JP2005164604A - Monitoring device for storage battery - Google Patents

Monitoring device for storage battery Download PDF

Info

Publication number
JP2005164604A
JP2005164604A JP2004365851A JP2004365851A JP2005164604A JP 2005164604 A JP2005164604 A JP 2005164604A JP 2004365851 A JP2004365851 A JP 2004365851A JP 2004365851 A JP2004365851 A JP 2004365851A JP 2005164604 A JP2005164604 A JP 2005164604A
Authority
JP
Japan
Prior art keywords
storage battery
capacity
battery
liquid level
usage status
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004365851A
Other languages
Japanese (ja)
Inventor
Shigeru Nakajima
繁 中島
Norio Iizuka
紀夫 飯塚
Yoshinari Morimoto
佳成 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Energy System Service Japan Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Hitachi Battery Sales Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd, Hitachi Battery Sales Service Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004365851A priority Critical patent/JP2005164604A/en
Publication of JP2005164604A publication Critical patent/JP2005164604A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring device for a storage battery enabling finding out the usage status history of the storage battery. <P>SOLUTION: This monitoring device 8 for a storage battery is provided with a usage condition detecting means for detecting the usage status of a battery, such as discharged/charged electrical quantity and a usage status history storage means 15 for storing the detection result of the usage status detection means as a history. Since the usage status history of the storage battery in the past can be checked, data for examining usage form of the storage battery can be offered to a user using the storage battery, and the user can know the time for the replacement of the storage battery and that for supplying an electrolyte, and enables proper management of the storage battery. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、蓄電池の使用状況を監視することができる監視装置に関するものである。   The present invention relates to a monitoring device that can monitor the usage status of a storage battery.

自動車等においては、エンジンを始動する際に蓄電池を電源としてスタータモータを駆動している。最近、自動車にはカーナビゲーション・システム等のように消費電力の大きな電子機器が搭載されるようになってきた。そのためエンジンが駆動されて発電機が発電を行っているときでも、蓄電池から放電が行われていることがある。このような場合に、悪条件が重なると、エンジンが停止した後に、再始動しようとしても、蓄電池の残り容量が足りず、スタータモータを駆動することができなくなる事態が発生する。   In an automobile or the like, a starter motor is driven using a storage battery as a power source when starting an engine. Recently, electronic devices with high power consumption such as car navigation systems have been installed in automobiles. Therefore, even when the engine is driven and the generator is generating power, the storage battery may be discharged. In such a case, if adverse conditions overlap, even if an attempt is made to restart the engine after it has stopped, there will be a situation where the remaining capacity of the storage battery is insufficient and the starter motor cannot be driven.

このような用途に用いられる蓄電池においては、その劣化状態、蓄電池の交換時期、電解液の不足補充状況等を自動車の運転者にある程度高い精度で知らせることができるようにしておくのが好ましい。   In a storage battery used for such an application, it is preferable to be able to inform the driver of the vehicle of the deterioration state, the replacement time of the storage battery, the shortage of electrolyte replenishment, etc. with a certain degree of accuracy.

また自動車用の蓄電池においては、高温化と深い放電とが主な劣化モードになっている。これに対応するにはタイムリーな冷却(冷却の自動化)と深い放電の制限とが有効であるが、これを実現するためには蓄電池の状態をできるだけ正確に監視できるシステムが必要である。   Moreover, in the storage battery for motor vehicles, high temperature and deep discharge are the main deterioration modes. To cope with this, timely cooling (automation of cooling) and deep discharge restriction are effective, but in order to realize this, a system capable of monitoring the state of the storage battery as accurately as possible is required.

蓄電池の状態を監視する装置としては、特許文献1及び2に示されているように、蓄電池の残存容量を監視する装置が提案されている。
特開昭63−208773号公報 特開平2−262077号公報
As an apparatus for monitoring the state of the storage battery, as shown in Patent Documents 1 and 2, an apparatus for monitoring the remaining capacity of the storage battery has been proposed.
JP-A-63-208773 JP-A-2-262077

上記のように、自動車用の蓄電池においては、蓄電池の劣化状態、蓄電池の交換時期、電解液の不足補充状況等を自動車の運転者に高い精度で知らせることができるようにしておくことが望ましい。   As described above, in a storage battery for an automobile, it is desirable to be able to notify the driver of the automobile with high accuracy of the deterioration state of the storage battery, the replacement time of the storage battery, the insufficient replenishment status of the electrolyte, and the like.

また高温化と深い放電が自動車用蓄電池の主な劣化モードになっている。これに対応するにはタイムリーな冷却(冷却の自動化)と深い放電の制限(負荷の自動切断)が有効で、これを実現するためには蓄電池の状態をできるだけ正確に監視できるシステムが必要であるが、従来はこのようなシステムは無かった。また自動車電池は自己放電や電解液の比重の変化により容量が低下する。このことは、蓄電池の履歴を把握することがメンテナンスに役立つことを示している。   High temperatures and deep discharge are the main deterioration modes of automotive storage batteries. To cope with this, timely cooling (automated cooling) and deep discharge restriction (automatic load disconnection) are effective. To achieve this, a system that can monitor the state of the storage battery as accurately as possible is required. There is no such system in the past. Moreover, the capacity | capacitance of an automobile battery falls by self-discharge or the change of specific gravity of electrolyte solution. This has shown that grasping | ascertaining the log | history of a storage battery is useful for a maintenance.

通常、電池劣化による容量低下防止には電解液の比重測定と補水によるメンテナンスが行われており、メンテナンス支援として補水タイミングを運転席に表示し適切な交換時期の判断をタイムリーにアドバイスする等が求められている。特に、液量不足で劣化した蓄電池を用いてスタータモータを駆動してエンジンを始動すると、蓄電池の内部で内部ショートを起こし、これが電気分解により発生した水素ガスに引火して破裂を引き起こす問題を発生する。このような問題を解消するためにも、蓄電池の使用状況の履歴を把握して補水タイミングをタイムリーに知ることが望ましい。   In order to prevent the battery capacity from decreasing due to battery deterioration, the specific gravity of the electrolyte and maintenance by replenishment are usually performed. As a maintenance support, the replenishment timing is displayed on the driver's seat and advice on the appropriate replacement timing is given in a timely manner. It has been demanded. In particular, when the engine is started by driving a starter motor using a storage battery that has deteriorated due to insufficient liquid volume, an internal short circuit occurs inside the storage battery, which causes the problem of igniting hydrogen gas generated by electrolysis and causing explosion. To do. In order to solve such a problem, it is desirable to grasp the history of the usage status of the storage battery and know the replenishment timing in a timely manner.

上記のように、蓄電池の放電電気量、充電電気量等の電池使用状況を、蓄電池の使用状況の履歴として知ることができるようにしておくことが望ましいが、従来の蓄電池の監視装置は、蓄電池の残存容量を監視するだけのものであり、蓄電池の使用状況の履歴を知ることができるものはなかった。   As described above, it is desirable to be able to know the battery usage status, such as the amount of discharged electricity and the amount of charged electricity, as a history of the usage status of the storage battery. The remaining capacity of the battery is only monitored, and there is no one that can know the history of the usage status of the storage battery.

本発明の目的は、蓄電池の使用状況の履歴を知ることができる蓄電池の監視装置を提供することにある。   The objective of this invention is providing the monitoring apparatus of a storage battery which can know the log | history of the usage condition of a storage battery.

本発明の他の目的は、蓄電池の使用状況の履歴だけでなく、交換時期をも知ることができる蓄電池の監視装置を提供することにある。   Another object of the present invention is to provide a storage battery monitoring device that can know not only the storage battery usage history but also the replacement time.

本発明の更に他の目的は、蓄電池の使用状況の履歴だけでなく、電解液の補充時期をも知ることができる蓄電池の監視装置を提供することにある。   Still another object of the present invention is to provide a storage battery monitoring device that can know not only the storage battery usage history but also the replenishment time of the electrolyte.

本発明に係わる蓄電池の監視装置は、蓄電池の放電電気量、充電電気量等の電池の使用状況を検出する使用状況検出手段と、使用状況検出手段の検出結果を履歴として記憶する使用状況履歴記憶手段とを備えている。   A storage battery monitoring device according to the present invention includes a usage status detection unit that detects a usage status of a battery, such as the amount of discharged electricity and the amount of charged electricity, and a usage status history storage that stores a detection result of the usage status detection unit as a history. Means.

このような監視装置を用いれば、蓄電池の使用状況の過去の履歴を知ることができ、その結果、蓄電池を使用するユーザに蓄電池の使用態様を検討するデータを提供することができ、ユーザはこの履歴に基いて蓄電池の寿命の到来を知らせる警報や、電解液の減少を知らせる警報や、負荷が多すぎることを知らせる警報等を発生させることができ、ユーザが蓄電池の管理を的確に行なうことが可能になる。   By using such a monitoring device, it is possible to know the past history of the usage status of the storage battery, and as a result, it is possible to provide the user who uses the storage battery with data for examining the usage mode of the storage battery. Based on the history, it is possible to generate an alarm that notifies the end of the life of the storage battery, an alarm that notifies the decrease in the electrolyte, an alarm that notifies that the load is excessive, and the user can manage the storage battery accurately. It becomes possible.

本発明の好ましい態様では、上記の構成に加えて、使用状況履歴記憶手段に記憶されている履歴から蓄電池の交換時期を判定し、交換時期に達したことを判定したときに蓄電池交換警報信号を出力する蓄電池交換時期判定手段を更に備えている。   In a preferred aspect of the present invention, in addition to the above-described configuration, the storage battery replacement time is determined from the history stored in the usage status history storage means, and when it is determined that the replacement time has been reached, the storage battery replacement alarm signal is output. A storage battery replacement time determination means for outputting is further provided.

本発明の他の好ましい態様では、蓄電池が電解液の補充を必要とする蓄電池であって、蓄電池の電解液の液面を検出する液面検出手段が設けられている場合に、蓄電池監視装置内に、液面検出手段で検出した液面が予め定めたレベル以下になったときに電解液補充警報信号を出力する液面判定手段が更に設けられる。このように構成すると、電解液の減少を自動的に検出することができる。   In another preferred aspect of the present invention, when the storage battery is a storage battery that requires replenishment of the electrolyte, and a liquid level detecting means for detecting the liquid level of the electrolyte of the storage battery is provided, the storage battery monitoring device is provided. In addition, liquid level determination means for outputting an electrolyte replenishment alarm signal when the liquid level detected by the liquid level detection means falls below a predetermined level is further provided. If comprised in this way, the fall of electrolyte solution can be detected automatically.

