JP2005150362A - Highly thermal conductive sheet and its manufacturing method - Google Patents

Highly thermal conductive sheet and its manufacturing method Download PDF

Info

Publication number
JP2005150362A
JP2005150362A JP2003385279A JP2003385279A JP2005150362A JP 2005150362 A JP2005150362 A JP 2005150362A JP 2003385279 A JP2003385279 A JP 2003385279A JP 2003385279 A JP2003385279 A JP 2003385279A JP 2005150362 A JP2005150362 A JP 2005150362A
Authority
JP
Japan
Prior art keywords
conductive sheet
resin
heat
thermal conductivity
general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003385279A
Other languages
Japanese (ja)
Inventor
Osamu Sakakura
治 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003385279A priority Critical patent/JP2005150362A/en
Publication of JP2005150362A publication Critical patent/JP2005150362A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy-to-handle, highly thermal conductive sheet having enough thermal conductivity by combining a general-purpose resin sheet with a carbon nano-tube or the like, and making a sheet through efficient dispersion. <P>SOLUTION: The highly thermal conductive sheet is formed by combining and dispersing at least one kind of thermal conductive filler selected from a carbon nano-tube, a carbon micro coil, a carbon flake, a fullerene, and its dielectric to/in a general-purpose resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高熱伝導性シートに関し、さらに詳しくは各種の電気および電子機器の発熱性部品から発生される熱を効率よく放熱するための放熱材として好ましく用いられる高熱伝導性シートに関する。   The present invention relates to a high thermal conductive sheet, and more particularly to a high thermal conductive sheet that is preferably used as a heat radiating material for efficiently radiating heat generated from heat generating parts of various electric and electronic devices.

各種の電気および電子機器においては、発熱性部品から発生する熱を効率よく放熱することが、誤作動を防止したり、製品寿命を延ばしたりするうえで重要である。従って、従来から発熱を伴う部品を有する電気および電子機器においては、発生される熱を放熱するための放熱材が用いられている。   In various electric and electronic devices, it is important to efficiently dissipate heat generated from heat-generating components in order to prevent malfunctions and extend product life. Therefore, conventionally, in electric and electronic devices having components that generate heat, a heat dissipating material for dissipating the generated heat is used.

そして、このような放熱材の一つとして、黒鉛シートの少なくとも片面に、シリコーンゴムを塗布した熱伝導性シートが特許文献1において開示されている。かかる熱伝導性シートは、その形状からして取り扱いが容易であり、また、少なくとも片面にシリコーンゴムを有していて、取り付け対象部との密着性も良く、電気および電子機器の放熱材として便利なものとされている。   As one of such heat radiating materials, Patent Document 1 discloses a thermally conductive sheet in which silicone rubber is applied to at least one surface of a graphite sheet. Such a heat conductive sheet is easy to handle due to its shape, and has a silicone rubber on at least one side, and has good adhesion to the mounting target part, and is convenient as a heat dissipation material for electrical and electronic equipment. It is supposed to be.

上記放熱材料は、シート状黒鉛層に、熱伝導性充填剤、カーボンナノチューブおよびカーボンマイクロコイルから選ばれる少なくとも1種を配合したシート状エラストマー層を積層して熱伝導性シートを構成し、上記シート状エラストマー層を積層するにあたっては、その組成物をシート状黒鉛層に対して加圧させたものが特許文献2に記載されている。   The heat dissipation material comprises a sheet-like graphite layer and a sheet-like elastomer layer containing at least one selected from a heat-conductive filler, carbon nanotubes, and carbon microcoils to form a heat-conductive sheet. In laminating the layered elastomer layer, Patent Document 2 describes a composition in which the composition is pressed against the sheet-like graphite layer.

しかし、かかる熱伝導性シートは、黒鉛シートにシリコーンゴムを塗布しただけであるので、黒鉛シートとシリコーンゴムとの密着が不十分となったり、フルパックトランジスタのような平坦な取り付け対象部に対しては密着が確保できたとしても、その他の電気および電子機器に汎用な熱伝導性シートとしては、密着させるべき取り付け対象部との間に空隙を生じやすいなどの欠点があり、熱伝導性を十分に向上しきれないものであった。   However, since such a heat conductive sheet is obtained by simply applying silicone rubber to a graphite sheet, the adhesion between the graphite sheet and the silicone rubber is insufficient, or the flat attachment target part such as a full pack transistor is not suitable. Even if the adhesion can be ensured, the general-purpose heat conductive sheet for other electrical and electronic devices has a defect such as that a gap is likely to be formed between the attachment target parts to be adhered and the heat conductivity is reduced. It could not be improved sufficiently.

また、取り付け対象部に沿って熱伝導性シートを変形させる結果、黒鉛シートに劈開を生じたり、場合によっては黒鉛が劈開片として欠落するために電気的短絡を生じるなど、使用時における信頼性の点でも問題があった。さらに、半導体の技術革新とともに高性能化しているため、発生する熱量も増加しており、十分な熱伝導性が得られていない。また、その製造時においても、連続シートとして製造しようとする場合に、黒鉛シートがちぎれる恐れがあるため十分な巻取りテンションを掛け難く、量産性にも課題を残していた。さらに、シリコーンゴムに窒化ホウ素や窒化アルミニウム、アルミナを混練させた放熱シートがあるが、熱伝導性に欠けていた(特許文献3)。   In addition, as a result of deforming the thermally conductive sheet along the attachment target part, the graphite sheet is cleaved, or in some cases, the graphite is missing as a cleaved piece, resulting in an electrical short circuit. There was also a problem. Furthermore, since the performance of semiconductors has increased with technological innovation, the amount of heat generated has increased, and sufficient thermal conductivity has not been obtained. Further, even during the production, it is difficult to apply a sufficient winding tension because there is a possibility that the graphite sheet is torn when it is produced as a continuous sheet, and there remains a problem in mass productivity. Furthermore, although there is a heat radiating sheet in which boron nitride, aluminum nitride, and alumina are kneaded with silicone rubber, it lacks thermal conductivity (Patent Document 3).

特公平3−51302号公報Japanese Examined Patent Publication No. 3-51302 特開2002−9213公報JP 2002-9213 JP 特許第2906953号公報Japanese Patent No. 2906953

本発明の目的は、上記従来の状況に鑑み、汎用樹脂中にカーボンナノチューブなどを配合し、効率よく分散してシート化し、取り扱いが便利で、密着性に優れ、かつ十分な熱伝導性を有する高熱伝導性シートを提供することである。   In view of the above-described conventional situation, the object of the present invention is to blend carbon nanotubes and the like into a general-purpose resin, efficiently disperse it into a sheet, is easy to handle, has excellent adhesion, and has sufficient thermal conductivity. It is to provide a high thermal conductivity sheet.

上記目的は以下の本発明によって達成される。すなわち、本発明は、汎用樹脂に対して、カーボンナノチューブ、カーボンマイクロコイル、カーボンフレーク、フラーレンおよびそれらの誘導体から選ばれる少なくとも1種の熱伝導性充填剤が配合および分散されてなることを特徴とする高熱伝導性シートを提供する。   The above object is achieved by the present invention described below. That is, the present invention is characterized in that at least one heat conductive filler selected from carbon nanotubes, carbon microcoils, carbon flakes, fullerenes and derivatives thereof is blended and dispersed in a general-purpose resin. A highly thermal conductive sheet is provided.

上記本発明においては、汎用樹脂が、熱可塑性樹脂であり、熱伝導性充填剤の含有量が熱可塑性樹脂の0.1〜50質量%であること;さらに電気絶縁性材料が配合および分散され、電気的短絡が防止されていること;電気絶縁性材料の含有量が汎用樹脂の3.0〜30質量%であること;および電気絶縁性材料が、アルミナ、窒化アルミニウム、窒化ホウ素および軟磁性フェライトから選ばれる少なくとも1種であることが好ましい。   In the present invention, the general-purpose resin is a thermoplastic resin, and the content of the heat conductive filler is 0.1 to 50% by mass of the thermoplastic resin; and further, an electrically insulating material is blended and dispersed. The electrical insulating material is 3.0 to 30% by mass of the general-purpose resin; and the electrical insulating material is alumina, aluminum nitride, boron nitride, and soft magnetism. It is preferably at least one selected from ferrite.

また、本発明は、汎用樹脂の有機溶剤溶液に、カーボンナノチューブ、カーボンマイクロコイル、カーボンフレーク、フラーレンおよびそれらの誘導体から選ばれる少なくとも1種の熱伝導性充填剤を配合および分散し、該分散液を用いてシート化することを特徴とする高熱伝導性シートの製造方法を提供する。   The present invention also includes mixing and dispersing at least one heat conductive filler selected from carbon nanotubes, carbon microcoils, carbon flakes, fullerenes and derivatives thereof in an organic solvent solution of a general-purpose resin. A method for producing a highly heat-conductive sheet is provided.

上記本発明においては、汎用樹脂が、熱可塑性樹脂であり、熱伝導性充填剤の添加量が熱可塑性樹脂の0.1〜50質量%であること;また、上記高熱伝導性シートの電気的短絡を防止するために、さらに電気絶縁性材料を配合および分散すること;電気絶縁性材料の含有量が、汎用樹脂の3.0〜30質量%であること;および該電気絶縁性材料としては、アルミナ、窒化アルミニウム、窒化ホウ素および軟磁性フェライトから選ばれる少なくとも1種が挙げられる。   In the present invention, the general-purpose resin is a thermoplastic resin, and the addition amount of the thermally conductive filler is 0.1 to 50% by mass of the thermoplastic resin; In order to prevent a short circuit, further blending and dispersing an electrically insulating material; the content of the electrically insulating material is 3.0 to 30% by mass of the general-purpose resin; and as the electrically insulating material, , At least one selected from alumina, aluminum nitride, boron nitride, and soft magnetic ferrite.

