manufactured by MY-24 Ajinomoto Co., Inc.) as a curing agent were kneaded in a three roll.

次に上記プリント配線板用銅箔で導電性樹脂組成物が充填されたプリプレグを挟持し、熱プレスを用いて真空中にて温度200℃、圧力5MPaで約1時間、加熱・加圧して積層板を得た後にエッチングにて所望の配線パターンを形成して、両面プリント配線板を作製した。   Next, the prepreg filled with the conductive resin composition is sandwiched between the copper foils for the printed wiring board and laminated by heating and pressing at a temperature of 200 ° C. and a pressure of 5 MPa for about 1 hour in a vacuum using a hot press. After obtaining the board, a desired wiring pattern was formed by etching to produce a double-sided printed wiring board.

(比較例2)
電解メッキ条件を調整して、突起高さを調整した以外は、比較例1と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=5μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Comparative Example 2)
A copper foil for a printed wiring board was obtained in the same manner as in Comparative Example 1 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 5 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(比較例3)
電解メッキ条件を調整して、突起高さを調整した以外は、比較例1と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=8μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Comparative Example 3)
A copper foil for a printed wiring board was obtained in the same manner as in Comparative Example 1 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 8 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(比較例4)
電解メッキ条件を調整して、突起高さを調整した以外は、比較例1と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=12μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Comparative Example 4)
A copper foil for a printed wiring board was obtained in the same manner as in Comparative Example 1 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 12 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(比較例5)
Ni、Cr、Znの付着量は、順に0.55mg/dm、0.36mg/dm、0.09mg/dmとした以外は、比較例1と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=2μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Comparative Example 5)
Ni, Cr, the adhesion amount of Zn in turn 0.55mg / dm 2, 0.36mg / dm 2, except for using 0.09 mg / dm 2, copper foil for printed circuit board in the same manner as in Comparative Example 1 Got. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 2 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(比較例6)
電解メッキ条件を調整して、突起高さを調整した以外は、比較例5と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=5μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Comparative Example 6)
A copper foil for a printed wiring board was obtained in the same manner as in Comparative Example 5, except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 5 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(比較例7)
電解メッキ条件を調整して、突起高さを調整した以外は、比較例5と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=8μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Comparative Example 7)
A copper foil for a printed wiring board was obtained in the same manner as in Comparative Example 5, except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 8 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(比較例8)
電解メッキ条件を調整して、突起高さを調整した以外は、比較例5と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=12μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Comparative Example 8)
A copper foil for a printed wiring board was obtained in the same manner as in Comparative Example 5, except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 12 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

本発明のより具体的な実施の形態について、以下に詳しく説明する。   More specific embodiments of the present invention will be described in detail below.

(実施例1)
12μm圧延銅箔(日立電線株式会社製 HCL−02Z)上に、Ni、Cr、Znの順で第二金属層を形成した。Ni、Cr、Znの付着量は、順に0.55mg/dm、0.36mg/dm、0.09mg/dmとした。次に電解メッキにて銅突起を形成し、プリント配線板用銅箔を得た。上記比較例1と同様にして測定した表面粗さは、Rz=2μmであった。上記プリント配線板用銅箔を使用し、比較例1と同様の方法で両面プリント配線板を作製した。
(Example 1)
A second metal layer was formed in the order of Ni, Cr and Zn on a 12 μm rolled copper foil (HCL-02Z manufactured by Hitachi Cable, Ltd.). Ni, Cr, the adhesion amount of Zn in turn 0.55mg / dm 2, 0.36mg / dm 2, was 0.09 mg / dm 2. Next, copper protrusions were formed by electrolytic plating to obtain a printed circuit board copper foil. The surface roughness measured in the same manner as in Comparative Example 1 was Rz = 2 μm. A double-sided printed wiring board was produced in the same manner as in Comparative Example 1 using the copper foil for printed wiring board.