なお蓄電池監視装置を、蓄電池の電圧・電流・温度・液面・時刻を測定する手段と、瞬時に使用可能量を演算する手段と、対応する電流遮断機・冷却装置・表示装置・外部メモリー等と組み合わされて、残量と冷却及び表示を自動制御する手段と、蓄電池車載後最初の放電から監視を起動し、蓄電池の使用履歴を記録する手段とから構成してもよい。   The storage battery monitoring device has a means to measure the voltage, current, temperature, liquid level and time of the storage battery, a means to calculate the usable amount instantaneously, a corresponding current breaker, cooling device, display device, external memory, etc. And a means for automatically controlling the remaining amount, cooling, and display, and a means for starting monitoring from the first discharge after the storage battery is mounted and recording a storage history of the storage battery.

また正確な電源管理の為に、電流積算方式と内部抵抗検出方式を併用してデータ処理し、逐次蓄電池使用可能量を補正して蓄電池残存容量の算出を行ってもよい。
更に蓄電池監視装置には、ガソリンエンジン車の頻繁な充放電による累積誤差に対策する為に、内部抵抗を測定して蓄電池使用可能量を推定し、積算値と実測推定値を照合して、適宜、満充電容量のリセット−ゼロ調整を行う機能を持たせてもよい。表示用出力信号を出力するには、CANプロトコルに準拠して、既設の車載メータパネルやNAVI画面等に表示できるようにシリアル伝送装置を取り付ければよい。
Further, for accurate power management, data processing may be performed by using both the current integration method and the internal resistance detection method, and the remaining battery capacity may be calculated by sequentially correcting the usable amount of the storage battery.
In addition, the storage battery monitoring device measures internal resistance to estimate the amount of usable storage battery, and compares the accumulated value with the actual estimated value to take measures against cumulative errors due to frequent charging and discharging of gasoline engine vehicles. A function of resetting the full charge capacity and performing zero adjustment may be provided. In order to output a display output signal, a serial transmission device may be attached so that it can be displayed on an existing vehicle-mounted meter panel, NAVI screen, or the like in accordance with the CAN protocol.

また自動車のスタータ機能保証とメンテナンス補助を目的に自動車用鉛蓄電池の状態監視や保護対策を行う為に、電源制御用ICを組み込んだ回路と電流遮断機と温度計及び電子液面計とを蓄電池に取り付けて、正確な状態監視と、バッテリー冷却の自動化、負荷の自動切断等のバッテリー保護と、残量表示、補水タイミングの指示、バッテリー交換のアドバイス等を行なわせるための信号の出力とを行うようにしてもよい。   In addition, in order to monitor the status of automobile lead-acid batteries and to protect them for the purpose of guaranteeing the starter function of automobiles and assisting maintenance, a battery incorporating a circuit incorporating a power control IC, a current breaker, a thermometer, and an electronic liquid level gauge Attached to the battery for accurate condition monitoring, battery protection such as automatic battery cooling and automatic load disconnection, and output of signals to indicate remaining amount, refill timing, advice on battery replacement, etc. You may do it.

また制御基板を計測部と信号演算回路部とにより構成し、計測部をアナログ回路部とデジタル回路部とにより構成して、アナログ回路部に蓄電池の内部抵抗を検出する内部抵抗検出手段を設ける構成とするのが好ましい。   The control board is composed of a measurement unit and a signal calculation circuit unit, the measurement unit is composed of an analog circuit unit and a digital circuit unit, and an internal resistance detection means for detecting the internal resistance of the storage battery is provided in the analog circuit unit. Is preferable.

液面計には、液面を多数回測定して判断することにより振動による水面の変動に対応した正確な液面判断を行なう手段を含めることもできる。また、蓄電池の使用開始時より時刻をカウントすることでバッテリーの使用履歴を把握し、きめ細かなメンテナンスを可能にする機能を含めてもよい。   The liquid level gauge can also include means for accurately determining the liquid level corresponding to fluctuations in the water level due to vibration by determining the liquid level by measuring the liquid level many times. In addition, a function may be included in which the use history of the battery is grasped by counting the time from the start of use of the storage battery and fine maintenance can be performed.

更に、バッテリー信号を活用して、ホストコンピュータの指示により、自動車のアイドリングストップに対応するエンジンのこまめなスイッチングや、ライトの自動点滅(トンネル・交差点)、冷暖房予約、暖気運転、盗難防止、待ち受けスリープ等の制御を行うことが可能になる。そしてこれをサポートする電源の管理とアクチュエータの駆動とを一括制御することを可能にするために、自動車用LANと信号を共通にするバッテリー情報を送受信するための通信機能を備えてもよい。   In addition, the battery signal is used and the host computer instructs to switch the engine frequently to stop idling of the car, automatic blinking of lights (tunnel / intersection), air conditioning reservation, warm-up operation, anti-theft, standby sleep Etc. can be controlled. In order to make it possible to collectively control power supply management and actuator driving to support this, a communication function for transmitting and receiving battery information that shares signals with the vehicle LAN may be provided.

なお電流積算方式と内部抵抗検出方式とを併用してデータを処理し、逐次蓄電池使用可能量を補正して蓄電池残存容量を算出するに当たり、ガソリンエンジン車の頻繁な充放電による累積誤差に対応するために、充放電回数をカウントし、充電回数が設定回数を超える毎にその積算値と実測推定値(内部抵抗率より放電率を推定)とを照合して自動的に満充電容量の変更(リセット−ゼロ調整)を行うようにしてもよい。   In addition, when using the current integration method and the internal resistance detection method together to process the data and correcting the storage battery usable amount sequentially to calculate the storage battery remaining capacity, it corresponds to the accumulated error due to frequent charging and discharging of gasoline engine cars. Therefore, the charge / discharge count is counted, and every time the charge count exceeds the set count, the accumulated value is compared with the actually estimated value (the discharge rate is estimated from the internal resistivity) to automatically change the full charge capacity ( Reset-zero adjustment) may be performed.

以上のように、本発明によれば、蓄電池の放電電気量、充電電気量等の電池の使用状況を検出する使用状況検出手段と、使用状況検出手段の検出結果を履歴として記憶する使用状況履歴記憶手段とを備えたので、蓄電池の使用状況の過去の履歴を、蓄電池の使用態様を検討するデータとしてユーザに提供することができる。ユーザはこの履歴に基いて蓄電池の寿命の到来を知らせる警報や、電解液の減少を知らせる警報や、負荷が多すぎることを知らせる警報等を発生させることができ、蓄電池の管理を的確に行なうことが可能になる。   As described above, according to the present invention, the usage status detection means for detecting the usage status of the battery, such as the amount of electricity discharged from the storage battery, the amount of charged electricity, and the usage status history for storing the detection results of the usage status detection means as history. Since the storage means is provided, the past history of the usage status of the storage battery can be provided to the user as data for examining the usage mode of the storage battery. Based on this history, the user can generate alarms that inform the end of the life of the storage battery, alarms that inform the decrease in electrolyte, alarms that notify that the load is excessive, etc. Is possible.

特に請求項2に記載された発明によれば、使用状況履歴記憶手段に記憶されている履歴から前記池の交換時期を判定して、交換時期に達したことを判定したときに蓄電池交換警報信号を出力する蓄電池交換時期判定手段を更に備えたので、ユーザに蓄電池を交換する時期を自動的に知らせて、蓄電池の管理を的確に行なわせることができる。   In particular, according to the invention described in claim 2, when the replacement time of the pond is determined from the history stored in the usage history storage means and it is determined that the replacement time has been reached, the storage battery replacement alarm signal Is further provided, so that it is possible to automatically notify the user of the time to replace the storage battery so that the storage battery can be managed accurately.

また請求項3に記載された発明によれば、液面検出手段により検出した電解液の液面が予め定めたレベル以下になったときに電解液補充警報信号を出力する液面判定手段を設けたので、電解液が減少したことを自動的に検出することができるという利点が得られる。   According to a third aspect of the present invention, there is provided the liquid level determining means for outputting an electrolyte replenishment alarm signal when the liquid level of the electrolytic solution detected by the liquid level detecting means falls below a predetermined level. Therefore, there is an advantage that it is possible to automatically detect that the electrolytic solution has decreased.

以下図面を参照して本発明の実施形態を詳細に説明する。
図1は、本発明の実施形態の構成を示すブロック図である。図1において、1は自動車のエンジン即ち内燃機関を始動させるためのスタータモータ等の電動始動装置の電源として用いられる蓄電池である。この例では、蓄電池1として液式の鉛蓄電池が用いられている。また2は、蓄電池1からスタータモータを含む負荷3への電力の供給を遮断するスイッチ手段である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a storage battery used as a power source for an electric starter such as a starter motor for starting an automobile engine, that is, an internal combustion engine. In this example, a liquid lead storage battery is used as the storage battery 1. Reference numeral 2 denotes switch means for cutting off the supply of power from the storage battery 1 to the load 3 including the starter motor.

スイッチ手段2は、常閉の電磁スイッチであり、後述する蓄電池監視装置8から警報信号が出力されると開状態になり、リセット動作(キースイッチが開かれて再度キースイッチが閉じられる動作)が行われるまで開状態を維持する。この種のスイッチ手段を備えたプロテクタと呼ばれる装置については、特表平5−6077号公報等に開示されている。自動車に搭載される負荷と、この蓄電池1と、スイッチ手段2と各負荷との関係は、図2の回路図に示す通りである。   The switch means 2 is a normally closed electromagnetic switch, which is opened when an alarm signal is output from the storage battery monitoring device 8 to be described later, and a reset operation (operation in which the key switch is opened and the key switch is closed again). Keep open until done. A device called a protector provided with this type of switch means is disclosed in Japanese Patent Publication No. 5-6077. The relationship between the load mounted on the automobile, the storage battery 1, the switch means 2, and each load is as shown in the circuit diagram of FIG.

図2において、31は運転者によって手動操作されるキースイッチであり、32はキースイッチ31の1つの接点を通して蓄電池1に接続されてエンジンEを始動するためのスタータモータである。キースイッチ31の別の接点には、点火装置33、エアコン、オーディオ、NAVI等の負荷Aと、ライト、ラジオ、盗難防止装置等の負荷Bが接続されている。34は、蓄電池1を充電するための交流電力を発生する磁石発電機であり、35は磁石発電機34の交流電力を直流電力に変換して整流する整流回路である。蓄電池1は、スイッチ手段2が閉状態にあるときに整流回路35の直流出力によって浮動充電される。   In FIG. 2, 31 is a key switch that is manually operated by the driver, and 32 is a starter motor that is connected to the storage battery 1 through one contact of the key switch 31 to start the engine E. The other contacts of the key switch 31 are connected to a load A such as an ignition device 33, an air conditioner, audio, and NAVI, and a load B such as a light, radio, and anti-theft device. 34 is a magnet generator that generates AC power for charging the storage battery 1, and 35 is a rectifier circuit that rectifies the AC power of the magnet generator 34 by converting it into DC power. The storage battery 1 is float-charged by the DC output of the rectifier circuit 35 when the switch means 2 is in the closed state.

