JP6209142B2 - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP6209142B2
JP6209142B2 JP2014182139A JP2014182139A JP6209142B2 JP 6209142 B2 JP6209142 B2 JP 6209142B2 JP 2014182139 A JP2014182139 A JP 2014182139A JP 2014182139 A JP2014182139 A JP 2014182139A JP 6209142 B2 JP6209142 B2 JP 6209142B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion layer
fine particles
intensity
band intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014182139A
Other languages
Japanese (ja)
Other versions
JP2016058475A (en
Inventor
依里 高橋
依里 高橋
林 直之
直之 林
健吾 齋藤
健吾 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014182139A priority Critical patent/JP6209142B2/en
Publication of JP2016058475A publication Critical patent/JP2016058475A/en
Application granted granted Critical
Publication of JP6209142B2 publication Critical patent/JP6209142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱電変換素子に関する。   The present invention relates to a thermoelectric conversion element.

熱エネルギーと電気エネルギーを相互に変換することができる熱電変換材料は、熱電発電素子やペルチェ素子のような熱電変換素子に用いられている。このような熱電変換素子を応用した熱電発電は、熱エネルギーを直接電力に変換することができ、可動部を必要とせず、体温で作動する腕時計や僻地用電源、宇宙用電源等に用いられている。
例えば、特許文献1には、熱電変換材料としてカーボンナノチューブを使用する旨が開示されている。
Thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used in thermoelectric conversion elements such as thermoelectric power generation elements and Peltier elements. Thermoelectric power generation using such thermoelectric conversion elements can directly convert thermal energy into electric power, does not require moving parts, and is used for wristwatches, remote power supplies, space power supplies, etc. that operate at body temperature. Yes.
For example, Patent Document 1 discloses that carbon nanotubes are used as thermoelectric conversion materials.

特開2008−305831号公報JP 2008-305831 A

一方、近年、熱電変換素子が使用される機器の性能向上のために、熱電変換素子の熱電変換性能のより一層の向上が求められている。
本発明者らは、特許文献1に記載されるようなカーボンナノチューブを含む熱電変換層を備える熱電変換素子の熱電変換性能(性能指数ZT)について検討を行ったところ、昨今要求されるレベルを満たしておらず、更なる改良が必要であることを知見した。
On the other hand, in recent years, further improvement in the thermoelectric conversion performance of thermoelectric conversion elements has been demanded in order to improve the performance of equipment in which thermoelectric conversion elements are used.
When the present inventors examined the thermoelectric conversion performance (performance index ZT) of the thermoelectric conversion element provided with the thermoelectric conversion layer containing a carbon nanotube as described in patent document 1, it satisfy | fills the level currently requested | required. However, it was found that further improvement is necessary.

本発明は、上記実情に鑑みて、熱電変換性能に優れた熱電変換素子を提供することを目的とする。   An object of this invention is to provide the thermoelectric conversion element excellent in the thermoelectric conversion performance in view of the said situation.

本発明者らは、上記課題について鋭意検討した結果、熱電変換層に微粒子を含有させ、CNTの配向状態を制御することにより、所望の効果が得られることを見出した。
より具体的には、以下の構成により上記目的を達成することができることを見出した。
As a result of intensive studies on the above problems, the present inventors have found that a desired effect can be obtained by containing fine particles in the thermoelectric conversion layer and controlling the orientation state of the CNTs.
More specifically, the present inventors have found that the above object can be achieved by the following configuration.

(1) 互いに対向する2つの主面を有する、微粒子およびカーボンナノチューブを含有する熱電変換層と、
熱電変換層の一方の主面上に配置された第1の電極と、
熱電変換層の他方の主面上に配置された第2の電極とを有し、
前記微粒子が、ポリ(メタ)アクリレート、ポリスチレン、ポリウレタン、ポリアミド、ポリイミド、ポリエステル、ポリアクリルアミド、および、これらの共重合体からなる群から選択される少なくとも1種の有機微粒子、を含み
後述する式(1)で表される、熱電変換層中のカーボンナノチューブの配向度Dが6.0より小さい、熱電変換素子。
) 有機微粒子が、架橋構造を有する、()に記載の熱電変換素子。
) 微粒子の平均長径が、1.0μm以下である、(1)または(2)に記載の熱電変換素子。
) 微粒子の形状が、球形状である、(1)〜()のいずれかに記載の熱電変換素子。
) 微粒子の含有量が、熱電変換層全質量に対して、30〜60質量%である、(1)〜()のいずれかに記載の熱電変換素子。
) カーボンナノチューブの含有量が、熱電変換層全質量に対して、5質量%以上である、(1)〜()のいずれかに記載の熱電変換素子。
(7) 式(1)で表される、熱電変換層中のカーボンナノチューブの配向度Dが0.1以上で6.0より小さい、(1)〜(6)のいずれかに記載の熱電変換素子。
(1) a thermoelectric conversion layer containing fine particles and carbon nanotubes having two main surfaces facing each other;
A first electrode disposed on one main surface of the thermoelectric conversion layer;
A second electrode disposed on the other main surface of the thermoelectric conversion layer,
The fine particles include poly (meth) acrylate, polystyrene, polyurethane, polyamide, polyimide, polyester, polyacrylamide, and at least one organic fine particle selected from the group consisting of these copolymers, and a formula (described later) A thermoelectric conversion element represented by 1), wherein the orientation degree D of the carbon nanotubes in the thermoelectric conversion layer is smaller than 6.0.
( 2 ) The thermoelectric conversion element according to ( 1 ), wherein the organic fine particles have a crosslinked structure.
( 3 ) The thermoelectric conversion element according to (1) or (2) , wherein the average major axis of the fine particles is 1.0 μm or less.
( 4 ) The thermoelectric conversion element according to any one of (1) to ( 3 ), wherein the fine particles have a spherical shape.
( 5 ) The thermoelectric conversion element according to any one of (1) to ( 4 ), wherein the content of fine particles is 30 to 60% by mass with respect to the total mass of the thermoelectric conversion layer.
( 6 ) The thermoelectric conversion element according to any one of (1) to ( 5 ), wherein the content of the carbon nanotube is 5% by mass or more based on the total mass of the thermoelectric conversion layer.
(7) The thermoelectric conversion according to any one of (1) to (6), wherein the degree of orientation D of the carbon nanotubes in the thermoelectric conversion layer represented by the formula (1) is 0.1 or more and less than 6.0. element.

本発明によれば、熱電変換性能に優れた熱電変換素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion element excellent in the thermoelectric conversion performance can be provided.

熱電変換層の模式的断面図である。It is a typical sectional view of a thermoelectric conversion layer. 本発明の熱電変換素子の一例を模式的に示す断面図である。図2中の矢印は素子の使用時に付与される温度差の方向を示す。It is sectional drawing which shows typically an example of the thermoelectric conversion element of this invention. The arrows in FIG. 2 indicate the direction of the temperature difference applied when the element is used. 配向度Dを算出するためのレーザーラマン分光分析の態様を示す概略図である。It is the schematic which shows the aspect of the laser Raman spectroscopic analysis for calculating the orientation degree D. FIG.

以下に、本発明の熱電変換素子の好適態様について説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本発明の熱電変換素子の特徴点の一つとしては、熱電変換層中に微粒子およびカーボンナノチューブ(以後、単に「CNT」とも称する)を含有させ、CNTの配向状態を制御している点が挙げられる。本発明の効果が得られる詳細は不明だが、以下のように推測される。
一般的に、CNTは、その長い形状のため、熱電変換層の面方向(主面に沿った方向)に沿って配向しやすい。しかし、電極が熱電変換層の上下に配置される場合、上記のようにCNTが面方向に沿って配向すると、面方向での導電率が向上するものの、電極間方向での導電率上昇にはあまり寄与せず、結果として所望の熱電変換特性が得られない。本発明者らは、熱電変換層中に微粒子を含有させることにより、熱電変換層中に含まれるCNTが延びる方向を制御している。つまり、図1に示すように、第1の電極13および第2の電極15で挟まれた熱電変換層14に微粒子10を含有させることにより、CNT11が面内方向に伸びるのを阻害し、その一部を熱電変換層14の厚み方向に配向させている。特に、後述する配向度Dが所定の範囲であれば、所望の効果が得られることを見出している。
Below, the suitable aspect of the thermoelectric conversion element of this invention is demonstrated. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
One of the features of the thermoelectric conversion element of the present invention is that the thermoelectric conversion layer contains fine particles and carbon nanotubes (hereinafter also simply referred to as “CNT”) to control the alignment state of the CNTs. It is done. Although details for obtaining the effects of the present invention are unknown, it is presumed as follows.
Generally, CNTs are easily oriented along the surface direction (direction along the main surface) of the thermoelectric conversion layer because of their long shape. However, when the electrodes are arranged above and below the thermoelectric conversion layer, if the CNTs are oriented along the surface direction as described above, the conductivity in the surface direction is improved, but the conductivity increase in the direction between the electrodes is It does not contribute so much, and as a result, desired thermoelectric conversion characteristics cannot be obtained. The present inventors control the direction in which the CNTs contained in the thermoelectric conversion layer extend by including fine particles in the thermoelectric conversion layer. That is, as shown in FIG. 1, the inclusion of the fine particles 10 in the thermoelectric conversion layer 14 sandwiched between the first electrode 13 and the second electrode 15 inhibits the CNT 11 from extending in the in-plane direction. A part is oriented in the thickness direction of the thermoelectric conversion layer 14. In particular, it has been found that a desired effect can be obtained if the degree of orientation D described later is within a predetermined range.

図2は、本発明の熱電変換素子の一例を模式的に示す断面図である。図2中、矢印は、熱電変換素子の使用時における温度差の向きを示す。
図2に示す熱電変換素子1は、第1の基材12上に、第1の電極13および第2の電極15を含む一対の電極と、第1の電極13および第2の電極15間に、微粒子とカーボンナノチューブとを含む熱電変換層14を備えている。つまり、熱電変換層14の互い対向する2つの主面上に、第1の電極13および第2の電極15がそれぞれ配置されている。第2の電極15の他方の表面には第2の基材16が配設されている。第1の電極13および第2の電極15は、熱電変換層14と電気的に接続している。なお、図示しないが、第1の基材12および第2の基材16の外側には、さらに温度を調整するための金属板が配置されていてもよい。
熱電変換層の保護の観点から、熱電変換層の表面は電極または基材により覆われることが好ましい。例えば、図2に示すように、熱電変換層14の一方の表面が第1の電極13を介して第1の基材12で覆われ、他方の表面が第2の電極15を介して第2の基材16で覆われていることが好ましい。なお、本発明の熱電変換素子においては、第1の基材12および第2の基材16は設けなくてもよい。
以下、熱電変換素子を構成する各部材について詳述する。
FIG. 2 is a cross-sectional view schematically showing an example of the thermoelectric conversion element of the present invention. In FIG. 2, the arrow indicates the direction of the temperature difference when the thermoelectric conversion element is used.
The thermoelectric conversion element 1 shown in FIG. 2 includes a pair of electrodes including a first electrode 13 and a second electrode 15 on a first base 12 and a gap between the first electrode 13 and the second electrode 15. The thermoelectric conversion layer 14 containing fine particles and carbon nanotubes is provided. That is, the first electrode 13 and the second electrode 15 are disposed on the two main surfaces of the thermoelectric conversion layer 14 facing each other. A second substrate 16 is disposed on the other surface of the second electrode 15. The first electrode 13 and the second electrode 15 are electrically connected to the thermoelectric conversion layer 14. Although not shown, a metal plate for further adjusting the temperature may be disposed outside the first base material 12 and the second base material 16.
From the viewpoint of protecting the thermoelectric conversion layer, the surface of the thermoelectric conversion layer is preferably covered with an electrode or a substrate. For example, as shown in FIG. 2, one surface of the thermoelectric conversion layer 14 is covered with the first base material 12 via the first electrode 13, and the other surface is the second electrode via the second electrode 15. It is preferable that the substrate 16 is covered. In addition, in the thermoelectric conversion element of this invention, the 1st base material 12 and the 2nd base material 16 do not need to provide.
Hereinafter, each member which comprises a thermoelectric conversion element is explained in full detail.