(実施例2)
電解メッキ条件を調整して、突起高さを調整した以外は、実施例1と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=5μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Example 2)
A copper foil for a printed wiring board was obtained in the same manner as in Example 1 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 5 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(実施例3)
電解メッキ条件を調整して、突起高さを調整した以外は、実施例1と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=8μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Example 3)
A copper foil for a printed wiring board was obtained in the same manner as in Example 1 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 8 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(実施例4)
電解メッキ条件を調整して、突起高さを調整した以外は、実施例1と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=12μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
Example 4
A copper foil for a printed wiring board was obtained in the same manner as in Example 1 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 12 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(実施例5)
12μm電解銅箔上に、Ni、Cr、Znの順で第二金属層を形成した。Ni、Cr、Znの付着量は、順に0.55mg/dm、0.36mg/dm、0.09mg/dmとした。次にこの両面にドライフィルムを熱ロールにてラミネートし、マスクフィルムを配置し、紫外線露光してパターン部のみフィルムを硬化させた。その後、未硬化部分のフィルムを現像処理で取り除き、突起形成位置の第二金属層をエッチングした。さらに電解メッキにて銅突起を形成し、プリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=2μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Example 5)
On the 12 μm electrolytic copper foil, a second metal layer was formed in the order of Ni, Cr, and Zn. Ni, Cr, the adhesion amount of Zn in turn 0.55mg / dm 2, 0.36mg / dm 2, was 0.09 mg / dm 2. Next, a dry film was laminated on both sides with a hot roll, a mask film was placed, and UV exposure was performed to cure the film only in the pattern portion. Thereafter, the uncured portion of the film was removed by a development process, and the second metal layer at the protrusion formation position was etched. Further, copper protrusions were formed by electrolytic plating to obtain a copper foil for a printed wiring board. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 2 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(実施例6)
電解メッキ条件を調整して、突起高さを調整した以外は、実施例5と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=5μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Example 6)
A copper foil for a printed wiring board was obtained in the same manner as in Example 5 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 5 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(実施例7)
電解メッキ条件を調整して、突起高さを調整した以外は、実施例5と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=8μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Example 7)
A copper foil for a printed wiring board was obtained in the same manner as in Example 5 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 8 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(実施例8)
電解メッキ条件を調整して、突起高さを調整した以外は、実施例5と同様の方法でプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=12μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Example 8)
A copper foil for a printed wiring board was obtained in the same manner as in Example 5 except that the electrolytic plating conditions were adjusted to adjust the protrusion height. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 12 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(実施例9)
実施例1で作成したプリント配線板用銅箔上に、シランカップリング剤(日本ユニカー株式会社製 A−187)を吹き付け、乾燥を行いプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=2.1μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
Example 9
A silane coupling agent (A-187 manufactured by Nihon Unicar Co., Ltd.) was sprayed onto the copper foil for printed wiring board created in Example 1, and dried to obtain a copper foil for printed wiring board. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 2.1 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

(実施例10)
実施例5で作成したプリント配線板用銅箔上に、シランカップリング剤(日本ユニカー株式会社製 A−187)を吹き付け、乾燥を行いプリント配線板用銅箔を得た。このプリント配線板用銅箔を上記比較例1と同様にして測定した表面粗さは、Rz=2.1μmであった。さらにこのプリント配線板用銅箔を用い比較例1と同様の方法で両面プリント配線板を作製した。
(Example 10)
A silane coupling agent (A-187 manufactured by Nihon Unicar Co., Ltd.) was sprayed onto the copper foil for printed wiring board prepared in Example 5, and dried to obtain a copper foil for printed wiring board. The surface roughness of this printed wiring board copper foil measured in the same manner as in Comparative Example 1 was Rz = 2.1 μm. Furthermore, the double-sided printed wiring board was produced by the method similar to the comparative example 1 using this copper foil for printed wiring boards.

実施例1〜10および比較例1〜8に使用した金属箔について特性一覧を表1に示す。   Table 1 shows a list of characteristics of the metal foils used in Examples 1 to 10 and Comparative Examples 1 to 8.

Figure 2005217344
Figure 2005217344

実施例1〜8および比較例1〜8の両面プリント配線板を以下の方法で評価を行った。   The double-sided printed wiring boards of Examples 1-8 and Comparative Examples 1-8 were evaluated by the following methods.

