JP5268050B2 - Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition - Google Patents

Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition Download PDF

Info

Publication number
JP5268050B2
JP5268050B2 JP2008010369A JP2008010369A JP5268050B2 JP 5268050 B2 JP5268050 B2 JP 5268050B2 JP 2008010369 A JP2008010369 A JP 2008010369A JP 2008010369 A JP2008010369 A JP 2008010369A JP 5268050 B2 JP5268050 B2 JP 5268050B2
Authority
JP
Japan
Prior art keywords
resin
carbon nanotube
resin composition
mass
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008010369A
Other languages
Japanese (ja)
Other versions
JP2009167369A (en
Inventor
武 中原
広 高見
捷凡 柳
Original Assignee
地方独立行政法人 東京都立産業技術研究センター
株式会社寺田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人 東京都立産業技術研究センター, 株式会社寺田 filed Critical 地方独立行政法人 東京都立産業技術研究センター
Priority to JP2008010369A priority Critical patent/JP5268050B2/en
Publication of JP2009167369A publication Critical patent/JP2009167369A/en
Application granted granted Critical
Publication of JP5268050B2 publication Critical patent/JP5268050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition containing carbon nanotube, in which carbon nanotube is uniformly dispersed in the resin by a simple method, without causing recoagulation in the resin, without impairing characteristics of the carbon nanotube itself, and without performing troublesome operations such as acid treatment, solvent removal etc., to provide its cured substance and its molded body which are excellent in mechanical strength (bending strength and a flexural modulus of elasticity) and in electrical conductivity (in particular uniformity of electrical conductivity), and further to provide a manufacturing method of the resin composition containing carbon nanotube. <P>SOLUTION: The resin composition containing carbon nanotube is formed by adding ultrafine anhydrous silica powder (c), with a particle size of 1-50 nm, of 0.1-3.0 mass% with respect to the total amount of a resin (a) and carbon nanotube (b) and high-shear mixing them, in mixing the carbon nanotube (b) with a diameter of 1-80 nm and an aspect ratio of 50 or more of 0.01-5.0 mass% with the resin (a) and dispersing it therein. The cured substance, the molded body, and the resin composition containing carbon nanotube are obtained. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、機械強度(曲げ強度、曲げ弾性率)や導電性(特に均一性)に優れたカーボンナノチューブ含有樹脂組成物、硬化物、成形体及びカーボンナノチューブ含有樹脂組成物の製造方法に関するものである。   The present invention relates to a carbon nanotube-containing resin composition excellent in mechanical strength (bending strength, flexural modulus) and electrical conductivity (particularly uniformity), a cured product, a molded product, and a method for producing a carbon nanotube-containing resin composition. is there.

カーボンナノチューブは、1991年に飯島澄男氏が発見した新しい炭素材料である(非特許文献1)が、その後、電気伝導性、熱伝導性や機械的強度の点で従来の物質にない特性を持つことが確認され、ナノテクノロジー分野の代表的な材料として注目されている。   Carbon nanotubes are a new carbon material discovered by Sumio Iijima in 1991 (Non-Patent Document 1), but have characteristics not found in conventional materials in terms of electrical conductivity, thermal conductivity, and mechanical strength. As a result, it is attracting attention as a representative material in the nanotechnology field.

しかしながら、カーボンナノチューブは、通常絡まった状態で製造されるため、取扱いが非常に煩雑になるという問題がある。また、樹脂や溶液に混合した場合は、カーボンナノチューブがさらに凝集し、上記のようなカーボンナノチューブ本来の特性が発揮できないという問題があった(特許文献1〜3)。   However, since carbon nanotubes are usually manufactured in a tangled state, there is a problem that handling becomes very complicated. In addition, when mixed in a resin or solution, the carbon nanotubes are further agglomerated, and there is a problem in that the original characteristics of the carbon nanotubes cannot be exhibited (Patent Documents 1 to 3).

このため、カーボンナノチューブを物理的に処理したり、化学的に修飾したりして溶媒や樹脂に溶解することが試みられている。例えば、単層カーボンナノチューブを強酸中で超音波処理することによって短く切断して分散する方法が提案されている(非特許文献2)。   For this reason, attempts have been made to dissolve carbon nanotubes in a solvent or resin by physical treatment or chemical modification. For example, a method has been proposed in which single-walled carbon nanotubes are cut shortly and dispersed by ultrasonic treatment in strong acid (Non-patent Document 2).

また、上記提案のように切断されたカーボンナノチューブは、その両末端が開いておりカルボキシル基で終端されていることに着目し、カルボキシル基を酸塩化物にした後アミン化合物と反応させ長鎖アルキル基を導入して溶媒に可溶化することが提案されている(非特許文献3)。   In addition, the carbon nanotubes cut as proposed above are focused on the fact that both ends are open and terminated with carboxyl groups. After converting the carboxyl groups to acid chlorides, they are reacted with amine compounds to produce long-chain alkyls. It has been proposed to introduce a group and solubilize in a solvent (Non-patent Document 3).

さらに、カーボンナノチューブを予め均一に分散した溶媒に樹脂を溶かすことによって、カーボンナノチューブが均一に分散した樹脂を製造することが提案されている(特許文献4)。さらにまた、カーボンナノチューブをアミド系極性有機溶媒、非イオン性界面活性剤等のいわゆる分散剤及びポリビニルピロリドンとともに超音波処理して分散を行い、樹脂と混合する方法も提案されている(特許文献5)。
特許第2862578号公報 特許第3034027号公報 特開平7−102112号公報 特表2005−500648号公報 特開2005−154630号公報 S.Iijima,Nature,354,56(1991) R.E.Smalley等,Science,280,1253(1998) J.Chen等,Science,282,95(1998)
Furthermore, it has been proposed to produce a resin in which carbon nanotubes are uniformly dispersed by dissolving the resin in a solvent in which carbon nanotubes are uniformly dispersed in advance (Patent Document 4). Furthermore, a method has also been proposed in which carbon nanotubes are dispersed by sonication together with a so-called dispersant such as an amide polar organic solvent, a nonionic surfactant and polyvinylpyrrolidone, and mixed with a resin (Patent Document 5). ).
Japanese Patent No. 2862578 Japanese Patent No. 3034027 JP-A-7-102112 JP 2005-500168A JP 2005-154630 A S. Iijima, Nature, 354, 56 (1991) R. E. Smalley et al., Science, 280, 1253 (1998) J. et al. Chen et al., Science, 282, 95 (1998).

しかしながら、非特許文献2の方法は、強酸中で処理するため取扱い作業が煩雑であり、廃棄物の処理の問題もあり、工業的に適した方法ではなかった。また、非特許文献3の化学的修飾法では、カーボンナノチューブのグラフェンシート構造の損傷やカーボンナノチューブ自体の特性に影響を与えるなどの問題点が残されていた。   However, the method of Non-Patent Document 2 is not an industrially suitable method because it is complicated in handling because it is processed in a strong acid and there is a problem of waste disposal. In addition, the chemical modification method of Non-Patent Document 3 still has problems such as damage to the graphene sheet structure of carbon nanotubes and the characteristics of the carbon nanotubes themselves.

さらに、特許文献4及び5の方法では、例え樹脂中にカーボンナノチューブが再凝集することなく均一に分散したとしても、溶媒を除去する工程が必要であり、その除去工程で加熱、真空等の最適条件を選択しなければ再凝集が起こるという問題点があった。さらにまた、製造過程で溶剤が大気中に放出される恐れがあり、環境保全の観点からも大量溶剤の使用は望まれていなかった。   Furthermore, in the methods of Patent Documents 4 and 5, even if the carbon nanotubes are uniformly dispersed in the resin without being re-aggregated, a process for removing the solvent is necessary. If the conditions were not selected, there was a problem that reaggregation occurred. Furthermore, there is a possibility that the solvent is released into the atmosphere during the production process, and the use of a large amount of solvent has not been desired from the viewpoint of environmental protection.

そこで、本発明の目的は、カーボンナノチューブ自体の特性を損なうことなく、酸処理や溶媒の除去といった煩雑な操作をすることなく、簡単な方法によりカーボンナノチューブが樹脂中で再凝集することなく均一に分散したカーボンナノチューブ含有樹脂組成物、機械強度(曲げ強度、曲げ弾性率)や導電性(特に均一性)が優れた硬化物または成形体を提供することであり、さらに該カーボンナノチューブ含有樹脂組成物の製造方法を提供することである。   Therefore, the object of the present invention is to uniformly disperse the carbon nanotubes in the resin by a simple method without impairing the characteristics of the carbon nanotubes themselves, without performing complicated operations such as acid treatment and solvent removal. Dispersed carbon nanotube-containing resin composition, providing a cured product or molded article having excellent mechanical strength (bending strength, flexural modulus) and electrical conductivity (particularly uniformity), and further comprising the carbon nanotube-containing resin composition It is to provide a manufacturing method.

本発明者は、前記課題を解決するために鋭意検討した結果、熱硬化性樹脂または熱可塑性樹脂にカーボンナノチューブを混合分散させる際に、特定の粒径を持つ超微粒子無水シリカ粉末を添加して高せん断混合することによって、無添加に比べてさらに強力なせん断力が与えることができ、再凝集が防止でき、機械強度や導電性が優れたカーボンナノチューブ含有樹脂組成物が得られることを見出して、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor added ultrafine anhydrous silica powder having a specific particle size when mixing and dispersing carbon nanotubes in a thermosetting resin or thermoplastic resin. It has been found that a high-shear mixing can give a stronger shearing force than when no additive is added, prevent re-aggregation, and provide a carbon nanotube-containing resin composition with excellent mechanical strength and electrical conductivity. The present invention has been completed.

すなわち、本発明のカーボンナノチューブ含有樹脂組成物は、樹脂(a)に対して、直径1〜80nmでアスペクト比が50以上のカーボンナノチューブ(b)0.01〜5.0質量%を粉体のまま混合、分散させる際に、粒径が1〜50nmの超微粒子無水シリカ粉末(c)を、樹脂(a)及びカーボンナノチューブ(b)の合計量に対して0.1〜3.0質量%添加してせん断混合してなることを特徴とするものである。 That is, the carbon nanotube-containing resin composition of the present invention, the resin (a), a 0.01 to 5.0 wt% 50 or more carbon nanotubes (b) an aspect ratio in diameter 1~80nm powder When mixing and dispersing as it is, 0.1 to 3.0% by mass of the ultrafine anhydrous silica powder (c) having a particle size of 1 to 50 nm based on the total amount of the resin (a) and the carbon nanotube (b). It is characterized by being added and shear mixed.