<熱電変換層>
本発明の熱電変換素子が有する熱電変換層は、2つの互い対向する主面を有し、微粒子とカーボンナノチューブ(CNT)とが少なくとも含まれる。上述したように、微粒子が存在することにより、CNTの一部が熱電変換層の厚み方向に沿って延びやすく、結果として熱電変換特性が向上する。なお、厚み方向とは主面に垂直な方向を意図する。
以下では、まず、熱電変換層に含まれる各主成分について詳述する。
<Thermoelectric conversion layer>
The thermoelectric conversion layer of the thermoelectric conversion element of the present invention has two main surfaces facing each other, and includes at least fine particles and carbon nanotubes (CNT). As described above, due to the presence of the fine particles, a part of the CNT easily extends along the thickness direction of the thermoelectric conversion layer, and as a result, the thermoelectric conversion characteristics are improved. The thickness direction is intended to be a direction perpendicular to the main surface.
Below, each main component contained in a thermoelectric conversion layer is explained in full detail first.

(微粒子)
熱電変換層には微粒子が含まれる。
微粒子の種類は特に制限されず、公知の微粒子を使用することができ、有機微粒子および無機微粒子が挙げられる。
有機微粒子とは、有機材料で構成された微粒子であり、例えば、ポリ(メタ)アクリレート、ポリスチレン、ポリウレタン、ポリアミド、ポリイミド、ポリエステル、ポリアクリルアミド、および、これらの共重合体からなる群から選択される少なくとも1種の有機微粒子が挙げられる。
有機微粒子としては、架橋構造を含まない非架橋有機微粒子であっても、架橋構造を有する架橋有機微粒子であってもよく、熱電変換素子の熱電変換特性がより優れる点(以後、単に「本発明の効果がより優れる点」とも称する)で、架橋構造を有する有機微粒子(架橋有機微粒子)が好ましい。
(Fine particles)
The thermoelectric conversion layer contains fine particles.
The kind of fine particles is not particularly limited, and known fine particles can be used, and examples thereof include organic fine particles and inorganic fine particles.
The organic fine particles are fine particles composed of an organic material, and are selected from the group consisting of, for example, poly (meth) acrylate, polystyrene, polyurethane, polyamide, polyimide, polyester, polyacrylamide, and copolymers thereof. There may be mentioned at least one organic fine particle.
The organic fine particles may be non-crosslinked organic fine particles not containing a crosslinked structure or crosslinked organic fine particles having a crosslinked structure, and the thermoelectric conversion characteristics of the thermoelectric conversion element are further improved (hereinafter simply referred to as “the present invention”). Organic fine particles having a crosslinked structure (crosslinked organic fine particles) are preferred.

無機微粒子とは、無機材料で構成された微粒子であり、例えば、シリカ、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、および、酸化ジルコニウムからなる群から選択される少なくとも1種の無機微粒子が挙げられる。   The inorganic fine particles are fine particles composed of an inorganic material. Examples thereof include at least one inorganic fine particle selected from the group consisting of silica, alumina, titanium oxide, magnesium oxide, zinc oxide, and zirconium oxide. .

微粒子の形状は特に制限されず、球形状、紡錘形状などが挙げられ、本発明の効果がより優れる点で、球形状が好ましい。
球形状とは、アスペクト比(長径/短径)が1.5未満のものを意図する。
また、紡錘形状とは、糸を紡ぐ錘に似た形をいい、本明細書においては、紡錘形状には、針状、棒状、柱状、円柱状、多角柱状等と一般にいわれるものを含む。なお、より具体的には、紡錘形状とは、アスペクト比(長径/短径)が1.5以上のものである。
上記アスペクト比の測定方法としては、熱電変換層の厚み方向の断面を顕微鏡(例えば、光学顕微鏡)にて観察し、100個の任意の微粒子の長径と短径とを測定して、それぞれのアスペクト比を算出し、それらを算出平均したものである。
なお、長径とは、観察図において、粒子の一端と他端とを結ぶ線分のうち最大の長さを有する線分の長さを意図し、短径とは、上記長径と直交する線分のうち最大の長さを有する線分の長さを意図する。
The shape of the fine particles is not particularly limited, and includes a spherical shape, a spindle shape, and the like, and a spherical shape is preferable in that the effect of the present invention is more excellent.
The spherical shape is intended to have an aspect ratio (major axis / minor axis) of less than 1.5.
In addition, the spindle shape refers to a shape similar to a spindle that spins a yarn. In this specification, the spindle shape includes needles, rods, columns, columns, polygonal columns, and the like. More specifically, the spindle shape has an aspect ratio (major axis / minor axis) of 1.5 or more.
As the method for measuring the aspect ratio, a cross section in the thickness direction of the thermoelectric conversion layer is observed with a microscope (for example, an optical microscope), and the major axis and minor axis of 100 arbitrary fine particles are measured. The ratio is calculated and averaged.
The major axis means the length of the line segment having the maximum length among the line segments connecting one end and the other end of the particle in the observation drawing, and the minor axis is a segment perpendicular to the major axis. The length of the line segment having the maximum length is intended.

微粒子の平均長径は特に制限されないが、取り扱い性の点で、100μm以下が好ましく、本発明の効果がより優れる点で、50μm以下がより好ましく、20μm以下がさらに好ましく、10μm以下が特に好ましく、1.0μm以下が最も好ましい。下限は特に制限されないが、本発明の効果がより優れる点で、0.01μm以上が好ましく、0.05μm以上がより好ましい。
微粒子の平均長径の測定方法としては、熱電変換層の厚み方向の断面を顕微鏡(例えば、光学顕微鏡)にて観察し、100個の任意の微粒子の長径を測定して、それらを算出平均したものである。
なお、長径とは、観察図において、粒子の一端と他端とを結ぶ線分のうち最大の長さを有する線分の長さを意図する。
The average major axis of the fine particles is not particularly limited, but is preferably 100 μm or less from the viewpoint of handleability, more preferably 50 μm or less, further preferably 20 μm or less, particularly preferably 10 μm or less, from the viewpoint of more excellent effects of the present invention. 0.0 μm or less is most preferable. Although a minimum in particular is not restrict | limited, 0.01 micrometer or more is preferable and 0.05 micrometer or more is more preferable at the point which the effect of this invention is more excellent.
The average major axis of the fine particles is measured by observing a cross section in the thickness direction of the thermoelectric conversion layer with a microscope (for example, an optical microscope), measuring the major axis of 100 arbitrary fine particles, and calculating and averaging them. It is.
The major axis means the length of the line segment having the maximum length among the line segments connecting one end and the other end of the particle in the observation drawing.

微粒子の平均長径と熱電変換層の平均厚みとの関係は特に制限されないが、本発明の効果がより優れる点で、微粒子の平均長径が熱電変換層の平均厚みの50%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることがさらに好ましい。下限は特に制限されないが、本発明の効果がより優れる点で、0.0001%以上であることが好ましく、0.001%以上であることがより好ましい。
熱電変換層の平均厚みの測定方法は、後段で詳述する。
The relationship between the average major axis of the fine particles and the average thickness of the thermoelectric conversion layer is not particularly limited, but it is preferable that the average major axis of the fine particles is 50% or less of the average thickness of the thermoelectric conversion layer in terms of more excellent effects of the present invention. 20% or less is more preferable, and 10% or less is more preferable. The lower limit is not particularly limited, but is preferably 0.0001% or more, and more preferably 0.001% or more, in that the effect of the present invention is more excellent.
A method for measuring the average thickness of the thermoelectric conversion layer will be described in detail later.

熱電変換層中における微粒子の含有量は特に制限されないが、5〜85質量%の場合が多く、本発明の効果がより優れる点で、10〜70質量%が好ましく、30〜60質量%がより好ましく、40〜60質量%がさらに好ましい。
微粒子は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
The content of fine particles in the thermoelectric conversion layer is not particularly limited, but is often 5 to 85% by mass, and is more preferably 10 to 70% by mass, more preferably 30 to 60% by mass in terms of more excellent effects of the present invention. Preferably, 40 to 60% by mass is more preferable.
The fine particles may be used alone or in combination of two or more.

(カーボンナノチューブ)
熱電変換層にはカーボンナノチューブが含まれる。
本発明で用いるカーボンナノチューブ(CNT)は、1枚の炭素膜(グラフェンシート)が円筒状に巻かれた単層CNT、2枚のグラフェンシートが同心円状に巻かれた2層CNT、および、複数のグラフェンシートが同心円状に巻かれた多層CNTがある。本発明においては、単層CNT、2層CNT、多層CNTを各々単独で用いてもよく、2種以上を併せて用いてもよい。特に、導電性および半導体特性において優れた性質を持つ単層CNTおよび2層CNTを用いることが好ましく、単層CNTを用いることがより好ましい。
本発明で用いる単層CNTは、半導体性のものであっても、金属性のものであってもよく、両者を併せて用いてもよい。また、CNTには金属等が内包されていてもよく、フラーレン等の分子が内包されたもの(特にフラーレンを内包したものをピーポッドという)を用いてもよい。
(carbon nanotube)
The thermoelectric conversion layer includes carbon nanotubes.
The carbon nanotube (CNT) used in the present invention includes a single-wall CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape, a double-wall CNT in which two graphene sheets are wound in a concentric shape, and a plurality of carbon nanotubes (CNT) There is a multilayer CNT in which a graphene sheet is wound concentrically. In the present invention, single-walled CNTs, double-walled CNTs, and multilayered CNTs may be used alone, or two or more kinds may be used in combination. In particular, it is preferable to use single-walled CNT and double-walled CNT having excellent properties in terms of conductivity and semiconductor properties, and more preferably single-walled CNT.
The single-walled CNT used in the present invention may be semiconducting or metallic, and both may be used in combination. In addition, a metal or the like may be included in the CNT, and a substance in which a molecule such as fullerene is included (in particular, a substance in which fullerene is included is referred to as a peapod) may be used.

CNTはアーク放電法、化学気相成長法(以下、CVD法という)、レーザー・アブレーション法等によって製造することができる。本発明に用いられるCNTは、いずれの方法によって得られたものであってもよいが、好ましくはアーク放電法およびCVD法により得られたものである。
CNTを製造する際には、同時にフラーレンやグラファイト、非晶性炭素が副生成物として生じることがある。これら副生成物を除去するために精製してもよい。CNTの精製方法は特に限定されないが、洗浄、遠心分離、ろ過、酸化、クロマトグラフ等の方法が挙げられる。その他に、硝酸、硫酸等による酸処理、超音波処理も不純物の除去には有効である。併せて、フィルターによる分離除去を行うことも、純度を向上させる観点からより好ましい。
CNT can be produced by an arc discharge method, a chemical vapor deposition method (hereinafter referred to as a CVD method), a laser ablation method, or the like. The CNT used in the present invention may be obtained by any method, but is preferably obtained by an arc discharge method and a CVD method.
When producing CNTs, fullerenes, graphite, and amorphous carbon may be produced as by-products at the same time. You may refine | purify in order to remove these by-products. Although the purification method of CNT is not specifically limited, Methods, such as washing | cleaning, centrifugation, filtration, oxidation, and a chromatograph, are mentioned. In addition, acid treatment with nitric acid, sulfuric acid, etc. and ultrasonic treatment are also effective for removing impurities. In addition, it is more preferable to perform separation and removal using a filter from the viewpoint of improving purity.

精製の後、得られたCNTをそのまま用いることもできる。また、CNTは一般に紐状で生成されるため、用途に応じて所望の長さにカットして用いてもよい。CNTは、硝酸、硫酸等による酸処理、超音波処理、凍結粉砕法等により短繊維状にカットすることができる。また、併せてフィルターによる分離を行うことも、純度を向上させる観点から好ましい。
本発明においては、カットしたCNTだけではなく、あらかじめ短繊維状に作製したCNTも同様に使用できる。
After purification, the obtained CNT can be used as it is. Moreover, since CNT is generally produced in a string shape, it may be cut into a desired length depending on the application. CNTs can be cut into short fibers by acid treatment with nitric acid, sulfuric acid or the like, ultrasonic treatment, freeze pulverization method or the like. In addition, it is also preferable to perform separation using a filter from the viewpoint of improving purity.
In the present invention, not only cut CNTs but also CNTs produced in the form of short fibers in advance can be used in the same manner.