(a)初期導通評価
ビア数1600個のチェーン配線の抵抗値を、4端子法で測定した。
(A) Initial conduction evaluation The resistance value of a chain wiring having 1600 vias was measured by a four-terminal method.

(b)密着強度
密着強度を測定するために剥離試験を行った。試験条件は以下の通りである。
(B) Adhesion strength A peel test was performed to measure the adhesion strength. The test conditions are as follows.

試験装置:(株)オリエンテック社製 テンシロンUCT−100
配線幅:5mm 隔離速度:20mm/min
密着強度が1KN/cm以上を良品、0.8〜1.0KN/cmを△、0.8KN/cm以下を不良とした。
Test apparatus: Tensilon UCT-100 manufactured by Orientec Co., Ltd.
Wiring width: 5 mm Isolation speed: 20 mm / min
An adhesion strength of 1 KN / cm 2 or higher was evaluated as good, 0.8 to 1.0 KN / cm 2 as Δ, and 0.8 KN / cm 2 or lower as defective.

(c)接続信頼性評価
信頼性を評価するためにPCT試験を行った。試験条件は以下の通りである。
(C) Connection reliability evaluation A PCT test was performed to evaluate the reliability. The test conditions are as follows.

121℃、0.2MPa環境下に100時間、プリント配線板を暴露した後、初期導通評価と同様にビア数1600個のチェーン配線の抵抗値を測定し、初期抵抗値からの変化率を見積もった。抵抗値変化率が30%以上であるものを不良とした。   After exposing the printed wiring board for 100 hours in an environment of 121 ° C. and 0.2 MPa, the resistance value of the chain wiring having 1600 vias was measured in the same manner as the initial conduction evaluation, and the rate of change from the initial resistance value was estimated. . A resistance value change rate of 30% or more was regarded as defective.

上記の評価を行った結果について表2〜4に示す。   It shows to Tables 2-4 about the result of having performed said evaluation.

Figure 2005217344
Figure 2005217344

Figure 2005217344
Figure 2005217344

Figure 2005217344
Figure 2005217344

表2、3、4(実施の形態1〜8、比較例1〜8)について解説を行う。   Tables 2, 3, and 4 (Embodiments 1 to 8 and Comparative Examples 1 to 8) will be described.

本実験は、従来金属箔構造、従来金属箔構造において第二の金属層を厚くした金属箔、および本発明の金属箔構造のプリント配線板について、Rzを2〜12μmの間に設定し、粗度の影響を評価した。   In this experiment, Rz was set between 2 to 12 μm for a conventional metal foil structure, a metal foil having a thick second metal layer in the conventional metal foil structure, and a printed wiring board having the metal foil structure of the present invention. The effect of degree was evaluated.

比較例1〜4に関して、従来金属箔構造(第二の金属層薄)では、良好な初期接続を示したが、Rzが低くなることで密着強度が低下し、それに対応して信頼性も劣化した。これは金属箔のアンカー効果が低下し、密着強度が弱くなるためである。また、密着強度と信頼性には相対関係が有り、湿度や温度によるストレスに対して金属箔が剥がれてしまうために不良が発生する。   As for Comparative Examples 1 to 4, the conventional metal foil structure (thin second metal layer) showed a good initial connection, but the adhesion strength was lowered by lowering Rz, and the reliability was also degraded accordingly. did. This is because the anchor effect of the metal foil is lowered and the adhesion strength is weakened. Further, there is a relative relationship between the adhesion strength and the reliability, and the metal foil is peeled off due to stress due to humidity and temperature, so that a defect occurs.

比較例5〜8に関して、従来金属箔構造(第二の金属層厚)では、初期抵抗値が高い値を示した。厚い第2の金属層が導電性樹脂組成物と金属箔の電気的接続を阻害したためである。密着強度は、厚い第2の金属層のために高い値を示した。しかし、信頼性も劣化した。初期抵抗値と信頼性にも相対関係が有り、湿度や温度によるストレスに対して不安定な金属箔と導電性樹脂組成物間で劣化が生じ、不良が発生する。   Regarding Comparative Examples 5 to 8, the conventional metal foil structure (second metal layer thickness) showed a high initial resistance value. This is because the thick second metal layer hinders electrical connection between the conductive resin composition and the metal foil. The adhesion strength was high due to the thick second metal layer. However, the reliability also deteriorated. There is a relative relationship between the initial resistance value and the reliability, and deterioration occurs between the metal foil that is unstable with respect to stress due to humidity and temperature and the conductive resin composition.