また、本発明のカーボンナノチューブ含有樹脂組成物は、前記樹脂(a)が、熱硬化性樹脂(d)または熱可塑性樹脂(e)であることが好ましい。さらに、前記熱硬化性樹脂(d)が、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアネートエステル樹脂の中から選ばれる少なくとも1種であることが好ましく、前記熱可塑性樹脂(e)が、スチレン系樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリオレフィン樹脂及び液晶性樹脂の中から選ばれる少なくとも1種であることが好ましい。   In the carbon nanotube-containing resin composition of the present invention, the resin (a) is preferably a thermosetting resin (d) or a thermoplastic resin (e). Furthermore, the thermosetting resin (d) is preferably at least one selected from an epoxy resin, an unsaturated polyester resin, a phenol resin, a vinyl ester resin, and a cyanate ester resin, and the thermoplastic resin (e ) Is preferably at least one selected from styrene resins, polycarbonate resins, polyphenylene ether resins, polyamide resins, polyester resins, polyphenylene sulfide resins, polyolefin resins, and liquid crystalline resins.

さらに、本発明の硬化物は、前記カーボンナノチューブ含有樹脂組成物に硬化剤を添加して硬化させたことを特徴とするものである。   Furthermore, the cured product of the present invention is characterized in that a curing agent is added to the carbon nanotube-containing resin composition and cured.

さらにまた、本発明の成形体は、前記カーボンナノチューブ含有樹脂組成物を成形してなることを特徴とするものである。   Furthermore, the molded article of the present invention is formed by molding the carbon nanotube-containing resin composition.

また、本発明のカーボンナノチューブ含有樹脂組成物の製造方法は、樹脂(a)に対して、直径1〜80nmでアスペクト比が50以上のカーボンナノチューブ(b)0.01〜5.0質量%を粉体のまま混合、分散させる際に、粒径が1〜50nmの超微粒子無水シリカ粉末(c)を、樹脂(a)及びカーボンナノチューブ(b)の合計量に対して0.1〜3.0質量%添加してせん断混合することを特徴とするものである。 Moreover, the manufacturing method of the carbon nanotube containing resin composition of this invention is 0.01-5.0 mass% of carbon nanotubes (b) with a diameter of 1-80 nm and an aspect ratio of 50 or more with respect to resin (a). When mixing and dispersing the powder as it is, the ultrafine particle anhydrous silica powder (c) having a particle size of 1 to 50 nm is 0.1 to 3.3 with respect to the total amount of the resin (a) and the carbon nanotube (b). It is characterized by adding 0% by mass and shear mixing.

さらに、本発明のカーボンナノチューブ含有樹脂組成物の製造方法は、前記樹脂(a)が、熱硬化性樹脂(d)または熱可塑性樹脂(e)であることが好ましい。さらにまた、前記熱硬化性樹脂(d)が、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアネートエステル樹脂の中から選ばれる少なくとも1種であることが好ましく、前記熱可塑性樹脂(e)が、スチレン系樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリオレフィン樹脂及び液晶性樹脂の中から選ばれる少なくとも1種であることが好ましい。   Furthermore, in the method for producing a carbon nanotube-containing resin composition of the present invention, the resin (a) is preferably a thermosetting resin (d) or a thermoplastic resin (e). Furthermore, the thermosetting resin (d) is preferably at least one selected from an epoxy resin, an unsaturated polyester resin, a phenol resin, a vinyl ester resin, and a cyanate ester resin, and the thermoplastic resin ( e) is preferably at least one selected from styrene resins, polycarbonate resins, polyphenylene ether resins, polyamide resins, polyester resins, polyphenylene sulfide resins, polyolefin resins and liquid crystalline resins.

本発明によると、カーボンナノチューブ自体の特性を損なうことなく、酸処理や溶媒の除去といった煩雑な操作をすることなく、簡単な方法によりカーボンナノチューブが樹脂中で再凝集することなく均一に分散したカーボンナノチューブ含有樹脂組成物、機械強度(曲げ強度、曲げ弾性率)や導電性(特に均一性)が優れた硬化物または成形体を提供することができる。また、該カーボンナノチューブ含有樹脂組成物の製造方法を提供することができる。さらに、本発明は、従来の酸処理や溶媒の除去などの操作がないため、環境保全の観点からも望ましいものである。   According to the present invention, carbon in which carbon nanotubes are uniformly dispersed without re-aggregation in a resin by a simple method without impairing the properties of the carbon nanotubes themselves, without complicated operations such as acid treatment and solvent removal. It is possible to provide a nanotube-containing resin composition, a cured product or a molded article excellent in mechanical strength (bending strength, flexural modulus) and electrical conductivity (particularly uniformity). Moreover, the manufacturing method of this carbon nanotube containing resin composition can be provided. Furthermore, the present invention is desirable from the viewpoint of environmental conservation because there is no conventional operation such as acid treatment or solvent removal.

以下、本発明について詳細に説明する。
本発明は、樹脂(a)にカーボンナノチューブ(b)を混合、分散させる際に、1〜50nmの粒径を持つ超微粒子無水シリカ粉末(c)を、樹脂(a)及びカーボンナノチューブ(b)の合計量に対して0.1〜3.0質量%添加することにより、超微粒子無水シリカ粉末(c)を無添加の従来法と比べて、得られた硬化物または成形体の体積抵抗率を顕著に低下させるものである。
Hereinafter, the present invention will be described in detail.
In the present invention, when the carbon nanotube (b) is mixed and dispersed in the resin (a), an ultrafine anhydrous silica powder (c) having a particle diameter of 1 to 50 nm is used as the resin (a) and the carbon nanotube (b). By adding 0.1 to 3.0% by mass with respect to the total amount of the above, the volume resistivity of the obtained cured product or molded product is compared with the conventional method in which the ultrafine anhydrous silica powder (c) is not added Is significantly reduced.

また、一般的に導電性のカーボンナノチューブ(b)を混合、分散させた樹脂(a)に非導電性(電気絶縁性)のシリカ粉末を添加すれば導電性が低下するが、本発明は特定の粒径を持つ超微粒子無水シリカ粉末(c)を特定量添加して高せん断混合することにより、得られた硬化物または成形体の導電性が向上するという従来の常識では不可能なことを可能にした。   In general, if non-conductive (electrically insulating) silica powder is added to the resin (a) in which conductive carbon nanotubes (b) are mixed and dispersed, the conductivity is lowered. The conventional common sense that the conductivity of the obtained cured product or molded product is improved by adding a specific amount of ultrafine anhydrous silica powder (c) having a particle size of Made possible.

さらに、本発明は、一般的に樹脂の充填剤として使用されている破砕シリカや溶融シリカなどのシリカ粉末ではなく、一般的にチクソトロピック剤として塗料のダレ止めに使用されている超微粒子無水シリカ粉末(c)をカーボンナノチューブ(b)とともに樹脂(a)に添加して高せん断混合するという極めて簡単な操作をすることにより、カーボンナノチューブ含有樹脂組成物から機械強度や導電性が優れた硬化物または成形体を製造するものである。   Furthermore, the present invention is not a silica powder such as crushed silica or fused silica generally used as a resin filler, but an ultrafine anhydrous silica generally used as a thixotropic agent for anti-sagging of paint. A cured product having excellent mechanical strength and electrical conductivity from the carbon nanotube-containing resin composition by performing an extremely simple operation of adding the powder (c) to the resin (a) together with the carbon nanotube (b) and mixing them with high shear. Or a molded object is manufactured.

このように、本発明によれば、従来のようなカーボンナノチューブ(b)の表面を改質させるなど煩雑な操作が必要なく、適量の超微粒子無水シリカ粉末(c)を介在してカーボンナノチューブ(b)の再凝集を抑制することにより製造操作を大幅に簡素化できる。また、本発明では、超微粒子無水シリカ粉末(c)が一定の量を超えると、逆に体積抵抗率が大きくなるため、超微粒子無水シリカ粉末(c)の添加量を一定の範囲に限定する必要がある。   Thus, according to the present invention, there is no need for complicated operations such as modifying the surface of carbon nanotubes (b) as in the prior art, and carbon nanotubes (c) are interposed via an appropriate amount of ultrafine anhydrous silica powder (c). By suppressing the reaggregation of b), the production operation can be greatly simplified. Further, in the present invention, when the amount of the ultrafine anhydrous silica powder (c) exceeds a certain amount, the volume resistivity increases conversely, so the addition amount of the ultrafine anhydrous silica powder (c) is limited to a certain range. There is a need.

本発明における樹脂としては、所望の効果が得られれば特に限定されないが、好ましくは熱硬化性樹脂(d)または熱可塑性樹脂(e)である。   Although it will not specifically limit as a resin in this invention if a desired effect is acquired, Preferably it is a thermosetting resin (d) or a thermoplastic resin (e).

熱硬化性樹脂(d)としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアネートエステル樹脂、ベンゾオキサジン樹脂、尿素樹脂、メラミン樹脂、アクリル樹脂、ポリイミド樹脂等を使用することができる。このうちエポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアネートエステル樹脂の中から選ばれる少なくとも1種が、好ましい。また、耐衝撃性向上のために上記熱硬化性樹脂にエラストマーや合成ゴム等の柔軟成分を添加したものであってもよい。   As the thermosetting resin (d), for example, epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin, cyanate ester resin, benzoxazine resin, urea resin, melamine resin, acrylic resin, polyimide resin, etc. are used. be able to. Among these, at least one selected from an epoxy resin, an unsaturated polyester resin, a phenol resin, a vinyl ester resin, and a cyanate ester resin is preferable. Moreover, in order to improve impact resistance, a soft component such as elastomer or synthetic rubber may be added to the thermosetting resin.

エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、環状脂肪族エポキシ化合物、複素環式エポキシ化合物、ジグリシジルエステル系エポキシ化合物などが挙げられる。これらのエポキシ樹脂は単独でまたは2種類以上を組み合わせて使用される。   Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, cycloaliphatic epoxy compound, heterocyclic epoxy compound, diglycidyl ester type epoxy compound and the like. It is done. These epoxy resins are used alone or in combination of two or more.