本発明者は、上記本発明の目的を達成すべく鋭意研究した結果、汎用樹脂に対して、カーボンナノチューブなどの熱伝導性充填剤を分散させることで熱伝導性シートを構成できることを見出した。従来、カーボンナノチューブは熱伝導性に優れるが、分散性に欠けるため、高熱伝導性シートの熱伝導性充填剤としては用いられなかった。しかし、本発明によれば、超音波法やレーザーアブレーション法、機械攪拌法など、カーボンナノチューブが持つ凝集力(ファンデールワールス力)を分離可能となる分子振動を与えることで汎用樹脂中に高分散させることが可能となり、高熱伝導性シートが得られる。或いは、カーボンナノチューブと親和性の高い界面活性剤を用いることで、カーボンナノチューブを汎用樹脂中に高分散させることが可能となる。   As a result of intensive studies to achieve the object of the present invention, the present inventor has found that a heat conductive sheet can be constituted by dispersing a heat conductive filler such as carbon nanotubes in a general-purpose resin. Conventionally, carbon nanotubes are excellent in thermal conductivity, but have not been used as thermal conductive fillers in high thermal conductive sheets due to lack of dispersibility. However, according to the present invention, it is highly dispersed in a general-purpose resin by applying molecular vibration that enables separation of the cohesive force (van der Waals force) of carbon nanotubes such as ultrasonic method, laser ablation method, mechanical stirring method, etc. And a high thermal conductivity sheet can be obtained. Alternatively, by using a surfactant having a high affinity for carbon nanotubes, the carbon nanotubes can be highly dispersed in a general-purpose resin.

また、本発明では、上記高熱伝導性シートの電気的短絡を防ぐために、上記高熱伝導性シート中に電気絶縁性材料を添加することが好ましい。本発明によれば、放熱シートとして必要とされる柔軟性(ヒートシンクなどへの密着性)、熱伝導性および電気絶縁性を兼ね備えた放熱シートとして有用である高熱伝導性シートが提供される。   Moreover, in this invention, in order to prevent the electrical short circuit of the said high heat conductive sheet, it is preferable to add an electrically insulating material in the said high heat conductive sheet. ADVANTAGE OF THE INVENTION According to this invention, the high heat conductive sheet useful as a heat radiating sheet which has the softness | flexibility (adhesion to a heat sink etc.) required as a heat radiating sheet, thermal conductivity, and electrical insulation is provided.

本発明の熱伝導性シートは、種々の分野において広く利用することができるが、特に、発熱を伴う電気および電子機器分野において放熱材として好ましく用いられる。さらに本発明の熱伝導性シートは、使用時における信頼性が高い。   The heat conductive sheet of the present invention can be widely used in various fields, but is particularly preferably used as a heat radiating material in the field of electric and electronic devices that generate heat. Furthermore, the heat conductive sheet of the present invention has high reliability during use.

次に好ましい実施の形態を挙げて本発明をさらに詳細に説明する。
本発明の高熱伝導性シートは、汎用樹脂に対して、カーボンナノチューブ、カーボンマイクロコイル、カーボンフレーク、フラーレンおよびそれらの誘導体から選ばれる少なくとも1種の熱伝導性充填剤が配合および分散されてなることを特徴としている。
Next, the present invention will be described in more detail with reference to preferred embodiments.
The high thermal conductive sheet of the present invention is obtained by blending and dispersing at least one thermal conductive filler selected from carbon nanotubes, carbon microcoils, carbon flakes, fullerenes and derivatives thereof in general-purpose resins. It is characterized by.

上記の汎用樹脂としては、エチレン、プロピレン、ブテンなどの単独重合体または共重合体などのポリオレフィン(PO)樹脂、環状ポリオレフィンなどの非晶質ポリオレフィン樹脂(APO)、アクリル樹脂、ポリエチレンテレフタレート(PET)、ポリエチレン2,6−ナフタレート(PEN)などのポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロンなどのポリアミド系(PA)樹脂、ポリビニルアルコール(PVA)樹脂、エチレン−ビニルアルコール共重合体(EVOH)などのポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラール(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン−四フッ化エチレン共重合体(ETFE)、ポリ三フッ化塩化エチレン(PFA)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(FEP)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、パーフルオロエチレン−パーフロロプロピレン−パーフロロビニルエーテル共重合体(EPA)などのフッ素系樹脂などを用いることができる。これらの中では有機溶剤に溶解する熱可塑性樹脂が高熱伝導性シートの製造工程上から好ましい。   Examples of the general-purpose resin include polyolefin (PO) resins such as homopolymers or copolymers such as ethylene, propylene, and butene, amorphous polyolefin resins (APO) such as cyclic polyolefins, acrylic resins, and polyethylene terephthalate (PET). Polyester resin such as polyethylene 2,6-naphthalate (PEN), nylon 6, nylon 12, polyamide (PA) resin such as copolymer nylon, polyvinyl alcohol (PVA) resin, ethylene-vinyl alcohol copolymer (EVOH) ), Etc., polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin, polycarbonate ( C) resin, polyvinyl butyral (PVB) resin, polyarylate (PAR) resin, ethylene-tetrafluoroethylene copolymer (ETFE), polytrifluoroethylene chloride (PFA), tetrafluoroethylene-perfluoroalkyl vinyl ether Fluorine resins such as a copolymer (FEP), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and perfluoroethylene-perfluoropropylene-perfluorovinyl ether copolymer (EPA) can be used. In these, the thermoplastic resin which melt | dissolves in an organic solvent is preferable from the manufacturing process of a highly heat conductive sheet.

また、上記に挙げた樹脂以外にも、ラジカル反応性不飽和化合物を有するアクリレート化合物よりなる樹脂組成物や、上記アクリレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレートなどのオリゴマーを多官能アクリレートモノマーに溶解せしめた樹脂組成物などの光硬化性樹脂およびこれらの混合物などを用いることも可能である。さらに、これらの樹脂の1または2種以上をラミネートまたはコーティング、押出しなどの手段によって積層させたものを基材フィルムとして用いることも可能である。   In addition to the resins listed above, a resin composition comprising an acrylate compound having a radical-reactive unsaturated compound, a resin composition comprising an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, It is also possible to use a photocurable resin such as a resin composition in which an oligomer such as polyester acrylate or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof. Furthermore, it is also possible to use, as a substrate film, one or more of these resins laminated by means of lamination, coating, extrusion, or the like.

本発明で使用する前記熱伝導性充填剤それ自体は公知あり、何れも市場から入手して本発明で使用することができる。例えば、カーボンナノチューブは、一般に、炭素からなる外径が2〜70nm、長さが直径の102倍以上である円筒状の中空繊維状のものであって、炭素含有ガスの気相分解反応や、炭素棒、炭素繊維などを用いたアーク放電法などによって得られるものである。例えば、SWNT(シングルウオールカーボンナノチューブ)やMWNT(マルチウオールカーボンナノチューブ)が挙げられる。また、その末端形状は必ずしも円筒状である必要はなく、例えば、円錐状などに変形していても差し支えない。さらに、末端は閉じていても開いていてもどちらでもよい。好ましく用いられるカーボンナノチューブの例として、カーボンナノチューブ(昭和電工製)やハイペリオン・カタリシス・インターナショナル社製のGraphite Fibrils・Grades BN(商品名)などが挙げられる。 The heat conductive fillers used in the present invention are known per se, and any of them can be obtained from the market and used in the present invention. For example, carbon nanotubes, generally, there is an outer diameter of carbon is 2 to 70 nm, a cylindrical hollow fiber is not less than 10 2 times the diameter length, Ya gas phase decomposition of carbon-containing gas It can be obtained by arc discharge method using carbon rod, carbon fiber or the like. For example, SWNT (single wall carbon nanotube) and MWNT (multi wall carbon nanotube) are mentioned. Moreover, the terminal shape does not necessarily need to be cylindrical, and for example, it may be deformed into a conical shape. Furthermore, the end may be closed or open. Examples of carbon nanotubes preferably used include carbon nanotubes (manufactured by Showa Denko) and Graphite Fibrils · Grades BN (trade name) manufactured by Hyperion Catalysis International.

カーボンマイクロコイルは、一般に、炭素からなる繊維直径が0.05〜5μm、コイル外径が繊維直径の2〜10倍であり、巻数が10μm当たり5/コイル外径(μm)〜50/コイル外径(μm)であるコイル状繊維のものであって、炭素含有ガスの気相分解反応によって得られるものである。   The carbon microcoil generally has a carbon fiber diameter of 0.05 to 5 μm, a coil outer diameter of 2 to 10 times the fiber diameter, and the number of turns is 5 / coil outer diameter (μm) to 50 / outer coil per 10 μm. A coiled fiber having a diameter (μm), which is obtained by a gas phase decomposition reaction of a carbon-containing gas.

上記の如き熱伝導性充填剤の含有量は、汎用樹脂の0.1〜50質量%であることが好ましい。熱伝導性充填剤の含有量が0.1質量%未満では満足する熱伝導性を有する高熱伝導性シートが得られない。一方、熱伝導性充填剤の含有量が50質量%を超えると、得られる高熱伝導性シートの柔軟性や強度が満足できない。   The content of the heat conductive filler as described above is preferably 0.1 to 50% by mass of the general-purpose resin. When the content of the thermally conductive filler is less than 0.1% by mass, a highly thermally conductive sheet having satisfactory thermal conductivity cannot be obtained. On the other hand, when the content of the heat conductive filler exceeds 50% by mass, the flexibility and strength of the resulting high heat conductive sheet cannot be satisfied.