それに対して本発明の金属箔構造の両面基板では、良好な初期導通、高い密着強度と信頼性を示した。本発明金属箔は、突起上に第二の金属層が存在しないために、第二の金属層が厚くても導電性樹脂組成物と良好な電気接続が可能となる。さらに、銅箔の粗度によるアンカー効果ではなく、厚い第二の金属層によって密着強度が保たれているために、表面粗度は低くなっても高い密着強度と高信頼性を持つ。   On the other hand, the double-sided substrate of the metal foil structure of the present invention showed good initial conduction, high adhesion strength and reliability. In the metal foil of the present invention, since the second metal layer does not exist on the protrusion, good electrical connection with the conductive resin composition is possible even if the second metal layer is thick. Furthermore, since the adhesion strength is maintained by the thick second metal layer rather than the anchor effect due to the roughness of the copper foil, high adhesion strength and high reliability are obtained even if the surface roughness is low.

さらに実施例9、10の両面プリント配線板を用いて、有機層の影響について調査した。使用した金属箔は本発明の金属箔構造の最外層に有機層(シランカップリング剤)を持つ。これらのサンプルは良好な初期抵抗と高密着性及び信頼性を示した。有機層の存在は初期抵抗値に悪影響を及ぼさず、かつシランカップリング剤やベンゾトリアゾール系防錆剤は、防錆効果や密着強度の向上に効果があり有用である。   Furthermore, the influence of the organic layer was investigated using the double-sided printed wiring boards of Examples 9 and 10. The used metal foil has an organic layer (silane coupling agent) in the outermost layer of the metal foil structure of the present invention. These samples showed good initial resistance, high adhesion and reliability. The presence of the organic layer does not adversely affect the initial resistance value, and the silane coupling agent and benzotriazole-based rust preventive are effective and effective in improving the rust prevention effect and adhesion strength.

以上により、本発明に拠ればこの金属箔を用いた場合、金属箔表面の粗度が小さい場合でも、絶縁樹脂層との密着力が高く導電性樹脂組成物での層間接続時に高接続信頼性を実現できる。   As described above, according to the present invention, when this metal foil is used, even when the roughness of the surface of the metal foil is small, the adhesion strength with the insulating resin layer is high, and the high connection reliability at the time of interlayer connection with the conductive resin composition Can be realized.

本発明の金属箔は、プリント配線板用の配線等を形成する金属箔として有用である。   The metal foil of the present invention is useful as a metal foil for forming wiring for printed wiring boards.