この例の蓄電池監視装置8は、蓄電池1の状態を監視し、蓄電池1の残り容量がスタータモータを少なくとも1回以上駆動するために必要な容量よりも少なくなったことを検出すると警報信号を出力する機能と、蓄電池1の内部抵抗の変化(劣化状態)に応じて蓄電池1の満充電状態における基準充電量(演算の基準となる充電電気量)を変更する機能と、蓄電池の使用状況の履歴を記憶し、記憶した履歴に基いて蓄電池1の交換時期を判定する機能と、蓄電池1の電解液の液面を検出して液面が予め定めたレベル以下になると電解液補充警報信号を発生する機能等を有している。これらの機能を発揮させるために必要な蓄電池1の使用状況を検出するため、この例では、電圧検出手段4と、電流検出手段5と、温度検出手段6と、液面検出手段7とを備えている。   The storage battery monitoring device 8 in this example monitors the state of the storage battery 1 and outputs an alarm signal when it detects that the remaining capacity of the storage battery 1 is less than the capacity required to drive the starter motor at least once. A function for changing the reference charge amount (charged electric charge serving as a reference for calculation) in the fully charged state of the storage battery 1 according to a change (deterioration state) of the internal resistance of the storage battery 1, and a history of the usage status of the storage battery A function for determining the replacement time of the storage battery 1 based on the stored history, and detecting the electrolyte level of the storage battery 1 and generating an electrolyte replenishment alarm signal when the liquid level falls below a predetermined level It has a function to do. In order to detect the usage status of the storage battery 1 necessary for exhibiting these functions, this example includes a voltage detection means 4, a current detection means 5, a temperature detection means 6, and a liquid level detection means 7. ing.

電圧検出手段4は、例えば蓄電池の出力端子間に接続した電圧測定用抵抗体回路により構成されて、蓄電池1の端子間電圧を測定する。電流検出手段5は、変流器からなり、蓄電池1から出力される放電電流及び蓄電池を充電するための充電電流を測定する。また温度検出手段6は、蓄電池1の電池ケースの外側に接合されて蓄電池1の内部温度を間接的に測定する。温度検出手段5としては、サーミスタ等を用いることができる。液面検出手段7は例えばフロート式の液面計の出力を電気信号に変換するように構成されたものを用いることができる。電圧検出手段4と、電流検出手段5と、温度検出手段6と、液面検出手段7の出力は、それぞれアナログ信号であるため、マイクロコンピュータを用いて信号処理をするためには、A/D変換器を用いてアナログ信号をデジタル信号に変換する。この例では、マイクロコンピュータを用いて信号処理をするため各検出手段の出力をA/D変換している。     The voltage detection means 4 is comprised by the resistor circuit for voltage measurement connected between the output terminals of a storage battery, for example, and measures the voltage between terminals of the storage battery 1. FIG. The current detection means 5 comprises a current transformer, and measures the discharge current output from the storage battery 1 and the charging current for charging the storage battery. The temperature detection means 6 is joined to the outside of the battery case of the storage battery 1 and indirectly measures the internal temperature of the storage battery 1. As the temperature detection means 5, a thermistor or the like can be used. As the liquid level detecting means 7, for example, one configured to convert the output of a float type liquid level gauge into an electric signal can be used. Since the outputs of the voltage detection means 4, the current detection means 5, the temperature detection means 6 and the liquid level detection means 7 are analog signals, respectively, A / D is required for signal processing using a microcomputer. An analog signal is converted into a digital signal using a converter. In this example, the output of each detection means is A / D converted for signal processing using a microcomputer.

この例の蓄電池監視装置8は、蓄電池1の放電量と充電量とを演算する充放電量演算手段9と、充放電量演算手段9の演算結果から蓄電池1の残り容量を演算する残り容量演算手段10と、残り容量演算手段10により求めた残り容量が予め定めた値より小さくなったときに警報信号を出力する残り容量判定手段11とを備えている。なおこの例では、蓄電池1の充放電回数が予め定めた回数(例えば1000回)になったときに、満充電状態における蓄電池1の内部抵抗を測定する内部抵抗測定手段12と、この内部抵抗測定手段12により測定した内部抵抗に基いて蓄電池1の劣化状態を判定する劣化状態判定手段13とを更に具備している。   The storage battery monitoring device 8 in this example includes a charge / discharge amount calculation means 9 for calculating the discharge amount and the charge amount of the storage battery 1, and a remaining capacity calculation for calculating the remaining capacity of the storage battery 1 from the calculation result of the charge / discharge amount calculation means 9. Means 10 and remaining capacity determining means 11 for outputting an alarm signal when the remaining capacity obtained by the remaining capacity calculating means 10 becomes smaller than a predetermined value. In this example, when the number of times of charge / discharge of the storage battery 1 reaches a predetermined number (for example, 1000 times), the internal resistance measurement means 12 that measures the internal resistance of the storage battery 1 in a fully charged state, and the internal resistance measurement Deterioration state determination means 13 for determining the deterioration state of the storage battery 1 based on the internal resistance measured by the means 12 is further provided.

充放電量演算手段9は、電流検出手段5の出力から、蓄電池1から負荷に供給される電気量(放電電気量)と、蓄電池1を充電するための電気量(充電電気量)とを演算により求める。なお充放電量演算手段9が、温度検出手段6の出力に基いて温度補正を行う。   The charge / discharge amount calculation means 9 calculates the amount of electricity (discharge amount of electricity) supplied from the storage battery 1 to the load and the amount of electricity (charge amount of charge) for charging the storage battery 1 from the output of the current detection means 5. Ask for. The charge / discharge amount calculation means 9 performs temperature correction based on the output of the temperature detection means 6.

残り容量演算手段10は、劣化状態判定手段13の判定結果に基いて満充電状態における蓄電池1の容量を補正して、蓄電池1の残り容量を演算する。図3は、蓄電池の内部抵抗率と放電率との関係の一例を示す図である。この図において内部抵抗率は、放電率が0の電池すなわち新品の電池(劣化が進んでいない電池)の内部抵抗を基準内部抵抗[Ro]とし、スイッチ手段2を開状態にしているときに測定した内部抵抗[Rt]を基準内部抵抗で除した値である。そして放電率[α]とは、放電量[Ah]を蓄電池最大使用可能容量[AhF]で除した値である。蓄電池最大使用可能容量とは、満充電容量[AhF]から最小蓄電池残存容量[Ah]を引いた値である。蓄電池1の劣化が進行すると、内部抵抗が大きくなる上に、蓄電池最大使用可能容量が小さくなって、放電量と蓄電池最大使用可能容量の値が近付く。その結果放電率は大きくなる。すなわち内部抵抗率及び放電率が大きくなることは、蓄電池の劣化状態が進んでいることを意味する。また内部抵抗を知ることにより、劣化が進んだときにおける満充電時における満充電電気量(実際上は、蓄電池最大使用可能容量)を知ることができる。   The remaining capacity calculating means 10 calculates the remaining capacity of the storage battery 1 by correcting the capacity of the storage battery 1 in the fully charged state based on the determination result of the deterioration state determining means 13. FIG. 3 is a diagram illustrating an example of the relationship between the internal resistivity and the discharge rate of the storage battery. In this figure, the internal resistivity is measured when the internal resistance of a battery with a discharge rate of 0, that is, a new battery (a battery that has not progressed deterioration) is defined as a reference internal resistance [Ro] and the switch means 2 is in an open state. It is a value obtained by dividing the measured internal resistance [Rt] by the reference internal resistance. The discharge rate [α] is a value obtained by dividing the discharge amount [Ah] by the storage battery maximum usable capacity [AhF]. The storage battery maximum usable capacity is a value obtained by subtracting the minimum storage battery remaining capacity [Ah] from the full charge capacity [AhF]. As the deterioration of the storage battery 1 proceeds, the internal resistance increases and the maximum usable capacity of the storage battery decreases, and the discharge amount and the value of the maximum usable capacity of the storage battery approach each other. As a result, the discharge rate increases. That is, increasing the internal resistivity and discharge rate means that the deterioration state of the storage battery is progressing. Further, by knowing the internal resistance, it is possible to know the amount of fully charged electricity (in practice, the maximum usable capacity of the storage battery) at the time of full charge when the deterioration has progressed.

そこで劣化状態判定手段13は、内部抵抗測定手段12により測定した内部抵抗に基いて内部抵抗率を演算し、この内部抵抗率に基いて、図3に示すような内部抵抗率−放電率の関係データからその時点における劣化状態を判定し、その時点における満充電時の蓄電池の容量を補正するデータ(経年劣化量)を残り容量演算手段10に出力する。内部抵抗測定手段12が作動するときには、スイッチ手段2は開いた状態になる。これは内部抵抗の測定に負荷のインピーダンスが含まれると測定精度が落ちるためである。なお内部抵抗測定手段12及び劣化状態判定手段13の構成及び動作は後の具体的な例の説明で詳しく説明する。   Therefore, the deterioration state determining means 13 calculates the internal resistivity based on the internal resistance measured by the internal resistance measuring means 12, and based on this internal resistivity, the relationship between internal resistivity and discharge rate as shown in FIG. The deterioration state at that time is determined from the data, and data (aging deterioration amount) for correcting the capacity of the storage battery at the time of full charge is output to the remaining capacity calculation means 10. When the internal resistance measuring means 12 is operated, the switch means 2 is opened. This is because the measurement accuracy falls if the impedance of the load is included in the measurement of the internal resistance. The configuration and operation of the internal resistance measuring unit 12 and the deterioration state determining unit 13 will be described in detail in the description of a specific example later.

残り容量演算手段10は劣化状態を考慮して補正された満充電状態における蓄電池1の満充電容量を基準容量として、充放電量演算手段9の演算結果をこの基準容量に加減算することにより蓄電池の残り容量を演算する。残り容量判定手段11は、残り容量演算手段10により求めた残り容量が予め定めた値より小さくなったときに警報信号を出力する。ここで残り容量についての『予め定めた値』とは、スタータモータを少なくとも1回以上駆動するために必要な容量以上の値である。安全を見れば、2〜3回はスタータモータを駆動できるだけの容量を残り容量の予め定めた値とするのが好ましい。   The remaining capacity calculation means 10 uses the full charge capacity of the storage battery 1 in the fully charged state corrected in consideration of the deterioration state as a reference capacity, and adds / subtracts the calculation result of the charge / discharge amount calculation means 9 to / from this reference capacity. Calculate the remaining capacity. The remaining capacity determining means 11 outputs an alarm signal when the remaining capacity obtained by the remaining capacity calculating means 10 becomes smaller than a predetermined value. Here, the “predetermined value” for the remaining capacity is a value greater than the capacity required for driving the starter motor at least once. From the viewpoint of safety, it is preferable to set the capacity that can drive the starter motor to a predetermined value of the remaining capacity for a few times.