CNTの平均長さは特に限定されないが、製造容易性、成膜性、導電性等の観点から、0.01〜2000μmであることが好ましく、0.01〜1000μmであることがより好ましく、0.1〜1000μmであることがさらに好ましい。
また、CNTの平均直径は特に限定されないが、耐久性、透明性、成膜性、導電性等の観点から、0.4nm以上100nm以下(より好ましくは50nm以下、さらに好ましくは15nm以下)であることが好ましい。
The average length of the CNT is not particularly limited, but is preferably 0.01 to 2000 μm, more preferably 0.01 to 1000 μm, from the viewpoints of manufacturability, film formability, conductivity, and the like. More preferably, it is 1-1000 micrometers.
The average diameter of the CNT is not particularly limited, but is 0.4 nm or more and 100 nm or less (more preferably 50 nm or less, more preferably 15 nm or less) from the viewpoint of durability, transparency, film formability, conductivity, and the like. It is preferable.

熱電変換層中におけるカーボンナノチューブの含有量は特に制限されないが、本発明の効果がより優れる点で、1〜50質量%が好ましく、5〜30質量%がより好ましく、5〜20質量%がさらに好ましい。
カーボンナノチューブは、1種のみを単独で使用してもよく、2種以上を併用してもよい。
熱電変換層中におけるカーボンナノチューブと微粒子との質量比(CNTの質量/微粒子の質量)は特に制限されないが、1/20〜1/1の場合が多く、本発明の効果がより優れる点で、1/15〜1/2が好ましく、1/10〜1/3がより好ましい。
The content of the carbon nanotube in the thermoelectric conversion layer is not particularly limited, but is preferably 1 to 50% by mass, more preferably 5 to 30% by mass, and further preferably 5 to 20% by mass in terms of more excellent effects of the present invention. preferable.
The carbon nanotubes may be used alone or in combination of two or more.
The mass ratio between the carbon nanotubes and the fine particles in the thermoelectric conversion layer (the mass of the CNT / the mass of the fine particles) is not particularly limited, but is often 1/20 to 1/1, and the effect of the present invention is more excellent. 1/15 to 1/2 is preferable, and 1/10 to 1/3 is more preferable.

(その他成分)
熱電変換層には、上記微粒子およびCNT以外の他の成分(例えば、バインダー、分散剤、酸化防止剤、対光安定剤、耐熱安定剤、可塑剤、ドーパントなど)が含まれていてもよい。
熱電変換層にバインダーが含まれることにより、熱電変換層中における微粒子およびCNTの分散性がより一層向上する。また、これらバインダーは、熱電変換層を形成する際に使用される熱電変換層形成用組成物において、CNTを組成物中に分散させる分散剤として機能してもよい。
使用されるバインダーの種類は特に制限されず、例えば、公知の樹脂バインダー(いわゆる高分子材料)が挙げられる。なお、高分子材料としては、例えば、従来公知の絶縁性高分子材料を用いることができる。
また、絶縁性高分子材料は、導電性を示さない高分子材料である。より具体的には、(メタ)アクリル系樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、シロキサン変性ポリイミド樹脂、ポリブタジエン、ポリプロピレン、ポリスチレン、スチレン−ブタジエン共重合体、スチレン−ブタジエン−スチレン共重合体、スチレン−エチレン−ブチレン−スチレン共重合体、ポリアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、ブチルゴム、クロロプレンゴム、ポリアミド樹脂、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−アクリル酸共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ポリ酢酸ビニル、ナイロンなどが挙げられる。
(Other ingredients)
The thermoelectric conversion layer may contain components other than the fine particles and CNTs (for example, a binder, a dispersant, an antioxidant, a light stabilizer, a heat stabilizer, a plasticizer, a dopant, and the like).
By including the binder in the thermoelectric conversion layer, the dispersibility of the fine particles and the CNTs in the thermoelectric conversion layer is further improved. Further, these binders may function as a dispersant for dispersing CNTs in the composition in the composition for forming a thermoelectric conversion layer used when forming the thermoelectric conversion layer.
The kind in particular of binder used is not restrict | limited, For example, a well-known resin binder (what is called a polymeric material) is mentioned. As the polymer material, for example, a conventionally known insulating polymer material can be used.
The insulating polymer material is a polymer material that does not exhibit conductivity. More specifically, (meth) acrylic resin, phenoxy resin, polyester resin, polyurethane resin, polyimide resin, siloxane-modified polyimide resin, polybutadiene, polypropylene, polystyrene, styrene-butadiene copolymer, styrene-butadiene-styrene copolymer Polymer, styrene-ethylene-butylene-styrene copolymer, polyacetal resin, polyvinyl butyral resin, polyvinyl acetal resin, butyl rubber, chloroprene rubber, polyamide resin, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-acrylic acid copolymer, acrylonitrile -Butadiene-styrene copolymer, polyvinyl acetate, nylon and the like.

熱電変換層中におけるバインダーの含有量は特に制限されないが、本発明の効果がより優れる点で、熱電変換層全質量に対して、10〜80質量%が好ましく、20〜70質量%がより好ましく、25〜50質量%がさらに好ましい。
また、熱電変換層中におけるバインダーと微粒子との質量比は特に制限されないが、本発明の効果がより優れる点で、微粒子100質量部に対して、10〜300質量部が好ましく、20〜100質量部がより好ましい。
Although the content of the binder in the thermoelectric conversion layer is not particularly limited, it is preferably 10 to 80% by mass and more preferably 20 to 70% by mass with respect to the total mass of the thermoelectric conversion layer in that the effect of the present invention is more excellent. More preferably, it is 25-50 mass%.
Further, the mass ratio of the binder and the fine particles in the thermoelectric conversion layer is not particularly limited, but is preferably 10 to 300 parts by mass with respect to 100 parts by mass of the fine particles, and 20 to 100 parts by mass with respect to 100 parts by mass of the fine particles. Part is more preferred.

また、熱電変換層には、カーボンナノチューブを分散するための分散剤が含まれていてもよい。使用できる分散剤としては、公知の分散剤を使用でき、具体的には、文献等で知られる、コール酸のような長鎖アルキルカルボン酸や、ビックケミー社の分散剤として、BYK140, 142, 145のようなアルキルアンモニウム塩構造を有している分散剤、BYK9076, 9077, 182, 161, 162, 163, 2163,2164のようなポリウレタン類、BYK190,191, 192, 193, 194などのように水系溶媒で使用して疎水性−疎水性相互作用で分散する分散剤、その他にBYK2000,2001,2020,2025を使用することができる。   Further, the thermoelectric conversion layer may contain a dispersant for dispersing the carbon nanotubes. As the dispersant that can be used, known dispersants can be used. Specifically, as long-chain alkyl carboxylic acids such as cholic acid known in the literature and the like, BYK140, 142, and 145 are used as dispersants of BYK Chemie. Dispersants having an alkylammonium salt structure such as: polyurethanes such as BYK9076, 9077, 182, 161, 162, 163, 2163, 2164; aqueous systems such as BYK190, 191, 192, 193, 194, etc. A dispersing agent that is used in a solvent and is dispersed by hydrophobic-hydrophobic interaction, and BYK2000, 2001, 2020, and 2025 can be used.

(熱電変換層の特性)
熱電変換層は、上述した微粒子およびCNTを少なくとも含有する層である。
後述する式(1)で表される、熱電変換層中のCNTの配向度Dは6.0より小さく(6.0未満)、本発明の効果がより優れる点で、5.5以下が好ましく、4.0以下がより好ましい。下限は特に制限されないが、0.1以上の場合が多く、0.9以上の場合がより多く、1.0以上の場合がさらに多い。
配向度Dが6.0以上である場合、熱電変換性能に劣る。
式(1) 配向度D=強度比Iv/強度比Ip
(Characteristics of thermoelectric conversion layer)
The thermoelectric conversion layer is a layer containing at least the fine particles and CNTs described above.
The degree of orientation D of the CNT in the thermoelectric conversion layer represented by the formula (1) described later is less than 6.0 (less than 6.0), and 5.5 or less is preferable in that the effect of the present invention is more excellent. 4.0 or less is more preferable. The lower limit is not particularly limited, but is often 0.1 or more, more often 0.9 or more, and more often 1.0 or more.
When the orientation degree D is 6.0 or more, the thermoelectric conversion performance is inferior.
Formula (1) Orientation degree D = Intensity ratio Iv / Intensity ratio Ip

以下、式(1)中の強度比IvおよびIpについて、図3を用いて詳述する。
まず、式(1)中、強度比Ivは、波長532nmの直線偏光のレーザー光を用いるレーザーラマン分光分析において、熱電変換層の厚み方向の断面に、レーザー光の偏光方向が熱電変換層の厚み方向と直交になるようにしてレーザー光を照射して得られるカーボンナノチューブ由来のGバンド強度とDバンド強度との強度比(Gバンド強度/Dバンド強度)を表す。以下、強度比Ivの測定方法に関してより詳述する。
まず、測定には、レーザーラマン分光分析が実施され、ラマン分光装置としてレニショー製のin Via Raman microscopesが使用される。また、測定に使用されるレーザー光としては、波長532nmのレーザー光が使用され、光源としては公知の光源が使用される。なお、レーザー光は直線偏光であり、例えば、偏光子を用いることにより得られる。
強度比Ivの測定に際しては、熱電変換層の厚み方向の断面に対して、波長532nmの直線偏光のレーザー光を照射する。上記熱電変換層の厚み方向の断面(厚み方向に沿った断面)とは、熱電変換層の厚み方向に平行な軸方向に沿って切り取られた面(熱電変換層の厚み方向に平行な断面)であり、言い換えれば、第1の電極、熱電変換層、および、第2の電極が積層する方向に沿って切り取られた面のことである。
強度比Ivを測定する際には、レーザー光の偏光方向が熱電変換層の厚み方向と直交するようにして、熱電変換層の断面にレーザー光を照射して、ラマン分光分析を行う。より具体的には、図3に示すように、熱電変換層14の断面14aに対して、白抜き矢印で示す厚み方向と直交する方向、具体的には、白抜き矢印と直交する黒矢印20の方向と、レーザー光の偏光方向とが平行となるようにレーザー光を照射して、ラマン分光分析(ラマン分光測定)を行う。
Hereinafter, the intensity ratios Iv and Ip in the formula (1) will be described in detail with reference to FIG.
First, in the formula (1), the intensity ratio Iv is a laser Raman spectroscopic analysis using linearly polarized laser light having a wavelength of 532 nm, and the polarization direction of the laser light is the thickness of the thermoelectric conversion layer in the cross section in the thickness direction of the thermoelectric conversion layer. The intensity ratio (G band intensity / D band intensity) between the G band intensity and the D band intensity derived from the carbon nanotubes obtained by irradiating the laser beam so as to be orthogonal to the direction is represented. Hereinafter, the measuring method of the intensity ratio Iv will be described in more detail.
First, laser Raman spectroscopic analysis is performed for the measurement, and in-vitro Raman microscopes manufactured by Renishaw are used as a Raman spectroscopic device. Moreover, as a laser beam used for the measurement, a laser beam having a wavelength of 532 nm is used, and a known light source is used as a light source. The laser light is linearly polarized light and can be obtained by using, for example, a polarizer.
In measuring the intensity ratio Iv, a linearly polarized laser beam having a wavelength of 532 nm is applied to the cross section in the thickness direction of the thermoelectric conversion layer. The cross section in the thickness direction of the thermoelectric conversion layer (cross section along the thickness direction) is a surface cut along the axial direction parallel to the thickness direction of the thermoelectric conversion layer (cross section parallel to the thickness direction of the thermoelectric conversion layer). In other words, it is a surface cut along the direction in which the first electrode, the thermoelectric conversion layer, and the second electrode are laminated.
When measuring the intensity ratio Iv, Raman spectroscopy analysis is performed by irradiating the cross section of the thermoelectric conversion layer with laser light so that the polarization direction of the laser light is orthogonal to the thickness direction of the thermoelectric conversion layer. More specifically, as shown in FIG. 3, with respect to the cross section 14a of the thermoelectric conversion layer 14, a direction perpendicular to the thickness direction indicated by the white arrow, specifically, a black arrow 20 perpendicular to the white arrow. The laser beam is irradiated so that the direction of the laser beam is parallel to the polarization direction of the laser beam, and Raman spectroscopic analysis (Raman spectroscopic measurement) is performed.