一般的なプリント配線板用金属箔の模式的な断面図Schematic cross-sectional view of a general metal foil for printed wiring boards 一般的なプリント配線板の模式的な断面図Schematic cross section of a general printed wiring board 本発明の第1の実施の形態におけるプリント配線板用金属箔の模式的な断面図Typical sectional drawing of metal foil for printed wiring boards in a 1st embodiment of the present invention. 本発明の第2の実施の形態におけるプリント配線板用金属箔の模式的な断面図Typical sectional drawing of the metal foil for printed wiring boards in the 2nd Embodiment of this invention 本発明の第3の実施の形態におけるプリント配線板用金属箔の模式的な断面図Typical sectional drawing of the metal foil for printed wiring boards in the 3rd Embodiment of this invention 本発明の第5の実施の形態におけるプリント配線板用金属箔の製造方法の模式的な断面図Typical sectional drawing of the manufacturing method of the metal foil for printed wiring boards in the 5th Embodiment of this invention 本発明の第5の実施の形態におけるプリント配線板の模式的な断面図Typical sectional drawing of the printed wiring board in the 5th Embodiment of this invention 本発明の第6の実施の形態におけるプリント配線板の模式的な断面図Typical sectional drawing of the printed wiring board in the 6th Embodiment of this invention 本発明の第7の実施の形態におけるプリント配線板用金属箔の模式的な断面図Typical sectional drawing of the metal foil for printed wiring boards in the 7th Embodiment of this invention 本発明の第8の実施の形態におけるプリント配線板用金属箔の模式的な断面図Typical sectional drawing of the metal foil for printed wiring boards in the 8th Embodiment of this invention 本発明の第9の実施の形態におけるプリント配線板用金属箔の模式的な断面図Typical sectional drawing of the metal foil for printed wiring boards in the 9th Embodiment of this invention 本発明の第一0の実施の形態におけるプリント配線板用金属箔の製造方法の模式的な断面図Typical sectional drawing of the manufacturing method of the metal foil for printed wiring boards in 10th embodiment of this invention. 本発明の第11の実施の形態におけるプリント配線板用金属箔の製造方法の模式的な断面図Typical sectional drawing of the manufacturing method of the metal foil for printed wiring boards in the 11th Embodiment of this invention 本発明の第12の実施の形態におけるプリント配線板の模式的な断面図Schematic sectional view of a printed wiring board in a twelfth embodiment of the present invention 本発明の第13の実施の形態におけるプリント配線板の模式的な断面図Typical sectional drawing of the printed wiring board in the 13th Embodiment of this invention

符号の説明Explanation of symbols

1 第一の金属層
2 突起部
3 第二の金属層
4 外層配線
5 内層配線
6 絶縁樹脂層
7 導電性組成物
8 突起
9 有機防錆層
10 孔
DESCRIPTION OF SYMBOLS 1 1st metal layer 2 Protrusion part 3 2nd metal layer 4 Outer layer wiring 5 Inner layer wiring 6 Insulating resin layer 7 Conductive composition 8 Protrusion 9 Organic rust prevention layer 10 Hole

Claims (18)