エポキシ樹脂の硬化剤としては、脂肪族アミン、芳香族アミン、ポリアミドアミン、カルボン酸無水物、フェノールノボラック樹脂、ジシアンジアミド、イミダゾール化合物、チオ尿素付加アミン、ポリメルカプタン、カルボン酸ヒドラジド、カルボン酸アミド及びアミン−エポキシアダクトやマイクロカプセル型硬化剤等の各種潜在性硬化剤を使用することができる。   Epoxy resin curing agents include aliphatic amines, aromatic amines, polyamide amines, carboxylic anhydrides, phenol novolac resins, dicyandiamide, imidazole compounds, thiourea addition amines, polymercaptans, carboxylic acid hydrazides, carboxylic acid amides and amines. -Various latent hardeners such as epoxy adducts and microcapsule hardeners can be used.

熱硬化性樹脂(d)の硬化剤(例えば、上記のエポキシ樹脂硬化剤)は、熱硬化性樹脂(d)とカーボンナノチューブ(b)を超微粒子無水シリカ粉末(c)とともに高せん断混合する際に、発熱や粘度上昇等の硬化反応の進行が認められるなら、高せん断混合時には添加せず、後から添加して混合してもよい。   The curing agent for the thermosetting resin (d) (for example, the epoxy resin curing agent described above) is used when the thermosetting resin (d) and the carbon nanotube (b) are mixed with the ultrafine anhydrous silica powder (c) at high shear. In addition, if progress of the curing reaction such as exotherm and viscosity increase is recognized, it may be added later and not mixed at the time of high shear mixing.

熱可塑性樹脂(e)としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等のポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィンやスチレン系樹脂の他、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリメチレンメタクリレート、ポリ塩化ビニル、ポリフェニレンスルフィド、ポリフェニレンエーテル、熱可塑性ポリイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアリレート、さらにポリスチレン系ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系エラストマー等を使用することができる。このうち、スチレン系樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリオレフィン樹脂及び液晶性樹脂の中から選ばれる少なくとも1種が好ましい。   Examples of the thermoplastic resin (e) include polyethylene resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and liquid crystal polyester, polyolefins such as polyethylene, polypropylene, and polybutylene, and styrene resins. Oxymethylene, polyamide, polycarbonate, polymethylene methacrylate, polyvinyl chloride, polyphenylene sulfide, polyphenylene ether, thermoplastic polyimide, polyetherimide, polysulfone, polyethersulfone, polyketone, polyetherketone, polyetheretherketone, polyarylate, and more Polystyrene polyolefin, polyurethane, polyester, polyamide, polybutadiene It can be used polyisoprene elastomer. Among these, at least one selected from styrene resins, polycarbonate resins, polyphenylene ether resins, polyamide resins, polyester resins, polyphenylene sulfide resins, polyolefin resins, and liquid crystalline resins is preferable.

ここでスチレン系樹脂とは、スチレン及び/またはその誘導体(芳香族ビニル系モノマー)から生成した単位を含有する樹脂のことである。例えば、芳香族ビニル系モノマー1種または2種以上を重合した重合体、芳香族ビニル系モノマーの1種または2種以上とそれと共重合可能なモノマーの1種または2種以上を共重合した共重合体などが挙げられる。また、ゴム強化したスチレン系樹脂も好ましく用いられる。   Here, the styrene resin is a resin containing units generated from styrene and / or a derivative thereof (aromatic vinyl monomer). For example, a polymer obtained by polymerizing one or more aromatic vinyl monomers, a copolymer obtained by copolymerizing one or more aromatic vinyl monomers and one or more monomers copolymerizable therewith. A polymer etc. are mentioned. A rubber-reinforced styrene resin is also preferably used.

本発明において好ましいスチレン系樹脂としては、PS(ポリスチレン)、HIPS(高衝撃ポリスチレン)、AS(アクリロニトリル・スチレン共重合物)樹脂、AES(アクリロニトリル・EPDM(エチレン・プロピレン・ジエン・ターポリマ)・スチレン共重合物)樹脂、ABS(アクリロニトリル・ブタジエン・スチレン共重合物)樹脂、MBS(メタクリル酸メチル・ブタジエン・スチレン共重合物)樹脂、ASA(アクリロニトリル・スチレン・アクリルゴム共重合物)樹脂などが挙げられ、なかでもPS、HIPS、AS樹脂、ABS樹脂、ASA樹脂が好ましく用いられる。   Preferred styrene resins in the present invention include PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile / styrene copolymer) resin, AES (acrylonitrile / EPDM (ethylene / propylene / diene / terpolymer) / styrene). Polymer) resin, ABS (acrylonitrile / butadiene / styrene copolymer) resin, MBS (methyl methacrylate / butadiene / styrene copolymer) resin, ASA (acrylonitrile / styrene / acrylic rubber copolymer) resin, etc. Of these, PS, HIPS, AS resin, ABS resin, and ASA resin are preferably used.

本発明で使用するカーボンナノチューブ(b)は、黒鉛シート(すなわち、黒鉛構造の炭素原子面ないしグラフェンシート)がチューブ状に閉じた中空炭素物質であり、その直径はナノメートルスケールであり、壁構造は黒鉛構造を有している。壁構造が1枚の黒鉛シートでチューブ状に閉じたものは単層カーボンナノチューブと呼ばれ、複数枚の黒鉛シートがそれぞれチューブ状に閉じて、入れ子状になっているものは入れ子構造の多層カーボンナノチューブと呼ばれている。本発明では、これら単層カーボンナノチューブ及び多層カーボンナノチューブのいずれも使用できる。   The carbon nanotube (b) used in the present invention is a hollow carbon material in which a graphite sheet (that is, a carbon atom plane or graphene sheet having a graphite structure) is closed like a tube, and its diameter is nanometer scale, and the wall structure Has a graphite structure. A single-wall carbon nanotube with a wall structure closed in a tube shape is called a single-walled carbon nanotube, and a plurality of graphite sheets closed in a tube-like shape and nested is a multi-layer carbon with a nested structure. It is called a nanotube. In the present invention, any of these single-walled carbon nanotubes and multi-walled carbon nanotubes can be used.

本発明で使用できる単層カーボンナノチューブとしては、直径が1〜10nm程度、長さが1〜50μm程度のものが、好ましい。また、本発明で使用できる多層カーボンナノチューブとしては、直径が1〜80nm、長さが1〜50μm程度のものが、好ましい。   As the single-walled carbon nanotube that can be used in the present invention, those having a diameter of about 1 to 10 nm and a length of about 1 to 50 μm are preferable. Moreover, as the multi-walled carbon nanotube that can be used in the present invention, those having a diameter of about 1 to 80 nm and a length of about 1 to 50 μm are preferable.

これらのカーボンナノチューブは、例えば、炭化水素等の炭素含有ガスを遷移金属触媒とともに高温で気相分解する方法や、グラファイトを用いたアーク放電法あるいはレーザー蒸着法等により製造できるが、どのような方法で製造したカーボンナノチューブを使用しても構わない。上記のカーボンナノチューブは、例えば、特公表平2−503334号公報や特開平11−256430号公報などに製造方法が開示されているが、通常、直径が1〜80nmで、長さが1〜50μmあり、長さと直径の比、いわゆるアスペクト比が50以上あるものが、好ましい。直径が1nm未満や長さが1μm未満のカーボンナノチューブでは、樹脂中で再凝集が起きやすく、本発明の効果が充分に得られないので、好ましくない。一方、直径が80nmを越えると、所望の導電性や機械強度が得られないので好ましくない。長さが50μmを超えると、導電性の均一性(硬化物や成形体の場所により、体積抵抗率や表面抵抗率等の導電性を示す数値のばらつきが少ないこと)が劣るので、好ましくない。また、アスペクト比が50未満でも導電性の均一性が劣るので、好ましくない。   These carbon nanotubes can be produced by, for example, a method in which a carbon-containing gas such as hydrocarbon is vapor-phase decomposed at a high temperature together with a transition metal catalyst, an arc discharge method using graphite, or a laser deposition method. Carbon nanotubes manufactured in (1) may be used. The production method of the above carbon nanotube is disclosed in, for example, Japanese Patent Publication No. 2-503334 and Japanese Patent Laid-Open No. 11-256430, but usually has a diameter of 1 to 80 nm and a length of 1 to 50 μm. It is preferable that the ratio of length to diameter, so-called aspect ratio, is 50 or more. Carbon nanotubes having a diameter of less than 1 nm and a length of less than 1 μm are not preferred because reaggregation is likely to occur in the resin and the effects of the present invention cannot be obtained sufficiently. On the other hand, if the diameter exceeds 80 nm, it is not preferable because desired conductivity and mechanical strength cannot be obtained. If the length exceeds 50 μm, the uniformity of conductivity (there is little variation in numerical values indicating conductivity, such as volume resistivity and surface resistivity, depending on the location of the cured product or molded product), which is not preferable. Further, even if the aspect ratio is less than 50, the conductivity uniformity is inferior.

本発明に使用するカーボンナノチューブ(b)は、熱硬化性樹脂(d)または熱可塑性樹脂(e)に対して、0.01〜5.0質量%の範囲で混合、分散する必要がある。より好ましくは0.05〜4.5質量%、とりわけ0.1〜4.0質量%の範囲内であるのが、好ましい。0.01質量%未満では、導電性の均一性や所望の機械強度が得られない場合があるので、好ましくない。一方、5.0質量%を超えるとカーボンナノチューブ含有樹脂組成物の粘度が高粘度になったり、流動性が劣り、硬化時や成形時の作業性が悪化するので好ましくない。また、カーボンナノチューブ(b)は、樹脂(a)に混合、分散できれば形態は限定されないが、好ましくは粉体のまま混合、分散される。   The carbon nanotube (b) used in the present invention needs to be mixed and dispersed in the range of 0.01 to 5.0% by mass with respect to the thermosetting resin (d) or the thermoplastic resin (e). More preferably, it is in the range of 0.05 to 4.5% by mass, especially 0.1 to 4.0% by mass. If it is less than 0.01% by mass, the conductivity uniformity and the desired mechanical strength may not be obtained. On the other hand, if it exceeds 5.0% by mass, the viscosity of the carbon nanotube-containing resin composition becomes high, the fluidity is inferior, and the workability at the time of curing and molding is deteriorated. The form of the carbon nanotube (b) is not limited as long as it can be mixed and dispersed in the resin (a), but it is preferably mixed and dispersed as a powder.