上記測定により得られるラマンスペクトルには、カーボンナノチューブ由来のGバンドおよびDバンドのピークが確認される。
Gバンドは、CNTのラマンスペクトルの1590cm−1付近に現れる、グラファイト構造に起因するラマンピーク(ラマン散乱強度)である。Dバンドは、CNTのラマンスペクトルの1339cm−1付近に現れる、CNTの点欠陥や結晶端に起因するラマンピークである。本明細書においては、Gバンド強度とは、波長1590cm−1±50cm−1の範囲に現れるGバンド由来のピークの強度を意図する。また、Dバンド強度とは、波長1339cm−1±50cm−1の範囲に現れるDバンド由来のピークの強度を意図する。
強度比Ivは、上記Gバンド強度を上記Dバンド強度で除した値(Gバンド強度/Dバンド強度)を表す。強度比Ivの値が大きいほど、熱電変換層の厚み方向と直交する方向に配向しているCNTが多いことを表す。
In the Raman spectrum obtained by the above measurement, the G band and D band peaks derived from the carbon nanotubes are confirmed.
The G band is a Raman peak (Raman scattering intensity) due to the graphite structure that appears in the vicinity of 1590 cm −1 of the Raman spectrum of CNT. The D band is a Raman peak that appears in the vicinity of 1339 cm −1 of the CNT Raman spectrum due to CNT point defects or crystal edges. In the present specification, the G band intensity means the intensity of a peak derived from the G band that appears in a wavelength range of 1590 cm −1 ± 50 cm −1 . Further, the D band intensity, contemplates the intensity of a peak derived from the D band appearing in the wavelength range of 1339cm -1 ± 50cm -1.
The intensity ratio Iv represents a value obtained by dividing the G band intensity by the D band intensity (G band intensity / D band intensity). It represents that there are many CNTs orientated in the direction orthogonal to the thickness direction of a thermoelectric conversion layer, so that the value of intensity ratio Iv is large.

式(1)中、強度比Ipは、波長532nmの直線偏光のレーザー光を用いるレーザーラマン分光分析において、熱電変換層の厚み方向の断面に、レーザー光の偏光方向が熱電変換層の厚み方向と平行になるようにしてレーザー光を照射して得られるカーボンナノチューブ由来のGバンド強度とDバンド強度との強度比(Gバンド強度/Dバンド強度)を表す。
強度比Ipの測定においては、上述した強度比Ivの測定と同様に、ラマン分光装置が使用される。
強度比Ipの測定に際しては、熱電変換層の厚み方向の断面に対して、波長532nmの直線偏光のレーザー光を照射する。強度比Ipを測定する際には、レーザー光の偏光方向が熱電変換層の厚み方向と平行となるようにして、熱電変換層の断面にレーザー光を照射して、ラマン分光分析を行う。より具体的には、図3に示すように、熱電変換層14の断面14aに対して、白抜き矢印で示す厚み方向と平行する方向、具体的には、白抜き矢印と平行となる黒矢印22の方向と、レーザー光の偏光方向とが平行となるようにレーザー光を照射して、ラマン分光分析を行う。
上記強度比Ivの場合と同様に、上記レーザー光の照射を行うことにより得られるラマンスペクトルから観察される、Gバンド強度とDバンドとから、強度比Ip(Gバンド強度/Dバンド強度)を算出する。強度比Ipの値が大きいほど、熱電変換層の厚み方向と平行する方向に配向しているCNTが多いことを表す。
In the formula (1), the intensity ratio Ip is a laser Raman spectroscopic analysis using a linearly polarized laser beam having a wavelength of 532 nm, and the polarization direction of the laser beam is different from the thickness direction of the thermoelectric conversion layer in the cross section in the thickness direction of the thermoelectric conversion layer. The intensity ratio (G band intensity / D band intensity) between the G band intensity and the D band intensity derived from the carbon nanotubes obtained by irradiating the laser beam in parallel is shown.
In the measurement of the intensity ratio Ip, a Raman spectroscopic device is used as in the measurement of the intensity ratio Iv described above.
In measuring the intensity ratio Ip, the cross section in the thickness direction of the thermoelectric conversion layer is irradiated with linearly polarized laser light having a wavelength of 532 nm. When measuring the intensity ratio Ip, Raman spectroscopic analysis is performed by irradiating the cross section of the thermoelectric conversion layer with laser light so that the polarization direction of the laser light is parallel to the thickness direction of the thermoelectric conversion layer. More specifically, as shown in FIG. 3, with respect to the cross section 14a of the thermoelectric conversion layer 14, a direction parallel to the thickness direction indicated by the white arrow, specifically, a black arrow parallel to the white arrow The laser beam is irradiated so that the direction 22 and the polarization direction of the laser beam are parallel to perform Raman spectroscopic analysis.
As in the case of the intensity ratio Iv, the intensity ratio Ip (G band intensity / D band intensity) is determined from the G band intensity and D band observed from the Raman spectrum obtained by performing the laser light irradiation. calculate. It represents that there are many CNTs orientated in the direction parallel to the thickness direction of a thermoelectric conversion layer, so that the value of intensity ratio Ip is large.

得られた強度比Ivを強度比Ipで除することにより、上記式(1)で表される配向度Dを算出する。
上述したように、強度比Ivの大きさは、熱電変換層の厚み方向と直交する方向に配向しているCNTの量に由来するものであり、強度比Ipの大きさは、熱電変換層の厚み方向と平行する方向に配向しているCNTの量に由来するものである。そのため、配向度D(=強度比Iv/強度比Ip)の値が小さいほど、熱電変換層の厚み方向と平行な方向に配向しているCNTの割合が多いことを表す。よって、配向度Dの値が小さいほど、熱電変換層の厚みの方向での導電率の向上が期待でき、結果として熱電変換素子の熱電変換性能が向上する。
なお、本明細書において、「直交」および「平行」については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。具体的には、厳密な角度±10°以下の範囲内であることなどを意味し、例えば、「直交」とは90°±10°の範囲を意図し、「平行」とは0°±10°の範囲を意図する。
By dividing the obtained intensity ratio Iv by the intensity ratio Ip, the degree of orientation D represented by the above formula (1) is calculated.
As described above, the magnitude of the intensity ratio Iv is derived from the amount of CNTs oriented in the direction orthogonal to the thickness direction of the thermoelectric conversion layer, and the magnitude of the intensity ratio Ip is determined based on the thermoelectric conversion layer. This is derived from the amount of CNT oriented in the direction parallel to the thickness direction. Therefore, the smaller the orientation degree D (= intensity ratio Iv / intensity ratio Ip), the greater the proportion of CNTs oriented in the direction parallel to the thickness direction of the thermoelectric conversion layer. Therefore, as the value of the orientation degree D is smaller, an improvement in conductivity in the direction of the thickness of the thermoelectric conversion layer can be expected, and as a result, the thermoelectric conversion performance of the thermoelectric conversion element is improved.
In the present specification, “orthogonal” and “parallel” include a range of errors allowed in the technical field to which the present invention belongs. Specifically, it means that the angle is within a strict angle ± 10 ° or less. For example, “orthogonal” means a range of 90 ° ± 10 °, and “parallel” means 0 ° ± 10. Intended for a range of °.

熱電変換層の平均厚みは特に制限されないが、熱電変換特性および薄型化のバランスの点から、1〜300μmが好ましく、2〜250μmがより好ましく、5〜200μmがさらに好ましい。
熱電変換層の平均厚みは、熱電変換層の任意の10点の厚みを測定し、それらを算術平均したものである。
The average thickness of the thermoelectric conversion layer is not particularly limited, but is preferably 1 to 300 μm, more preferably 2 to 250 μm, and still more preferably 5 to 200 μm from the viewpoint of the balance between thermoelectric conversion characteristics and thinning.
The average thickness of the thermoelectric conversion layer is obtained by measuring the thicknesses of arbitrary 10 points of the thermoelectric conversion layer and arithmetically averaging them.

<電極>
熱電変換素子においては、上記熱電変換層の2つの主面上に2つの電極(第1の電極および第2の電極)が配置される。なお、2つの電極は熱電変換層と電気的に接続されていればよく、熱電変換層と電極(第1の電極または第2の電極)との間に他の層が配置されていてもよい。
電極(第1の電極および第2の電極)に配線を接続することにより、加熱等によって発生した電力(電気エネルギー)が取り出される。
電極(第1の電極および第2の電極)のサイズや厚さは、形成する熱電変換素子の大きさ等に応じて、発生した電力をロスなく確実に取り出せるサイズを、適宜、設定すればよい。
また、高い導電性が得られる点で、電極(第1の電極および第2の電極)の厚さは、50〜2000nmであるのが好ましい。
<Electrode>
In the thermoelectric conversion element, two electrodes (a first electrode and a second electrode) are disposed on the two main surfaces of the thermoelectric conversion layer. Note that the two electrodes may be electrically connected to the thermoelectric conversion layer, and another layer may be disposed between the thermoelectric conversion layer and the electrode (first electrode or second electrode). .
By connecting wiring to the electrodes (first electrode and second electrode), electric power (electric energy) generated by heating or the like is taken out.
The size and thickness of the electrodes (the first electrode and the second electrode) may be set appropriately according to the size of the thermoelectric conversion element to be formed and the size that allows the generated power to be reliably extracted without loss. .
Moreover, it is preferable that the thickness of an electrode (a 1st electrode and a 2nd electrode) is 50-2000 nm by the point from which high electroconductivity is acquired.

電極(第1の電極および第2の電極)の材料は特に限定されないが、その材料としては、例えば、ITO、ZnOなどの透明電極材料;銀、銅、金、アルミニウムなどの金属電極材料;CNT、グラフェンなどの炭素材料;PEDOT/PSSなどの有機材料が挙げられる。また、銀、カーボンブラックなどの導電性微粒子を分散した導電性ペースト;銀、銅、アルミニウムなどの金属ナノワイヤーを含有する導電性ペーストなどを用いて電極を形成してもよい。   The material of the electrodes (first electrode and second electrode) is not particularly limited. Examples of the material include transparent electrode materials such as ITO and ZnO; metal electrode materials such as silver, copper, gold, and aluminum; CNT And carbon materials such as graphene; organic materials such as PEDOT / PSS. Alternatively, the electrode may be formed using a conductive paste in which conductive fine particles such as silver and carbon black are dispersed; a conductive paste containing metal nanowires such as silver, copper, and aluminum.

<基材>
熱電変換素子の基材(熱電変換素子1における第1の基材12、第2の基材16)は、ガラス、透明セラミックス、金属、プラスチックフィルム等の基材を用いることができる。
熱電変換素子において、基材はフレキシビリティーを有しているのが好ましく、具体的には、ASTM D2176に規定の測定法による耐屈曲回数MITが1万サイクル以上であるフレキシビリティーを有しているのが好ましい。このようなフレキシビリティーを有する基材は、プラスチックフィルムが好ましく、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−フタレンジカルボキシレート、ビスフェノールAとイソおよびテレフタル酸のポリエステルフィルム等のポリエステルフィルム、ゼオノアフィルム(商品名、日本ゼオン社製)、アートンフィルム(商品名、JSR社製)、スミライトFS1700(商品名、住友ベークライト社製)等のポリシクロオレフィンフィルム、カプトン(商品名、東レ・デュポン社製)、アピカル(商品名、カネカ社製)、ユーピレックス(商品名、宇部興産社製)、ポミラン(商品名、荒川化学社製)等のポリイミドフィルム、ピュアエース(商品名、帝人化成社製)、エルメック(商品名、カネカ社製)等のポリカーボネートフィルム、スミライトFS1100(商品名、住友ベークライト社製)等のポリエーテルエーテルケトンフィルム、トレリナ(商品名、東レ社製)等のポリフェニルスルフィドフィルム等が挙げられる。入手の容易性、耐熱性(好ましくは100℃以上)、経済性および効果の観点から、市販のポリエチレンテレフタレート、ポリエチレンナフタレート、各種ポリイミドやポリカーボネートフィルム等が好ましい。
<Base material>
As the base material of the thermoelectric conversion element (the first base material 12 and the second base material 16 in the thermoelectric conversion element 1), a base material such as glass, transparent ceramics, metal, or plastic film can be used.
In the thermoelectric conversion element, it is preferable that the base material has flexibility. Specifically, the base material has flexibility such that the bending resistance MIT according to the measurement method specified in ASTM D2176 is 10,000 cycles or more. It is preferable. The substrate having such flexibility is preferably a plastic film, specifically, polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), Polyethylene film such as polyethylene-2,6-phthalenedicarboxylate, polyester film of bisphenol A and iso and terephthalic acid, ZEONOR film (trade name, manufactured by Nippon Zeon), Arton film (trade name, manufactured by JSR), Sumilite Polycycloolefin films such as FS1700 (trade name, manufactured by Sumitomo Bakelite), Kapton (trade name, manufactured by Toray DuPont), Apical (trade name, manufactured by Kaneka), Upilex (trade name, Ube) Sumilite FS1100 (product), polyimide film such as Pomilan (trade name, manufactured by Arakawa Chemical Co., Ltd.), polycarbonate film such as Pure Ace (trade name, manufactured by Teijin Chemicals), Elmec (trade name, manufactured by Kaneka) Name, a polyether ether ketone film such as Sumitomo Bakelite Co., Ltd.), and a polyphenyl sulfide film such as Torelina (trade name, manufactured by Toray Industries, Inc.). Commercially available polyethylene terephthalate, polyethylene naphthalate, various polyimides, polycarbonate films, and the like are preferable from the viewpoints of availability, heat resistance (preferably 100 ° C. or higher), economy, and effects.