上記の如くして得られる高熱伝導性シートの熱伝導率は、熱伝導率計(京都電子工業社製;QTM500)にて測定した場合、1〜50W/mKであることが好ましい。このように本発明の高熱伝導性シートは熱伝導性が良好であるが、熱伝導性充填剤としてカーボンナノチューブを用いた場合には、カーボンナノチューブは導電性材料であることから、得られる高熱伝導性シートは105Ω/□以上の表面抵抗(測定機器:三菱化学製、MCP−HT450)を有する。 The thermal conductivity of the high thermal conductive sheet obtained as described above is preferably 1 to 50 W / mK when measured with a thermal conductivity meter (manufactured by Kyoto Electronics Industry Co., Ltd .; QTM500). As described above, the high thermal conductivity sheet of the present invention has good thermal conductivity. However, when carbon nanotubes are used as the thermal conductive filler, since the carbon nanotubes are conductive materials, the resulting high thermal conductivity is obtained. The sheet has a surface resistance of 10 5 Ω / □ or more (measuring instrument: MCP-HT450, manufactured by Mitsubishi Chemical).

上記本発明の高熱伝導性シートの導電性が高い場合には、用途によっては電気的短絡を生じる場合がある。本発明では、本発明の高熱伝導性シート中に、さらに電気絶縁性材料を配合および分散させることにより、得られる高熱伝導性シートの電気伝導性を抑え、電気的短絡を防止することができる。電気絶縁性材料としては、従来公知の種々の電気絶縁性材料が用いられるが、特にアルミナ、窒化アルミニウム、窒化ホウ素および軟磁性フェライトから選ばれる少なくとも1種が好ましい。   When the conductivity of the high thermal conductive sheet of the present invention is high, an electrical short circuit may occur depending on the application. In the present invention, by further blending and dispersing an electrically insulating material in the highly thermally conductive sheet of the present invention, the electrical conductivity of the resulting highly thermally conductive sheet can be suppressed and an electrical short circuit can be prevented. As the electrical insulating material, various conventionally known electrical insulating materials are used, and at least one selected from alumina, aluminum nitride, boron nitride, and soft magnetic ferrite is particularly preferable.

上記電気絶縁性材料の含有量は、汎用樹脂の3.0〜30質量%であることが好ましい。電気絶縁性材料の含有量が3.0質量%未満では満足できる短絡防止効果を有する高熱伝導性シートが得られない。一方、電気絶縁性材料の含有量が30質量%を超えると、得られる高熱伝導性シートの熱伝導性が低下するとともに、シートの柔軟性や強度が満足できない。   It is preferable that content of the said electrically insulating material is 3.0-30 mass% of general purpose resin. If the content of the electrically insulating material is less than 3.0% by mass, a highly thermally conductive sheet having a satisfactory short-circuit preventing effect cannot be obtained. On the other hand, when the content of the electrically insulating material exceeds 30% by mass, the thermal conductivity of the resulting high thermal conductive sheet is lowered and the flexibility and strength of the sheet cannot be satisfied.

本発明の高熱伝導性シートにおいて使用する熱伝導性充填剤(A)と電気絶縁性材料(B)の汎用樹脂に対する合計の添加量(A+B)は、汎用樹脂の0.1〜80質量%であり、両者の使用比率(質量)がA:B=1:30〜50〜3であるときに、優れた熱伝導性と優れた短絡防止効果が同時に得られる。   The total addition amount (A + B) to the general-purpose resin of the heat-conductive filler (A) and the electrically insulating material (B) used in the high heat-conductive sheet of the present invention is 0.1 to 80% by mass of the general-purpose resin. In addition, when the usage ratio (mass) of both is A: B = 1: 30 to 50-3, excellent thermal conductivity and excellent short-circuit prevention effect can be obtained at the same time.

上記本発明の高熱伝導性シートは上記の構成を有する限り、その製造方法は何れの製造方法でもよく、例えば、汎用樹脂のペレットと前記熱伝導性充填剤の粉末とを溶融混練してシート状に成形する方法や、汎用樹脂を適当な有機溶剤に溶解して樹脂溶液を調製し、該樹脂溶液中に前記熱伝導性充填剤を分散させ、該分散液を用いてキャスティング方式でシートを作製する方法などが挙げられる。特に、放熱特性において面内均一性を保持するためには、この分散状態が不均一である場合、性能に欠陥が生じる可能性がある。   As long as the high thermal conductive sheet of the present invention has the above-described configuration, the manufacturing method thereof may be any manufacturing method. For example, a sheet of general-purpose resin pellets and the thermal conductive filler powder are melt-kneaded. And a resin solution prepared by dissolving a general-purpose resin in an appropriate organic solvent, and the thermally conductive filler is dispersed in the resin solution, and a sheet is produced by casting using the dispersion. The method of doing is mentioned. In particular, in order to maintain in-plane uniformity in heat dissipation characteristics, if this dispersion state is non-uniform, there may be a defect in performance.

本発明の高熱伝導性シートの製造方法として、後者の方法を例示する。汎用樹脂の有機溶剤溶液に、カーボンナノチューブ、カーボンマイクロコイル、カーボンフレーク、フラーレンおよびそれらの誘導体から選ばれる少なくとも1種の熱伝導性充填剤を配合および分散し、該分散液を用いてシート化する。上記で使用する汎用樹脂としては、例えば、アクリル樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂などの熱可塑性樹脂が好ましい。   The latter method is illustrated as a manufacturing method of the highly heat conductive sheet of this invention. At least one heat conductive filler selected from carbon nanotubes, carbon microcoils, carbon flakes, fullerenes and derivatives thereof is mixed and dispersed in an organic solvent solution of a general-purpose resin, and a sheet is formed using the dispersion. . The general-purpose resin used above is preferably a thermoplastic resin such as an acrylic resin, a polycarbonate resin, a polypropylene resin, a polyurethane resin, a polyethylene terephthalate resin, or a polyethylene naphthalate resin.

上記樹脂を溶解する有機溶剤としては、例えば、トルエン、ベンゼン、キシレン、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、オルトジクロロベンゼン、クレゾール、クロルベンゼン、クロロホルム、四塩化炭素、1,4−ジオキサン、1,2−ジクロロエタン(別名:二塩化エチレン)、1,2−ジクロロエチレン(別名:二塩化アセチレン)、1,1,2,2−テトラクロロエタン(別名:塩化アセチレン)、N,N−ジメチルホルムアミド、N−メチルホルムアミド、スチレン、テトラクロロエチレン、トリクロロエチレン、1,1,1−トリクロロエタン、二硫化炭素、n−ヘキサン、m−ペンタン、シクロヘキサン、シクロペンタン、酢酸メチル、酢酸エチル、酢酸ブチル、メチルエチルケトン、アセトン、メタノール、エタノール、イソプロピルアルコール、t−ブチルアルコールなどが挙げられ、これらの有機溶剤中に前記汎用樹脂を約1〜70質量%の濃度に溶解して樹脂溶液を作製し、該樹脂溶液中に熱伝導性充填剤を前記の割合で添加し、必要に応じて前記電気絶縁性材料を前記の割合で配合し、該配合物を超音波法、レーザーアブレーション法、機械攪拌法などの適当な分散手段により、熱伝導性充填剤(および前記電気絶縁性材料)を均一に分散させる。   Examples of the organic solvent for dissolving the resin include toluene, benzene, xylene, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, orthodichlorobenzene, cresol, chlorobenzene, Chloroform, carbon tetrachloride, 1,4-dioxane, 1,2-dichloroethane (also known as ethylene dichloride), 1,2-dichloroethylene (also known as acetylene dichloride), 1,1,2,2-tetrachloroethane (also known as : Acetylene chloride), N, N-dimethylformamide, N-methylformamide, styrene, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, carbon disulfide, n-hexane, m-penta , Cyclohexane, cyclopentane, methyl acetate, ethyl acetate, butyl acetate, methyl ethyl ketone, acetone, methanol, ethanol, isopropyl alcohol, t-butyl alcohol, etc., and about 1 to 70 mass of the general-purpose resin in these organic solvents. A resin solution is prepared by dissolving at a concentration of 1%, and a thermally conductive filler is added to the resin solution at the above ratio, and the electrical insulating material is blended at the above ratio as necessary. The thermally conductive filler (and the electrically insulating material) is uniformly dispersed by an appropriate dispersing means such as an ultrasonic method, a laser ablation method, or a mechanical stirring method.

上記分散液を、例えば、離型紙上に適当な塗布量で塗布および溶剤を蒸発させて成膜した後に剥離することにより、任意の膜厚の本発明の高熱伝導性シートが得られる。このようにして本発明の高熱伝導性シートが得られるが、その形状には特に制限はなく、用途に応じて適当な形状にすればよい。また、高熱伝導性シートの厚みにも特別な制限はないが、使い易さ、製造の容易性などを考慮すると約1〜3,000μmの厚みが適当であり、好ましくは1〜500μmである。   For example, by applying the dispersion liquid on a release paper in an appropriate coating amount and evaporating the solvent to form a film, and then separating the film, the highly heat-conductive sheet of the present invention having an arbitrary film thickness can be obtained. Thus, although the highly heat conductive sheet of this invention is obtained, there is no restriction | limiting in particular in the shape, What is necessary is just to make it a suitable shape according to a use. Moreover, although there is no special restriction | limiting in the thickness of a highly heat conductive sheet, when considering the ease of use, the ease of manufacture, etc., the thickness of about 1-3000 micrometers is suitable, Preferably it is 1-500 micrometers.