本発明に使用する粒径が1〜50nmの超微粒子無水シリカ粉末(c)は、乾式シリカの1種である。一般的には、四塩化珪素を水素及び酸素とともに燃焼して作られるが、四塩化珪素の代わりにメチルトリクロロシランやトリクロロシラン等のシラン類を単独または四塩化珪素と混合した状態で作られたものでもよい。これらの超微粒子無水シリカ粉末(c)は、例えば、日本アエロジル(株)から「アエロジル」、トクヤマ(株)から「レオロシール」、米国のキャボット社から「Cab−O−Sil」の商品名で市販されており入手することができる。   The ultrafine anhydrous silica powder (c) having a particle size of 1 to 50 nm used in the present invention is a kind of dry silica. Generally, it is made by burning silicon tetrachloride with hydrogen and oxygen, but instead of silicon tetrachloride, it is made with silanes such as methyltrichlorosilane and trichlorosilane alone or mixed with silicon tetrachloride. It may be a thing. These ultrafine particulate anhydrous silica powders (c) are commercially available, for example, under the trade names of “Aerosil” from Nippon Aerosil Co., Ltd., “Leorosil” from Tokuyama Co., Ltd., and “Cab-O-Sil” from Cabot Corporation in the United States. Is available.

上記の超微粒子無水シリカ粉末(c)の添加量は、樹脂(a)及びカーボンナノチューブ(b)の合計量に対して、0.1〜3.0質量%の範囲である必要がある。より好ましくは0.5〜2.5質量%、特に1.0〜2.2質量%の範囲内であることが、好ましい。0.1質量%未満では、樹脂中でカーボンナノチューブの再凝集が起き、導電性の均一性が得られないので、好ましくない。一方、3.0質量%を超えると、電気絶縁性の超微粒子無水シリカ粉末が電気伝導性に優れたカーボンナノチューブの表面を被覆し、樹脂の導電性が低下するので、好ましくない。   The addition amount of the above ultrafine silica powder (c) needs to be in the range of 0.1 to 3.0% by mass with respect to the total amount of the resin (a) and the carbon nanotube (b). More preferably, it is in the range of 0.5 to 2.5% by mass, particularly 1.0 to 2.2% by mass. If it is less than 0.1% by mass, re-aggregation of the carbon nanotubes occurs in the resin, and the conductivity uniformity cannot be obtained. On the other hand, if it exceeds 3.0% by mass, the electrically insulating ultrafine particulate anhydrous silica powder covers the surface of the carbon nanotubes excellent in electrical conductivity, and the conductivity of the resin is lowered, which is not preferable.

本発明のカーボンナノチューブ含有樹脂組成物の製造方法は、樹脂(a)にカーボンナノチューブ(b)を混合、分散させる際に、超微粒子無水シリカ粉末(c)を樹脂(a)及びカーボンナノチューブ(b)の合計量に対して0.1〜3.0質量%添加して高せん断混合することを特徴とする。従って、従来のように予めカーボンナノチューブを溶媒に均一に分散させたり、カーボンナノチューブを界面活性剤等のいわゆる分散剤を添加した特定の溶媒中に超音波分散するような前処理が不要で、カーボンナノチューブを熱硬化性樹脂または熱可塑性樹脂に直接簡単な操作で均一に分散、混合することができる。また、カーボンナノチューブを混合、分散後、樹脂中から脱溶媒等の煩雑な操作が不要となる。従って、本発明は従来の酸処理や溶媒の除去などの操作がないため、環境保全の観点からも望ましい。   In the method for producing a carbon nanotube-containing resin composition of the present invention, when the carbon nanotube (b) is mixed and dispersed in the resin (a), the ultrafine anhydrous silica powder (c) is mixed with the resin (a) and the carbon nanotube (b ) To 0.1 to 3.0% by mass with respect to the total amount and high shear mixing. Therefore, there is no need for pre-treatment such as dispersing carbon nanotubes uniformly in a solvent as in the past, or ultrasonically dispersing carbon nanotubes in a specific solvent to which a so-called dispersant such as a surfactant is added. Nanotubes can be uniformly dispersed and mixed in a thermosetting resin or thermoplastic resin by a simple operation. Further, after mixing and dispersing the carbon nanotubes, a complicated operation such as desolvation from the resin becomes unnecessary. Therefore, the present invention is desirable from the viewpoint of environmental conservation because there is no conventional operation such as acid treatment or solvent removal.

カーボンナノチューブ含有樹脂組成物の製造にあたっては、凝集物をほぐしつつ再凝集を防止しながら行なうことによって良好な分散物が得られる。そのためには、樹脂(a)にカーボンナノチューブ(b)を混合、分散させる際に十分なせん断力が与えられることが、好ましい。樹脂(a)中に添加したカーボンナノチューブ(b)の分散過程について、高瀬らは4段階の分散モデル図を用いて「マトリクス(樹脂)中に混入したカーボンナノチューブ凝集体がマトリクス材料から伝達されるせん断力によりさらに破砕・凝集が解け微細化し、マトリクス中に分配・拡散する」と説明している(日本接着学会誌、Vol.39,No7,279(2003))。本発明のカーボンナノチューブ含有樹脂組成物の製造方法によれば、特定の粒径を持つ超微粒子無水シリカ粉末(c)を樹脂(a)及びカーボンナノチューブ(b)の合計量に対して、0.1〜3.0質量%添加して高せん断混合することによって、無添加に比べて混合分散時にさらに強力なせん断力を与えることができ、再凝集が防止でき、上記のような良好な特性を持ったカーボンナノチューブ含有樹脂組成物が製造できる。   In producing the carbon nanotube-containing resin composition, a good dispersion can be obtained by loosening the aggregates and preventing reaggregation. For that purpose, it is preferable that a sufficient shearing force is given when the carbon nanotube (b) is mixed and dispersed in the resin (a). Regarding the dispersion process of the carbon nanotube (b) added in the resin (a), Takase et al. Using a four-stage dispersion model diagram, “the aggregate of carbon nanotubes mixed in the matrix (resin) is transmitted from the matrix material. It is further explained that crushing / aggregation is further dissolved by the shearing force and becomes finer, and is distributed / diffused in the matrix ”(Journal of the Adhesion Society of Japan, Vol. 39, No. 7, 279 (2003)). According to the method for producing a carbon nanotube-containing resin composition of the present invention, the ultrafine anhydrous silica powder (c) having a specific particle size is added to the total amount of the resin (a) and the carbon nanotube (b) by 0.00. By adding 1 to 3.0% by mass and mixing at high shear, it is possible to give a stronger shearing force at the time of mixing and dispersing compared to the case of no addition, prevent re-aggregation, and achieve the above-mentioned good characteristics. A carbon nanotube-containing resin composition can be produced.

ここでいう「せん断力」とは、ずれに伴い材料の横断面に互いに平行で向きが逆に生じる応力のことであり、高せん断力を付与するのに適した高せん断混合機としては、ボールミル、振動ボールミル、遊星ボールミル、アジテーターミル、アトライター、三本ロール、ニーダー、加圧ニーダー、KXニーダー、プラネタリーミキサー、PDミキサー、BDM二軸ミキサー、ディゾルバー、CDM同芯二軸ミキサー、二軸押出機がある。このうち、三本ロールは熱硬化性樹脂(d)にカーボンナノチューブ(b)を混合分散するのに好ましく使用されるが、各ロール間の間隙やロールの回転数を変えることによりせん断力を変動することができる。また、二軸押出機は、熱可塑性樹脂(e)にカーボンナノチューブ(b)を混合分散するのに好ましく使用されるが、スクリュチップクリアランスやスクリュ回転数を変えることによりせん断力を変動することができる。なお、最適なせん断力は、樹脂(a)中へのカーボンナノチューブ(b)の分散状態を観察することによって決定することができる。   The term “shearing force” as used herein refers to the stresses that occur parallel to each other in the cross-section of the material due to the deviation and reverse in direction. As a high shearing mixer suitable for applying high shearing force, a ball mill , Vibration ball mill, planetary ball mill, agitator mill, attritor, three rolls, kneader, pressure kneader, KX kneader, planetary mixer, PD mixer, BDM twin screw mixer, dissolver, CDM concentric twin screw mixer, twin screw extrusion There is a machine. Of these, the three rolls are preferably used to mix and disperse the carbon nanotubes (b) in the thermosetting resin (d), but the shearing force is changed by changing the gap between the rolls and the rotation speed of the rolls. can do. The twin-screw extruder is preferably used to mix and disperse the carbon nanotubes (b) in the thermoplastic resin (e). However, the shear force can be changed by changing the screw tip clearance or the screw rotation speed. it can. The optimum shearing force can be determined by observing the dispersion state of the carbon nanotube (b) in the resin (a).

本発明のカーボンナノチューブ含有樹脂組成物は、その目的に応じてその他の成分として導電性付与材、難燃剤、難燃助剤、顔料、染料、滑剤、離型剤、相溶化剤、界面活性剤等の分散剤、結晶核剤、可塑剤、熱安定剤、酸化防止剤、着色防止剤、紫外線吸収剤、流動性改質剤、発泡剤、抗菌剤、制振剤、防臭剤、摺動性改質剤、帯電防止剤等の任意の添加剤を単独でも、2種類以上ブレンドしたものであってもよい。   The carbon nanotube-containing resin composition of the present invention includes, as other components, a conductivity imparting material, a flame retardant, a flame retardant aid, a pigment, a dye, a lubricant, a release agent, a compatibilizing agent, and a surfactant depending on the purpose. Dispersants, crystal nucleating agents, plasticizers, heat stabilizers, antioxidants, anti-coloring agents, UV absorbers, fluidity modifiers, foaming agents, antibacterial agents, vibration control agents, deodorants, sliding properties Arbitrary additives such as a modifier and an antistatic agent may be used alone, or two or more kinds thereof may be blended.

本発明の硬化物の作製方法は、特に限定されないが、例えば、塗布(Coating)、注型(Casting)、含浸(Impregnation)、被覆(Encapsulation)、埋込(Potting)あるいは封止(Sealing)することによって、室温または加熱条件下で硬化物が得られる。また、本発明のカーボンナノチューブ含有樹脂組成物は、ガラス繊維や炭素繊維に含浸後、プレス成形して複合体とすることもできる。さらに、本発明のカーボンナノチューブ含有樹脂組成物に、充填剤やその他の成分をブレンドして、例えば、トランスファー成形することもできる。   The method for producing the cured product of the present invention is not particularly limited, and for example, coating, casting, impregnation, encapsulation, potting, or sealing is performed. As a result, a cured product can be obtained at room temperature or under heating conditions. In addition, the carbon nanotube-containing resin composition of the present invention can be made into a composite by press molding after impregnating glass fibers or carbon fibers. Furthermore, the carbon nanotube-containing resin composition of the present invention can be blended with a filler and other components, for example, transfer molding.