基材の厚さは、取り扱い性、耐久性等の点から、20〜3000μmが好ましく、20〜1000μmがより好ましく、25〜800μmが特に好ましい。基材の厚みをこの範囲にすることで、素子に効率的に温度差を付与することができ、外部衝撃による熱電変換層の損傷も起こりにくい。   The thickness of the substrate is preferably 20 to 3000 μm, more preferably 20 to 1000 μm, and particularly preferably 25 to 800 μm from the viewpoints of handleability and durability. By making the thickness of the substrate within this range, a temperature difference can be efficiently given to the element, and the thermoelectric conversion layer is hardly damaged by an external impact.

<熱電変換素子の製造方法>
熱電変換素子の製造方法は特に制限されず、公知の方法を採用できる。
以下、図2に記載の熱電変換素子の製造方法の一例を示す。
まず、第1の基材を用意して、その表面上に第1の電極を形成する。
第1の電極の形成方法は、公知の金属膜等の形成方法が、各種、利用可能である。
具体的には、イオンプレーティング法、スパッタリング法、真空蒸着法、プラズマCVDなどのCVD法等の気相成膜法(気相堆積法)が例示される。また、上記金属を微粒子化し、バインダーと溶剤を添加した金属ペーストを固化することで、形成してもよい。
<The manufacturing method of a thermoelectric conversion element>
The manufacturing method in particular of a thermoelectric conversion element is not restrict | limited, A well-known method is employable.
Hereinafter, an example of the manufacturing method of the thermoelectric conversion element shown in FIG. 2 is shown.
First, a first substrate is prepared, and a first electrode is formed on the surface.
As a method for forming the first electrode, various methods for forming a known metal film or the like can be used.
Specifically, vapor deposition methods (vapor deposition methods) such as ion plating, sputtering, vacuum deposition, and CVD such as plasma CVD are exemplified. Moreover, you may form by making the said metal microparticles | fine-particles and solidifying the metal paste which added the binder and the solvent.

次に、第1の電極上に、熱電変換層を形成する。
熱電変換層の形成方法としては、微粒子およびCNTを含む熱電変換層形成用組成物(以後、単に「組成物」とも称する)を用いる方法が挙げられる。より具体的には、上記組成物を第1の電極上に塗布して、必要に応じて、乾燥処理を施して、熱電変換層を形成する方法である。
組成物には、少なくとも微粒子およびCNTが含まれ、上述した熱電変換層に含まれてもよいその他成分が含まれていてもよい。
また、取り扱い性の点から、組成物には溶媒が含まれていてもよい。溶媒は各成分を良好に分散または溶解できればよく、水、有機溶媒、およびこれらの混合溶媒を用いることができる。好ましくは有機溶媒であり、例えば、アルコール系溶媒;クロロホルムなどのハロゲン系溶媒;ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシドなどの非プロトン性の極性溶媒;クロロベンゼン、ジクロロベンゼン、ベンゼン、トルエン、キシレン、メシチレン、テトラリン、テトラメチルベンゼン、ピリジンなどの芳香族系溶媒;シクロヘキサノン、アセトン、メチルエチルケントンなどのケトン系溶媒;ジエチルエーテル、テトラヒドロフラン、t−ブチルメチルエーテル、ジメトキシエタン、ジグライムなどのエーテル系溶媒などが挙げられる。
組成物中における溶媒の含有量は特に制限されないが、取扱い性に優れる点で、組成物全質量に対して、60〜99.9質量%が好ましく、80〜99.9質量%がより好ましい。
Next, a thermoelectric conversion layer is formed on the first electrode.
Examples of the method for forming a thermoelectric conversion layer include a method using a composition for forming a thermoelectric conversion layer containing fine particles and CNTs (hereinafter also simply referred to as “composition”). More specifically, it is a method of forming the thermoelectric conversion layer by applying the composition on the first electrode and subjecting it to a drying treatment as necessary.
The composition contains at least fine particles and CNTs, and may contain other components that may be contained in the thermoelectric conversion layer described above.
Moreover, the solvent may be contained in the composition from the point of handleability. The solvent should just be able to disperse | distribute or melt | dissolve each component favorably, and water, an organic solvent, and these mixed solvents can be used. Preferred are organic solvents, such as alcohol solvents; halogen solvents such as chloroform; aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone and dimethyl sulfoxide; chlorobenzene, dichlorobenzene, benzene, toluene, xylene, Aromatic solvents such as mesitylene, tetralin, tetramethylbenzene and pyridine; ketone solvents such as cyclohexanone, acetone and methylethylkenton; ether solvents such as diethyl ether, tetrahydrofuran, t-butylmethyl ether, dimethoxyethane and diglyme Is mentioned.
The content of the solvent in the composition is not particularly limited, but is preferably 60 to 99.9% by mass and more preferably 80 to 99.9% by mass with respect to the total mass of the composition in terms of excellent handleability.

組成物は、上記の各成分を混合して調製することができる。調製方法は特に制限はなく、通常の混合装置(例えば、超音波ホモジナイザー、メカニカルホモジナイザー、ボールミル、ジェットミル、ロールミル)を用いて常温常圧下で行うことができる。   The composition can be prepared by mixing the components described above. There is no particular limitation on the preparation method, and the preparation can be carried out at ordinary temperature and pressure using a normal mixing apparatus (for example, an ultrasonic homogenizer, a mechanical homogenizer, a ball mill, a jet mill, a roll mill).

塗布方法は特に限定されず、例えば、スピンコート法、エクストルージョンダイコート法、ブレードコート法、バーコート法、スクリーン印刷法、ステンシル印刷法、ロールコート法、カーテンコート法、スプレーコート法、ディップコート法、インクジェット法など、公知の塗布方法を用いることができる。
また、塗布後は、必要に応じて乾燥処理を行う。例えば、熱風を吹き付けることにより溶媒を揮発、乾燥させることができる。
The coating method is not particularly limited. For example, spin coating method, extrusion die coating method, blade coating method, bar coating method, screen printing method, stencil printing method, roll coating method, curtain coating method, spray coating method, dip coating method. A known coating method such as an ink jet method can be used.
Moreover, after application | coating, a drying process is performed as needed. For example, the solvent can be volatilized and dried by blowing hot air.

次に、熱電変換層上に、第2の電極を形成する。第2の電極の形成方法としては、上記第1の電極の形成方法が挙げられる。
その後、第2の電極上に、第2の基材を貼り合せる。第2の基材を貼り合せる際には、必要に応じて、接着層を使用してもよい。
Next, a second electrode is formed on the thermoelectric conversion layer. Examples of the method for forming the second electrode include the method for forming the first electrode.
Thereafter, the second base material is bonded onto the second electrode. When the second substrate is bonded, an adhesive layer may be used as necessary.

<熱電発電用物品>
本発明の熱電発電物品は、本発明の熱電変換素子を用いた熱電発電物品である。
ここで、熱電発電物品としては、具体的には、温泉熱発電機、太陽熱発電機、廃熱発電機等の発電機や、腕時計用電源、半導体駆動電源、小型センサー用電源などが挙げられる。
すなわち、上述した本発明の熱電変換素子は、これらの用途に好適に用いることができる。
<Articles for thermoelectric generation>
The thermoelectric power generation article of the present invention is a thermoelectric power generation article using the thermoelectric conversion element of the present invention.
Here, specifically as a thermoelectric power generation article | item, generators, such as a hot spring thermal generator, a solar thermal generator, a waste heat generator, a power supply for wristwatches, a semiconductor drive power supply, a power supply for small sensors, etc. are mentioned.
That is, the thermoelectric conversion element of the present invention described above can be suitably used for these applications.

以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

(実施例1)
単層カーボンナノチューブとしてASP−100F(Hanwha nanotech社製、純度95%)150mg(全固形分の15質量%)を用意し、スチレンポリマー(和光純薬製、重合度2000)350mg、o−ジクロロベンゼン(10mL)を用いて分散物10mLを作製した。得られた分散物に積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)500mg(全固形分の50質量%)を加えて、組成物1を得た。なお、(全固形分の50質量%)とは、組成物1の全固形分におけるポリマー微粒子の含有量(質量%)を示す。全固形分とは、熱電変換層を構成する固形分の合計を意図し、溶媒は含まれない。
次に、ガラス基板(厚み:1.1mm、幅:40mm、長さ:50mm)をアセトン中で超音波洗浄した後、10分間UV−オゾン処理を行った。得られたガラス基板上に組成物1を流し込む枠をつくり、その後、組成物1を枠に流し込んだ後、ホットプレート上で180℃、10時間乾燥することで、熱電変換層(平均厚さ:51μm)を製造した。
Example 1
As a single-walled carbon nanotube, ASP-100F (manufactured by Hanwha Nanotech, purity 95%) 150 mg (15% by mass of total solids) is prepared, styrene polymer (manufactured by Wako Pure Chemicals, degree of polymerization 2000) 350 mg, o-dichlorobenzene (10 mL) was used to make a 10 mL dispersion. 500 mg (50 mass% of total solid content) of polymer fine particles (SSX-108: average particle diameter 8 μm, material: cross-linked polymethyl methacrylate, shape: spherical shape) manufactured by Sekisui Plastics Co., Ltd. was added to the obtained dispersion. A composition 1 was obtained. In addition, (50 mass% of total solid content) shows content (mass%) of the polymer fine particle in the total solid content of the composition 1. FIG. The total solid content means the total solid content constituting the thermoelectric conversion layer, and does not include a solvent.
Next, the glass substrate (thickness: 1.1 mm, width: 40 mm, length: 50 mm) was ultrasonically cleaned in acetone and then subjected to UV-ozone treatment for 10 minutes. A frame in which the composition 1 is poured onto the obtained glass substrate is formed, and then the composition 1 is poured into the frame, followed by drying on a hot plate at 180 ° C. for 10 hours, whereby a thermoelectric conversion layer (average thickness: 51 μm) was produced.

(実施例2)
実施例1で使用した「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」を、「綜研化学製のポリマー微粒子(SX−130H:平均粒子径1.3μm、材質:架橋ポリスチレン、形状:球形状)」に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:51μm)を製造した。
(Example 2)
The “polymer fine particles manufactured by Sekisui Plastics Co., Ltd. (SSX-108: average particle diameter 8 μm, material: cross-linked polymethyl methacrylate, shape: spherical shape)” used in Example 1 were replaced with “polymer fine particles manufactured by Soken Chemical (SX). A thermoelectric conversion layer (average thickness: 51 μm) was produced in the same manner as in Example 1 except that “−130H: average particle size 1.3 μm, material: crosslinked polystyrene, shape: spherical shape” was changed.

(実施例3)
実施例1で使用した「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」を、「積水化成品工業製のポリマー微粒子(SSX−101:平均粒子径1μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:49μm)を製造した。
(Example 3)
The “polymer fine particles manufactured by Sekisui Plastics Industry (SSX-108: average particle diameter of 8 μm, material: cross-linked polymethyl methacrylate, shape: spherical shape)” used in Example 1 is referred to as “polymer fine particles manufactured by Sekisui Plastics Industry”. A thermoelectric conversion layer (average thickness: 49 μm) was prepared in the same manner as in Example 1 except that “SSX-101: average particle diameter 1 μm, material: crosslinked polymethyl methacrylate, shape: spherical shape” was used. Manufactured.