また、上記の本発明の熱伝導性シートの発熱部材に対する密着性を向上させるために、その最表面にプライマー層を形成してもよい。プライマー層の形成に用いる樹脂としては、例えば、アルキッド樹脂、ポリエステル樹脂、ポリ酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、NBR樹脂、SBR樹脂、ポリウレタン樹脂、アクリル系樹脂、ポリアミドなどが単独もしくは共重合物、混合物および変性物として用いられる。該変性物とは、例えば、水酸基やカルボン酸、4級アンモニウム塩含有モノマーを共重合もしくはグラフトされたものであり、接着性や親水性を向上させたものである。   Moreover, in order to improve the adhesiveness with respect to the heat generating member of said heat conductive sheet of this invention, you may form a primer layer in the outermost surface. Examples of the resin used for forming the primer layer include alkyd resins, polyester resins, polyvinyl acetate resins, vinyl chloride-vinyl acetate copolymer resins, NBR resins, SBR resins, polyurethane resins, acrylic resins, and polyamides. Or it is used as a copolymer, a mixture and a modified product. The modified product is, for example, a product obtained by copolymerization or grafting of a hydroxyl group, a carboxylic acid, or a quaternary ammonium salt-containing monomer, and has improved adhesiveness and hydrophilicity.

また、上記プライマー層の接着性や塗膜強度を向上させるために、上記の樹脂を各種硬化剤、例えば、エポキシ樹脂、メラミン樹脂、イソシアネートなどにより架橋させてもよい。プライマー層の形成方法は、従来公知の任意の方法でよい。該プライマー層の厚みは乾燥時で0.01〜50g/m2、好ましくは0.1〜10g/m2である。 Moreover, in order to improve the adhesiveness and coating-film strength of the said primer layer, you may bridge | crosslink said resin with various hardening | curing agents, for example, an epoxy resin, a melamine resin, isocyanate, etc. The primer layer may be formed by any conventionally known method. The primer layer has a dry thickness of 0.01 to 50 g / m 2 , preferably 0.1 to 10 g / m 2 .

また、上記の本発明の熱伝導性シートの発熱部材に対する密着性を向上させるために、最表面にクッション層を設けることができる。本発明の熱伝導性シートにクッション性を付与するには、低弾性率を有する材料あるいはゴム弾性を有する材料を使用すればよい。具体的には、天然ゴム、アクリレートゴム、ブチルゴム、ニトリルゴム、ブタジエンゴム、イソプレンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ウレタンゴム、シリコーンゴム、アクリルゴム、弗素ゴム、ネオプレンゴム、クロロスルホン化ポリエチレン、エピクロルヒドリン、エチレン・プロピレン・ジエンゴム、ウレタンエラストマーなどのエラストマー、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリブテン、耐衝撃性ABS樹脂、ポリウレタン、ABS樹脂、セルロースアセテート、アミド樹脂、ポリテトラフルオロエチレン、ニトロセルロース、ポリスチレン、エポキシ樹脂、フェノール−ホルムアルデヒド樹脂、ポリエステル樹脂、耐衝撃性アクリル樹脂、スチレン−ブタジエン共重合体、エチレン−酢酸ビニル共重合体、アクリロニトリル−ブタジエン共重合体、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、可塑剤入り塩化ビニル樹脂、塩化ビニリデン樹脂、ポリ塩化ビニルなどのうち、弾性率の小さな樹脂が挙げられる。   Moreover, in order to improve the adhesiveness with respect to the heat generating member of the heat conductive sheet of the present invention, a cushion layer can be provided on the outermost surface. In order to impart cushioning properties to the heat conductive sheet of the present invention, a material having a low elastic modulus or a material having rubber elasticity may be used. Specifically, natural rubber, acrylate rubber, butyl rubber, nitrile rubber, butadiene rubber, isoprene rubber, styrene-butadiene rubber, chloroprene rubber, urethane rubber, silicone rubber, acrylic rubber, fluorine rubber, neoprene rubber, chlorosulfonated polyethylene, Epichlorohydrin, ethylene / propylene / diene rubber, elastomers such as urethane elastomer, polyethylene, polypropylene, polybutadiene, polybutene, impact-resistant ABS resin, polyurethane, ABS resin, cellulose acetate, amide resin, polytetrafluoroethylene, nitrocellulose, polystyrene, epoxy Resin, phenol-formaldehyde resin, polyester resin, impact-resistant acrylic resin, styrene-butadiene copolymer, ethylene-acetic acid Nyl copolymer, acrylonitrile-butadiene copolymer, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, plasticized vinyl chloride resin, vinylidene chloride resin, polyvinyl chloride, etc. It is done.

クッション層として使用可能な形状記憶樹脂としては、ポリノルボルネンやポリブタジエンユニットとポリスチレンユニットとが複合化されたスチレン系ハイブリッドポリマーなどを挙げることができる。また、これらの材料を本発明の熱伝導性シートに適用して、本発明の熱伝導性シート自身にクッション性を持たせることもできる。クッション層の厚みは、使用する樹脂あるいはエラストマーの種類、本発明の熱伝導性シートを適用する発熱部材の種類や形状など、様々な因子により異なるので一概には決められないが、通常、乾燥時の塗工量で5〜100g/m2の範囲である。クッション層の形成方法としては、前記材料を溶媒に溶解又はラテックス状に分散したものを、ブレードコーター、ロールコーター、バーコーター、カーテンコーター、グラビアコーター等の塗布法、ホットメルトでの押出しラミネーション法、クッション層フィルムの貼合せ法などが適用できる。 Examples of the shape memory resin that can be used as the cushion layer include polynorbornene, a styrene hybrid polymer in which a polybutadiene unit and a polystyrene unit are combined. Moreover, these materials can be applied to the heat conductive sheet of the present invention to give the heat conductive sheet of the present invention a cushioning property. The thickness of the cushion layer varies depending on various factors such as the type of resin or elastomer used and the type and shape of the heat generating member to which the heat conductive sheet of the present invention is applied. The coating amount is 5 to 100 g / m 2 . As a method for forming the cushion layer, a material in which the above materials are dissolved in a solvent or dispersed in a latex form, a coating method such as a blade coater, a roll coater, a bar coater, a curtain coater, a gravure coater, an extrusion lamination method using hot melt, Cushion layer film laminating method can be applied.

また、本発明で作製した熱伝導性シートの発熱部材に対する密着性を向上させるために、その表面を火炎処理、薬品処理、粗面処理、グロー放電処理、赤外線ヒーター処理、加熱処理、プラズマ処理、コロナ処理などを行ってもよい。   Further, in order to improve the adhesion of the heat conductive sheet produced in the present invention to the heat generating member, the surface is subjected to flame treatment, chemical treatment, rough surface treatment, glow discharge treatment, infrared heater treatment, heat treatment, plasma treatment, Corona treatment or the like may be performed.

上記本発明の方法で使用する各材料の使用比率や得られる高熱伝導性シートの各種物性は、前記説明した本発明の高熱伝導性シートの説明において記載したと同じであるが、優れた熱伝導性および優れた電気的短絡防止効果を同時に有するには、前記熱伝導性材料および電気絶縁材料を、得られる高熱伝導性シートの熱伝導率が1〜50W/mKであり、かつ表面抵抗が1012Ω/□以上となるように使用することが好ましい。 The use ratio of each material used in the method of the present invention and various physical properties of the obtained high thermal conductive sheet are the same as described in the description of the high thermal conductive sheet of the present invention described above, but excellent thermal conductivity. The thermal conductivity of the high thermal conductivity sheet obtained from the thermal conductive material and the electrical insulating material is 1 to 50 W / mK and the surface resistance is 10 It is preferable to use it so that it becomes 12 Ω / □ or more.

本発明の高熱伝導性シートの用途は特に限定されないが、本発明の高熱伝導性シートを放熱材料として用いることにより、各種の電気および電子機器において発熱性部品から発生される熱を効率よく放熱することができ、上記機器の誤作動を防止したり、製品寿命を延ばしたりするうえで非常に有用である。   The use of the high thermal conductivity sheet of the present invention is not particularly limited, but by using the high thermal conductivity sheet of the present invention as a heat dissipation material, heat generated from heat-generating components in various electric and electronic devices can be efficiently radiated. It is very useful for preventing malfunction of the above equipment and extending the product life.

次に実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
白色微粒子状レジンであるアクリル樹脂(ガラス転移温度:100℃、分子量:85×103、酸価:3[mgKOH/g])をトルエンに溶解させ、30vol%溶液を作製した。粘度は25℃で5ポイズであった。この溶液に対して、カーボンナノチューブ(昭和電工製)をアクリル樹脂成分に対して3質量%の量で添加し、機械攪拌にて常温下で混合して分散液を調製した。作製した分散液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚の熱伝導性シートを得た。熱伝導率計(京都電子工業社製;商品名QTM500、以下同じ)にて熱伝導率を測定したところ熱伝導率は3.15W/mKであり、表面抵抗計(三菱化学社製;商品名MCP−HT460、以下同じ)にて表面抵抗を測定したところ5.0×1011Ω/□であった。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to a following example.
[Example 1]
Acrylic resin (glass transition temperature: 100 ° C., molecular weight: 85 × 10 3 , acid value: 3 [mgKOH / g]), which is a white particulate resin, was dissolved in toluene to prepare a 30 vol% solution. The viscosity was 5 poise at 25 ° C. To this solution, carbon nanotubes (manufactured by Showa Denko) were added in an amount of 3% by mass with respect to the acrylic resin component, and mixed at room temperature with mechanical stirring to prepare a dispersion. The prepared dispersion was applied onto release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick heat conductive sheet. When the thermal conductivity was measured with a thermal conductivity meter (manufactured by Kyoto Electronics Co., Ltd .; trade name QTM500, the same shall apply hereinafter), the thermal conductivity was 3.15 W / mK, and a surface resistance meter (made by Mitsubishi Chemical Corporation; trade name) When the surface resistance was measured with MCP-HT460 (hereinafter the same), it was 5.0 × 10 11 Ω / □.