また、本発明の成形体の作製方法は、特に限定されないが、例えば、二軸押出機を使用して作られたペレットを射出成形、押出成形、ブロー成形、真空成形、あるいはプレス成形することによって成形体が得られる。   The method for producing the molded body of the present invention is not particularly limited. For example, the pellets produced using a twin screw extruder are injection molded, extruded, blow molded, vacuum molded, or press molded. A molded body is obtained.

本発明における硬化物や成形体の用途としては特に限定されないが、例えば、優れた機械強度や導電性(静電防止や電磁波シールドを含む)が求められる電子・電気機器用、OA機器用、精密機器用、輸送機器用部品や部材に使用される。具体的には、ハウジング、ケーシング、カバー、トレーが挙げられる。その他複合材料としてゴルフシャフト、テニスラケットや釣竿等のスポーツ用品、自動車の車体用部材や航空宇宙用部材にも使用される。   Although it does not specifically limit as a use of the hardened | cured material and molded object in this invention, For example, for the electronic / electric equipment for which the outstanding mechanical strength and electroconductivity (including antistatic and electromagnetic wave shielding) are calculated | required, OA equipment, precision Used for parts and parts for equipment and transportation equipment. Specific examples include a housing, a casing, a cover, and a tray. Other composite materials are used for golf shafts, sports equipment such as tennis rackets and fishing rods, automobile body members, and aerospace members.

以下、実施例によって本発明を更に詳細に説明するが、以下の実施例は本発明の範囲を何ら限定するものではない。なお、本実施例では、カーボンナノチューブをCNTと略記する。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, a following example does not limit the scope of the present invention at all. In this embodiment, carbon nanotubes are abbreviated as CNT.

硬化物または成形体の評価項目及び評価方法を下記する。
<CNTの凝集>
縦100mm、横100mm、厚さ0.6〜0.7mmの試験片を太陽光または蛍光灯の光にかざし、目視観察した。黒色に着色していない透明部分が部分的に存在するものは、凝集ありと判定した。また、全体が黒色で、部分的な透明部分が全く存在しないものは、凝集なしと判定した。
Evaluation items and evaluation methods for the cured product or molded product are described below.
<CNT aggregation>
A test piece having a length of 100 mm, a width of 100 mm, and a thickness of 0.6 to 0.7 mm was held over sunlight or light from a fluorescent lamp, and visually observed. Those in which a transparent portion that was not colored black partially existed were determined to be aggregated. Moreover, it was determined that there was no aggregation when the whole was black and there was no partial transparent portion.

<体積抵抗率>
JIS K7194に準拠して、三菱化学製の四探針式低抵抗率計(ロレスタEP,MCP−T360型)を使用して測定した。なお、この抵抗率計は、10以下の低抵抗を測定するもので、測定範囲に入らないものは、10以上と表記した。
<Volume resistivity>
In accordance with JIS K7194, the measurement was performed using a four-point probe type low resistivity meter (Loresta EP, MCP-T360 type) manufactured by Mitsubishi Chemical. This resistivity meter measures a low resistance of 10 6 or less, and those that do not fall within the measurement range are described as 10 6 or more.

<曲げ強度及び曲げ弾性率>
JIS K6911に準拠して、島津製作所製AG−50kNG型オートグラフを使用して測定した。
<Bending strength and flexural modulus>
Based on JIS K6911, it measured using AG-50kNG type | mold autograph made from Shimadzu Corporation.

(実施例1)
ジャパンエポキシレジン製エポキシ樹脂JER828(ビスフェノールA型エポキシ樹脂)100質量部に日本アエロジル社製アエロジル200(平均粒径が12nmの超微粒子無水シリカ粉末)1.0質量部を添加してラボスターラーで予備撹拌を行った。次に、この中に韓国CNT社製カーボンナノチューブCNT−100(平均直径10〜50nm、長さ1〜25μm、アスペクト比100〜2500の多層カーボンナノチューブ)1.0質量部を添加し、ラボスターラーで予備撹拌した。その後、アイメックス社製セラミックス小型三本ロールを使用して50rpm/5パスの条件で混練した。
Example 1
Japan Epoxy Resin Epoxy Resin JER828 (Bisphenol A Epoxy Resin) 100 parts by mass, Nippon Aerosil Co., Ltd. Aerosil 200 (ultrafine anhydrous silica powder with an average particle size of 12 nm) 1.0 part by mass was added and preliminarily prepared with a laboratory stirrer. Stirring was performed. Next, 1.0 mass part of carbon nanotubes CNT-100 (average diameter 10-50 nm, length 1-25 μm, aspect ratio 100-2500, multi-walled carbon nanotubes) manufactured by Korea CNT Co., Ltd. was added to this, and a laboratory stirrer was used. Pre-stirred. Then, it knead | mixed on the conditions of 50 rpm / 5 pass using the ceramic small 3 rolls by an Imex company.

これらの混練物100質量部に、硬化剤としてアンカミン1922A(米国のAirProducts&Chemical社製脂肪族アミン)とエポメートSA−1(ジャパンエポキシレジン社製変性脂肪族アミン)の質量比で1:1の混合物45質量部を均一になるまで混合し、減圧脱泡後型に注型し、30℃で16時間硬化させた。   A mixture 45 of 1: 1 by mass ratio of ancamine 1922A (air products manufactured by Air Products & Chemical, USA) and epomate SA-1 (modified aliphatic amines manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent was added to 100 parts by mass of these kneaded materials. The mass parts were mixed until uniform, poured into a mold after vacuum degassing, and cured at 30 ° C. for 16 hours.

硬化物を目視観察したところ、全体が黒色で部分的な透明部分が全く存在せず、CNTの凝集なしと判定した。硬化物の体積抵抗率を測定したところ9.3×10Ω−cmであり、場所を変えて測定しても同一な数値を示し、導電性が均一であることが確認できた。また、硬化物の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は120MPa、曲げ弾性率は4100MPaであった。表1に、CNT含有樹脂組成物の製造方法、硬化物の作製方法及び硬化物の特性をまとめて示す。 When the cured product was visually observed, it was judged that there was no aggregation of CNT because the whole was black and there was no partial transparent portion at all. The volume resistivity of the cured product was measured and found to be 9.3 × 10 3 Ω-cm. Even when the measurement was performed at different locations, the same numerical value was shown, confirming that the conductivity was uniform. Moreover, when the bending strength and bending elastic modulus of the cured product were measured, the bending strength was 120 MPa and the bending elastic modulus was 4100 MPa. In Table 1, the manufacturing method of a CNT containing resin composition, the preparation method of hardened | cured material, and the characteristic of hardened | cured material are shown collectively.

(実施例2)
実施例1のアエロジル200の添加量を2.0質量部とし、混練物100質量部に対する硬化剤混合物の使用量を44質量部とした以外は実施例1と全く同様に硬化物を得た。
(Example 2)
A cured product was obtained in exactly the same manner as in Example 1, except that the amount of Aerosil 200 added in Example 1 was 2.0 parts by mass and the amount of the curing agent mixture used was 44 parts by mass with respect to 100 parts by mass of the kneaded product.

硬化物を目視観察したところ、全体が黒色で部分的な透明部分が全く存在せず、CNTの凝集なしと判定した。また、硬化物の体積抵抗率を測定したところ5.3×10Ω−cmであり、場所を変えて測定しても同一な数値を示し、導電性が均一であることが確認できた。さらに、硬化物の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は121MPa、曲げ弾性率は4100MPaであった。表1に、CNT含有樹脂組成物の製造方法、硬化物の作製方法及び硬化物の特性をまとめて示す。 When the cured product was visually observed, it was judged that there was no aggregation of CNT because the whole was black and there was no partial transparent portion at all. Moreover, it was 5.3 * 10 < 3 > ohm-cm when the volume resistivity of the hardened | cured material was measured, The same numerical value was shown even if it changed and measured, and it has confirmed that electroconductivity was uniform. Furthermore, when the bending strength and bending elastic modulus of the cured product were measured, the bending strength was 121 MPa and the bending elastic modulus was 4100 MPa. In Table 1, the manufacturing method of a CNT containing resin composition, the preparation method of hardened | cured material, and the characteristic of hardened | cured material are shown collectively.

(実施例3)
実施例1のアエロジル200の添加量を0.5質量部とし、CNT−100の添加量を0.5質量部とした以外は実施例1と全く同様に硬化物を得た。
(Example 3)
A cured product was obtained in exactly the same manner as in Example 1, except that the amount of Aerosil 200 added in Example 1 was 0.5 parts by mass and the amount of CNT-100 added was 0.5 parts by mass.

硬化物を目視観察したところ、全体が黒色で部分的な透明部分が全く存在せず、CNTの凝集なしと判定した。また、硬化物の体積抵抗率を測定したところ7.2×10Ω−cmであり、場所を変えて測定しても同一な数値を示し、導電性が均一であることが確認できた。さらに硬化物の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は118MPa、曲げ弾性率は3900MPaであった。表1に、CNT含有樹脂組成物の製造方法、硬化物の作製方法及び硬化物の特性をまとめて示す。 When the cured product was visually observed, it was judged that there was no aggregation of CNT because the whole was black and there was no partial transparent portion at all. Further, the volume resistivity of the cured product was measured and found to be 7.2 × 10 4 Ω-cm. Even when the measurement was performed at different locations, the same numerical value was shown, confirming that the conductivity was uniform. Furthermore, when the bending strength and bending elastic modulus of the cured product were measured, the bending strength was 118 MPa and the bending elastic modulus was 3900 MPa. In Table 1, the manufacturing method of a CNT containing resin composition, the preparation method of hardened | cured material, and the characteristic of hardened | cured material are shown collectively.