残り容量判定手段11が警報信号をスイッチ手段2に出力すると、スイッチ手段2が開状態になって蓄電池1から負荷への電力の供給は停止されて、過放電が阻止されて、エンジンの再起動のための電力の確保が達成される。スイッチ手段2が開いたときの負荷の容量が大きいと、エンジンによって駆動される発電機の負荷用発電コイルの出力電圧は低下し、エアコン、オーディオ等のように大きな電力を必要とする負荷はその動作を停止する。スイッチ手段2は、エンジンが停止して再度キースイッチ31をオン動作すると、リセットされて閉状態になる。なおエンジンの始動時にスイッチ手段2が開状態にならないようにするためには、例えばキースイッチ31がスタータモータを起動している期間は残り容量判定手段11が判定動作をしないように、スイッチ手段2が閉状態になってから所定の時間が経過するまでは残り容量判定手段11が動作しないように残り容量判定手段11を構成しておけばよい。具体的には、スイッチ手段2が閉状態になってからカウント動作を開始するタイマを用いればよい。   When the remaining capacity determination means 11 outputs an alarm signal to the switch means 2, the switch means 2 is opened, the supply of power from the storage battery 1 to the load is stopped, overdischarge is prevented, and the engine is restarted. Securing power for is achieved. When the capacity of the load when the switch means 2 is opened is large, the output voltage of the load generator coil of the generator driven by the engine decreases, and a load that requires a large amount of power, such as an air conditioner, audio, etc. Stop operation. The switch means 2 is reset and closed when the engine is stopped and the key switch 31 is turned on again. In order to prevent the switch means 2 from being opened when the engine is started, for example, the switch means 2 is set so that the remaining capacity judgment means 11 does not perform a judgment operation during the period when the key switch 31 is activating the starter motor. The remaining capacity determination means 11 may be configured so that the remaining capacity determination means 11 does not operate until a predetermined time elapses after the battery is closed. Specifically, a timer that starts a counting operation after the switch unit 2 is closed may be used.

この例では、電圧検出手段4、電流検出手段5、温度検出手段6、液面検出手段7、充放電演算手段9、残り容量判定手段11、劣化状態判定手段13、後述する液面判定手段14がそれぞれ使用状況検出手段を構成している。そしてこれらの使用状況検出手段の出力は、使用状況履歴記憶手段15に記憶される。データ量の多い出力については、サンプリングしてデータを記憶する。またこの例では、使用状況履歴記憶手段15に記憶されている履歴から蓄電池1の交換時期を判定し、交換時期に達したことを判定すると蓄電池交換警報信号を出力する蓄電池交換時期判定手段16を更に備えている。交換時期の判定は、例えば内部抵抗率及び放電率、温度上昇率等を基準値と対比し、これらのいずれか1つが基準値を超えたか否かに基いて行う。   In this example, the voltage detection means 4, the current detection means 5, the temperature detection means 6, the liquid level detection means 7, the charge / discharge calculation means 9, the remaining capacity determination means 11, the deterioration state determination means 13, and a liquid level determination means 14 described later. Respectively constitute usage status detection means. The outputs of the usage status detection means are stored in the usage status history storage means 15. For outputs with a large amount of data, the data is sampled and stored. In this example, the storage battery replacement time determination means 16 that outputs the storage battery replacement alarm signal when the replacement time of the storage battery 1 is determined from the history stored in the usage status history storage means 15 and it is determined that the replacement time has been reached. In addition. The determination of the replacement time is performed, for example, by comparing the internal resistivity, the discharge rate, the temperature rise rate, and the like with the reference value, and whether any one of these exceeds the reference value.

液面検出手段7は、蓄電池の電解液の液面を検出して電気信号として出力する。液面検出手段7はすべてのセルに対して装着してもよいが、複数のセルの中から坂道走行中でも各セルの液面を代表できるように配慮して選択した1つのセルに対して1つの液面検出手段7を設けるようにしてもよい。なお自動車は走行中に大きな振動を発生するため、振動が原因となって一時的に液面が低下することがある。そこで液面判定手段14は、液面検出手段7で検出した液面が繰り返し予め定めたレベル以下になると電解液補充警報信号を出力する。具体的には、5秒間測定し、液面が予め定めたレベル以下になる合計時間が2秒以下になったときに電解液補充警報信号を出力する。なお前述の温度検出手段6の出力が予め定めた温度以上になったとき、及び電解液補充警報信号が出力されたときにスイッチ手段2を開状態にするようにしてもよい。このようにすると蓄電池1が熱逸走状態になるのを防ぐことができる。   The liquid level detection means 7 detects the liquid level of the electrolyte of the storage battery and outputs it as an electrical signal. The liquid level detection means 7 may be attached to all the cells, but one cell is selected from among a plurality of cells in consideration of representing the liquid level of each cell even while traveling on a slope. Two liquid level detecting means 7 may be provided. Since automobiles generate large vibrations while traveling, the liquid level may temporarily decrease due to vibrations. Accordingly, the liquid level determination means 14 outputs an electrolyte replenishment alarm signal when the liquid level detected by the liquid level detection means 7 is repeatedly below a predetermined level. Specifically, measurement is performed for 5 seconds, and an electrolyte replenishment alarm signal is output when the total time during which the liquid level is equal to or lower than a predetermined level becomes 2 seconds or less. Note that the switch means 2 may be opened when the output of the temperature detecting means 6 is equal to or higher than a predetermined temperature and when an electrolyte replenishment alarm signal is output. If it does in this way, it can prevent that the storage battery 1 will be in a thermal runaway state.

図4(A)は、図1のスイッチ手段2を内蔵する蓄電池監視装置8をユニットにした場合の外観斜視図である。なお81は、通信用コネクタである。そして図4(B)は、この蓄電池監視装置8を蓄電池に実装した状態を示す斜視図である。
図5は、図1の構成をマイクロコンピュータを用いて実現する場合の主要部のハード構成を示す回路図である。なお図1に付した構成要素を構成する部材には、図1に付した符号と同じ符号を付してある。12Aは図1の内部抵抗測定手段12の一部を構成する強制放電回路である。この強制放電回路12Aは、放電抵抗Rと、スイッチSWと、アンプOP1と、微分回路12aとから構成されている。
FIG. 4A is an external perspective view when the storage battery monitoring device 8 incorporating the switch means 2 of FIG. 1 is unitized. Reference numeral 81 denotes a communication connector. FIG. 4B is a perspective view showing a state in which the storage battery monitoring device 8 is mounted on the storage battery.
FIG. 5 is a circuit diagram showing a hardware configuration of a main part when the configuration of FIG. 1 is realized using a microcomputer. The members constituting the components shown in FIG. 1 are denoted by the same reference numerals as those shown in FIG. Reference numeral 12A denotes a forced discharge circuit constituting a part of the internal resistance measuring means 12 of FIG. The forced discharge circuit 12A includes a discharge resistor R, a switch SW, an amplifier OP1, and a differentiation circuit 12a.

内部抵抗を測定する際には、スイッチSWをオン状態にして強制放電を行い、このときの電圧変化分を微分回路12aから出力する。内部抵抗測定手段12は、この電圧変化分を用いて公知の方法により内部抵抗を測定する。なお測定は、CPUによる演算により実行する。17はシリアル伝送装置であり、このシリアル伝送装置17は、蓄電池の情報信号を確認して車載ホストコンピュータと送受信する。このシリアル伝送装置17は、CANプロトコルに準拠した自動車用USBに接続可能な蓄電池情報信号を送受信し、少なくとも電池容量と電池交換時期を更新・表示するに足る表示装置に対応できる信号である。   When measuring the internal resistance, the switch SW is turned on to perform forced discharge, and the voltage change at this time is output from the differentiating circuit 12a. The internal resistance measuring means 12 measures the internal resistance by a known method using this voltage change. The measurement is performed by calculation by the CPU. Reference numeral 17 denotes a serial transmission device. The serial transmission device 17 confirms the information signal of the storage battery and transmits / receives it to / from the in-vehicle host computer. The serial transmission device 17 is a signal that can correspond to a display device that can transmit and receive a storage battery information signal connectable to a vehicle USB conforming to the CAN protocol, and at least update and display the battery capacity and the battery replacement time.

蓄電池監視装置8は、CPU81と、ROM82及び83と、RAM84と、A/D変換器85と、W/R86と、RTC87と、SIO88とから構成されている。シリアル伝送装置17は、CPU171と、ROM172及び173と、RAM174と、SIO175〜177とから構成されている。各強制放電回路12A、電圧検出手段4、電流検出手段5、温度検出手段6及び液面検出手段7の出力は絶縁アンプOP1〜OP5により増幅された後、A/D変換器85によりデジタル信号に変換される。蓄電池監視装置8では、A/D変換器85の出力に基いてCPU81で逐次演算を行い、シリアルデータをシリアル伝送装置17から1秒毎に出力する。   The storage battery monitoring device 8 includes a CPU 81, ROMs 82 and 83, a RAM 84, an A / D converter 85, a W / R 86, an RTC 87, and an SIO 88. The serial transmission device 17 includes a CPU 171, ROMs 172 and 173, a RAM 174, and SIOs 175 to 177. Outputs of each forced discharge circuit 12A, voltage detection means 4, current detection means 5, temperature detection means 6 and liquid level detection means 7 are amplified by insulation amplifiers OP1 to OP5, and then converted into digital signals by an A / D converter 85. Converted. In the storage battery monitoring device 8, the CPU 81 sequentially performs calculations based on the output of the A / D converter 85 and outputs serial data from the serial transmission device 17 every second.

CPU81では、蓄電池1の放電量と充電量とを演算し、その演算結果から蓄電池1の残り容量を演算し、演算により求めた残り容量が予め定めた値より小さくなったときに、図1のスイッチ手段2を開状態にするための警報信号を発生する。また蓄電池1の劣化状態を反映させるために、CPU81では、蓄電池1の充放電回数が予め定めた回数になったときに、満充電状態における蓄電池の内部抵抗を測定し、この内部抵抗に基いて蓄電池の劣化状態を判定し、その判定結果に基いて満充電状態における蓄電池の容量を補正する。そこで強制放電回路12Aの微分回路12aから得た電圧変化分に基いて、蓄電池1の内部抵抗を測定するための演算を行い、その結果を電池容量の演算に反映させる。なおこの演算用プログラムはROM82に格納する。演算に使用する各種データ(ex.蓄電池機種、温度補正)はROM83に格納する。そして各入力データはRAM84に格納する。   In the CPU 81, the discharge amount and the charge amount of the storage battery 1 are calculated, the remaining capacity of the storage battery 1 is calculated from the calculation result, and when the remaining capacity obtained by the calculation becomes smaller than a predetermined value, FIG. An alarm signal for opening the switch means 2 is generated. In order to reflect the deterioration state of the storage battery 1, the CPU 81 measures the internal resistance of the storage battery in the fully charged state when the number of charge / discharge times of the storage battery 1 reaches a predetermined number, and based on this internal resistance. The deterioration state of the storage battery is determined, and the capacity of the storage battery in the fully charged state is corrected based on the determination result. Therefore, based on the voltage change obtained from the differentiation circuit 12a of the forced discharge circuit 12A, an operation for measuring the internal resistance of the storage battery 1 is performed, and the result is reflected in the battery capacity calculation. This calculation program is stored in the ROM 82. Various data (ex. Storage battery model, temperature correction) used for calculation is stored in the ROM 83. Each input data is stored in the RAM 84.