[実施例2]
白色微粒子状レジンであるアクリル樹脂(ガラス転移温度:100℃、分子量:85×103、酸価:3[mgKOH/g])をトルエンに溶解させ、30vol%溶液を作製した。粘度は25℃で5ポイズであった。この溶液に対して、カーボンナノチューブ(昭和電工製)をアクリル樹脂成分に対して7質量%の量で添加し、機械攪拌にて常温下で混合して分散液を調製した。作製した分散液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚の熱伝導性シートを得た。熱伝導率計にて熱伝導率を測定したところ熱伝導率は3.85W/mKであり、表面抵抗計にて表面抵抗を測定したところ3.5×1010Ω/□であった。
[Example 2]
Acrylic resin (glass transition temperature: 100 ° C., molecular weight: 85 × 10 3 , acid value: 3 [mgKOH / g]), which is a white particulate resin, was dissolved in toluene to prepare a 30 vol% solution. The viscosity was 5 poise at 25 ° C. To this solution, carbon nanotubes (manufactured by Showa Denko) were added in an amount of 7% by mass with respect to the acrylic resin component, and mixed at room temperature by mechanical stirring to prepare a dispersion. The prepared dispersion was applied onto release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick heat conductive sheet. When the thermal conductivity was measured with a thermal conductivity meter, the thermal conductivity was 3.85 W / mK, and when the surface resistance was measured with a surface resistance meter, it was 3.5 × 10 10 Ω / □.

[実施例3]
白色微粒子状レジンであるアクリル樹脂(ガラス転移温度:100℃、分子量:85×103、酸価:3[mgKOH/g])をトルエンに溶解させ、30vol%溶液を作製した。粘度は25℃で5ポイズであった。この溶液に対して、カーボンナノチューブ(昭和電工製)をアクリル樹脂成分に対して10質量%の量で添加し、機械攪拌にて常温下で混合して分散液を調製した。作製した分散液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚の熱伝導性シートを得た。熱伝導率計にて熱伝導率を測定したところ熱伝導率は4.00W/mKであり、表面抵抗計にて表面抵抗を測定したところ8.3×109Ω/□であった。
[Example 3]
Acrylic resin (glass transition temperature: 100 ° C., molecular weight: 85 × 10 3 , acid value: 3 [mgKOH / g]), which is a white particulate resin, was dissolved in toluene to prepare a 30 vol% solution. The viscosity was 5 poise at 25 ° C. To this solution, carbon nanotubes (manufactured by Showa Denko) were added in an amount of 10% by mass based on the acrylic resin component, and mixed at room temperature with mechanical stirring to prepare a dispersion. The prepared dispersion was applied onto release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick heat conductive sheet. When the thermal conductivity was measured with a thermal conductivity meter, the thermal conductivity was 4.00 W / mK, and when the surface resistance was measured with a surface resistance meter, it was 8.3 × 10 9 Ω / □.

[実施例4]
白色微粒子状レジンであるアクリル樹脂(ガラス転移温度:100℃、分子量:85×103、酸価:3[mgKOH/g])をトルエンに溶解させ、30vol%溶液を作製した。粘度は25℃で5ポイズであった。この溶液に対して、カーボンナノチューブ(昭和電工製)をアクリル樹脂成分に対して20質量%の量で添加し、機械攪拌にて常温下で混合して分散液を調製した。作製した分散液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚の熱伝導性シートを得た。熱伝導率計にて熱伝導率を測定したところ熱伝導率は4.35W/mKであり、表面抵抗計にて表面抵抗を測定したところ4.3×108Ω/□であった。
[Example 4]
Acrylic resin (glass transition temperature: 100 ° C., molecular weight: 85 × 10 3 , acid value: 3 [mgKOH / g]), which is a white particulate resin, was dissolved in toluene to prepare a 30 vol% solution. The viscosity was 5 poise at 25 ° C. To this solution, carbon nanotubes (manufactured by Showa Denko) were added in an amount of 20% by mass with respect to the acrylic resin component, and mixed at room temperature with mechanical stirring to prepare a dispersion. The prepared dispersion was applied onto release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick heat conductive sheet. When the thermal conductivity was measured with a thermal conductivity meter, the thermal conductivity was 4.35 W / mK, and when the surface resistance was measured with a surface resistance meter, it was 4.3 × 10 8 Ω / □.

[実施例5]
白色微粒子状レジンであるアクリル樹脂(ガラス転移温度:100℃、分子量:85×103、酸価:3[mgKOH/g])をトルエンに溶解させ、30vol%溶液を作製した。粘度は25℃で5ポイズであった。この溶液に対して、カーボンナノチューブ(昭和電工製)をアクリル樹脂成分に対して30質量%の量で添加し、機械攪拌にて常温下で混合して分散液を調製した。作製した分散液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚の熱伝導性シートを得た。熱伝導率計にて熱伝導率を測定したところ熱伝導率は5.15W/mKであり、表面抵抗計にて表面抵抗を測定したところ7.6×107Ω/□であった。
[Example 5]
Acrylic resin (glass transition temperature: 100 ° C., molecular weight: 85 × 10 3 , acid value: 3 [mgKOH / g]), which is a white particulate resin, was dissolved in toluene to prepare a 30 vol% solution. The viscosity was 5 poise at 25 ° C. To this solution, carbon nanotubes (manufactured by Showa Denko) were added in an amount of 30% by mass with respect to the acrylic resin component, and mixed at room temperature with mechanical stirring to prepare a dispersion. The prepared dispersion was applied onto release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick heat conductive sheet. When the thermal conductivity was measured with a thermal conductivity meter, the thermal conductivity was 5.15 W / mK, and when the surface resistance was measured with a surface resistance meter, it was 7.6 × 10 7 Ω / □.

[実施例6]
白色微粒子状レジンであるアクリル樹脂(ガラス転移温度:100℃、分子量:85×103、酸価:3[mgKOH/g])をトルエンに溶解させ、30vol%溶液を作製した。粘度は25℃で5ポイズであった。この溶液に対して、カーボンナノチューブ(昭和電工製)をアクリル樹脂成分に対して40質量%の量で添加し、機械攪拌にて常温下で混合して分散液を調製した。作製した分散液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚の熱伝導性シートを得た。熱伝導率計にて熱伝導率を測定したところ熱伝導率は5.45W/mKであり、表面抵抗計にて表面抵抗を測定したところ2.8×107Ω/□であった。
[Example 6]
Acrylic resin (glass transition temperature: 100 ° C., molecular weight: 85 × 10 3 , acid value: 3 [mgKOH / g]), which is a white particulate resin, was dissolved in toluene to prepare a 30 vol% solution. The viscosity was 5 poise at 25 ° C. To this solution, carbon nanotubes (manufactured by Showa Denko) were added in an amount of 40% by mass with respect to the acrylic resin component, and mixed at room temperature with mechanical stirring to prepare a dispersion. The prepared dispersion was applied onto release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick heat conductive sheet. When the thermal conductivity was measured with a thermal conductivity meter, the thermal conductivity was 5.45 W / mK, and when the surface resistance was measured with a surface resistance meter, it was 2.8 × 10 7 Ω / □.

[実施例7]
白色微粒子状レジンであるアクリル樹脂(ガラス転移温度:100℃、分子量:85×103、酸価:3[mgKOH/g])をトルエンに溶解させ、30vol%溶液を作製した。粘度は25℃で5ポイズであった。この溶液に対して、カーボンナノチューブ(昭和電工製)をアクリル樹脂成分に対して50質量%の量で添加し、機械攪拌にて常温下で混合して分散液を調製した。作製した分散液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚の熱伝導性シートを得た。熱伝導率計にて熱伝導率を測定したところ熱伝導率は5.90W/mKであり、表面抵抗計にて表面抵抗を測定したところ9.4×106Ω/□であった。
[Example 7]
Acrylic resin (glass transition temperature: 100 ° C., molecular weight: 85 × 10 3 , acid value: 3 [mgKOH / g]), which is a white particulate resin, was dissolved in toluene to prepare a 30 vol% solution. The viscosity was 5 poise at 25 ° C. To this solution, carbon nanotubes (manufactured by Showa Denko) were added in an amount of 50% by mass with respect to the acrylic resin component, and mixed at room temperature with mechanical stirring to prepare a dispersion. The prepared dispersion was applied onto release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick heat conductive sheet. When the thermal conductivity was measured with a thermal conductivity meter, the thermal conductivity was 5.90 W / mK, and when the surface resistance was measured with a surface resistance meter, it was 9.4 × 10 6 Ω / □.