第一の金属層上に、
第一の金属層の防錆及び絶縁樹脂層との密着性を高めることを可能にする少なくとも1層以上の第二の金属層をもち、
さらに前記第二の金属層上に前記第一の金属と同種の金属からなり、離散的に存在する突起を持つプリント配線板用金属箔。
On the first metal layer,
Having at least one or more second metal layers that enable the first metal layer to have improved rust prevention and adhesion to the insulating resin layer,
Furthermore, the metal foil for printed wiring boards which consists of a metal of the same kind as said 1st metal on said 2nd metal layer, and has the processus | protrusion which exists discretely.
前記第二の金属層が、Ni、Zn、Crから選ばれる少なくとも一つ以上の元素を含む材料である請求項1に記載のプリント配線板用金属箔。 The metal foil for printed wiring boards according to claim 1, wherein the second metal layer is a material containing at least one element selected from Ni, Zn, and Cr. 前記突起は、電解メッキにて形成される請求項1に記載のプリント配線板用金属箔。 2. The printed wiring board metal foil according to claim 1, wherein the protrusion is formed by electrolytic plating. 前記第一の金属層は、Cu、Ag、Au、Ptから選ばれる少なくともひとつ以上の元素を含む材料である請求項1〜3に記載のプリント配線板用金属箔。 4. The metal foil for printed wiring board according to claim 1, wherein the first metal layer is a material containing at least one element selected from Cu, Ag, Au, and Pt. 5. 請求項1〜4記載の金属箔において有機防錆層が、最表層に形成されているプリント配線板用金属箔。 The metal foil for printed wiring boards in which the organic rust prevention layer is formed in the outermost layer in the metal foil of Claims 1-4. 前記有機防錆層が、シランカップリング剤、ベンゾトリアゾール系樹脂を含む層からなる請求項5記載のプリント配線板用金属箔。 The metal foil for a printed wiring board according to claim 5, wherein the organic rust preventive layer comprises a layer containing a silane coupling agent and a benzotriazole resin. 前記第一の金属層表面に、前記第二の金属層をメッキにて形成した後に、前記第一の金属と同種の金属からなり、離散的に存在する突起をメッキにて形成する工程を含むプリント配線板用金属箔の製造方法。 A step of forming, on the surface of the first metal layer, the second metal layer by plating, and thereafter forming protrusions made of the same kind of metal as the first metal and discretely present by plating. Manufacturing method of metal foil for printed wiring boards. 請求項1〜6記載の金属箔からなり配線層と絶縁樹脂層を含むプリント配線板であって、
前記絶縁樹脂層との密着部が前記第二の金属層であって、
かつ前記突起部が前記絶縁樹脂層に食い込んでいる構造であるプリント配線板。
A printed wiring board comprising the metal foil according to claim 1 and including a wiring layer and an insulating resin layer,
The adhesion portion with the insulating resin layer is the second metal layer,
And the printed wiring board which is the structure where the said protrusion part bites into the said insulating resin layer.
前記絶縁樹脂層の厚さ方向に、貫通孔が形成され、前記貫通孔には導電性樹脂組成物が充填されており、前記絶縁樹脂層の両側に配置された配線層間が前記導電性樹脂組成物によって電気的に接続されている請求項8に記載のプリント配線板。 A through hole is formed in the thickness direction of the insulating resin layer, the through hole is filled with a conductive resin composition, and the wiring resin layers arranged on both sides of the insulating resin layer are between the conductive resin composition. The printed wiring board according to claim 8, which is electrically connected by an object. 突起を持った第一の金属層上に、
第一の金属層の防錆及び絶縁樹脂層との密着性を高めることを可能にする、少なくとも1層以上の第二の金属層が前記突起先端を露出するように形成されているプリント配線板用金属箔。
On the first metal layer with protrusions,
A printed wiring board in which at least one second metal layer is formed so as to expose the tip of the protrusion, which makes it possible to improve the rust prevention of the first metal layer and the adhesion to the insulating resin layer. Metal foil.
前記第二の金属層が、Ni、Zn、Crから選ばれる少なくとも一つ以上の元素を含む材料である請求項10に記載のプリント配線板用金属箔。 The metal foil for a printed wiring board according to claim 10, wherein the second metal layer is a material containing at least one element selected from Ni, Zn, and Cr. 前記突起は、電解メッキにて形成される事を特徴とする請求項10に記載のプリント配線板用金属箔。 The metal foil for a printed wiring board according to claim 10, wherein the protrusion is formed by electrolytic plating. 前記第一の金属は、Cu、Ag、Au、Ptから選ばれる少なくとも一つ以上の元素を含む材料である請求項10〜12に記載のプリント配線板用金属箔。 The metal foil for printed wiring boards according to claim 10, wherein the first metal is a material containing at least one element selected from Cu, Ag, Au, and Pt. 請求項10〜13記載の金属箔において有機防錆層が、最表層に形成されているプリント配線板用金属箔。 The metal foil for printed wiring boards in which the organic antirust layer is formed in the outermost surface layer in the metal foil of Claims 10-13. 有機防錆層が、シランカップリング剤、ベンゾトリアゾール系樹脂を含む材料から成る請求項14に記載のプリント配線板用金属箔。 The metal foil for printed wiring boards according to claim 14, wherein the organic rust preventive layer is made of a material containing a silane coupling agent and a benzotriazole resin. 金属層の表面に、前記金属と同種の突起をメッキにて形成することで第一の金属層を得る工程と、突起先端よりも低い位置に第二の金属層を形成する工程とを含むプリント配線板用金属箔の製造方法。 A print including a step of obtaining a first metal layer by plating the surface of the metal layer with the same type of protrusion as the metal, and a step of forming a second metal layer at a position lower than the tip of the protrusion. Manufacturing method of metal foil for wiring boards. 請求項10〜15記載の金属箔からなる配線層と、絶縁樹脂層とを含むプリント配線板であって、前記絶縁樹脂層との密着部が第二の金属層であって、かつ突起が絶縁樹脂層に食い込んでいる構造であるプリント配線板。 A printed wiring board comprising a wiring layer made of the metal foil according to claim 10 and an insulating resin layer, wherein a close contact portion with the insulating resin layer is a second metal layer, and a protrusion is insulated. A printed wiring board with a structure that bites into the resin layer. 前記絶縁樹脂層の厚さ方向に、貫通孔が形成され、前記貫通孔には導電性樹脂組成物が充填されており、前記絶縁樹脂層の両側に配置された配線層間が前記導電性樹脂組成物によって電気的に接続されている請求項17に記載のプリント配線板。 A through hole is formed in the thickness direction of the insulating resin layer, the through hole is filled with a conductive resin composition, and the wiring resin layers arranged on both sides of the insulating resin layer are between the conductive resin composition. The printed wiring board according to claim 17, which is electrically connected by an object.
JP2004025206A 2004-02-02 2004-02-02 Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it Pending JP2005217344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025206A JP2005217344A (en) 2004-02-02 2004-02-02 Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025206A JP2005217344A (en) 2004-02-02 2004-02-02 Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it