シリアル伝送装置17の入力ライン17Bには、キーボード(パソコンで可)を接続することができ、外部から演算に使用する各種設定データを更新することができるようになっている。またライン17Aは、自動車のホストOSとの接続を行う通信ケーブルが接続される。なお自動車のホストOSは既存汎用OSを想定する。   A keyboard (possible with a personal computer) can be connected to the input line 17B of the serial transmission device 17, and various setting data used for calculation can be updated from the outside. The line 17A is connected to a communication cable for connection with the host OS of the automobile. It is assumed that the host OS of the automobile is an existing general-purpose OS.

次に基本動作を説明する。なお基本動作を説明する前に、以下の説明で用いる用語を以下のように定義する。
(1)残存容量〔Ah〕:蓄電池の残り容量をいう。
(2)満充電容量〔AhF〕:蓄電池を満充電した時の全容量をいう。
(3)最小蓄電池残存容量〔Ah〕:必ず残さなければならない下限容量通常は定格容量の20%とする。
(4)蓄電池最大使用可能容量〔AhF〕:満充電〔AhF〕から最小蓄電池残存容量を引いた値をいう。
(5)蓄電池使用可能容量〔Ah〕:残存容量〔Ah〕から最小蓄電池残存容量〔Ah〕を引いた値をいう。
(6)満充電:蓄電池充電時において蓄電池の端子電圧が14.5V以上、充電電流が電池メーカーの該当品種に推奨するA以下の状態をもって満充電と判定する(ex.0.05A)。
(7)稼働中:蓄電池から0.5A以上の電流が流れている状態をいう。
(8)停止中:蓄電池電流が0〜0.5A未満の状態が2秒以上継続した状態をいう。
(9)基準内部抵抗〔R0〕:満充電完了直後に測定した内部抵抗をいう。
(10)内部抵抗率〔Rr〕:停止中に測定した内部抵抗〔Rt〕を基準内部抵抗〔R0〕で除した値をいう。
(11)放電率〔α〕:放電量〔Ah〕を蓄電池最大使用可能容量〔AhF〕で除した値をいう。
(12)自己放電量:イグニッションキーoff時に自然放電により放電する放電量をいう。この自己放電量はターミナルから任意に変更可能な設定値とされる。
通常は、電池メーカーの該当品種に指定している自己放電量とする〔ex.(0.4〜1.0/100)x定格容量Ah/日〕。
(13)経年劣化量〔kd〕:蓄電池の充放電繰返しに伴い満充電容量が減少する量をいう。この経年劣化量はターミナルから任意に変更可能な設定値とする。 (14)累積誤差〔δ〕:頻繁な充放電の度に発生する電流測定の微小誤差を累積したもの〔Σ±Ah(t)〕をいう。
Next, the basic operation will be described. Before describing the basic operation, terms used in the following description are defined as follows.
(1) Remaining capacity [Ah]: The remaining capacity of the storage battery.
(2) Full charge capacity [AhF]: The full capacity when the storage battery is fully charged.
(3) Minimum storage battery remaining capacity [Ah]: The lower limit capacity that must always remain, usually 20% of the rated capacity.
(4) Storage battery maximum usable capacity [AhF]: A value obtained by subtracting the minimum storage battery remaining capacity from full charge [AhF].
(5) Storage battery usable capacity [Ah]: A value obtained by subtracting the minimum storage battery remaining capacity [Ah] from the remaining capacity [Ah].
(6) Full charge: When the storage battery is charged, the battery is determined to be fully charged when the terminal voltage of the storage battery is 14.5 V or more and the charging current is A or less recommended for the corresponding type of battery manufacturer (ex. 0.05A).
(7) In operation: A state in which a current of 0.5 A or more flows from the storage battery.
(8) During stop: A state where the state where the storage battery current is 0 to less than 0.5 A is continued for 2 seconds or more.
(9) Reference internal resistance [R0]: Refers to the internal resistance measured immediately after full charge is completed.
(10) Internal resistivity [Rr]: A value obtained by dividing the internal resistance [Rt] measured during the stop by the reference internal resistance [R0].
(11) Discharge rate [α]: A value obtained by dividing the discharge amount [Ah] by the maximum usable capacity [AhF] of the storage battery.
(12) Self-discharge amount: A discharge amount discharged by natural discharge when the ignition key is turned off. This self-discharge amount is a set value that can be arbitrarily changed from the terminal.
Usually, the self-discharge amount specified for the corresponding type of battery manufacturer [ex. (0.4 to 1.0 / 100) x rated capacity Ah / day].
(13) Aged deterioration amount [kd]: An amount by which the full charge capacity decreases as the storage battery is repeatedly charged and discharged. This amount of aging is set to a value that can be arbitrarily changed from the terminal. (14) Accumulated error [δ]: Accumulated minute error of current measurement that occurs at each frequent charge / discharge [Σ ± Ah (t)].

基本の動作は次の通りである。
(1)蓄電池1を初回満充電完了した後に、イグニッションキースイッチをonする初めての放電で監視装置8を起動し以後の履歴を記録する。
(2)監視開始を確認後イグニッションキーをoffにして、蓄電池の停止を確認すると、最初の内部抵抗測定を行い電池容量データを発信する。
(3)以後、電流値を監視し、ROMデータを参照して温度補正を行いイグニッションキーon時に、電池残存容量を1秒毎に更新する。電流値の監視は、蓄電池が予め設定した要保護容量まで放電するか、又は充電量が放電量を上回って満充電条件を満足するまでの間は、電流値を細かく積算し電池残存容量を求め続ける。
(4)更に、この間電流の流れが逆転する回数をカウントする。蓄電池の電流の流れが逆転する回数(充放電回数)が設定回数(例えば1000回)を越えると、速やかに満充電にした後、遮断スイッチ手段2による蓄電池の停止を確認すると、監視装置内の抵抗負荷Rに強制的に瞬時電流を流し、内部抵抗を測定して、満充電を確認した後電池容量を基準容量と対比してリセットし満充電容量を更新する。
(5)イグニッションキーoff時、蓄電池1に電流が流れておらず、長時間駐車状態の時は、自己放電量を算出し、電池容量を減ずる。
なお、自己放電係数はターミナルから入力した値を使用する。放電量の累計は満充電容量が更新されたら、その時点から充・放電量の累計を新たに始める。
(6)経年劣化が生じた時には次のようにする。まず計測部内の抵抗負荷Rに強制的に瞬時電流を流し内部抵抗を測定する。そして内部抵抗をROMデータと対比することにより推定した満充電容量からリセットの為新しく満充電にして内部抵抗を測定して、ROMデータより推定した満充電容量の差を経年劣化量〔kd(t)〕として算出し、新しい測定容量値を新しい満充電量AhF(t)とする。放電量の累計は満充電容量が更新されたら、その時点から充・放電量の累計を新たに始める。
The basic operation is as follows.
(1) After the first full charge of the storage battery 1 is completed, the monitoring device 8 is activated by the first discharge that turns on the ignition key switch, and the subsequent history is recorded.
(2) After confirming the start of monitoring, turning off the ignition key and confirming the stop of the storage battery, the first internal resistance measurement is performed and battery capacity data is transmitted.
(3) Thereafter, the current value is monitored, temperature correction is performed with reference to the ROM data, and the remaining battery capacity is updated every second when the ignition key is on. The current value is monitored by calculating the remaining battery capacity by finely integrating the current value until the storage battery discharges to the required protection capacity or until the charge amount exceeds the discharge amount and satisfies the full charge condition. to continue.
(4) Further, the number of times the current flow reverses during this time is counted. When the number of times the current flow of the storage battery reverses (number of charge / discharge) exceeds a set number (for example, 1000 times), the battery is quickly fully charged and then the stop of the storage battery by the shutoff switch means 2 is confirmed. An instantaneous current is forcibly passed through the resistance load R, the internal resistance is measured, and after confirming full charge, the battery capacity is reset against the reference capacity to update the full charge capacity.
(5) When the ignition key is off, when no current flows through the storage battery 1 and the vehicle is parked for a long time, the self-discharge amount is calculated and the battery capacity is reduced.
The self-discharge coefficient is the value input from the terminal. When the full charge capacity is updated, the total amount of discharge starts from the point of time when the full charge capacity is updated.
(6) When aged deterioration occurs, do as follows. First, an instantaneous current is forcibly passed through the resistance load R in the measurement unit to measure the internal resistance. Then, the internal resistance is measured from the full charge capacity estimated by comparing the internal resistance with the ROM data, and then the internal resistance is measured by resetting to a new full charge, and the difference between the full charge capacities estimated from the ROM data is calculated as the amount of aging degradation [kd (t )], And the new measured capacity value is defined as a new full charge amount AhF (t). When the full charge capacity is updated, the total amount of discharge starts from the point of time when the full charge capacity is updated.

上記のような動作をさせるために、具体的には次のようにする。まず鉛蓄電池は、定格容量の80%以上放電すると著しく寿命が劣化するので、DOD80%放電時点(前述のポイント蓄電池使用可能容量)を精度良く検出し、その時点でメータの残存容量表示を0にする。メータは自動車の運転席に設置してもよいし、監視装置のユニットに装着してもよい。   In order to perform the operation as described above, specifically, the following is performed. First of all, the life of lead-acid batteries is significantly deteriorated when 80% or more of the rated capacity is discharged, so the DOD 80% discharge point (the above-mentioned point battery usable capacity) is accurately detected, and the remaining capacity display of the meter is set to zero at that point. To do. The meter may be installed in the driver's seat of the automobile or may be mounted on the monitoring device unit.