[実施例8〜14]
実施例1〜7のアクリル樹脂をポリカーボネート樹脂に変更した以外は実施例1〜7と同様にして200μm厚の熱伝導性シートを得た。実施例1と同様にして熱伝導率および表面抵抗を測定した。それらの結果を下記表1に示す。

Figure 2005150362
[Examples 8 to 14]
A 200 μm thick thermally conductive sheet was obtained in the same manner as in Examples 1 to 7, except that the acrylic resin in Examples 1 to 7 was changed to a polycarbonate resin. Thermal conductivity and surface resistance were measured in the same manner as in Example 1. The results are shown in Table 1 below.
Figure 2005150362

[実施例15〜21]
実施例1〜7のアクリル樹脂をポリプロピレン樹脂に変更した以外は実施例1〜7と同様にして200μm厚の熱伝導性シートを得た。実施例1と同様にして熱伝導率および表面抵抗を測定した。それらの結果を下記表2に示す。

Figure 2005150362
[Examples 15 to 21]
A 200 μm thick thermally conductive sheet was obtained in the same manner as in Examples 1 to 7, except that the acrylic resin in Examples 1 to 7 was changed to a polypropylene resin. Thermal conductivity and surface resistance were measured in the same manner as in Example 1. The results are shown in Table 2 below.
Figure 2005150362

[実施例22〜28]
実施例1〜7のアクリル樹脂をポリウレタン樹脂に変更した以外は実施例1〜7と同様にして200μm厚の熱伝導性シートを得た。実施例1と同様にして熱伝導率および表面抵抗を測定した。それらの結果を下記表3に示す。

Figure 2005150362
[Examples 22 to 28]
A 200 μm thick thermally conductive sheet was obtained in the same manner as in Examples 1 to 7, except that the acrylic resin in Examples 1 to 7 was changed to a polyurethane resin. Thermal conductivity and surface resistance were measured in the same manner as in Example 1. The results are shown in Table 3 below.
Figure 2005150362

[実施例29〜35]
実施例1〜7のアクリル樹脂をポリエチレンナフタレート樹脂に変更した以外は実施例1〜7と同様にして200μm厚の熱伝導性シートを得た。実施例1と同様にして熱伝導率および表面抵抗を測定した。それらの結果を下記表4に示す。

Figure 2005150362
[Examples 29 to 35]
A 200 μm thick thermally conductive sheet was obtained in the same manner as in Examples 1 to 7, except that the acrylic resin in Examples 1 to 7 was changed to polyethylene naphthalate resin. Thermal conductivity and surface resistance were measured in the same manner as in Example 1. The results are shown in Table 4 below.
Figure 2005150362

[実施例36]
実施例1で作製したアクリル樹脂−カーボンナノチューブ分散液に対して、球状アルミナ(昭和電工製)をアクリル樹脂の30質量%混合し、実施例1と同様にして熱伝導性シートを作製した。作製した熱伝導性シートは熱伝導率が3.50W/mKであり、表面抵抗が1013Ω/□以上であり、電気的短絡を起こさないものであった。
[Example 36]
Spherical alumina (manufactured by Showa Denko) was mixed with 30% by mass of acrylic resin to the acrylic resin-carbon nanotube dispersion prepared in Example 1, and a heat conductive sheet was prepared in the same manner as in Example 1. The produced thermal conductive sheet had a thermal conductivity of 3.50 W / mK, a surface resistance of 10 13 Ω / □ or more, and did not cause an electrical short circuit.

[実施例37]
実施例1で作製したアクリル樹脂−カーボンナノチューブ分散液に対して、窒化アルミニウムをアクリル樹脂の30質量%混合した。作製した熱伝導性シートは熱伝導率が3.45W/mKであり、表面抵抗が1013Ω/□以上であり、電気的短絡を起こさないものであった。
[Example 37]
To the acrylic resin-carbon nanotube dispersion produced in Example 1, 30% by mass of acrylic resin was mixed with aluminum nitride. The produced thermal conductive sheet had a thermal conductivity of 3.45 W / mK, a surface resistance of 10 13 Ω / □ or more, and did not cause an electrical short circuit.

[実施例38]
実施例1で作製したアクリル樹脂−カーボンナノチューブ分散液に対して、窒化ホウ素をアクリル樹脂の30質量%混合した。作製した熱伝導性シートは熱伝導率が3.55W/mKであり、表面抵抗が1013Ω/□以上であり、電気的短絡を起こさないものであった。
[Example 38]
Boron nitride was mixed with 30% by mass of acrylic resin to the acrylic resin-carbon nanotube dispersion prepared in Example 1. The produced thermal conductive sheet had a thermal conductivity of 3.55 W / mK, a surface resistance of 10 13 Ω / □ or more, and did not cause an electrical short circuit.

[実施例39]
実施例1で作製したアクリル樹脂−カーボンナノチューブ分散液に対して、軟磁性フェライトをアクリル樹脂の30質量%混合した。作製した熱伝導性シートは熱伝導率が3.65W/mKであり、表面抵抗が1013Ω/□以上であり、電気的短絡を起こさないものであった。
[Example 39]
To the acrylic resin-carbon nanotube dispersion prepared in Example 1, 30% by mass of an acrylic resin was mixed with soft magnetic ferrite. The produced thermal conductive sheet had a thermal conductivity of 3.65 W / mK, a surface resistance of 10 13 Ω / □ or more, and did not cause an electrical short circuit.

[実施例40]
実施例1で作製したアクリル樹脂−カーボンナノチューブ分散液に対して、酸化亜鉛をアクリル樹脂の30質量%混合した。作製した熱伝導性シートは熱伝導率が3.53W/mKであり、表面抵抗が1013Ω/□以上であり、電気的短絡を起こさないものであった。
[Example 40]
Zinc oxide was mixed with 30% by mass of the acrylic resin with respect to the acrylic resin-carbon nanotube dispersion prepared in Example 1. The produced thermal conductive sheet had a thermal conductivity of 3.53 W / mK, a surface resistance of 10 13 Ω / □ or more, and did not cause an electrical short circuit.

[実施例41]
実施例1で作製したアクリル樹脂−カーボンナノチューブ分散液に対して、シリコンカーバイドをアクリル樹脂の30質量%混合した。作製した熱伝導性シートは熱伝導率が3.67W/mKであり、表面抵抗が1013Ω/□以上であり、電気的短絡を起こさないものであった。
[Example 41]
Silicon carbide was mixed with 30% by mass of acrylic resin to the acrylic resin-carbon nanotube dispersion prepared in Example 1. The produced thermal conductive sheet had a thermal conductivity of 3.67 W / mK, a surface resistance of 10 13 Ω / □ or more, and did not cause an electrical short circuit.

[実施例42]
実施例1で作製したアクリル樹脂−カーボンナノチューブ分散液に対して、ダイアモンド粉をアクリル樹脂の30質量%混合した。作製した熱伝導性シートは熱伝導率が3.45W/mKであり、表面抵抗が1013Ω/□以上であり、電気的短絡を起こさないものであった。
[Example 42]
Diamond powder was mixed with 30% by mass of acrylic resin with respect to the acrylic resin-carbon nanotube dispersion prepared in Example 1. The produced thermal conductive sheet had a thermal conductivity of 3.45 W / mK, a surface resistance of 10 13 Ω / □ or more, and did not cause an electrical short circuit.

[実施例43]
実施例1で作製したアクリル樹脂−カーボンナノチューブ分散液に対して、酸化マグネシウムをアクリル樹脂の30質量%混合した。作製した熱伝導性シートは熱伝導率が3.35W/mKであり、表面抵抗が1013Ω/□以上であり、電気的短絡を起こさないものであった。
[Example 43]
Magnesium oxide was mixed with 30% by mass of the acrylic resin with respect to the acrylic resin-carbon nanotube dispersion prepared in Example 1. The produced thermal conductive sheet had a thermal conductivity of 3.35 W / mK, a surface resistance of 10 13 Ω / □ or more, and did not cause an electrical short circuit.

[比較例1]
実施例1で用いたアクリル樹脂溶液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚のシートを得た。熱伝導率計にて熱伝導率を測定したところ熱伝導率は0.01W/mKであり、表面抵抗計にて表面抵抗を測定したところ1013Ω/□以上となり、熱伝導性に欠けるシートであった。
[Comparative Example 1]
The acrylic resin solution used in Example 1 was coated on release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick sheet. When the thermal conductivity is measured with a thermal conductivity meter, the thermal conductivity is 0.01 W / mK, and when the surface resistance is measured with a surface resistance meter, it is 10 13 Ω / □ or more, and the sheet lacks thermal conductivity. Met.

[実施例44]
実施例1で用いたアクリル樹脂溶液に対して、カーボンナノチューブ(昭和電工製)をアクリル樹脂成分に対して55質量%の量で添加し、機械攪拌にて常温下で混合して分散液を調製した。作製した分散液を離型紙上に塗工し、120℃で5分間乾燥させた後、離型紙を剥離し、200μm厚の熱伝導性シートを得た。熱伝導率計にて熱伝導率を測定したところ、熱伝導率は任意の測定点で6.12W/mKであり、表面抵抗計にて表面抵抗を測定したところ3.7×106Ω/□であり、放熱シートとして使用可能である。しかし、得られた熱伝導性シートは、カーボンナノチューブの分散が十分ではなく、測定点により熱伝導性にばらつきが生じ、放熱性において均一性に欠けるものであった。
[Example 44]
To the acrylic resin solution used in Example 1, carbon nanotubes (manufactured by Showa Denko) are added in an amount of 55% by mass with respect to the acrylic resin component, and mixed at room temperature with mechanical stirring to prepare a dispersion. did. The prepared dispersion was applied onto release paper and dried at 120 ° C. for 5 minutes, and then the release paper was peeled off to obtain a 200 μm thick heat conductive sheet. When the thermal conductivity was measured with a thermal conductivity meter, the thermal conductivity was 6.12 W / mK at an arbitrary measurement point, and when the surface resistance was measured with a surface resistance meter, 3.7 × 10 6 Ω / It is □ and can be used as a heat dissipation sheet. However, in the obtained heat conductive sheet, the carbon nanotubes were not sufficiently dispersed, the heat conductivity varied depending on the measurement points, and the heat dissipation was not uniform.