Publications (1)

Publication Number Publication Date
JP2005217344A true JP2005217344A (en) 2005-08-11

Family

ID=34907647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025206A Pending JP2005217344A (en) 2004-02-02 2004-02-02 Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it

Country Status (1)

Country Link
JP (1) JP2005217344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147059A1 (en) * 2009-06-18 2010-12-23 Jx日鉱日石金属株式会社 Electronic circuit, method for forming same, and copper-clad laminate for electronic circuit formation
JP2014090130A (en) * 2012-10-31 2014-05-15 Toppan Printing Co Ltd Multilayer printed wiring board, and method of manufacturing the same
JPWO2021125258A1 (en) * 2019-12-17 2021-06-24

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147059A1 (en) * 2009-06-18 2010-12-23 Jx日鉱日石金属株式会社 Electronic circuit, method for forming same, and copper-clad laminate for electronic circuit formation
JPWO2010147059A1 (en) * 2009-06-18 2012-12-06 Jx日鉱日石金属株式会社 Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit
JP2014053636A (en) * 2009-06-18 2014-03-20 Jx Nippon Mining & Metals Corp Electronic circuit and formation method therefor, and copper-clad laminate for electronic circuit formation
JP5676443B2 (en) * 2009-06-18 2015-02-25 Jx日鉱日石金属株式会社 Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit
JP2014090130A (en) * 2012-10-31 2014-05-15 Toppan Printing Co Ltd Multilayer printed wiring board, and method of manufacturing the same
JPWO2021125258A1 (en) * 2019-12-17 2021-06-24
JP6993540B2 (en) 2019-12-17 2022-01-13 日本発條株式会社 Semi-finished products for laminates, bonding methods and circuit boards

Similar Documents

Publication Publication Date Title
US7681310B2 (en) Method for fabricating double-sided wiring board
KR101871029B1 (en) Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
JP4894067B2 (en) Method for forming conductor pattern
JP2008047655A (en) Wiring substrate and its manufacturing method
JP2006022406A (en) Ultrathin copper foil with carrier
JP2004169181A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
TW201021635A (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP2010000679A (en) Aluminum material and its manufacturing method
JP3735485B2 (en) Copper foil with resin film, and copper foil with resin using the same
JP2009252952A (en) Copper charge plating method and printed circuit board manufactured by the method
US7964801B2 (en) Circuit board structure and fabrication method thereof
JP4508140B2 (en) Built-in module
JP2005217344A (en) Metal foil for printed circuit board, its manufacturing method, and printed circuit board using it
KR101832806B1 (en) Copper foil having carrier, production method for copper foil having carrier, and copper clad laminate sheet and printed wiring board obtained using copper foil having carrier
JP5945262B2 (en) Printed wiring board and manufacturing method thereof
JP2006150591A (en) Metal foil for high frequency circuit
JP4728980B2 (en) Printed wiring board and manufacturing method thereof
JPH11163525A (en) Manufacture of multilayer wiring board
JP2007036098A (en) Printed wiring board and manufacturing method therefor
JPH0573359B2 (en)
JP2005064110A (en) Member for electronic component and electronic component using the same
JP6098118B2 (en) Multilayer printed wiring board and manufacturing method thereof
TW201028059A (en) Fine line structure with improved adhesion and method for fabricating the same
JP4497952B2 (en) Multilayer wiring board
JP5222663B2 (en) Wiring board and semiconductor package