(比較例1)
JER828 100質量部にアエロジル200を添加せず、CNT−100 1.0質量部のみを添加してラボスターラーで予備撹拌した。その後、実施例1と同様に三本ロールで混練した。混練物100質量部に対する硬化剤混合物の使用量を46質量部とした以外は実施例1と全く同様に硬化物を得た。
(Comparative Example 1)
Aerosil 200 was not added to 100 parts by mass of JER828, but only 1.0 part by mass of CNT-100 was added and pre-stirred with a lab stirrer. Then, it knead | mixed with the three rolls similarly to Example 1. FIG. A cured product was obtained in exactly the same manner as in Example 1, except that the amount of the curing agent mixture used was 46 parts by mass with respect to 100 parts by mass of the kneaded product.

硬化物を目視観察したところ、黒色に着色していない透明部分が存在していることから、CNTの凝集ありと判定した。硬化物の体積抵抗率を測定したところ、3.9×10〜6.1×10Ω−cmと場所によって数値がばらつき、導電性が不均一であると判断した。また、硬化物の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は114MPa、曲げ弾性率は3700MPaであった。表2に、CNT含有樹脂組成物の製造方法、硬化物の作製方法及び硬化物の特性をまとめて示す。 When the cured product was visually observed, there was a transparent portion that was not colored black, so it was determined that CNTs were aggregated. When the volume resistivity of the cured product was measured, it was determined that the numerical value varied depending on the location of 3.9 × 10 4 to 6.1 × 10 5 Ω-cm and the conductivity was not uniform. Moreover, when the bending strength and bending elastic modulus of the cured product were measured, the bending strength was 114 MPa and the bending elastic modulus was 3700 MPa. In Table 2, the manufacturing method of a CNT containing resin composition, the preparation method of hardened | cured material, and the characteristic of hardened | cured material are shown collectively.

(比較例2)
実施例1のアエロジル200の添加量を4.0質量部とし、混練物100質量部に対する硬化剤混合物の使用量を43質量部とした以外は実施例1と全く同様に硬化物を得た。
(Comparative Example 2)
A cured product was obtained in exactly the same manner as in Example 1, except that the amount of Aerosil 200 added in Example 1 was 4.0 parts by mass and the amount of the curing agent mixture used was 43 parts by mass with respect to 100 parts by mass of the kneaded product.

硬化物を目視観察したところ、全体が黒色で部分的な透明部分が全く存在せず、CNTの凝集なしと判定した。硬化物の体積抵抗率を測定したところ、四探針式低抵抗率計の測定範囲に入らず、10Ω−cm以上と判断した。また、硬化物の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は118MPa、曲げ弾性率は3800MPaであった。表2に、CNT含有樹脂組成物の製造方法、硬化物の作製方法及び硬化物の特性をまとめて示す。 When the cured product was visually observed, it was judged that there was no aggregation of CNT because the whole was black and there was no partial transparent portion at all. When the volume resistivity of the cured product was measured, it was not within the measurement range of the four-probe type low resistivity meter, and was determined to be 10 6 Ω-cm or more. Moreover, when the bending strength and bending elastic modulus of the cured product were measured, the bending strength was 118 MPa and the bending elastic modulus was 3800 MPa. In Table 2, the manufacturing method of a CNT containing resin composition, the preparation method of hardened | cured material, and the characteristic of hardened | cured material are shown collectively.

(比較例3)
実施例1で使用したアエロジル200の代わりに、龍森社製ヒューズレックスX(平均粒径が1.5〜2.5μmの溶融シリカ)を使用した以外は実施例1と全く同様に硬化物を得た。
(Comparative Example 3)
Instead of the Aerosil 200 used in Example 1, a cured product was used in exactly the same manner as in Example 1 except that Fuselex X (fused silica having an average particle size of 1.5 to 2.5 μm) manufactured by Tatsumori was used. Obtained.

硬化物を目視観察したところ、黒色に着色していない透明部分が存在していることか ら、CNTの凝集ありと判定した。硬化物の体積抵抗率を測定したところ、四探針式低抵抗率計の測定範囲に入らず、10Ω−cm以上と判断した。また、硬化物の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は115MPa、曲げ弾性率は3500MPaであった。表2に、CNT含有樹脂組成物の製造方法、硬化物の作製方法及び硬化物の特性をまとめて示す。 When the cured product was visually observed, there was a transparent portion that was not colored black, so it was determined that there was aggregation of CNTs. When the volume resistivity of the cured product was measured, it was not within the measurement range of the four-probe type low resistivity meter, and was determined to be 10 6 Ω-cm or more. Moreover, when the bending strength and bending elastic modulus of the cured product were measured, the bending strength was 115 MPa, and the bending elastic modulus was 3500 MPa. In Table 2, the manufacturing method of a CNT containing resin composition, the preparation method of hardened | cured material, and the characteristic of hardened | cured material are shown collectively.

(比較例4)
JER828 100質量部にアンカミン1922AとエポメートSA−1の質量比で1:1の混合物46質量部を均一になるまでラボスターラーで混合し、減圧脱泡後型に注型し、30℃で16時間硬化させた。
(Comparative Example 4)
46 parts by mass of a 1: 1 mixture of ancamine 1922A and epomate SA-1 in 100 parts by mass of JER828 are mixed with a lab stirrer until uniform, cast into a mold after degassing under reduced pressure, and 16 hours at 30 ° C. Cured.

硬化物の特性を実施例1と同様に測定したところ、体積抵抗率は四探針式低抵抗率計の測定範囲に入らず、10Ω−cm以上と判断した。また、曲げ強度は98MPa、曲げ弾性率は3300MPaであった。表2に、硬化物の作製方法及び硬化物の特性をまとめて示す。 When the characteristics of the cured product were measured in the same manner as in Example 1, it was determined that the volume resistivity did not fall within the measurement range of the four-probe type low resistivity meter and was 10 6 Ω-cm or more. The bending strength was 98 MPa and the bending elastic modulus was 3300 MPa. Table 2 summarizes the method for producing the cured product and the properties of the cured product.

(比較例5)
JER828 100質量部にアエロジル200 1.0質量部を添加してラボスターラーで予備撹拌を行った。次に、この中にCNT−100 1.0質量部を添加し、ラボスターラーで撹拌した。その後、三本ロールでの混練をすることなく、混合物に実施例1と同様な比率で硬化剤を加え、ラボスターラーで均一になるまで混合して減圧脱泡後に注型し、30℃で16時間硬化させた。
(Comparative Example 5)
Aerosil 200 1.0 part by mass was added to 100 parts by mass of JER828, and preliminary stirring was performed with a laboratory stirrer. Next, 1.0 part by mass of CNT-100 was added thereto and stirred with a lab stirrer. Then, without kneading with three rolls, a curing agent was added to the mixture at the same ratio as in Example 1, mixed with a lab stirrer until uniform, and cast after degassing under reduced pressure. Cured for hours.

硬化物を目視観察したところ、黒色に着色していない透明部分が存在していることから、CNTの凝集ありと判定した。硬化物の体積抵抗率を測定したところ、四探針式低抵抗率計の測定範囲に入らず、10Ω−cm以上と判断した。また、硬化物の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は95MPa、曲げ弾性率は3100MPaであった。表2に、CNT含有樹脂組成物の製造方法、硬化物の作製方法及び硬化物の特性をまとめて示す。 When the cured product was visually observed, there was a transparent portion that was not colored black, so it was determined that CNTs were aggregated. When the volume resistivity of the cured product was measured, it was not within the measurement range of the four-probe type low resistivity meter, and was determined to be 10 6 Ω-cm or more. Moreover, when the bending strength and bending elastic modulus of the cured product were measured, the bending strength was 95 MPa and the bending elastic modulus was 3100 MPa. In Table 2, the manufacturing method of a CNT containing resin composition, the preparation method of hardened | cured material, and the characteristic of hardened | cured material are shown collectively.

(比較例6)
実施例1のアエロジル200の添加量を1.0質量部とし、CNT−100の添加量を6.0質量部とした以外は実施例1と全く同様に予備撹拌及び三本ロール混練を行なった。得られた混練物(CNT含有樹脂組成物)は粘度が非常に高く、静止状態では流動性が全くなかった。この混練物100質量部に、実施例1で使用した硬化剤混合物42質量部を加えラボスターラーで撹拌した。しかし、硬化剤を加えた後でも流動性が全くなく、注型板を作製することができなかった。なお、CNT−100の添加量と混練物の粘度を検討したところ、CNT−100の添加量が増えるに従って粘度が上昇し、流動性が低下することが分かった。表2に、CNT含有樹脂組成物の製造方法、硬化物の作製方法及び硬化物の特性をまとめて示す。
(Comparative Example 6)
Pre-stirring and three-roll kneading were performed in the same manner as in Example 1 except that the addition amount of Aerosil 200 of Example 1 was 1.0 part by mass and the addition amount of CNT-100 was 6.0 parts by mass. . The obtained kneaded material (CNT-containing resin composition) had a very high viscosity and had no fluidity at rest. To 100 parts by mass of this kneaded product, 42 parts by mass of the curing agent mixture used in Example 1 was added and stirred with a lab stirrer. However, even after adding the curing agent, there was no fluidity, and a cast plate could not be produced. In addition, when the addition amount of CNT-100 and the viscosity of a kneaded material were examined, it turned out that a viscosity rises and fluidity | liquidity falls as the addition amount of CNT-100 increases. In Table 2, the manufacturing method of a CNT containing resin composition, the preparation method of hardened | cured material, and the characteristic of hardened | cured material are shown collectively.

Figure 0005268050
Figure 0005268050

Figure 0005268050
Figure 0005268050

(実施例4)
出光石油化学社製タフロンA1900(ビスフェノールA型ポリカーボネート樹脂)100質量部にアエロジル200 2.0質量部、トリメチルホスフェート 0.2質量部及び実施例1で使用した多層カーボンナノチューブCNT−100 3.0質量部を添加し、スーパーミキサーで予備混合した。その後、東芝機械社製TEM35型ベント式二軸押出機に供給して溶融混練し、ペレット化した。押出条件は、シリンダー温度280℃、スクリュー回転数180rpmで行なった。得られたペレットを120℃で5時間熱風循環式乾燥機を使用して乾燥後、シリンダー温度270℃、金型温度80℃で射出成形して成形体の試験片を得た。
Example 4
100 parts by mass of Teflon A1900 (bisphenol A type polycarbonate resin) manufactured by Idemitsu Petrochemical Co., Ltd. 2.0 parts by mass of Aerosil 200, 0.2 parts by mass of trimethyl phosphate and 3.0 parts by mass of the multi-walled carbon nanotube CNT-100 used in Example 1 A portion was added and premixed with a supermixer. Then, it was supplied to a TEM35 type vent type twin screw extruder manufactured by Toshiba Machine Co., Ltd., melted and kneaded, and pelletized. The extrusion conditions were a cylinder temperature of 280 ° C. and a screw rotation speed of 180 rpm. The obtained pellets were dried at 120 ° C. for 5 hours using a hot air circulating dryer, and then injection molded at a cylinder temperature of 270 ° C. and a mold temperature of 80 ° C. to obtain a test piece of a molded body.