[実施例45]
実施例1で作製したアクリル樹脂―カーボンナノチューブ分散液に対して、酸化マグネシウムをアクリル樹脂の1質量%混合した。作製した熱伝導性シートは熱伝導率が3.15W/mKであり、電気的短絡が問題とならない用途では放熱シートとして有用であるが、表面抵抗が5×1011Ω/□であり、電気絶縁材料を添加した効果が不十分であった。
[Example 45]
Magnesium oxide was mixed with 1% by mass of an acrylic resin with respect to the acrylic resin-carbon nanotube dispersion prepared in Example 1. The produced thermal conductive sheet has a thermal conductivity of 3.15 W / mK and is useful as a heat dissipation sheet in applications where electrical short circuit is not a problem, but has a surface resistance of 5 × 10 11 Ω / □, The effect of adding an insulating material was insufficient.

[実施例46]
実施例1で作製したアクリル樹脂―カーボンナノチューブ分散液に対して、酸化マグネシウムをアクリル樹脂の35質量%混合した。作製した熱伝導性シートは熱伝導率が3.50W/mKであり、表面抵抗が1013Ω/□以上であり、放熱部材に対する密着性が問題とならない用途では放熱シートとして有用であるが、分散液中の固形分が非常に多く、表面凹凸が多くなり、密着性が要求される放熱部材に対しては密着性が不十分であった。
[Example 46]
Magnesium oxide was mixed with 35 mass% of acrylic resin to the acrylic resin-carbon nanotube dispersion prepared in Example 1. The produced heat conductive sheet has a thermal conductivity of 3.50 W / mK, a surface resistance of 10 13 Ω / □ or more, and is useful as a heat radiating sheet in applications where adhesion to the heat radiating member is not a problem. The solid content in the dispersion was very large, the surface unevenness increased, and the heat dissipation member required for adhesion was insufficient in adhesion.

本発明の熱伝導性シートは、種々の分野において広く利用することができるが、特に、発熱を伴う電気および電子機器分野において放熱材として好ましく用いられる。さらに本発明の熱伝導性シートは、使用時における信頼性が高い。
The heat conductive sheet of the present invention can be widely used in various fields, but is particularly preferably used as a heat radiating material in the field of electric and electronic devices that generate heat. Furthermore, the heat conductive sheet of the present invention has high reliability during use.

Claims (10)

汎用樹脂に対して、カーボンナノチューブ、カーボンマイクロコイル、カーボンフレーク、フラーレンおよびそれらの誘導体から選ばれる少なくとも1種の熱伝導性充填剤が配合および分散されてなることを特徴とする高熱伝導性シート。 A highly heat-conductive sheet comprising at least one heat-conductive filler selected from carbon nanotubes, carbon microcoils, carbon flakes, fullerenes and derivatives thereof in a general-purpose resin. 汎用樹脂が、熱可塑性樹脂であり、熱伝導性充填剤の含有量が、熱可塑性樹脂の0.1〜50質量%である請求項1に記載の高熱伝導性シート。 The highly heat-conductive sheet according to claim 1, wherein the general-purpose resin is a thermoplastic resin, and the content of the heat-conductive filler is 0.1 to 50% by mass of the thermoplastic resin. さらに電気絶縁性材料が配合および分散され、電気的短絡が防止されている請求項1に記載の高熱伝導性シート。 Furthermore, the electrically insulating material is mix | blended and disperse | distributed, The high heat conductive sheet of Claim 1 with which the electrical short circuit is prevented. 電気絶縁性材料の含有量が、汎用樹脂の3.0〜30質量%である請求項3に記載の高熱伝導性シート。 The highly thermally conductive sheet according to claim 3, wherein the content of the electrically insulating material is 3.0 to 30% by mass of the general-purpose resin. 電気絶縁性材料が、アルミナ、窒化アルミニウム、窒化ホウ素および軟磁性フェライトから選ばれる少なくとも1種である請求項3に記載の熱伝導性シート。 The thermally conductive sheet according to claim 3, wherein the electrically insulating material is at least one selected from alumina, aluminum nitride, boron nitride, and soft magnetic ferrite. 汎用樹脂の有機溶剤溶液に、カーボンナノチューブ、カーボンマイクロコイル、カーボンフレーク、フラーレンおよびそれらの誘導体から選ばれる少なくとも1種の熱伝導性充填剤を配合および分散し、該分散液を用いてシート化することを特徴とする高熱伝導性シートの製造方法。 At least one heat conductive filler selected from carbon nanotubes, carbon microcoils, carbon flakes, fullerenes and derivatives thereof is mixed and dispersed in an organic solvent solution of a general-purpose resin, and a sheet is formed using the dispersion. A method for producing a high thermal conductivity sheet. 汎用樹脂が、熱可塑性樹脂であり、熱伝導性充填剤の添加量が熱可塑性樹脂の0.1〜50質量%である請求項6に記載の高熱伝導性シートの製造方法。 The method for producing a high thermal conductive sheet according to claim 6, wherein the general-purpose resin is a thermoplastic resin, and the addition amount of the thermal conductive filler is 0.1 to 50% by mass of the thermoplastic resin. さらに電気絶縁性材料が配合および分散され、電気的短絡が防止されている請求項6に記載の高熱伝導性シートの製造方法。 Furthermore, the electrically insulating material is mix | blended and disperse | distributed, The manufacturing method of the highly heat conductive sheet of Claim 6 with which the electrical short circuit is prevented. 電気絶縁性材料の含有量が、汎用樹脂の3.0〜30質量%である請求項8に記載の高熱伝導性シートの製造方法。 The method for producing a highly thermally conductive sheet according to claim 8, wherein the content of the electrically insulating material is 3.0 to 30% by mass of the general-purpose resin. 電気絶縁性材料が、アルミナ、窒化アルミニウム、窒化ホウ素および軟磁性フェライトから選ばれる少なくとも1種である請求項8に記載の熱伝導性シートの製造方法。
The method for producing a thermally conductive sheet according to claim 8, wherein the electrically insulating material is at least one selected from alumina, aluminum nitride, boron nitride, and soft magnetic ferrite.
JP2003385279A 2003-11-14 2003-11-14 Highly thermal conductive sheet and its manufacturing method Pending JP2005150362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385279A JP2005150362A (en) 2003-11-14 2003-11-14 Highly thermal conductive sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385279A JP2005150362A (en) 2003-11-14 2003-11-14 Highly thermal conductive sheet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005150362A true JP2005150362A (en) 2005-06-09

Family

ID=34693403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385279A Pending JP2005150362A (en) 2003-11-14 2003-11-14 Highly thermal conductive sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005150362A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066649A1 (en) * 2005-12-06 2007-06-14 Mitsubishi Rayon Co., Ltd. Carbon nanotube-containing composition, composite body, and their production methods
WO2008044643A1 (en) * 2006-10-11 2008-04-17 Sumitomo Electric Industries, Ltd. Polyimide tube, method for production thereof, method for production of polyimide varnish, and fixing belt
KR100830945B1 (en) 2006-10-24 2008-05-20 (주) 아모센스 Preparation method of thermal conductive sheet comprised electromagnetic interference shielding used the nanocomposite carbon fiber
WO2008146400A1 (en) * 2007-05-25 2008-12-04 Teijin Limited Resin composition
JP2008303279A (en) * 2007-06-06 2008-12-18 Nissin Kogyo Co Ltd High thermal conductivity sheet and laser optical device
WO2009107229A1 (en) 2008-02-29 2009-09-03 富士通株式会社 Sheet structure, semiconductor device and method of growing carbon structure
EP2104141A2 (en) 2008-03-18 2009-09-23 Fujitsu Limited Sheet structure and method of manufacturing sheet structure
EP2187440A2 (en) 2008-11-14 2010-05-19 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
JP2011096832A (en) * 2009-10-29 2011-05-12 Fujitsu Ltd Sheet type member and electronic apparatus
JP2011119474A (en) * 2009-12-03 2011-06-16 Mitsubishi Engineering Plastics Corp Two-color molding with heat radiation part and equipment with heating body
JP2011173957A (en) * 2010-02-23 2011-09-08 Teijin Ltd Polyethylene naphthalate composition and molded article using the same
JP2011190340A (en) * 2010-03-15 2011-09-29 Toyota Central R&D Labs Inc Crosslinked resin composition and process for producing the same
JP2011195614A (en) * 2010-03-17 2011-10-06 Toyota Central R&D Labs Inc Thermosetting resin composition and method for producing the same
JP2013038179A (en) * 2011-08-05 2013-02-21 Teijin Dupont Films Japan Ltd High thermal conductive biaxially stretched polyester film
JP2013153042A (en) * 2012-01-25 2013-08-08 Fujitsu Ltd Manufacturing method of heat radiation material
US8743546B2 (en) 2007-10-22 2014-06-03 Fujitsu Limited Sheet structure and method of manufacturing the same
US8837149B2 (en) 2011-02-25 2014-09-16 Fujitsu Limited Electronic component and method of manufacturing electronic component
US8859668B2 (en) 2008-09-24 2014-10-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composition
JP2016017086A (en) * 2014-07-04 2016-02-01 スターライト工業株式会社 Electrically insulating thermally conductive resin composition and method for producing the same
US20160090522A1 (en) * 2014-09-30 2016-03-31 Korea Institute Of Science And Technology Flexible heat-dissipating composite sheet including filler and low-viscosity polymerizable thermoplastic resin and cost effective mass producible method for preparing the same
WO2016129257A1 (en) * 2015-02-10 2016-08-18 日本ゼオン株式会社 Heat transfer sheet and method for producing same
JP2017145403A (en) * 2016-02-16 2017-08-24 ゼロックス コーポレイションXerox Corporation Conductive polymer composite
WO2018062352A1 (en) * 2016-09-28 2018-04-05 帝人株式会社 Heat dissipation sheet
JP2019108497A (en) * 2017-12-19 2019-07-04 日本ゼオン株式会社 Manufacturing method of heat conductive sheet
JP2019117916A (en) * 2017-12-26 2019-07-18 日本ゼオン株式会社 Thermal conductive sheet and method for manufacturing the same
US10381290B2 (en) 2016-08-25 2019-08-13 Fujitsu Limited Method of manufacturing an electronic device
US10497639B2 (en) 2016-10-17 2019-12-03 Fujitsu Limited Carbon nanotube structure, heat dissipation sheet, and method of manufacturing carbon nanotube structure
US10611941B2 (en) 2014-11-10 2020-04-07 Fujitsu Limited Heat radiation sheet, method of manufacturing heat radiation sheet, and method of manufacturing electronic device
US11264302B2 (en) 2017-08-21 2022-03-01 Fujitsu Limited Heat dissipation sheet, manufacturing method of heat dissipation sheet, and electronic apparatus
EP3717528B1 (en) * 2017-11-27 2022-05-25 Chemours-Mitsui Fluoroproducts Co., Ltd. Tfe/pave-copolymer for shape memory molded article and shape memory molded article
US11702725B2 (en) 2018-08-21 2023-07-18 Fujitsu Limited Bonding structure and method of manufacturing bonding structure
US11735493B2 (en) 2019-05-08 2023-08-22 Fujitsu Limited Conductive heat radiation film, method of manufacturing the same, and method of manufacturing electronic device

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066649A1 (en) * 2005-12-06 2007-06-14 Mitsubishi Rayon Co., Ltd. Carbon nanotube-containing composition, composite body, and their production methods
US8329065B2 (en) 2005-12-06 2012-12-11 Mitsubishi Rayon Co., Ltd. Carbon nanotube-containing composition, composite, and methods for producing them
US8263199B2 (en) 2006-10-11 2012-09-11 Sumitomo Electric Industries, Ltd. Polyimide tube, method for production thereof, method for production of polyimide varnish, and fixing belt
WO2008044643A1 (en) * 2006-10-11 2008-04-17 Sumitomo Electric Industries, Ltd. Polyimide tube, method for production thereof, method for production of polyimide varnish, and fixing belt
KR100830945B1 (en) 2006-10-24 2008-05-20 (주) 아모센스 Preparation method of thermal conductive sheet comprised electromagnetic interference shielding used the nanocomposite carbon fiber
WO2008146400A1 (en) * 2007-05-25 2008-12-04 Teijin Limited Resin composition
JP2008303279A (en) * 2007-06-06 2008-12-18 Nissin Kogyo Co Ltd High thermal conductivity sheet and laser optical device
US8743546B2 (en) 2007-10-22 2014-06-03 Fujitsu Limited Sheet structure and method of manufacturing the same
WO2009107229A1 (en) 2008-02-29 2009-09-03 富士通株式会社 Sheet structure, semiconductor device and method of growing carbon structure
US8350391B2 (en) 2008-02-29 2013-01-08 Fujitsu Limited Sheet structure, semiconductor device and method of growing carbon structure
US8258060B2 (en) 2008-02-29 2012-09-04 Fujitsu Limited Sheet structure, semiconductor device and method of growing carbon structure
US8749979B2 (en) 2008-03-18 2014-06-10 Fujitsu Limited Sheet structure and method of manufacturing sheet structure
EP2104141A2 (en) 2008-03-18 2009-09-23 Fujitsu Limited Sheet structure and method of manufacturing sheet structure
US8859668B2 (en) 2008-09-24 2014-10-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composition
US8194407B2 (en) 2008-11-14 2012-06-05 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
US8958207B2 (en) 2008-11-14 2015-02-17 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
EP2187440A2 (en) 2008-11-14 2010-05-19 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
JP2011096832A (en) * 2009-10-29 2011-05-12 Fujitsu Ltd Sheet type member and electronic apparatus
JP2011119474A (en) * 2009-12-03 2011-06-16 Mitsubishi Engineering Plastics Corp Two-color molding with heat radiation part and equipment with heating body
JP2011173957A (en) * 2010-02-23 2011-09-08 Teijin Ltd Polyethylene naphthalate composition and molded article using the same
JP2011190340A (en) * 2010-03-15 2011-09-29 Toyota Central R&D Labs Inc Crosslinked resin composition and process for producing the same
JP2011195614A (en) * 2010-03-17 2011-10-06 Toyota Central R&D Labs Inc Thermosetting resin composition and method for producing the same
US8837149B2 (en) 2011-02-25 2014-09-16 Fujitsu Limited Electronic component and method of manufacturing electronic component
JP2013038179A (en) * 2011-08-05 2013-02-21 Teijin Dupont Films Japan Ltd High thermal conductive biaxially stretched polyester film
JP2013153042A (en) * 2012-01-25 2013-08-08 Fujitsu Ltd Manufacturing method of heat radiation material
JP2016017086A (en) * 2014-07-04 2016-02-01 スターライト工業株式会社 Electrically insulating thermally conductive resin composition and method for producing the same
US20160090522A1 (en) * 2014-09-30 2016-03-31 Korea Institute Of Science And Technology Flexible heat-dissipating composite sheet including filler and low-viscosity polymerizable thermoplastic resin and cost effective mass producible method for preparing the same
US10611941B2 (en) 2014-11-10 2020-04-07 Fujitsu Limited Heat radiation sheet, method of manufacturing heat radiation sheet, and method of manufacturing electronic device
WO2016129257A1 (en) * 2015-02-10 2016-08-18 日本ゼオン株式会社 Heat transfer sheet and method for producing same
JP7064287B2 (en) 2016-02-16 2022-05-10 ゼロックス コーポレイション Conductive polymer composite
JP2017145403A (en) * 2016-02-16 2017-08-24 ゼロックス コーポレイションXerox Corporation Conductive polymer composite
US10770370B2 (en) 2016-08-25 2020-09-08 Fujitsu Limited Electronic device and heat dissipating sheet
US10381290B2 (en) 2016-08-25 2019-08-13 Fujitsu Limited Method of manufacturing an electronic device
WO2018062352A1 (en) * 2016-09-28 2018-04-05 帝人株式会社 Heat dissipation sheet
JPWO2018062352A1 (en) * 2016-09-28 2019-07-04 帝人株式会社 Heat dissipation sheet
US10497639B2 (en) 2016-10-17 2019-12-03 Fujitsu Limited Carbon nanotube structure, heat dissipation sheet, and method of manufacturing carbon nanotube structure
US11264302B2 (en) 2017-08-21 2022-03-01 Fujitsu Limited Heat dissipation sheet, manufacturing method of heat dissipation sheet, and electronic apparatus
US11967539B2 (en) 2017-08-21 2024-04-23 Fujitsu Limited Heat dissipation sheet, manufacturing method of heat dissipation sheet, and electronic apparatus
EP3717528B1 (en) * 2017-11-27 2022-05-25 Chemours-Mitsui Fluoroproducts Co., Ltd. Tfe/pave-copolymer for shape memory molded article and shape memory molded article
JP2019108497A (en) * 2017-12-19 2019-07-04 日本ゼオン株式会社 Manufacturing method of heat conductive sheet
JP7172031B2 (en) 2017-12-19 2022-11-16 日本ゼオン株式会社 Method for manufacturing thermally conductive sheet
JP2019117916A (en) * 2017-12-26 2019-07-18 日本ゼオン株式会社 Thermal conductive sheet and method for manufacturing the same
US11702725B2 (en) 2018-08-21 2023-07-18 Fujitsu Limited Bonding structure and method of manufacturing bonding structure
US11735493B2 (en) 2019-05-08 2023-08-22 Fujitsu Limited Conductive heat radiation film, method of manufacturing the same, and method of manufacturing electronic device

Similar Documents

Publication Publication Date Title
JP2005150362A (en) Highly thermal conductive sheet and its manufacturing method
KR102072886B1 (en) Layered product and process for producing same
EP2682994B1 (en) Thermoelectric conversion material, and flexible thermoelectric conversion device using same
KR101274975B1 (en) Thermally conductive materials based on thermally conductive hollow particles and fabrication method thereof
JP5268050B2 (en) Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition
Kausar et al. Effectiveness of polystyrene/carbon nanotube composite in electromagnetic interference shielding materials: a review
CN108495897B (en) Heat conductive resin molded article
JPWO2016129257A1 (en) Thermal conductive sheet and manufacturing method thereof
KR101940567B1 (en) Thermally conductive resin molded article
KR20180116261A (en) HEAT CONDUCTIVE SHEET, METHOD FOR MANUFACTURING THE SAME,
KR20180115269A (en) HEAT CONDUCTIVE SHEET, METHOD FOR MANUFACTURING THE SAME,
TW201026836A (en) Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
JP2008528768A (en) Conductive composition and method for producing the same
JP6162666B2 (en) Thermoelectric converter
JP2014133842A (en) Conductive resin composition
JP5516034B2 (en) Highly insulating heat conductive sheet and heat dissipation device using the same
JP7402610B2 (en) Thermal conductive resin compositions, thermal conductive sheets and electronic components
WO2020090796A1 (en) Boron nitride nanomaterial and resin composition
JP5178117B2 (en) Heat dissipation slurry and electronic parts using the same
KR20190021230A (en) Heat sink
KR101839920B1 (en) Heat-dissipating Printed Circuit Board and Manufacturing Method Thereof
JP6209142B2 (en) Thermoelectric conversion element
Shakun et al. Improved electromechanical response in acrylic rubber by different carbon‐based fillers
Haruki et al. Controlling thermal conductivities and electrical insulation properties of carbon nanofiber/polyimide composites using surface coating techniques
KR20150120765A (en) Thermal radiation sheet of thin layer type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127