(実施例4)
実施例1で使用した「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」を、「積水化成品工業製のポリマー微粒子(MBX−20:平均粒子径20μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:52μm)を製造した。
Example 4
The “polymer fine particles manufactured by Sekisui Plastics Industry (SSX-108: average particle diameter of 8 μm, material: cross-linked polymethyl methacrylate, shape: spherical shape)” used in Example 1 is referred to as “polymer fine particles manufactured by Sekisui Plastics Industry”. A thermoelectric conversion layer (average thickness: 52 μm) was prepared according to the same procedure as in Example 1 except that “MBX-20: average particle diameter 20 μm, material: crosslinked polymethyl methacrylate, shape: spherical shape” was changed. Manufactured.

(実施例5)
実施例1で使用した「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」を「綜研化学製のポリマー微粒子(MP−8000:平均粒子径0.8μm、材質:非架橋アクリル重合体、形状:球形状)」に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:50μm)を製造した。
なお、実施例2,3,5で得られた熱電変換層の表面のほうが、実施例4で得られた熱電変換層の表面よりも、粒子起因の凹凸ムラが少なく、より膜質に優れていた。特に、実施例3、5で得られた熱電変換層の表面は凹凸ムラがなく、耐傷性に優れていた。
(Example 5)
“Polymer fine particles manufactured by Sekisui Plastics Co., Ltd. (SSX-108: average particle diameter 8 μm, material: cross-linked polymethyl methacrylate, shape: spherical shape)” used in Example 1 were referred to as “polymer fine particles (MP- 8000: average particle diameter 0.8 μm, material: non-crosslinked acrylic polymer, shape: spherical shape) ”, a thermoelectric conversion layer (average thickness: 50 μm) is produced according to the same procedure as in Example 1. did.
In addition, the surface of the thermoelectric conversion layer obtained in Examples 2, 3, and 5 had less unevenness due to particles and better film quality than the surface of the thermoelectric conversion layer obtained in Example 4. . In particular, the surface of the thermoelectric conversion layer obtained in Examples 3 and 5 had no unevenness and was excellent in scratch resistance.

(比較例1)
実施例1で使用した「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから850mgに変更し、「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」を使用しなかった以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:48μm)を製造した。
(Comparative Example 1)
The amount of “styrene polymer (manufactured by Wako Pure Chemicals, degree of polymerization 2000)” used in Example 1 was changed from 350 mg to 850 mg, and “polymer fine particles manufactured by Sekisui Plastics Co., Ltd. (SSX-108: average particle diameter 8 μm, A thermoelectric conversion layer (average thickness: 48 μm) was produced in the same manner as in Example 1 except that “material: crosslinked polymethyl methacrylate, shape: spherical shape)” was not used.

[性能指数ZTの測定]
各実施例および比較例にて製造した熱電変換層をガラス基板から剥離して、ポリイミド基板(厚み:200μm)上に配置された幅6mm、長さ30mmの電極上に、銀ペーストを用いて固定化し、さらに固定化されたサンプル上部に金をスパッタすることで電極(金電極部)を形成し、電極で挟持された熱電変換層を有する熱電変換素子を作製した。得られた素子に対し、熱起電力、導電率、熱伝導率の測定を行った。
(熱起電力)
熱電変換素子の上端(金電極部)と、下端(ポリイミド基板の裏部)に最大30℃の温度差をかけて、I−V測定を行い、生じた起電力と温度差の比を算出することで熱起電力(ゼーベック係数 ΔV/ΔT、単位:μV/K)を測定した。
(導電率)
「低抵抗率計:ロレスタGP」(機器名、(株)三菱化学アナリテック製)を用い表面抵抗率(単位:Ω/□)を測定し、熱電変換層の平均厚さ(単位:cm)を用いて、下記式より導電率(S/cm)を算出した。)
(導電率)=1/((表面抵抗率)×(平均厚さ))
(熱伝導率)
熱伝導率測定装置(アルバック理工(株)製:TCN−2ω)を用いて測定した。
得られた熱起電力Sと熱伝導率κを用いて、以下の式(A)に従って、室温におけるZT値を算出し、この値を熱電変換性能とした。
性能指数 ZT=S・σ・T/κ 式(A)
S(V/K):熱起電力(ゼーベック係数)
σ(S/m):導電率
κ(W/mK):熱伝導率
T(K):絶対温度
[Measurement of figure of merit ZT]
The thermoelectric conversion layer produced in each Example and Comparative Example was peeled off from the glass substrate and fixed with a silver paste on an electrode having a width of 6 mm and a length of 30 mm arranged on a polyimide substrate (thickness: 200 μm). Then, an electrode (gold electrode part) was formed by sputtering gold on the fixed sample upper part, and a thermoelectric conversion element having a thermoelectric conversion layer sandwiched between the electrodes was produced. The electromotive force, electrical conductivity, and thermal conductivity of the obtained element were measured.
(Thermo-electromotive force)
A temperature difference of a maximum of 30 ° C. is applied to the upper end (gold electrode part) and the lower end (back part of the polyimide substrate) of the thermoelectric conversion element, and IV measurement is performed, and the ratio of the generated electromotive force and the temperature difference is calculated. Thus, the thermoelectromotive force (Seebeck coefficient ΔV / ΔT, unit: μV / K) was measured.
(conductivity)
The surface resistivity (unit: Ω / □) was measured using a “low resistivity meter: Loresta GP” (device name, manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and the average thickness of the thermoelectric conversion layer (unit: cm) Was used to calculate the conductivity (S / cm) from the following formula. )
(Conductivity) = 1 / ((Surface resistivity) × (Average thickness))
(Thermal conductivity)
It measured using the thermal conductivity measuring apparatus (ULVAC Riko Co., Ltd. product: TCN-2omega).
Using the obtained thermoelectromotive force S and thermal conductivity κ, a ZT value at room temperature was calculated according to the following equation (A), and this value was defined as thermoelectric conversion performance.
Figure of merit ZT = S 2・ σ ・ T / κ Formula (A)
S (V / K): Thermoelectromotive force (Seebeck coefficient)
σ (S / m): conductivity κ (W / mK): thermal conductivity T (K): absolute temperature

[配向度Dの測定]
各実施例および比較例で製造した熱電変換層を上端(表面)から下端(裏面)に垂直に切削するよう断面加工し、以下の手順に従って、熱電変換層の厚み方向の断面での配向度Dの測定を行った。
ラマン分光装置としてレニショー製in Viaを使用し、励起光として波長532nmのレーザー光を用いた。熱電変換層の厚み方向の断面に対して、熱電変換層の厚み方向と直線偏光のレーザー光の偏光方向とが直交するようにして、レーザー光を照射してカーボンナノチューブ由来のGバンド強度IおよびDバンド強度Iを測定し、強度比Iv(Gバンド強度I/Dバンド強度I)を算出した。さらに、熱電変換層の厚み方向の断面に対して、熱電変換層の厚み方向と直線偏光のレーザー光の偏光方向とが平行となるようにして、レーザー光を照射してカーボンナノチューブ由来のGバンド強度IおよびDバンド強度Iを測定し、強度比Ip(Gバンド強度I/Dバンド強度I)を算出した。Gバンド強度IおよびI、並びに、Dバンド強度IおよびIの定義は、上述の通りである。
算出した強度比Ivおよび強度比Ipから、配向度D(強度比Iv/強度比Ip)を算出した。
配向度Dの値が小さいほどカーボンナノチューブは熱電変換層の表面/裏面に対して垂直に配向している、すなわち熱電変換層の厚み方向に沿った配向性が大きいことを表す。一方、配向度Dの値が大きいほどカーボンナノチューブは表面/裏面に水平に配向しており、熱電変換層の面内方向に沿ってより配向していることを表す。
[Measurement of degree of orientation D]
The cross section of the thermoelectric conversion layer produced in each example and comparative example was processed so as to be cut perpendicularly from the upper end (front surface) to the lower end (back surface), and the degree of orientation D in the cross section in the thickness direction of the thermoelectric conversion layer was as follows. Was measured.
A Renishaw in Via was used as the Raman spectroscopic device, and a laser beam having a wavelength of 532 nm was used as the excitation light. With respect to the cross section in the thickness direction of the thermoelectric conversion layer, the thickness direction of the thermoelectric conversion layer and the polarization direction of the linearly polarized laser beam are orthogonal to each other, and the G band intensity I 1 derived from the carbon nanotube is irradiated by laser irradiation. The D band intensity I 2 was measured, and the intensity ratio Iv (G band intensity I 1 / D band intensity I 2 ) was calculated. Further, the G-band derived from the carbon nanotube is irradiated with the laser beam so that the thickness direction of the thermoelectric conversion layer and the polarization direction of the linearly polarized laser beam are parallel to the cross section in the thickness direction of the thermoelectric conversion layer. The intensity I 3 and the D band intensity I 4 were measured, and the intensity ratio Ip (G band intensity I 3 / D band intensity I 4 ) was calculated. The definitions of the G band intensities I 1 and I 3 and the D band intensities I 2 and I 4 are as described above.
The degree of orientation D (intensity ratio Iv / intensity ratio Ip) was calculated from the calculated intensity ratio Iv and intensity ratio Ip.
The smaller the degree of orientation D, the more the carbon nanotubes are oriented perpendicular to the surface / back surface of the thermoelectric conversion layer, that is, the greater the orientation along the thickness direction of the thermoelectric conversion layer. On the other hand, the larger the value of the degree of orientation D, the more the carbon nanotubes are oriented horizontally on the front surface / rear surface, and more oriented along the in-plane direction of the thermoelectric conversion layer.

[電気特性の均質性の評価]
各実施例および比較例で製造した熱電変換層を用いて作製した熱電変換素子を4つ作製し、導電率を測定して測定値の標準偏差と平均値を求めた。得られた値を用い、以下の式(C)に従って、バラツキの指標となるCV値を算出した。
CV値=(標準偏差)/(平均値) 式(C)
CV値が小さいほど、素子間の導電率のバラツキが小さく、電気特性の均質性に優れる。
[Evaluation of homogeneity of electrical characteristics]
Four thermoelectric conversion elements manufactured using the thermoelectric conversion layers manufactured in each Example and Comparative Example were manufactured, and the electrical conductivity was measured to obtain the standard deviation and the average value of the measured values. Using the obtained value, a CV value serving as a variation index was calculated according to the following equation (C).
CV value = (standard deviation) / (average value) Formula (C)
The smaller the CV value, the smaller the variation in conductivity between elements, and the better the homogeneity of electrical characteristics.

実施例1〜5、比較例1について、得られた結果を表1にまとめて示す。
なお、表1中、「バラツキCV値」は比較例1との相対値で表す。
また、表1中、使用した微粒子がいずれも球形状である点より、平均粒子径が平均長径に該当する。
The results obtained for Examples 1 to 5 and Comparative Example 1 are summarized in Table 1.
In Table 1, “Dispersion CV value” is expressed as a relative value to Comparative Example 1.
In Table 1, the average particle diameter corresponds to the average major axis from the point that all of the used fine particles are spherical.

表1から分かるように、ポリマー微粒子を使用した実施例1〜5においてはより大きなZT値を示し、熱電変換層の熱電変換性能が優れることが確認された。また、実施例1〜5とポリマー微粒子を使用しない比較例1との比較より、バラツキCV値が小さく、電気特性の均質性に優れることが確認された。
さらに、微粒子の材質、微粒子の平均粒子径を変更した場合にも、熱電変換層は優れた熱電変換性能を示すことが確認された。
また、実施例1〜5との比較から分かるように、平均粒子径が小さいほど(特に、実施例3および5)、粒子起因の凹凸ムラが少なく、熱電変換層の取扱い性に優れることが確認された。また、実施例3と5との比較から、非架橋の有機ポリマー微粒子を用いた場合よりも、架橋有機ポリマー微粒子を用いた場合の方が、ZT値に優れることが確認された。
As can be seen from Table 1, Examples 1 to 5 using polymer fine particles showed larger ZT values, and it was confirmed that the thermoelectric conversion performance of the thermoelectric conversion layer was excellent. Moreover, it was confirmed by comparison with Examples 1-5 and the comparative example 1 which does not use a polymer microparticle that the variation CV value is small and it is excellent in the homogeneity of an electrical property.
Furthermore, it was confirmed that the thermoelectric conversion layer exhibits excellent thermoelectric conversion performance even when the fine particle material and the average particle diameter of the fine particles are changed.
Moreover, as can be seen from the comparison with Examples 1 to 5, it is confirmed that the smaller the average particle diameter (in particular, Examples 3 and 5), the less unevenness due to particles and the better the handling property of the thermoelectric conversion layer. It was done. Further, from comparison between Examples 3 and 5, it was confirmed that the ZT value was better when the crosslinked organic polymer fine particles were used than when the non-crosslinked organic polymer fine particles were used.