また、鉛蓄電池は、使用条件(蓄電池温度、放電電流、内部電解液量等)によって取り出し可能な電気エネルギー(蓄電池使用可能容量)が大きく変化するので、常に蓄電池使用可能容量を補正していく必要がある。そこで、蓄電池残存容量の算出に電流積算方式と内部抵抗方式を併用し、蓄電池残存容量の算出精度を高めることとする。すなわち、蓄電池使用可能容量の100〜30%の範囲までは蓄電池の放電電流をきめ細かく積算して蓄電池容量から差し引いて(電流積算方式)表示し、30〜0%の範囲では蓄電池内部抵抗を測定し(内部抵抗検出方式)電流積算方式で求めた残存容量を補正して表示する方法とする。   In addition, for lead-acid batteries, the electrical energy (storage battery usable capacity) that can be taken out varies greatly depending on the usage conditions (storage battery temperature, discharge current, internal electrolyte amount, etc.), so it is necessary to constantly correct the storage battery usable capacity. There is. Therefore, the current accumulation method and the internal resistance method are used in combination for the calculation of the remaining capacity of the storage battery to increase the calculation accuracy of the remaining capacity of the storage battery. That is, for the range of 100 to 30% of the usable capacity of the storage battery, the discharge current of the storage battery is finely integrated and subtracted from the storage battery capacity (current integration method), and in the range of 30 to 0%, the internal resistance of the storage battery is measured. (Internal resistance detection method) A method of correcting and displaying the remaining capacity obtained by the current integration method.

更に、ガソリンエンジン車の頻繁な充放電に対応する蓄電池はこの間に発生する累積誤差を適宜キャンセルする必要がある。そこで、蓄電池から見て電流の方向が逆転する回数(充放電回数)をカウントし、予め設定した回数毎に、蓄電池を満充電にして内部抵抗を測定しROMデータと対比して推定する方法でメータ容量と比較し満充電容量を更新することによりリセットを行う。   Furthermore, a storage battery corresponding to frequent charging / discharging of a gasoline engine vehicle needs to appropriately cancel the accumulated error generated during this time. Therefore, by counting the number of times that the direction of current reverses when viewed from the storage battery (number of times of charging / discharging), and for every preset number of times, the storage battery is fully charged and the internal resistance is measured and compared with the ROM data. Reset by updating the full charge capacity compared to the meter capacity.

初回満充電完了後、イグニッションキースイッチをonにすると、蓄電池を初めて放電した時の電圧値と、予め設定した電圧値、例えば11Vと比較して、放電電圧が前記設定電圧を下回った時点を検出する回路手段が蓄電池監視装置8の内部に別に設けられている。したがって、電池を自動車に搭載した時点までは、電池電圧は殆ど12V以上であるため、本監視装置が電池容量の監視を開始しない。しかし、エンジンの始動やランプ、AV装置、ワイパー等の使用により、蓄電池が瞬時ではあっても大電流で放電されると、電池電圧は急激に低下して設定電圧11Vを下回り、この時点を前記回路手段が検出する。そして、この放電時の電圧が設定電圧値を下回った時点から、電池の監視を開始する。この回路手段は、一旦、監視を開始するとスイッチが切断して毎回の電池の始動によって上記の命令がその都度繰り返されることを防止する。また、蓄電池の履歴データは本装置の記憶容量を補助する目的でターミナルを通じ一定量毎に外部のログファイルに通信記録する。   When the ignition key switch is turned on after the first full charge is completed, the voltage value when the storage battery is discharged for the first time is compared with a preset voltage value, for example, 11V, and the time when the discharge voltage falls below the set voltage is detected. A circuit means is provided in the storage battery monitoring device 8 separately. Therefore, until the battery is mounted on the automobile, the battery voltage is almost 12 V or higher, so this monitoring device does not start monitoring the battery capacity. However, if the storage battery is discharged at a large current even if it is instantaneous due to the start of the engine or the use of a lamp, an AV device, a wiper, etc., the battery voltage drops rapidly and falls below the set voltage 11V, The circuit means detects. Then, monitoring of the battery is started from the time when the voltage at the time of discharge falls below the set voltage value. This circuit means prevents the above command from being repeated each time the battery is started every time the monitoring is started once monitoring is started. In addition, the storage battery history data is recorded and recorded in an external log file for each fixed amount through the terminal for the purpose of assisting the storage capacity of the apparatus.

次に蓄電池監視装置で蓄電池の残存容量を算出する場合の具体例を説明する。
(1)取り付け時(主蓄電池の取替え時も含む)
取付け時は自動車の蓄電池を満充電状態にしておくことを条件とする。この時の満充電容量及び残存容量は、蓄電池の劣化度合にかかわらず定格容量と(Ah)し、自己放電量及び経年劣化量は0としておく。
(2)稼働中及び停止中
残存容量の算出は電流積算方式による。算出式を以下の式[1]に示す。
Ah(t)=Ah(0)−Σ(kd・id・△t)+Σ(kr・ir・△t)
……[1]
ここで、
Ah(t):時刻tにおける残存容量〔Ah〕
Ah(0):時刻0における残存容量〔Ah〕
Σ(kd・id・△t):時刻0からtまでに使用した電気量
Σ(kr・ir・△t):時刻0からtまでに充電された電気量
kd:放電電流値
id:放電電流係数
ir:充電電流値
kr:充電電流係数:任意に変更可能とする
電流値のサンプリング回数は毎秒5000サンプリングとし、その5000サンプリングの積分値を1秒毎の電流値とする。
i.e. I=Σi・△t
I:一秒毎の電流値〔A〕
i:電流の瞬時値〔A/S〕
△t:サンプリング間隔(0.2mS)
(3)満充電容量及び残存容量の補正強制放電により求めた内部抵抗率〔Rr〕を基に、その時点の残存容量〔Ah〕及び満充電容量〔AhF〕を後述の内部抵抗から満充電量及び残存容量を推定する手法により補正する。
(4)充電時も基本的には電流積算方式により計算する。式[2]に充電時の残存容量〔Ah〕の算出式を示す。
Ah(t)=Ah(t1 )−Σ(kc・ic・△t) ……[2]
ここで、
Ah(t):時刻tにおける残存容量〔Ah〕
Ah(t1 ):時刻t1 における残存容量〔Ah〕
Σ(kc・ic・△t):時刻t1 からtまでに充電した電気量
ic:充電電流値
kc:充電電流係数:任意に変更可能とする
但し、充電時に残存容量がその時メータ内部に持っている満充電容量を越えた場合は、残存容量は満充電容量と同じとする。また、充電時に満充電条件が成立したが、残存容量がメータ内部に持っている満充電容量に未達の場合は、その時の残存容量を満充電容量とし、満充電されたものとする。また、充電時に満充電条件が不成立で、残存容量がその時メータ内部に持っている満充電容量に未達の場合は、満充電容量は変更せず残存容量もその時点の容量とする。
Next, a specific example when the remaining capacity of the storage battery is calculated by the storage battery monitoring device will be described.
(1) When installed (including when replacing the main battery)
At the time of installation, the storage battery of the car must be in a fully charged state. The full charge capacity and remaining capacity at this time are set to the rated capacity (Ah) regardless of the degree of deterioration of the storage battery, and the self-discharge amount and the aging deterioration amount are set to zero.
(2) Operating and stopped The remaining capacity is calculated by the current integration method. The calculation formula is shown in the following formula [1].
Ah (t) = Ah (0) −Σ (kd · id · Δt) + Σ (kr · ir · Δt)
…… [1]
here,
Ah (t): Remaining capacity at time t [Ah]
Ah (0): Remaining capacity at time 0 [Ah]
Σ (kd · id · Δt): amount of electricity used from time 0 to t Σ (kr · ir · Δt): amount of electricity charged from time 0 to t kd: discharge current value id: discharge current Coefficient ir: Charging current value kr: Charging current coefficient: arbitrarily changeable The sampling number of the current value is 5000 sampling per second, and the integrated value of 5000 sampling is the current value per second.
i. e. I = Σi · Δt
I: Current value per second [A]
i: Instantaneous value of current [A / S]
Δt: Sampling interval (0.2 mS)
(3) Full charge capacity and remaining capacity correction Based on the internal resistivity [Rr] determined by forced discharge, the remaining capacity [Ah] and the full charge capacity [AhF] at that time are calculated from the internal resistance described later. And it correct | amends by the method of estimating remaining capacity.
(4) Basically, the current integration method is used for charging. Formula [2] shows a formula for calculating the remaining capacity [Ah] during charging.
Ah (t) = Ah (t1) -Σ (kc · ic · Δt) (2)
here,
Ah (t): Remaining capacity at time t [Ah]
Ah (t1): Remaining capacity at time t1 [Ah]
Σ (kc · ic · Δt): Amount of electricity charged from time t1 to t ic: Charging current value kc: Charging current coefficient: Can be arbitrarily changed However, the remaining capacity at the time is held inside the meter at the time of charging If the full charge capacity is exceeded, the remaining capacity is the same as the full charge capacity. Further, when the full charge condition is satisfied at the time of charging but the remaining capacity has not reached the full charge capacity held in the meter, the remaining capacity at that time is assumed to be the full charge capacity, and it is assumed that the battery is fully charged. Further, when the full charge condition is not satisfied at the time of charging and the remaining capacity does not reach the full charge capacity held in the meter at that time, the full charge capacity is not changed, and the remaining capacity is set to the capacity at that time.

自己放電については次のように処理する。イグニッションキースイッチをoffの状態で放置しておいた時間を分単位で計測し、その時間に一分間当たりの自己放電量〔ex.(0.4〜1.0/100)x容量/24x60A・min.〕を掛けた値を、次回にイグニッションキーをonにした時点で残存容量から減じる。但し、充電中に自己放電はないものと見なし、イグニッションキースイッチがoffでも自己放電のカウントは行わない。   The self-discharge is processed as follows. The time for which the ignition key switch is left off is measured in minutes, and the self-discharge amount per minute [ex. (0.4 to 1.0 / 100) × capacity / 24 × 60 A · min. ] Is subtracted from the remaining capacity when the ignition key is turned on next time. However, it is assumed that there is no self-discharge during charging, and the self-discharge is not counted even if the ignition key switch is turned off.

経年劣化は次のようにして処理する。リセットの為満充電にして測定し、ROMデータと対比することにより推定した最新の電池容量と、起動時測定した内部抵抗率から導いた電池容量の差として経年劣化量〔kd(t)〕を算出し、最新の電池容量推定値を新しい満充電量AhF(t)とする。なお、最新の内部抵抗率は、ターミナルから入力修正することが出来る。   Aging is handled as follows. Aged deterioration [kd (t)] as the difference between the latest battery capacity estimated by full charge for reset and compared with ROM data and the battery capacity derived from the internal resistivity measured at start-up The latest estimated battery capacity value is calculated as the new full charge amount AhF (t). The latest internal resistivity can be corrected from the terminal.

放電量の累計は満充電容量が更新されたら、その時点から放電量の累計を新たに始める。更新された満充電容量AhF(t)は下記の[3]式により演算することができる。
AhF(t)=AhF(t−1)−kd ……[3]
上記式において、AhF(t−1)はその前にメータ内部に持っていた満充電容量であり、kdは経年劣化量である。
When the full charge capacity is updated, the cumulative total of the discharge amount is newly started from that point. The updated full charge capacity AhF (t) can be calculated by the following equation [3].
AhF (t) = AhF (t-1) -kd [3]
In the above equation, AhF (t−1) is the full charge capacity that was previously held inside the meter, and kd is the amount of deterioration over time.