成形体を目視観察したところ、全体が黒色で部分的な透明部分が全く存在せず、CNTの凝集なしと判定した。成形体の体積抵抗率を測定したところ2.0×10Ω−cmであり、場所を変えて測定しても同一な数値を示し、導電性が均一であることが確認できた。また、成形体の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は105MPa、曲げ弾性率は2800MPaであった。表3に、CNT含有樹脂組成物の製造方法、成形体の作製方法及び成形体の特性をまとめて示す。 When the molded body was visually observed, it was judged that there was no aggregation of CNT because the whole was black and there was no partial transparent portion at all. When the volume resistivity of the molded body was measured, it was 2.0 × 10 3 Ω-cm. Even when the measurement was performed at different locations, the same numerical value was shown, and it was confirmed that the conductivity was uniform. Moreover, when the bending strength and bending elastic modulus of the molded body were measured, the bending strength was 105 MPa and the bending elastic modulus was 2800 MPa. In Table 3, the manufacturing method of a CNT containing resin composition, the preparation method of a molded object, and the characteristic of a molded object are shown collectively.

(実施例5)
実施例4のアエロジル200の添加量を1.0質量部とした以外は実施例4と全く同様に行い、成形体の試験片を得た。
(Example 5)
Except that the added amount of Aerosil 200 of Example 4 was 1.0 part by mass, the same procedure as in Example 4 was performed to obtain a test piece of a molded body.

成形体を目視観察したところ、全体が黒色で部分的な透明部分が全く存在せず、CNTの凝集なしと判定した。成形体の体積抵抗率を測定したところ3.4×10Ω−cmであり、場所を変えて測定しても同一な数値を示し、導電性が均一であることが確認できた。また、成形体の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は108MPa、曲げ弾性率は2900MPaであった。表3に、CNT含有樹脂組成物の製造方法、成形体の作製方法及び成形体の特性をまとめて示す。 When the molded body was visually observed, it was judged that there was no aggregation of CNT because the whole was black and there was no partial transparent portion at all. The volume resistivity of the molded product was measured and found to be 3.4 × 10 3 Ω-cm. Even when measured at different locations, the same numerical value was shown, confirming that the conductivity was uniform. Moreover, when the bending strength and bending elastic modulus of the molded body were measured, the bending strength was 108 MPa and the bending elastic modulus was 2900 MPa. In Table 3, the manufacturing method of a CNT containing resin composition, the preparation method of a molded object, and the characteristic of a molded object are shown collectively.

(比較例7)
実施例4のアエロジル200の添加量を0質量部とした以外は実施例4と全く同様に行い、成形体の試験片を得た。
(Comparative Example 7)
Except that the added amount of Aerosil 200 of Example 4 was 0 parts by mass, the same procedure as in Example 4 was performed to obtain a test piece of a molded body.

成形体を目視観察したところ、黒色に着色していない透明部分が存在していることから、CNTの凝集ありと判定した。成形体の体積抵抗率を測定したところ、2.8×10〜7.2×10Ω−cmと場所によって数値がばらつき、導電性が不均一であると判断した。また、成形体の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は98MPa、曲げ弾性率は2500MPaであった。表3に、CNT含有樹脂組成物の製造方法、成形体の作製方法及び成形体の特性をまとめて示す。 When the molded body was visually observed, there was a transparent portion that was not colored black, so it was determined that there was aggregation of CNTs. When the volume resistivity of the molded body was measured, it was determined that the numerical value varied depending on the place, from 2.8 × 10 4 to 7.2 × 10 5 Ω-cm, and the conductivity was not uniform. Moreover, when the bending strength and bending elastic modulus of the molded body were measured, the bending strength was 98 MPa, and the bending elastic modulus was 2500 MPa. In Table 3, the manufacturing method of a CNT containing resin composition, the preparation method of a molded object, and the characteristic of a molded object are shown collectively.

(比較例8)
実施例4のアエロジル200の添加量を5.0質量部とした以外は実施例4と全く同様に行い、成形体の試験片を得た。
(Comparative Example 8)
Except that the addition amount of Aerosil 200 of Example 4 was 5.0 parts by mass, the same procedure as in Example 4 was performed to obtain a test piece of a molded body.

成形体を目視観察したところ、全体が黒色で部分的な透明部分が全く存在せず、CNTの凝集なしと判定した。成形体の体積抵抗率を測定したところ、四探針式低抵抗率計の測定範囲に入らず、10Ω−cm以上と判断した。また、成形体の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は102MPa、曲げ弾性率は2700MPaであった。表3に、CNT含有樹脂組成物の製造方法、成形体の作製方法及び成形体の特性をまとめて示す。 When the molded body was visually observed, it was judged that there was no aggregation of CNT because the whole was black and there was no partial transparent portion at all. When the volume resistivity of the molded body was measured, it was determined that the volume resistivity was 10 6 Ω-cm or more without entering the measurement range of the four-probe type low resistivity meter. Moreover, when the bending strength and bending elastic modulus of the molded body were measured, the bending strength was 102 MPa and the bending elastic modulus was 2700 MPa. In Table 3, the manufacturing method of a CNT containing resin composition, the preparation method of a molded object, and the characteristic of a molded object are shown collectively.

(比較例9)
実施例4で使用したアエロジル200の代わりに、龍森社製ヒューズレックスX(平均粒径が1.5〜2.5μmの溶融シリカ)を使用した以外は実施例4と全く同様に行い、成形体の試験片を得た。
(Comparative Example 9)
In place of Aerosil 200 used in Example 4, Fluxrex X (fused silica having an average particle size of 1.5 to 2.5 μm) manufactured by Tatsumori Co., Ltd. was used. A body specimen was obtained.

成形体を目視観察したところ、黒色に着色していない透明部分が存在していることから、CNTの凝集ありと判定した。成形体の体積抵抗率を測定したところ、四探針式低抵抗率計の測定範囲に入らず、10Ω−cm以上と判断した。また、成形体の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は100MPa、曲げ弾性率は2600MPaであった。表3に、CNT含有樹脂組成物の製造方法、成形体の作製方法及び成形体の特性をまとめて示す。 When the molded body was visually observed, there was a transparent portion that was not colored black, so it was determined that there was aggregation of CNTs. When the volume resistivity of the molded body was measured, it was determined that the volume resistivity was 10 6 Ω-cm or more without entering the measurement range of the four-probe type low resistivity meter. Moreover, when the bending strength and bending elastic modulus of the molded body were measured, the bending strength was 100 MPa and the bending elastic modulus was 2600 MPa. In Table 3, the manufacturing method of a CNT containing resin composition, the preparation method of a molded object, and the characteristic of a molded object are shown collectively.

(比較例10)
タフロンA1900 100質量部にアエロジル200やCNT−100を添加せず、トリメチルホスフェート 0.2質量部のみを添加してスーパーミキサーで予備混合した。その後、実施例4と同様な操作を行い、成形体の試験片を得た。
(Comparative Example 10)
Aerofil 200 or CNT-100 was not added to 100 parts by mass of Toughlon A1900, but only 0.2 parts by mass of trimethyl phosphate was added and premixed with a super mixer. Thereafter, the same operation as in Example 4 was performed to obtain a test piece of a molded body.

成形体の体積抵抗率を測定したところ、四探針式低抵抗率計の測定範囲に入らず、10Ω−cm以上と判断した。また、成形体の曲げ強度及び曲げ弾性率を測定したところ、曲げ強度は90MPa、曲げ弾性率は2300MPaであった。表3に、CNT含有樹脂組成物の製造方法、成形体の作製方法及び成形体の特性をまとめて示す。 When the volume resistivity of the molded body was measured, it was determined that the volume resistivity was 10 6 Ω-cm or more without entering the measurement range of the four-probe type low resistivity meter. Moreover, when the bending strength and bending elastic modulus of the molded body were measured, the bending strength was 90 MPa and the bending elastic modulus was 2300 MPa. In Table 3, the manufacturing method of a CNT containing resin composition, the preparation method of a molded object, and the characteristic of a molded object are shown collectively.

Figure 0005268050
Figure 0005268050

本発明において、熱硬化性樹脂を使用したカーボンナノチューブ含有樹脂組成物は、塗布、注型、含浸、被覆、埋込、あるいは封止することによって、導電性接着剤、静電防止塗料、電磁波シールド塗料、固体電解コンデンサー、燃料電池セパレーターをはじめ各種電気・電子部品の製造に利用することができる。また、ガラス繊維や炭素繊維との複合体として、ゴルフシャフト、テニスラケットや釣竿等のスポーツ用品、自動車の車体用部材や航空宇宙用部材としても利用することができる。   In the present invention, a carbon nanotube-containing resin composition using a thermosetting resin can be applied, cast, impregnated, coated, embedded, or sealed to form a conductive adhesive, an antistatic coating, an electromagnetic wave shield. It can be used for manufacturing various electric and electronic parts such as paints, solid electrolytic capacitors, fuel cell separators. Further, it can be used as a composite with glass fiber or carbon fiber as a golf shaft, a sports equipment such as a tennis racket or a fishing rod, a vehicle body member or an aerospace member.

本発明において、熱可塑性樹脂を使用したカーボンナノチューブ含有樹脂組成物は、二軸押出機を使用して作られたペレットを射出成形、押出成形、ブロー成形、真空成形、あるいはプレス成形することによって、電子・電気機器用、OA機器用、精密機器用、輸送機器用のハウジング、ケーシング、カバー、トレー等の部材として利用することができる。   In the present invention, a carbon nanotube-containing resin composition using a thermoplastic resin is formed by injection molding, extrusion molding, blow molding, vacuum molding, or press molding pellets made using a twin screw extruder. It can be used as a member for housings, casings, covers, trays, etc. for electronic / electrical equipment, OA equipment, precision equipment, and transportation equipment.