(実施例6)
実施例1で使用した「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」を、「石原産業製の無機微粒子(TTO−SS(C):平均粒子径0.03〜0.05μm、材質:酸化チタン、形状:球形状)」に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:43μm)を製造した。
(Example 6)
The “polymer fine particles manufactured by Sekisui Plastics Co., Ltd. (SSX-108: average particle diameter of 8 μm, material: cross-linked polymethyl methacrylate, shape: spherical shape)” used in Example 1 were replaced with “inorganic fine particles manufactured by Ishihara Sangyo (TTO -SS (C): Thermoelectric conversion layer (average thickness) according to the same procedure as in Example 1 except that the average particle size was changed to 0.03 to 0.05 µm, material: titanium oxide, shape: spherical shape). : 43 μm).

(実施例7)
実施例1で使用した「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」を、「石原産業製の無機微粒子(TTO−S−2:平均長径0.75μm、材質:酸化チタン、形状:紡錘形状)」に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:43μm)を製造した。
(Example 7)
The “polymer fine particles manufactured by Sekisui Plastics Co., Ltd. (SSX-108: average particle diameter of 8 μm, material: cross-linked polymethyl methacrylate, shape: spherical shape)” used in Example 1 were replaced with “inorganic fine particles manufactured by Ishihara Sangyo (TTO A thermoelectric conversion layer (average thickness: 43 μm) was produced according to the same procedure as in Example 1 except that the change was made to “−S-2: average major axis 0.75 μm, material: titanium oxide, shape: spindle shape”. .

(実施例8)
実施例1で使用した「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」を、「Aldrich製の無機微粒子(SiO、fumed:平均長径0.3μm、材質:シリカ、形状:球形状)」に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:41μm)を製造した。
(Example 8)
“Polymer fine particles manufactured by Sekisui Plastics Co., Ltd. (SSX-108: average particle diameter of 8 μm, material: cross-linked polymethyl methacrylate, shape: spherical shape)” used in Example 1 were replaced with “inorganic fine particles (SiO 2 made by Aldrich). , Fumed: average major axis 0.3 μm, material: silica, shape: spherical shape), a thermoelectric conversion layer (average thickness: 41 μm) was produced according to the same procedure as in Example 1.

実施例6〜8の熱電変換層についても、上述した各種評価を実施し、得られた結果を表2にまとめて示す。
なお、表2中、「バラツキCV値」は比較例1との相対値で表す。
The thermoelectric conversion layers of Examples 6 to 8 were also subjected to the various evaluations described above, and the results obtained are summarized in Table 2.
In Table 2, “Dispersion CV value” is expressed as a relative value to Comparative Example 1.

表2から分かるように、微粒子として無機微粒子を用いても、熱電変換層は優れた熱電変換性能を示すことが確認された。
特に、実施例6と7との比較から分かるように、球形状の微粒子を用いた実施例6の方が、ZT値に優れていた。
As can be seen from Table 2, it was confirmed that even when inorganic fine particles were used as the fine particles, the thermoelectric conversion layer exhibited excellent thermoelectric conversion performance.
In particular, as can be seen from the comparison between Examples 6 and 7, Example 6 using spherical fine particles was superior in ZT value.

(実施例9)
実施例1で使用した「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから550mgに変更し、「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」の使用量を500mg(全固形分の50質量%)から300mg(全固形分の30質量%)に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:51μm)を製造した。
Example 9
The amount of “styrene polymer (manufactured by Wako Pure Chemical, degree of polymerization 2000)” used in Example 1 was changed from 350 mg to 550 mg, and “polymer fine particles manufactured by Sekisui Plastics Co., Ltd. (SSX-108: average particle diameter 8 μm, Example 1 except that the amount used of “material: crosslinked polymethyl methacrylate, shape: spherical shape” was changed from 500 mg (50 mass% of the total solid content) to 300 mg (30 mass% of the total solid content). A thermoelectric conversion layer (average thickness: 51 μm) was produced according to the procedure described above.

(実施例10)
実施例1で使用した「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから250mgに変更し、「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」の使用量を500mg(全固形分の50質量%)から600mg(全固形分の60質量%)に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:50μm)を製造した。
(Example 10)
The amount of “styrene polymer (manufactured by Wako Pure Chemical, degree of polymerization 2000)” used in Example 1 was changed from 350 mg to 250 mg, and “polymer fine particles (SSX-108: average particle diameter of 8 μm, manufactured by Sekisui Plastics Co., Ltd., Example 1 except that the amount used of “material: crosslinked polymethyl methacrylate, shape: spherical shape” was changed from 500 mg (50 mass% of the total solid content) to 600 mg (60 mass% of the total solid content). A thermoelectric conversion layer (average thickness: 50 μm) was produced according to the procedure described above.

(実施例11)
実施例1で使用した「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから50mgに変更し、「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」の使用量を500mg(全固形分の50質量%)から800mg(全固形分の80質量%)に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:53μm)を製造した。
(Example 11)
The amount of “styrene polymer (manufactured by Wako Pure Chemicals, degree of polymerization 2000)” used in Example 1 was changed from 350 mg to 50 mg, and “polymer fine particles (SSX-108: average particle diameter 8 μm, manufactured by Sekisui Plastics Co., Ltd., Example 1 except that the amount used of “material: crosslinked polymethyl methacrylate, shape: spherical shape” was changed from 500 mg (50 mass% of the total solid content) to 800 mg (80 mass% of the total solid content). According to the procedure, a thermoelectric conversion layer (average thickness: 53 μm) was produced.

(実施例12)
実施例1で使用した「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから600mgに変更し、「積水化成品工業製のポリマー微粒子(SSX−108:平均粒子径8μm、材質:架橋ポリメタクリル酸メチル、形状:球形状)」の使用量を500mg(全固形分の50質量%)から250mg(全固形分の25質量%)に変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:48μm)を製造した。
なお、実施例9、12で得られた熱電変換層の表面のほうが、実施例10、11で得られた熱電変換層の表面よりも、粒子起因の凹凸ムラが少なく、より膜質に優れていた。実施例11で得られた熱電変換層は、実施例9、10、12で得られた熱電変換層よりも脆く、膜強度にやや劣っていた。
Example 12
The amount of “styrene polymer (manufactured by Wako Pure Chemical, degree of polymerization 2000)” used in Example 1 was changed from 350 mg to 600 mg, and “polymer fine particles (SSX-108: average particle diameter of 8 μm, manufactured by Sekisui Plastics Co., Ltd., Example 1 except that the amount used of “material: crosslinked polymethyl methacrylate, shape: spherical shape” was changed from 500 mg (50 mass% of the total solid content) to 250 mg (25 mass% of the total solid content). According to the procedure, a thermoelectric conversion layer (average thickness: 48 μm) was produced.
In addition, the surface of the thermoelectric conversion layer obtained in Examples 9 and 12 had less unevenness due to particles and better film quality than the surface of the thermoelectric conversion layer obtained in Examples 10 and 11. . The thermoelectric conversion layer obtained in Example 11 was more brittle than the thermoelectric conversion layers obtained in Examples 9, 10 and 12, and was slightly inferior in film strength.

実施例9〜12の熱電変換層についても、上述した各種評価を実施し、得られた結果を表3にまとめて示す。
なお、表3中、「バラツキCV値」は比較例1との相対値で表す。
表3中、「固形分比率」は、各成分の熱電変換層中の質量%を表す。
The thermoelectric conversion layers of Examples 9 to 12 were also subjected to the various evaluations described above, and the results obtained are summarized in Table 3.
In Table 3, “Dispersion CV value” is expressed as a relative value to Comparative Example 1.
In Table 3, “solid content ratio” represents mass% of each component in the thermoelectric conversion layer.

表3から分かるように、熱電変換層のポリマー微粒子の含有量を変更した場合にも、熱電変換層は優れた熱電変換層を示すことが確認された。
特に、実施例1と実施例9、実施例12の比較から分かるように、ポリマー微粒子の含有量が30質量%以上の場合、ZT値がより優れ、電気的均質性にも優れることが確認された。
また、実施例11と他の実施例との比較から分かるように、ポリマー微粒子の含有量が60質量%以下であれば、膜強度がより優れ、熱電変換層の取扱い性に優れることが確認された。
As can be seen from Table 3, it was confirmed that the thermoelectric conversion layer exhibited an excellent thermoelectric conversion layer even when the content of the polymer fine particles in the thermoelectric conversion layer was changed.
In particular, as can be seen from the comparison between Example 1 and Example 9 and Example 12, when the content of the polymer fine particles is 30% by mass or more, it is confirmed that the ZT value is superior and the electrical homogeneity is also excellent. It was.
In addition, as can be seen from a comparison between Example 11 and other examples, it was confirmed that when the content of the polymer fine particles was 60% by mass or less, the film strength was superior and the thermoelectric conversion layer was excellent in handleability. It was.

(実施例13)
実施例1で使用した「ASP−100F(Hanwha nanotech社製、純度95%)」の使用量を150mg(全固形分の15質量%)から75mg(全固形分の7.5質量%)に変更し、「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから425mgに変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:51μm)を製造した。
(Example 13)
The amount of “ASP-100F (manufactured by Hanwha nanotech, purity 95%)” used in Example 1 was changed from 150 mg (15% by mass of the total solids) to 75 mg (7.5% by mass of the total solids). Then, a thermoelectric conversion layer (average thickness: 51 μm) was produced according to the same procedure as in Example 1 except that the amount of “styrene polymer (manufactured by Wako Pure Chemical, degree of polymerization 2000)” was changed from 350 mg to 425 mg. did.

(実施例14)
実施例1で使用した「ASP−100F(Hanwha nanotech社製、純度95%)」の使用量を150mg(全固形分の15質量%)から50mg(全固形分の5質量%)に変更し、「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから450mgに変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:51μm)を製造した。
(Example 14)
The amount of “ASP-100F (manufactured by Hanwha nanotech, purity 95%)” used in Example 1 was changed from 150 mg (15% by mass of the total solids) to 50 mg (5% by mass of the total solids), A thermoelectric conversion layer (average thickness: 51 μm) was produced according to the same procedure as in Example 1 except that the amount of “styrene polymer (manufactured by Wako Pure Chemical Industries, degree of polymerization 2000)” was changed from 350 mg to 450 mg.

(実施例15)
実施例1で使用した「ASP−100F(Hanwha nanotech社製、純度95%)」の使用量を150mg(全固形分の15質量%)から180mg(全固形分の18質量%)に変更し、「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから320mgに変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:49μm)を製造した。
(Example 15)
The amount of “ASP-100F (manufactured by Hanwha nanotech, purity 95%)” used in Example 1 was changed from 150 mg (15% by mass of the total solids) to 180 mg (18% by mass of the total solids), A thermoelectric conversion layer (average thickness: 49 μm) was produced in the same manner as in Example 1 except that the amount of “styrene polymer (manufactured by Wako Pure Chemical Industries, degree of polymerization 2000)” was changed from 350 mg to 320 mg.

(実施例16)
実施例1で使用した「ASP−100F(Hanwha nanotech社製、純度95%)」の使用量を150mg(全固形分の15質量%)から400mg(全固形分の40質量%)に変更し、「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから100mgに変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:52μm)を製造した。
(Example 16)
The amount of “ASP-100F (manufactured by Hanwha nanotech, purity 95%)” used in Example 1 was changed from 150 mg (15% by mass of the total solids) to 400 mg (40% by mass of the total solids), A thermoelectric conversion layer (average thickness: 52 μm) was produced in the same manner as in Example 1 except that the amount of “styrene polymer (manufactured by Wako Pure Chemical Industries, degree of polymerization 2000)” was changed from 350 mg to 100 mg.