蓄電池交換時期警報は次のようにして発生する。蓄電池交換時期警報は、満充電容量が経年劣化等で定格容量の半分以下の状態が連続して10回以上継続し、あらかじめ設定入力した蓄電池のしきい値以下になったとき発信する。   The battery replacement time alarm is generated as follows. The storage battery replacement time alarm is issued when the full charge capacity continues to be less than half of the rated capacity due to aging or the like continuously for 10 times or more and falls below the preset threshold value of the storage battery.

上記の各種の演算に用いるソフトウエアのアルゴリズムで用いる各係数を表1に示す。このアルゴリズムの基礎となる蓄電池の放電特性は図3に示す通りである。   Table 1 shows the coefficients used in the software algorithm used for the various operations described above. The discharge characteristics of the storage battery that is the basis of this algorithm are as shown in FIG.

Figure 2005164604
Figure 2005164604

次に液面の監視について説明する。
液面検出手段7として電子液面計を用いる。この電子液面計は、液面のバランスする対向位置に取り付けたセンサを用いて予め設定した測定回数の測定を行い、総露出回数により液位置を判定する。判定は下記で行う。
Σe(t)・S>K 露出
Σe(t)・S≦K 液中
センサの数 S
測定時間 t
測定回数 NT
露出回数 e
総露出回数 Σe(t)
判定回数 K
次に、強制放電による内部抵抗測定から蓄電池の満充電容量及び残存容量を推定する方法について説明する。以下(1)〜(5)に手順を説明する。
(1)満充電完了直後に瞬時強制放電を10回行い、その平均値の内部抵抗を基準内部抵抗値R0とする。(瞬時強制放電を10回の所要時間は200ms)
(2)無負荷停止(蓄電池電流0〜0.5A以内が2秒以上継続した場合)を確認した後、10回を1サンプルとして瞬時強制放電を一回だけ実施し、その平均値から蓄電池内部抵抗率を求める。
(3)この時、内部抵抗率〔Rr〕が1.2%以上になったら、予め実験で求めておいた内部抵抗率と満充電容量に対するその時点までの放電量の割合α(以下、放電率という)の関係を示す放電率テーブル(図3)を参照し、放電率αtを求める。なお、内部抵抗率〔Rr〕が1.2%以下の時は、満充電容量AhF(t)、残存容量Ah(t)ともその都度の補正は行わないが、一定期間毎に行う内部抵抗測定に対応して満充電容量リセットとは別に残容量を補正する。
(4)この放電率αtを基に、以下の(イ)及び(ロ)に示す通り満充電容量と残存容量を補正する。
(イ)満充電容量の推定方法
満充電容量をAhF(t)として、以下にその算出式を示す。
AhF(t)=Σid(t)/αt
ここで、
Σid(t):その時(時刻t)までに放電した放電量
αt :放電率である。
(ロ)残存容量の推定方法残存容量をAh(t)として、以下にその算出式を示す。
Ah(t)=(満充電容量)−(その時までに放電した放電量)
=AhF(t)−Σid(t)
=(1/αt)Σid(t)−Σid(t)
={(1−αt)/αt}Σid(t)
(ハ)リセット−ゼロ調整
蓄電池が満充電条件を満足すると内部抵抗を測定しメータをリセットする。停車時、メータリセット表示信号は運転者にアイドリング継続要求信号で許可を要請し、満充電になるまでアイドリングを継続して満充電条件を満足させ内部抵抗を測定しメータをリセットする。
Next, the liquid level monitoring will be described.
An electronic liquid level gauge is used as the liquid level detecting means 7. This electronic liquid level gauge measures a preset number of measurements using a sensor attached to a counter position where the liquid level is balanced, and determines the liquid position based on the total number of exposures. Judgment is performed as follows.
Σe (t) · S> K Exposure Σe (t) · S ≦ K Number of sensors in liquid S
Measurement time t
Number of measurements NT
Number of exposures e
Total exposure times Σe (t)
Number of judgments K
Next, a method for estimating the full charge capacity and remaining capacity of the storage battery from internal resistance measurement by forced discharge will be described. The procedure will be described below in (1) to (5).
(1) Immediately after completion of full charge, instantaneous forced discharge is performed 10 times, and the average internal resistance is set as a reference internal resistance value R0. (The time required for 10 instantaneous forced discharges is 200 ms)
(2) After confirming no-load stop (when battery current is within 0-0.5A continues for 2 seconds or more), perform 10 times as one sample and perform instantaneous forced discharge only once, and from the average value inside the battery Find the resistivity.
(3) At this time, if the internal resistivity [Rr] becomes 1.2% or more, the ratio α (hereinafter referred to as discharge) The discharge rate αt is obtained with reference to a discharge rate table (FIG. 3) showing the relationship of the rate). When the internal resistivity [Rr] is 1.2% or less, the full charge capacity AhF (t) and the remaining capacity Ah (t) are not corrected each time, but the internal resistance measurement is performed at regular intervals. In response to, the remaining capacity is corrected separately from the full charge capacity reset.
(4) Based on the discharge rate αt, the full charge capacity and the remaining capacity are corrected as shown in the following (A) and (B).
(A) Method for estimating the full charge capacity The full charge capacity is AhF (t) and the calculation formula is shown below.
AhF (t) = Σid (t) / αt
here,
Σid (t): discharge amount discharged up to that time (time t) αt: discharge rate.
(B) Method for estimating remaining capacity The remaining capacity is Ah (t), and the calculation formula is shown below.
Ah (t) = (full charge capacity) − (discharge amount discharged up to that time)
= AhF (t) -Σid (t)
= (1 / αt) Σid (t) −Σid (t)
= {(1-αt) / αt} Σid (t)
(C) Reset-zero adjustment When the storage battery satisfies the full charge condition, the internal resistance is measured and the meter is reset. When the vehicle stops, the meter reset display signal requests permission from the driver with an idling continuation request signal, continues idling until the battery is fully charged, satisfies the full charge condition, measures the internal resistance, and resets the meter.

上記の実施形態によれば、蓄電池監視装置8に組み込んだICと車載コンピュータを対話させながら正確な電源管理を行い、温度と過放電監視が行え、自動冷却が可能となり、プロテクターで過剰負荷よりバッテリを保護することにより、スタータモータの始動を確実に保証できる。更に、補水タイミングを運転席に表示して、下限ラインをキープすることにより、万一の爆発事故を予防出来る。また蓄電池の履歴を記録することで、確実な蓄電池のメンテナンスが容易に行える様になり、適切な交換時期の判断・アドバイスも可能になる。以上の通り走行中でも残存容量を高精度で表示することができるので、運転者は安心して走行でき、且つ、電池容量いっぱいまで運転でき、利用効率の向上が図れる。この他、既存の自動車用LANと共通の信号処理方法を取ることで、車載コンピュータの指示で各種のアクチュエータを駆動して一括制御することが可能になる。例えば、盗難防止、A/T車のアイドリングストップ(エンジンのこまめスイッチング)、ライトの自動点滅(トンネル・交差点)、冷暖房予約や暖気運転、待ち受け消費電力対策(ex.スリープ機能)が可能となる。   According to the above embodiment, accurate power management is performed while the IC incorporated in the storage battery monitoring device 8 interacts with the in-vehicle computer, temperature and overdischarge monitoring can be performed, automatic cooling can be performed, and the battery can be protected from excessive load by a protector. By protecting this, the starter motor can be reliably started. Furthermore, by displaying the rehydration timing on the driver's seat and keeping the lower limit line, an accidental explosion can be prevented. In addition, by recording the storage battery history, it is possible to easily perform reliable storage battery maintenance, and it is possible to determine and give advice on an appropriate replacement time. As described above, the remaining capacity can be displayed with high accuracy even while traveling, so that the driver can travel with peace of mind and can drive to the full battery capacity, thereby improving the utilization efficiency. In addition, by using a signal processing method that is common to existing automotive LANs, various actuators can be driven and collectively controlled by instructions from the in-vehicle computer. For example, theft prevention, idling stop of A / T car (engine switching frequently), automatic blinking of light (tunnel / intersection), air-conditioning reservation and warm-up operation, and standby power consumption measures (ex. Sleep function) are possible.

また、液面検出手段7の出力により、車載メータまたはNAVI等の運転席表示装置に液面の状態及び警報を表示することができる。表示用出力信号はCANプロトコルに準拠、既設の車載メータパネルやNAVI画面等に表示できる。
更に温度検出手段6の出力により蓄電池1に取り付けた自動冷却装置(ファンor水冷)を駆動してもよい。また車の車速信号や、車室設置の光センサに対応して、エンジンのこまめスイッチングやライトの自動点滅を行ってもよい。
この監視装置8は、蓄電池1が車搭載後、初めての放電でタイマの起動監視を開始し以後の履歴を記録する。電源管理は蓄電池の電流、電圧、温度及び電池内部抵抗(強制放電時の電圧変化量及び電流変化量から算出)を計測し、デジタルデータ処理して蓄電池容量を算出する方法で行う。
Further, the level of the liquid level and an alarm can be displayed on the driver's seat display device such as an in-vehicle meter or NAVI by the output of the liquid level detecting means 7. The display output signal conforms to the CAN protocol, and can be displayed on an existing vehicle-mounted meter panel or NAVI screen.
Further, an automatic cooling device (fan or water cooling) attached to the storage battery 1 may be driven by the output of the temperature detection means 6. In addition, engine frequent switching or automatic light flashing may be performed in response to a vehicle speed signal or a light sensor installed in the passenger compartment.
This monitoring device 8 starts the timer start monitoring by the first discharge after the storage battery 1 is mounted on the vehicle, and records the subsequent history. The power supply management is performed by measuring the storage battery current, voltage, temperature, and battery internal resistance (calculated from the voltage change amount and the current change amount during forced discharge) and processing the digital data to calculate the storage battery capacity.

本発明の一実施形態の構成を示したブロック図である。It is the block diagram which showed the structure of one Embodiment of this invention. 蓄電池の負荷回路を示す回路図である。It is a circuit diagram which shows the load circuit of a storage battery. 蓄電池の内部抵抗率と放電率との関係の一例を示す図である。It is a figure which shows an example of the relationship between the internal resistivity of a storage battery, and a discharge rate. (A)は、図1のスイッチ手段を内蔵する蓄電池監視装置をユニットにした場合の外観斜視図であり、(B)は図1(A)の蓄電池監視装置を蓄電池に実装した状態を示す斜視図である。(A) is an external appearance perspective view at the time of making the storage battery monitoring apparatus which incorporates the switch means of FIG. 1 into a unit, (B) is a perspective view which shows the state which mounted the storage battery monitoring apparatus of FIG. 1 (A) in the storage battery. FIG. 図1の構成をマイクロコンピュータを用いて実現する場合の主要部のハード構成を示す回路図である。It is a circuit diagram which shows the hardware constitutions of the principal part in the case of implement | achieving the structure of FIG. 1 using a microcomputer.

符号の説明Explanation of symbols

1 蓄電池
2 スイッチ手段
3 負荷
4 電圧検出手段
5 電流検出手段
6 温度検出手段
7 液面検出手段
8 蓄電池監視装置
9 充放電量演算手段
10 残り容量判定手段
11 残り容量判定手段
12 内部抵抗測定手段
13 劣化状態判定手段
14 液面判定手段
15 使用状況履歴記憶手段
16 蓄電池交換時期判定手段
17 シリアル伝送装置
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Switch means 3 Load 4 Voltage detection means 5 Current detection means 6 Temperature detection means 7 Liquid level detection means 8 Storage battery monitoring apparatus 9 Charge / discharge amount calculation means 10 Remaining capacity determination means 11 Remaining capacity determination means 12 Internal resistance measurement means 13 Deterioration state determination means 14 Liquid level determination means 15 Usage status history storage means 16 Storage battery replacement time determination means 17 Serial transmission device

Claims (3)

蓄電池の放電電気量、充電電気量等の電池使用状況を検出する使用状況検出手段と、前記使用状況検出手段の検出結果を履歴として記憶する使用状況履歴記憶手段とを備えていることを特徴とする蓄電池の監視装置。 It is characterized by comprising usage status detecting means for detecting the battery usage status such as the amount of discharged electricity and the amount of charged electricity of the storage battery, and usage status history storage means for storing the detection result of the usage status detecting means as history. Storage battery monitoring device. 前記使用状況履歴記憶手段に記憶されている前記履歴から前記蓄電池の交換時期を判定し、交換時期に達したことを判定したときに蓄電池交換警報信号を出力する蓄電池交換時期判定手段を更に備えている請求項1に記載の蓄電池の監視装置。 It further comprises storage battery replacement time determination means for determining a replacement time of the storage battery from the history stored in the usage status history storage means and outputting a storage battery replacement alarm signal when it is determined that the replacement time has been reached. The storage battery monitoring device according to claim 1. 前記蓄電池は、電解液の補充を必要とする蓄電池であって、前記蓄電池の電解液の液面を検出する液面検出手段が設けられ、
前記液面検出手段で検出した前記液面が繰り返し予め定めたレベル以下になったときに電解液補充警報信号を出力する液面判定手段が更に設けられていることを特徴とする請求項1または2に記載の蓄電池の監視装置。
The storage battery is a storage battery that requires replenishment of an electrolytic solution, and is provided with a liquid level detection means for detecting the liquid level of the electrolytic solution of the storage battery,
2. A liquid level determining means for outputting an electrolyte replenishment warning signal when the liquid level detected by the liquid level detecting means repeatedly falls below a predetermined level is further provided. 2. The storage battery monitoring apparatus according to 2.
JP2004365851A 2004-12-17 2004-12-17 Monitoring device for storage battery Pending JP2005164604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365851A JP2005164604A (en) 2004-12-17 2004-12-17 Monitoring device for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365851A JP2005164604A (en) 2004-12-17 2004-12-17 Monitoring device for storage battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08844899A Division JP3686776B2 (en) 1999-03-30 1999-03-30 Overdischarge prevention device for storage battery

Publications (1)

Publication Number Publication Date
JP2005164604A true JP2005164604A (en) 2005-06-23

Family

ID=34737435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365851A Pending JP2005164604A (en) 2004-12-17 2004-12-17 Monitoring device for storage battery

Country Status (1)

Country Link
JP (1) JP2005164604A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099898A1 (en) * 2006-02-27 2007-09-07 Sony Corporation Battery pack, electronic device and method for detecting remaining quantity in battery
JP2008120381A (en) * 2006-11-15 2008-05-29 Glacier Bay Inc Hvac (heating, ventilation and air conditioning) system
JP2008260345A (en) * 2007-04-10 2008-10-30 Shin Kobe Electric Mach Co Ltd Battery condition determination device and automotive lead battery
WO2010007681A1 (en) * 2008-07-17 2010-01-21 三菱重工業株式会社 Storage battery system, storage battery monitoring device, and storage battery monitoring method
JP2010063222A (en) * 2008-09-02 2010-03-18 Toyota Motor Corp Data recording apparatus for electric vehicle battery and battery control device
US7701167B2 (en) 2006-02-21 2010-04-20 Fujitsu Ten Limited System and method for supervising battery for vehicle
US8525475B2 (en) 2009-12-25 2013-09-03 Toyota Jidosha Kabushiki Kaisha Management system for exchange electric storage devices and management method for exchange electric storage devices
JP2014044206A (en) * 2008-06-16 2014-03-13 Sumitomo Heavy Ind Ltd Shovel
US8799185B2 (en) 2008-07-10 2014-08-05 Hyundai Motor Company System for calculating and collecting electric charge fee for electric vehicle
KR101841044B1 (en) * 2010-12-29 2018-03-22 한국과학기술원 Computations method and appartus for secondary battery remaining life
WO2018181489A1 (en) * 2017-03-28 2018-10-04 株式会社Gsユアサ Estimating device, electricity storage device, and estimating method
US10663526B2 (en) 2014-06-24 2020-05-26 Toyota Jidosha Kabushiki Kaisha Battery management terminal and battery management system
WO2022259826A1 (en) * 2021-06-07 2022-12-15 古河電気工業株式会社 Lead storage battery management system, and lead storage battery management program
JP7388103B2 (en) 2019-10-03 2023-11-29 株式会社Gsユアサ Estimation device, estimation method and computer program
JP7450782B1 (en) 2022-09-02 2024-03-15 廣達電腦股▲ふん▼有限公司 Electronic equipment and method for calibrating battery RSOC

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566145A (en) * 1991-09-09 1993-03-19 Nippondenso Co Ltd Battery liquid level detecting device
JPH05172912A (en) * 1991-12-24 1993-07-13 Matsushita Electric Works Ltd Device for informing residual life of battery
JPH09233720A (en) * 1996-02-20 1997-09-05 Sumitomo Electric Ind Ltd Charging controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566145A (en) * 1991-09-09 1993-03-19 Nippondenso Co Ltd Battery liquid level detecting device
JPH05172912A (en) * 1991-12-24 1993-07-13 Matsushita Electric Works Ltd Device for informing residual life of battery
JPH09233720A (en) * 1996-02-20 1997-09-05 Sumitomo Electric Ind Ltd Charging controller

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701167B2 (en) 2006-02-21 2010-04-20 Fujitsu Ten Limited System and method for supervising battery for vehicle
JP2007234257A (en) * 2006-02-27 2007-09-13 Sony Corp Battery pack, electronic equipment, and battery remaining capacity detecting method
WO2007099898A1 (en) * 2006-02-27 2007-09-07 Sony Corporation Battery pack, electronic device and method for detecting remaining quantity in battery
JP2008120381A (en) * 2006-11-15 2008-05-29 Glacier Bay Inc Hvac (heating, ventilation and air conditioning) system
JP2008260345A (en) * 2007-04-10 2008-10-30 Shin Kobe Electric Mach Co Ltd Battery condition determination device and automotive lead battery
JP2014044206A (en) * 2008-06-16 2014-03-13 Sumitomo Heavy Ind Ltd Shovel
US8799185B2 (en) 2008-07-10 2014-08-05 Hyundai Motor Company System for calculating and collecting electric charge fee for electric vehicle
WO2010007681A1 (en) * 2008-07-17 2010-01-21 三菱重工業株式会社 Storage battery system, storage battery monitoring device, and storage battery monitoring method
JP2010063222A (en) * 2008-09-02 2010-03-18 Toyota Motor Corp Data recording apparatus for electric vehicle battery and battery control device
US8525475B2 (en) 2009-12-25 2013-09-03 Toyota Jidosha Kabushiki Kaisha Management system for exchange electric storage devices and management method for exchange electric storage devices
KR101841044B1 (en) * 2010-12-29 2018-03-22 한국과학기술원 Computations method and appartus for secondary battery remaining life
US10663526B2 (en) 2014-06-24 2020-05-26 Toyota Jidosha Kabushiki Kaisha Battery management terminal and battery management system
WO2018181489A1 (en) * 2017-03-28 2018-10-04 株式会社Gsユアサ Estimating device, electricity storage device, and estimating method
JPWO2018181489A1 (en) * 2017-03-28 2020-02-06 株式会社Gsユアサ Estimation device, power storage device, estimation method
US11285813B2 (en) 2017-03-28 2022-03-29 Gs Yuasa International Ltd. Estimation device for estimating an SOC of an energy storage device, energy storage apparatus including estimation device for estimating an SOC of an energy storage device, and estimation method for estimating an SOC of an energy storage device
JP7057882B2 (en) 2017-03-28 2022-04-21 株式会社Gsユアサ Estimator, power storage device, estimation method
JP7388103B2 (en) 2019-10-03 2023-11-29 株式会社Gsユアサ Estimation device, estimation method and computer program
WO2022259826A1 (en) * 2021-06-07 2022-12-15 古河電気工業株式会社 Lead storage battery management system, and lead storage battery management program
JP7450782B1 (en) 2022-09-02 2024-03-15 廣達電腦股▲ふん▼有限公司 Electronic equipment and method for calibrating battery RSOC

Similar Documents

Publication Publication Date Title
JP3686776B2 (en) Overdischarge prevention device for storage battery
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
US7928735B2 (en) Battery performance monitor
EP1135840B1 (en) System and method for monitoring a vehicle battery
JP2005164604A (en) Monitoring device for storage battery
US7627405B2 (en) Prognostic for loss of high-voltage isolation
EP2238668A1 (en) Systems and methods to control electrical systems of vehicles
US9184613B2 (en) Secondary battery state detecting apparatus and secondary battery state detecting method
JPH08505950A (en) How to check the state of charge of a battery, for example a vehicle starter battery
WO2020156076A1 (en) Parking air conditioner, and early warning method and system for life of vehicle battery
JP2010041794A (en) Vehicle driving device
JPS6327776A (en) Battery charging control and diagnostic apparatus for car
JP2007057434A (en) Degradation estimation system for electricity accumulation device
US11381095B2 (en) Management device, energy storage apparatus, and management method for energy storage device
JP5262491B2 (en) In-vehicle lead-acid battery charge state determination device
CN108845272B (en) Vehicle-mounted battery electric quantity monitoring and reminding device and method
JP5195440B2 (en) Power control device for vehicle and internal resistance estimation method of battery pack
JP2012068085A (en) Control device and method for secondary battery
JP2005292035A (en) Method of detecting battery condition
KR20150061751A (en) Apparatus and method for battery discharge protection
JP4835355B2 (en) Battery deterioration judgment device
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus
JP7295915B2 (en) vehicle power system
US20240088687A1 (en) Battery management system
JP2022066650A (en) State detector, state detection method and state detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110330