本発明は、超微粒子無水シリカ粉末(c)がカーボンナノチューブ(b)の分散促進と再凝集防止に効果があることを見出して、従来の常識としては不可能であった「電気絶縁性であるシリカの添加により、導電性能の大幅な向上」を可能にした。   The present invention has found that the ultrafine anhydrous silica powder (c) is effective in promoting the dispersion of the carbon nanotubes (b) and preventing reaggregation, and is “electrically insulating”, which was impossible as conventional common sense. The addition of silica has made it possible to significantly improve the conductivity performance.

Claims (10)

樹脂(a)に対して、直径1〜80nmでアスペクト比が50以上のカーボンナノチューブ(b)0.01〜5.0質量%を粉体のまま混合、分散させる際に、粒径が1〜50nmの超微粒子無水シリカ粉末(c)を、樹脂(a)及びカーボンナノチューブ(b)の合計量に対して0.1〜3.0質量%添加してせん断混合してなることを特徴とするカーボンナノチューブ含有樹脂組成物。 When the carbon nanotube (b) 0.01 to 5.0% by mass with a diameter of 1 to 80 nm and an aspect ratio of 50 or more is mixed and dispersed as a powder with respect to the resin (a), the particle size is 1 to The ultrafine particle anhydrous silica powder (c) of 50 nm is added by 0.1 to 3.0% by mass with respect to the total amount of the resin (a) and the carbon nanotube (b), and is shear mixed. Carbon nanotube-containing resin composition. 前記樹脂(a)が、熱硬化性樹脂(d)または熱可塑性樹脂(e)である請求項1記載のカーボンナノチューブ含有樹脂組成物。   The carbon nanotube-containing resin composition according to claim 1, wherein the resin (a) is a thermosetting resin (d) or a thermoplastic resin (e). 前記熱硬化性樹脂(d)が、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアネートエステル樹脂の中から選ばれる少なくとも1種である請求項2記載のカーボンナノチューブ含有樹脂組成物。   The carbon nanotube-containing resin composition according to claim 2, wherein the thermosetting resin (d) is at least one selected from an epoxy resin, an unsaturated polyester resin, a phenol resin, a vinyl ester resin, and a cyanate ester resin. 前記熱可塑性樹脂(e)が、スチレン系樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリオレフィン樹脂及び液晶性樹脂の中から選ばれる少なくとも1種である請求項2記載のカーボンナノチューブ含有樹脂組成物。   The thermoplastic resin (e) is at least one selected from styrene resins, polycarbonate resins, polyphenylene ether resins, polyamide resins, polyester resins, polyphenylene sulfide resins, polyolefin resins, and liquid crystalline resins. A carbon nanotube-containing resin composition. 請求項3記載のカーボンナノチューブ含有樹脂組成物に硬化剤を添加して硬化させたことを特徴とする硬化物。   A cured product obtained by adding a curing agent to the carbon nanotube-containing resin composition according to claim 3 and curing the resin composition. 請求項4記載のカーボンナノチューブ含有樹脂組成物を成形してなることを特徴とする成形体。   A molded article obtained by molding the carbon nanotube-containing resin composition according to claim 4. 樹脂(a)に対して、直径1〜80nmでアスペクト比が50以上のカーボンナノチューブ(b)0.01〜5.0質量%を粉体のまま混合、分散させる際に、粒径が1〜50nmの超微粒子無水シリカ粉末(c)を、樹脂(a)及びカーボンナノチューブ(b)の合計量に対して0.1〜3.0質量%添加してせん断混合することを特徴とするカーボンナノチューブ含有樹脂組成物の製造方法。 When the carbon nanotube (b) 0.01 to 5.0% by mass with a diameter of 1 to 80 nm and an aspect ratio of 50 or more is mixed and dispersed as a powder with respect to the resin (a), the particle size is 1 to Carbon nanotubes characterized in that 50 nm ultrafine anhydrous silica powder (c) is added in an amount of 0.1 to 3.0% by mass with respect to the total amount of resin (a) and carbon nanotubes (b) and shear mixed. A method for producing a resin composition. 前記樹脂(a)が、熱硬化性樹脂(d)または熱可塑性樹脂(e)である請求項7記載のカーボンナノチューブ含有樹脂組成物の製造方法。   The method for producing a carbon nanotube-containing resin composition according to claim 7, wherein the resin (a) is a thermosetting resin (d) or a thermoplastic resin (e). 前記熱硬化性樹脂(d)が、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアネートエステル樹脂の中から選ばれる少なくとも1種である請求項8記載のカーボンナノチューブ含有樹脂組成物の製造方法。   The carbon nanotube-containing resin composition according to claim 8, wherein the thermosetting resin (d) is at least one selected from an epoxy resin, an unsaturated polyester resin, a phenol resin, a vinyl ester resin, and a cyanate ester resin. Production method. 前記熱可塑性樹脂(e)が、スチレン系樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリオレフィン樹脂及び液晶性樹脂の中から選ばれる少なくとも1種である請求項記載のカーボンナノチューブ含有樹脂組成物の製造方法。 The thermoplastic resin (e) is a styrene resin, a polycarbonate resin, polyphenylene ether resin, a polyamide resin, a polyester resin, polyphenylene sulfide resin, according to claim 8, wherein at least one selected from polyolefin resin and liquid resin Of producing a carbon nanotube-containing resin composition.
JP2008010369A 2008-01-21 2008-01-21 Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition Active JP5268050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010369A JP5268050B2 (en) 2008-01-21 2008-01-21 Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010369A JP5268050B2 (en) 2008-01-21 2008-01-21 Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition

Publications (2)

Publication Number Publication Date
JP2009167369A JP2009167369A (en) 2009-07-30
JP5268050B2 true JP5268050B2 (en) 2013-08-21

Family

ID=40968924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010369A Active JP5268050B2 (en) 2008-01-21 2008-01-21 Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition

Country Status (1)

Country Link
JP (1) JP5268050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553956A (en) * 2018-11-22 2019-04-02 北京石油化工学院 A method of improving carbon nano tube compound material electric conductivity

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257200B2 (en) * 2009-03-30 2013-08-07 三菱エンジニアリングプラスチックス株式会社 Conductive resin composition and conductive resin molded product
JP2011023991A (en) 2009-07-16 2011-02-03 Konica Minolta Business Technologies Inc Information processor and program
AU2011230532B2 (en) * 2010-03-26 2015-06-25 University Of Hawaii Nanomaterial-reinforced resins and related materials
KR101673599B1 (en) * 2010-04-19 2016-11-07 현대자동차주식회사 Manufacturing method of Polymer Nanocomposites containing Carbonnanotube and Nanoclay
FR2959231B1 (en) 2010-04-22 2012-04-20 Arkema France THERMOPLASTIC AND / OR ELASTOMERIC COMPOSITE MATERIAL BASED ON CARBON NANOTUBES AND GRAPHICS
JP2013189562A (en) * 2012-03-14 2013-09-26 Lintec Corp Adhesive sheet
CA2885330C (en) * 2012-09-28 2020-12-22 Applied Nanostructured Solutions, Llc Composite materials formed by shear mixing of carbon nanostructures and related methods
US10408078B2 (en) * 2013-01-29 2019-09-10 United Technologies Corporation Blade rub material
GB2530526B (en) * 2014-09-25 2017-02-08 Amril Ag Styrene-butadiene rubber (SBR)-CNT filled masterbatch
US10865286B2 (en) * 2015-09-04 2020-12-15 Tokyo Ohka Kogyo Co., Ltd. Method for manufacturing porous membrane
KR101882687B1 (en) * 2016-08-08 2018-07-27 주식회사 이엔에프테크놀로지 Sealant composition for liquid crystal display device
KR101838848B1 (en) 2017-05-12 2018-03-14 재단법인 한국탄소융합기술원 Epoxy Resin Compositions for Bulk Mold Compound Dispersed Carbon Nano Tube
JP6976366B2 (en) * 2020-02-14 2021-12-08 ポリプラスチックス株式会社 Polyarylene sulfide resin composition
CN115850886B (en) * 2022-11-30 2023-08-22 上海熹贾精密技术有限公司 High-performance fluororubber compound and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10283841A (en) * 1997-03-31 1998-10-23 Toshiba Chem Corp Anisotropic conductive paste
JPH1161067A (en) * 1997-08-26 1999-03-05 Du Pont Mitsui Polychem Co Ltd Hot melt adhesive composition
JP2003012939A (en) * 2001-07-03 2003-01-15 Toray Ind Inc Carbon-containing resin composition, molding material and molded product
JP2007138109A (en) * 2005-11-22 2007-06-07 Fujifilm Corp Method for producing carbon nanotube dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553956A (en) * 2018-11-22 2019-04-02 北京石油化工学院 A method of improving carbon nano tube compound material electric conductivity

Also Published As

Publication number Publication date
JP2009167369A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5268050B2 (en) Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition
AU2005279823B2 (en) Conductive thermosets by extrusion
Gantayat et al. Carbon nanomaterial–reinforced epoxy composites: a review
Choudhary et al. Polymer/carbon nanotube nanocomposites
JP5616943B2 (en) Method for producing conductive resin composition and conductive resin composition
KR101183016B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
CN110591283B (en) Conductive graphene composite material and preparation method and application thereof
Karippal et al. Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites
KR20150027146A (en) Composite material with a very low concentration of carbon nanofillers, production method thereof and uses of said material
JP2006265315A (en) Composite material
CN1813314A (en) Electrically conductive compositions comprising carbon nanotubes and method of manufacture thereof
JP2014133842A (en) Conductive resin composition
JP2006083249A (en) Method for producing dispersed solution of rubber composition mixed with nano carbon
KR101164287B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
JP2006089710A (en) Carbon-based conductive filler and composition thereof
Pilawka et al. Epoxy composites with carbon nanotubes
JP2012017443A (en) Polyamide nanocomposite
Wang et al. Electrical conductivity and thermal properties of acrylonitrile‐butadiene‐styrene filled with multiwall carbon nanotubes
JP2005264134A (en) Conductive polymer, its preparation process and its application
JP2007277475A (en) Thermoplastic resin composition and thermoplastic resin molded product
Arigbabowo et al. Fused filament fabrication of polyamide 6 nanographene composite for electrostatic discharge applications
JP2009126985A (en) Molded article, method for producing the same and use of the same
Zeng et al. Preparation and characterization of CNTs/CaCu3Ti4O12/silicone rubber composites with improved dielectric and mechanical properties
WO2006095821A1 (en) Thermoplastic resin composition and thermoplastic resin molded article
Chhetri et al. High performance hybrid filler reinforced epoxy nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250