(実施例17)
実施例1で使用した「ASP−100F(Hanwha nanotech社製、純度95%)」の使用量を150mg(全固形分の15質量%)から40mg(全固形分の40質量%)に変更し、「スチレンポリマー(和光純薬製、重合度2000)」の使用量を350mgから460mgに変更した以外は、実施例1と同様の手順に従って、熱電変換層(平均厚さ:47μm)を製造した。
なお、実施例13〜15、17で得られた熱電変換層は、実施例16で得られた熱電変換層よりも組成物の分散ムラに伴う表面の凹凸が少なく、膜質に優れていた。
(Example 17)
The amount of “ASP-100F (manufactured by Hanwha nanotech, purity 95%)” used in Example 1 was changed from 150 mg (15% by mass of the total solids) to 40 mg (40% by mass of the total solids), A thermoelectric conversion layer (average thickness: 47 μm) was produced according to the same procedure as in Example 1 except that the amount of “styrene polymer (manufactured by Wako Pure Chemical Industries, degree of polymerization 2000)” was changed from 350 mg to 460 mg.
In addition, the thermoelectric conversion layers obtained in Examples 13 to 15 and 17 had fewer surface irregularities due to uneven dispersion of the composition than the thermoelectric conversion layers obtained in Example 16, and were excellent in film quality.

実施例13〜17の熱電変換層についても、上述した各種評価を実施し、得られた結果を表4にまとめて示す。
なお、表4中、「バラツキCV値」は比較例1との相対値で表す。
表4中、「固形分比率」は、各成分の熱電変換層中の質量%を表す。
The thermoelectric conversion layers of Examples 13 to 17 were also subjected to the various evaluations described above, and the results obtained are summarized in Table 4.
In Table 4, “Dispersion CV Value” is expressed as a relative value with respect to Comparative Example 1.
In Table 4, “solid content ratio” represents mass% of each component in the thermoelectric conversion layer.

表4から分かるように、カーボンナノチューブの含有量を変更しても、熱電変換層は優れた熱電変換性能を示すことが確認された。
特に、実施例1および実施例13〜17の比較から分かるように、カーボンナノチューブの含有率が大きいと、ZT値が優れることが確認された。また、カーボンナノチューブの固形分比率が、5質量%以上だと、ZT値がより優れることが確認された。
ZT値に優れ、かつ、カーボンナノチューブの含有量がより少ない実施例15と、より多い実施例16とを比較すると、より少ない実施例15のほうが熱電変換層の取扱い性に優れ(表面の凹凸が少ない)、また、電気特性の均質性にも優れることが確認された。
As can be seen from Table 4, it was confirmed that even if the content of the carbon nanotubes was changed, the thermoelectric conversion layer exhibited excellent thermoelectric conversion performance.
In particular, as can be seen from the comparison between Example 1 and Examples 13 to 17, it was confirmed that the ZT value was excellent when the carbon nanotube content was large. Moreover, it was confirmed that the ZT value is more excellent when the solid content ratio of the carbon nanotube is 5% by mass or more.
Comparing Example 15 with excellent ZT value and lower carbon nanotube content with Example 16 with more carbon nanotubes, the less Example 15 has better handleability of the thermoelectric conversion layer (surface irregularities are less It was confirmed that the electrical properties were excellent in homogeneity.

1 熱電変換素子
10 微粒子
11 カーボンナノチューブ
12 第1の基材
13 第1の電極
14 熱電変換層
15 第2の電極
16 第2の基材
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 10 Fine particle 11 Carbon nanotube 12 1st base material 13 1st electrode 14 Thermoelectric conversion layer 15 2nd electrode 16 2nd base material

Claims (7)

互いに対向する2つの主面を有する、微粒子およびカーボンナノチューブを含有する熱電変換層と、
前記熱電変換層の一方の主面上に配置された第1の電極と、
前記熱電変換層の他方の主面上に配置された第2の電極とを有し、
前記微粒子が、ポリ(メタ)アクリレート、ポリスチレン、ポリウレタン、ポリアミド、ポリイミド、ポリエステル、ポリアクリルアミド、および、これらの共重合体からなる群から選択される少なくとも1種の有機微粒子を含み
式(1)で表される、前記熱電変換層中の前記カーボンナノチューブの配向度Dが6.0より小さい、熱電変換素子。
式(1) 配向度D=強度比Iv/強度比Ip
式(1)中、強度比Ivは、波長532nmの直線偏光のレーザー光を用いるレーザーラマン分光分析において、前記熱電変換層の厚み方向の断面に、前記レーザー光の偏光方向が前記熱電変換層の厚み方向と直交になるようにして前記レーザー光を照射して得られる前記カーボンナノチューブ由来のGバンド強度とDバンド強度との強度比を表す。なお、前記Gバンド強度とDバンド強度との強度比とは、Gバンド強度/Dバンド強度で表される比である。
強度比Ipは、波長532nmの直線偏光のレーザー光を用いるレーザーラマン分光分析において、前記熱電変換層の厚み方向の断面に、前記レーザー光の偏光方向が前記熱電変換層の厚み方向と平行になるようにして前記レーザー光を照射して得られる前記カーボンナノチューブ由来のGバンド強度とDバンド強度との強度比を表す。なお、前記Gバンド強度とDバンド強度との強度比とは、Gバンド強度/Dバンド強度で表される比である。
A thermoelectric conversion layer containing fine particles and carbon nanotubes having two main surfaces facing each other;
A first electrode disposed on one main surface of the thermoelectric conversion layer;
A second electrode disposed on the other main surface of the thermoelectric conversion layer,
The fine particles include at least one organic fine particle selected from the group consisting of poly (meth) acrylate, polystyrene, polyurethane, polyamide, polyimide, polyester, polyacrylamide, and a copolymer thereof. The thermoelectric conversion element represented by the orientation degree D of the said carbon nanotube in the said thermoelectric conversion layer being smaller than 6.0.
Formula (1) Orientation degree D = Intensity ratio Iv / Intensity ratio Ip
In the formula (1), the intensity ratio Iv is a laser Raman spectroscopic analysis using linearly polarized laser light having a wavelength of 532 nm, and the polarization direction of the laser light is that of the thermoelectric conversion layer in the cross section in the thickness direction of the thermoelectric conversion layer. It represents the intensity ratio between the G band intensity and the D band intensity derived from the carbon nanotubes obtained by irradiating the laser beam so as to be orthogonal to the thickness direction. The intensity ratio between the G band intensity and the D band intensity is a ratio represented by G band intensity / D band intensity.
The intensity ratio Ip is a laser Raman spectroscopic analysis using linearly polarized laser light having a wavelength of 532 nm, and the polarization direction of the laser light is parallel to the thickness direction of the thermoelectric conversion layer in the cross section in the thickness direction of the thermoelectric conversion layer. Thus, the intensity ratio between the G-band intensity and the D-band intensity derived from the carbon nanotubes obtained by irradiating the laser beam is expressed. The intensity ratio between the G band intensity and the D band intensity is a ratio represented by G band intensity / D band intensity.
前記有機微粒子が、架橋構造を有する、請求項に記載の熱電変換素子。 The organic fine particles has a crosslinked structure, the thermoelectric conversion element according to claim 1. 前記微粒子の平均長径が、1.0μm以下である、請求項1または2に記載の熱電変換素子。 The thermoelectric conversion element according to claim 1 or 2 , wherein an average major axis of the fine particles is 1.0 µm or less. 前記微粒子の形状が、球形状である、請求項1〜のいずれか1項に記載の熱電変換素子。 The shape of the fine particles, a spherical shape, a thermoelectric conversion device according to any one of claims 1-3. 前記微粒子の含有量が、前記熱電変換層全質量に対して、30〜60質量%である、請求項1〜のいずれか1項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 4 , wherein a content of the fine particles is 30 to 60 mass% with respect to a total mass of the thermoelectric conversion layer. 前記カーボンナノチューブの含有量が、前記熱電変換層全質量に対して、5質量%以上である、請求項1〜のいずれか1項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 5 , wherein a content of the carbon nanotube is 5% by mass or more based on a total mass of the thermoelectric conversion layer. 前記式(1)で表される、前記熱電変換層中の前記カーボンナノチューブの配向度Dが0.1以上で6.0より小さい、請求項1〜6のいずれか1項に記載の熱電変換素子。  The thermoelectric conversion according to any one of claims 1 to 6, wherein an orientation degree D of the carbon nanotubes in the thermoelectric conversion layer represented by the formula (1) is 0.1 or more and less than 6.0. element.
JP2014182139A 2014-09-08 2014-09-08 Thermoelectric conversion element Expired - Fee Related JP6209142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014182139A JP6209142B2 (en) 2014-09-08 2014-09-08 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182139A JP6209142B2 (en) 2014-09-08 2014-09-08 Thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2016058475A JP2016058475A (en) 2016-04-21
JP6209142B2 true JP6209142B2 (en) 2017-10-04

Family

ID=55758753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182139A Expired - Fee Related JP6209142B2 (en) 2014-09-08 2014-09-08 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6209142B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028772A1 (en) * 2016-08-10 2018-02-15 Politecnico Di Milano Active material and electric power generator containing it
JP6698565B2 (en) * 2017-02-28 2020-05-27 富士フイルム株式会社 Thermoelectric conversion layer, thermoelectric conversion element, thermoelectric conversion module
EP3373347A1 (en) 2017-03-09 2018-09-12 Riccardo Raccis Conversion material
WO2019120509A1 (en) * 2017-12-20 2019-06-27 Termo-Ind S.A. Active material and electric power generator containing it
CN113161472B (en) * 2021-03-22 2023-04-07 东莞理工学院 Flexible organic thermoelectric composite film, preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147379A (en) * 2008-12-22 2010-07-01 Fujitsu Ltd Thermoelectric conversion material and thermoelectric conversion element
JP5713472B2 (en) * 2011-03-04 2015-05-07 独立行政法人産業技術総合研究所 Thermoelectric conversion material and flexible thermoelectric conversion element using the material
JP5637075B2 (en) * 2011-06-03 2014-12-10 トヨタ自動車株式会社 Method for producing nanocomposite material
JP2012253302A (en) * 2011-06-07 2012-12-20 Fujitsu Ltd Thermoelectric element and manufacturing method of the same
JP5848284B2 (en) * 2012-07-11 2016-01-27 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion material using the same
JP5931807B2 (en) * 2012-07-11 2016-06-08 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element and article for thermoelectric power generation using the same, and method for manufacturing thermoelectric conversion element

Also Published As

Publication number Publication date
JP2016058475A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6209142B2 (en) Thermoelectric conversion element
Kholmanov et al. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films
JP5266889B2 (en) Method for manufacturing light transmissive conductor
Zhou et al. Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite films for switchable thermochromic applications
JP6665531B2 (en) Heat dissipating material, gas barrier material and method for producing them
Nguyen et al. Ti3C2Tx MXene/carbon nanotubes/waterborne polyurethane based composite ink for electromagnetic interference shielding and sheet heater applications
JP5473148B2 (en) Transparent conductive film with improved conductivity and method for producing the same
WO2017188175A1 (en) Carbon nanotube dispersion, method for producing same, and conductive molded body
Kong et al. Preparation and properties of polyimide/graphene oxide nanocomposite films with Mg ion crosslinker
JP6110818B2 (en) Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using the same, and power source for sensor
Marriam et al. Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites
JP5899673B2 (en) Conductive film and method for producing the same
Hu et al. Highly thermally conductive layered polymer composite from solvent-exfoliated pristine graphene
Almuhamed et al. Measuring of electrical properties of MWNT-reinforced PAN nanocomposites
JP2011165792A (en) Biaxially oriented heat dissipating film
JP5788731B2 (en) Biaxially stretched thermoplastic resin film for high thermal conductive adhesive tape substrate and high thermal conductive adhesive tape comprising the same
Kim et al. Electrical properties of graphene/waterborne polyurethane composite films
Souri et al. A facile method for transparent carbon nanosheets heater based on polyimide
Wu et al. Hybrid graphene/carbon nanofiber wax emulsion for paper‐based electronics and thermal management
JP6806898B2 (en) Conductive film, thermoelectric conversion layer, thermoelectric conversion element, thermoelectric conversion module, method for manufacturing conductive film, composition
Azoubel et al. Controlling Adhesion Properties of SWCNT–PET Films Prepared by Wet Deposition
JP6017767B2 (en) High thermal conductivity biaxially stretched polyester film
Ichkitidze et al. Electrically-conductive composite nanomaterial with multi-walled carbon nanotubes
Gbordzoe et al. Flexible low-voltage carbon nanotube heaters and their applications
Kim et al. Carbon nanotube/polyimide bilayer thin films with high structural stability, optical transparency, and electric heating performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170908

R150 Certificate of patent or registration of utility model

Ref document number: 6209142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees