JP2005143090A - Pcmからpwmに変換するための方法および装置 - Google Patents

Pcmからpwmに変換するための方法および装置 Download PDF

Info

Publication number
JP2005143090A
JP2005143090A JP2004280423A JP2004280423A JP2005143090A JP 2005143090 A JP2005143090 A JP 2005143090A JP 2004280423 A JP2004280423 A JP 2004280423A JP 2004280423 A JP2004280423 A JP 2004280423A JP 2005143090 A JP2005143090 A JP 2005143090A
Authority
JP
Japan
Prior art keywords
digital signal
signal
digital
parallel digital
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004280423A
Other languages
English (en)
Inventor
Ana Borisavljevic
ボリサブレビク アナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies Americas Corp
Original Assignee
International Rectifier Corp USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Rectifier Corp USA filed Critical International Rectifier Corp USA
Publication of JP2005143090A publication Critical patent/JP2005143090A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/502Details of the final digital/analogue conversion following the digital delta-sigma modulation
    • H03M3/506Details of the final digital/analogue conversion following the digital delta-sigma modulation the final digital/analogue converter being constituted by a pulse width modulator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/38DC amplifiers with modulator at input and demodulator at output; Modulators or demodulators specially adapted for use in such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K11/00Transforming types of modulations, e.g. position-modulated pulses into duration-modulated pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/82Digital/analogue converters with intermediate conversion to time interval
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M5/00Conversion of the form of the representation of individual digits
    • H03M5/02Conversion to or from representation by pulses
    • H03M5/04Conversion to or from representation by pulses the pulses having two levels
    • H03M5/06Code representation, e.g. transition, for a given bit cell depending only on the information in that bit cell
    • H03M5/08Code representation by pulse width
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3015Structural details of digital delta-sigma modulators
    • H03M7/302Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M7/3022Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having multiple quantisers arranged in cascaded loops, each of the second and further loops processing the quantisation error of the loop preceding it, i.e. multiple stage noise shaping [MASH] type

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

【課題】 入力直列パルス符号変調(PCM)デジタル信号から出力パルス幅変調(PWM)デジタル信号に変換してパルス幅変調入力信号を必要とするスイッチング音声増幅器を駆動する回路を提供する。
【解決手段】 第1のサンプリング周波数が第2の周波数よりも低い場合、第2の周波数で入力直列PCMデジタル信号を第2の直列PCMデジタル信号に変換し、第3の周波数にアップサンプリングし並列デジタル信号に変換する。デジタルボリュームコマンド制御信号に従ってボリューム調整済み並列デジタル信号を生成し、これとデジタルランプ(ramp)信号との間のクロスポイントを計算しスイッチング音声増幅器の所望のパルス幅変調を表す並列デジタル信号を生成する。所望のパルス幅変調を表す並列デジタル信号を、スイッチング音声増幅器に印加されるパルス幅変調を表す量子化済み並列デジタル信号に量子化し、PWM信号に変換する。
【選択図】 図1

Description

本発明は、1つのデジタル変調形式(パルス符号変調)からパルス幅変調に変換するためのデジタル変換回路に関する。詳細には、本発明はスイッチング回路、より詳細にはクラスD音声増幅器に関する。集積回路の機能は、デジタル式で符号化されたオーディオ信号(PCM(パルス符号変調)フォーマットの)を受信すること、およびクラスD音声増幅器の制御に使用されるパルス幅変調(PWM)信号を生成することである。
音声増幅器は、入力DCを所望の出力AD信号に変換する電力変換器(power converter)である。その後この出力AC信号はスピーカに印加され、次にこれが所望のサウンドを生成する。品質の良いサウンドを再生するために、音声増幅器は、出力領域全体にわたって出力AC信号の総合高調波ひずみ(THD)が低いことが必要である。
従来より、クラスA、B、およびABの線形増幅器は音声増幅器として使用されてきた。現在では、より効率良く、より小型になるという利点があるため、従来のクラスAおよびクラスB増幅器は徐々にクラスDスイッチモード増幅器に置き換えられている。最近では、クラスD音声増幅器を駆動する様々なチップが、米国のTripath Technology、Texas Instruments、およびCirrus Logic、ヨーロッパのPhilipsおよびSTMicroelectronics(ApogeeDDXとの提携)、ならびに日本のMitsubishiおよびSanyo(Bang & Olufsenとの提携)などの企業によって新たに公表されている。その例には、Mitsubishi M65817A FP、Crystal CS44210、およびTexas Instruments TAS5010またはチップが含まれる。クラスDスイッチモード増幅器には、半ブリッジおよび全ブリッジのスイッチモード変換器アーキテクチャが含まれる。
本発明の目的は、PCMからPWMに変換するための方法および装置を提供することである。
一態様によれば、本発明は、パルス幅変調入力信号を必要とするスイッチング音声増幅器を駆動するために、入力直列パルス符号変調(PCM)デジタル信号から出力パルス幅変調(PWM)デジタル信号に変換するための回路を含み、当該回路は、第1のサンプリング周波数で入力直列PCMデジタル信号を受信し、第1のサンプリング周波数が第2の周波数よりも低い場合は、第2の周波数で入力直列PCMデジタル信号を第2の直列PCMデジタル信号に変換する、サンプルレート変換器と、第2の直列PCMデジタル信号を第3の周波数にアップサンプリングするための、および第2の直列PCMデジタル信号を並列デジタル信号に変換するための、デジタルフィルタ段と、並列デジタル信号を受信し、デジタルボリュームコマンド制御信号に従ってボリューム調整済み並列デジタル信号を生成する、ボリューム制御段と、ボリューム調整済み並列デジタル信号とデジタルランプ(ramp)信号との間のクロスポイントを計算するための、およびスイッチング音声増幅器の所望のパルス幅変調を表す並列デジタル信号を生成するための、デジタルクロスポイント推定器段と、所望のパルス幅変調を表す並列デジタル信号を、スイッチング音声増幅器に印加されるパルス幅変調を表す量子化済み並列デジタル信号に量子化するための、量子化段と、スイッチング音声増幅器を駆動するために量子化済み並列デジタル信号をPWM信号に変換するためのPWM生成段と、を含むものである。
他の態様によれば、本発明は、パルス幅変調入力信号を必要とするスイッチング回路を駆動するために、入力直列パルス符号変調(PCM)デジタル信号から出力パルス幅変調(PWM)デジタル信号に変換するための回路を含み、当該回路は、入力直列PCMデジタル信号をより高い周波数にアップサンプリングするための、および入力直列PCMデジタル信号を並列デジタル信号に変換するための、デジタルフィルタ段と、並列デジタル信号とデジタルランプ信号との間のクロスポイントを計算するための、およびスイッチング回路の所望のパルス幅変調を表す並列デジタル信号を生成するための、デジタルクロスポイント推定器段と、スイッチング回路を駆動するためにスイッチング回路の所望のパルス幅変調を表す並列デジタル信号をPWM信号に変換するためのPWM生成段と、を含むものである。
他の目的によれば、本発明は、パルス幅変調入力信号を必要とするスイッチング回路を駆動するために、入力直列パルス符号変調(PCM)デジタル信号から出力パルス幅変調(PWM)デジタル信号に変換するための方法を含み、当該方法は、入力直列PCMデジタル信号をより高い周波数にアップサンプリングすること、および入力直列PCMデジタル信号を並列デジタル信号に変換すること、並列デジタル信号とデジタルランプ信号との間のクロスポイントを計算すること、およびスイッチング回路の所望のパルス幅変調を表す並列デジタル信号を生成すること、ならびにスイッチング回路を駆動するためにスイッチング回路の所望のパルス幅変調を表す並列デジタル信号をPWM信号に変換すること、を含むものである。
好ましくは本発明の回路は、ハードウェア内で全面的に実施される全デジタル信号処理を有し、全出力AC信号のフィードバック制御を特徴とするものである。本発明は、FPGA(Field Programmable Gate Array)として実施可能であり、たとえば98.304MHzなどの超高周波数で動作し、196.608MHzに近いPWM信号の分解能(resolutin)を有する。本発明は、PWM信号の1.16×10−5の総合高調波ひずみTHD+N、およびPWM信号の98dBのダイナミックレンジ(出力は、全ブリッジ電力増幅器を駆動するのに好適な3レベルPWM信号である)が可能である。
本発明の他の特徴および利点は、添付の図面を参照しながら本発明の以下の説明を読めば明らかになろう。
次に、本発明について、図面を参照しながら以下の詳細な記述でより詳細に説明する。
次に図を参照すると、本発明のブロック図が図1に示されている。チップへの入力は、48kHz、96kHz、192kHz、44.1kHz、88.2kHz、および176.4kHzのうちのいずれかのサンプリング周波数finの信号である。入力データは、16ビットまたは24ビットの入力データとすることができる。データのフォーマットは最上位ビット優先(MSB first)または最下位ビット優先(LSB first)、左詰または右詰のいずれかが可能である。IISフォーマットのデータも受け入れられる。出力信号は、入力のサンプリング周波数に応じて、周波数768kHzまたは705.6kHzのいずれかのPWM信号である。入力のサンプリング周波数は、チップ外部の回路によってチップのクロック周波数と同相でロックされると想定される。
本発明の基本ブロックは、a)サンプルレート変換器10、b)フィルタ20、c)ボリューム制御ブロック30、d)クロスポイント推定器40、e)デルタシグマ量子化器50、f)PWM生成ブロック60、g)不感時間(dead time)制御ブロック70、およびh)フィードバック制御ブロック80である。好ましくは、データは2の補数表現で表され、処理される。
サンプルレート変換器10およびフィルタ20は、超高周波数(98.304MHz/90.3168MHz)にアップサンプリングされた入力信号を再生成する。このアップサンプリング済み信号は、ボリューム制御ブロック30によってさらにスケーリングされる。スケーリング済み信号は、次に仮想鋸歯状「ランプ」と比較されるが、このランプの周波数は電力段のスイッチング周波数である。比較はクロスポイント推定器ブロック40によって実行され、その結果は、出力PWM信号の所望のパルス幅を表す24ビットワードである。クロスポイント推定器ブロック40は、入力信号に対して1次(線形)近似を使用して入力信号と「ランプ」のクロスポイントを推定する。入力信号に対して線形近似を(高次近似の代わりに)使用しても、入力信号が超高周波数(98.304MHz/90.3168MHz)にアップサンプリングされるため、優れた結果を得ることができる。この方式は、PCM−PWM機能のハードウェアベースの実施に好適である。
下記に示すように、フィードバック制御が実施された後の出力PWM信号の所望のパルス幅を表すこの24ビットワードが、デルタシグマ量子化器50への入力である。全24ビット分解能でPWM信号を生成するには、およそ1e+012Hzの到達不可能なクロック周波数が必要になる。これは、デルタシグマ量子化器ブロック50が必要なためであり、このブロックには、有限デジタルクロックを使用して達成可能な出力PWMパルスの分解能を向上させる役割がある。デルタシグマ量子化器50の出力は、出力PWM信号のパルス幅を表す10ビットワードである。この10ビットワードがPWM生成ブロックに送られ、これが196.608MHz/180.6336MHzの高分解能のPWM信号を生成する。
不感時間制御ブロック70は、外部で指定された不感時間(不感時間は分離ステップで設定される)を受け入れ、10ビットワードをPWM生成ブロック60に出力する。この10ビットワードは、電力変換器の一工程(leg)における、上位スイッチ用のPWMパルスと下位スイッチ用のPWMパルスとの間の不感時間(ブランキングパルス)の長さである。
フィードバック制御ブロック80は、電力段および要求された不感時間からのフィードバックに基づいた電力変換器の出力制御を実行する。
サンプルレート変換器10は、入力データストリームを192kHz(48kHz、96kHz、192kHzの入力サンプリング周波数の場合)または176.4kHz(44.1kHz、88.2kHz、および176.4kHzの入力サンプリング周波数の場合)のデータストリームに変換する。入力データは、16ビット、20ビット、または24ビットの入力データが可能である。
フィルタブロック20の一例が、図2に詳細に示されている。全フィルタブロック20には、低域フィルタ20A、補間フィルタ1(20B)、および補間フィルタ2(20C)が含まれる。全フィルタ20は、その入力データを、周波数192/176.4kHzから周波数98.304MHz/90.3168MHzにアップサンプリングする。フィルタは、単一の係数セットですべての入力サンプリング周波数をサポートするように設計される。IIRフィルタ構造とは対照的に、FIRフィルタ構造はサイクル発振を制限する傾向にないことから、すべてのフィルタは有限インパルス応答(FIR)フィルタとなるように選択される。補間フィルタ1および補間フィルタ2はどちらも、最定数の係数で最大の減衰を可能にするために、低域フィルタではなく複数の拒絶帯(stop−band)フィルタとして設計される。
フィルタは3段階で実施され、これによって全フィルタのアップサンプリングオペレーションに必要な計算の数が減少する。第1の段階は、176.4/192kHzのデータストリームを受け入れる低域フィルタ20Aである。これは、入力内の最も低い別名周波数である22.05kHzを十分に減衰するように設計される。第2のフィルタ20B(補間フィルタ1)は、中間信号の補間を実施する。第3のフィルタ20C(補間フィルタ2)は、信号の最終補間を実施し、周波数98.304MHz/90.3168MHzの信号を生成する。
ボリューム制御30は、実際のボリュームが制限された変化率(絶対値)で所望のボリュームに近づく、「漸次」制御として実施される。所望のボリューム値は外部で設定される。
クロスポイント推定器40は、入力信号と電力段のスイッチング周波数の仮想「ランプ」との間のクロスポイントを計算する。計算は、サンプル間の入力信号の線形補間に基づいて実行される。当該ブロックは基本的に、24ビット精度で2本の線の間のクロスポイントについて解明する。
デルタシグマ量子化器50は、図3に詳細に示される。これは、2次補間D/A変換器構造に基づいた4次量子化器である。量子化器への入力は24ビットワードである。量子化器の出力は10ビットワードである。
デルタシグマ量子化器50には、有限デジタルクロックを使用して達成可能な出力PWMパルスの分解能を向上させる役割がある。この向上は、隣接する出力信号レベル間に追加のスイッチングイベントを導入することによって達成され、その結果、平均化された出力信号レベルと入力とがより近くなる。
PWM生成ブロック60は、デルタシグマ量子化器の10ビット出力とアップカウントカウンタ(upcounting counter)の値とを常に比較することによって、PWMパルスを生成する。カウンタは各PWM周期の最初にセットされ、カウンタ値がデルタシグマ量子化器の10ビット出力を超えるとリセットされる。
不感時間は外部からセットされ、PWMパルスは、不感時間制御ブロック70によってセットされた所望の不感時間を反映するように、PWM生成ブロック60によって調整される。
フィードバック制御80は、内部制御ループ80Aおよび外部制御ループ80Bからなる。図4を参照されたい。
内部制御ループ80Aは、負荷(スピーカ)を横切るろ波されていない(スイッチングされた)電圧の平均値の制御を実行する。内部ループ80Aは、電力段内のトランジスタの不感時間および有限オン/オフ時間を補償する。
外部ループ80Bは、スピーカ電圧の制御を実行する。外部ループ80Bは、フィルタ内の損失と出力回路内の損失を補償する。
本発明の実施についてのより詳細なブロック図が、図5に示されている。本項に示されるようなチップアーキテクチャは、FPGAの実施に好適である。しかし、このアーキテクチャは一例として示されたものに過ぎず、ASICの実施には同じ機能を達成する修正されたアーキテクチャが好適な可能性があることを理解されたい。たとえばこの設計でのASICの実施では、シリコン領域を節約するために、より少ない算術回路によって同じ数の乗算および加算を実行できるようにすることによって、より高いクロック周波数が達成可能である。実施に関連する所見は、適用可能な構築ブロックの説明に追加される。
図6には、サンプルレート変換器10がより詳細に示されている。これは、ここでは左および右と呼ばれる2つのオーディオチャネルに対するPCM符号化オーディオ入力を表す、データストリームを受け入れるものである。実際に実施されるチャネル数は任意である。図6に示されるサンプルレート変換器は、直並列変換器(deserializer)201および並直列変換器(serializer)203からなる。直並列変換器は直列入力を連続して受け入れ、これを各チャネルに1セットずつ、2セットの24ビット出力に変換する、シフトレジスタである。左および右のチャネルデータの値は、直並列変換器出力で有効であり、直並列変換器出力は制御論理202によってサンプリングされ、入力クロックbit_clk_in204を使用して並直列変換器203の2つの回転レジスタ(RR)に書き込まれる。bit_clk_inの周波数は、このチップを駆動する機器に応じて、48(44.1)、96(88.2)、または192(176.4)kHzとすることができる。RRコンテンツは、ローカルの192(176.4)kHzクロックを使用する各レジスタを通じて回転されている。各RRの最上位ビットが出力として指定される。制御論理202は、これら2つの出力をサンプルレート変換器の1つの出力ビットストリームに多重化する。この出力の周波数は192kHz/176.4kHzである。この方法では、入力データは、入力データを単にn回繰り返すことによってn倍高い出力周波数にアップサンプリングされる。入力のサンプリング周波数を指定するための入力ピンは不要であり、これによって入力ピンの総数が減少する。
図5に示された低域フィルタ20A、補間フィルタ1 20B、および補間フィルタ2 20Cは、好ましくは直接形式構造(タップ付き遅延線構造または横断フィルタ構造とも呼ばれる)として実施される。
図2の208に示されるように、データストリームは8回アップサンプリングされた後、補間フィルタ1によってろ波され、その後264で64回アップサンプリングされた後、補間フィルタ2によってろ波される。これらどちらの場合でも、因数nによるアップサンプリングは、単に既存のサンプルの間に(n−1)ゼロを挿入することによって実行される。補間フィルタ1および2の実施に関連する計算の回数をほぼ最小限にするためには、非ゼロのサンプルがフィルタの係数と実際に掛け合わされ、出力を生成するように合計されるだけである。
図7には、低域フィルタ20Aのブロック図が示されている。入力ブロックは、前述の201と等価の直並列変換器301である。直並列変換器301は、サンプルレート変換器10から受信された左および右のチャネルデータを分離し、これらを24ビットで表された並列で出力する。直並列変換器出力が有効であれば、データRAM304に書き込まれる。フィルタ20Aの対称性を活用して、同じ係数で乗算されることになるデータサンプルのペアが第1に追加され、それによって乗算の回数が半分に減少する。これは、1つずつペアを作ってデータサンプルを読み取ること、およびこれらをRAM出力とレジスタ305に格納された前のクロックサイクルのRAM出力とを加算する加算器306の入力に送達することによって達成される。取得された合計は、乗算器307によって、フィルタ係数ROM303から読み取られた対応するフィルタ係数で乗算される。どちらのチャネルに関する乗算も、クロック周波数98.304MHzのクロックサイクルごとに1回の乗算が処理できる乗算器307によって実行される。異なるチャネルに関連付けられた乗算の結果はデマルチプレクサ308によって分離され、2つの乗算器−累算器(左:309、311、右:310、312)によって別々に処理される。累算器出力はフィルタ出力に提示され、切捨て器(truncator)313および314によって24ビット分解能に切り捨てられる。累算器311、312は、各フィルタ周期の最初にリセットされる。メモリ303、304のアクセス、デマルチプレクサ308、およびリセットされた累算器を制御する信号は、制御ブロック302によって駆動される。
クロック周波数98.304MHzでのオペレーションには、3つの加算器(306、309、310)を使用する必要があり、そのうちの1つ(306)は50%の時間しか動作していないが、残りの2つは100%の時間動作している。乗算器306、309、および310が周波数150MHzで動作可能な実施技術の場合、加算器306と他の2つの加算器のうちの1つとを、150MHzで動作するものと置き換えることが可能である。さらに乗算器が250MHzで動作可能な実施技術の場合、3つの乗算器すべてをこの周波数で動作するものと置き換えることができる。しかしながら、乗算器を共有することによって、マルチプレクサおよび制御論理内に無視できないほどのオーバヘッドが生じることに留意されたい。
図8には、補間フィルタ1(20B)のブロック図が示されている。
低域フィルタ20Aによって駆動される各チャネルのデータ入力は、2つの別々のデータRAMブロック403および404に書き込まれる。フィルタ係数は、ROMまたはRAMとして実施可能なルックアップテーブル401に格納される。両方のチャネルに関するデータ係数の乗算は、乗算器406によって実行される。制御論理402は、メモリブロック401、403、404へのすべてのアクセスと、データマルチプレクサ405の制御を開始する。乗算器の出力は、左および右のチャネル用の2つの別々のデータパスに多重分離される。これらのパスは乗算器−累算器を備えており、低域フィルタ20A内のものと構造上等価であるため詳細には説明しない。補間により、補間フィルタ1(20B)の出力側のデータレートは、その入力側のデータレートよりも高いことに留意されたい。
乗算器406は、98.304MHzクロックによって駆動される場合、25%の時間しか動作しない。したがって乗算器307および406は、こうした乗算器1台のみに置き換えることが可能であり、これは98.304MHzクロックによって駆動されると75%の時間が活動状態となる。加算器408および409は、クロック周波数98.304MHzの場合に、それぞれ50%の時間しか活動状態でなく、同じ周波数で動作する1台のこうした加算器に置き換えることが可能である。
図9には、補間フィルタ2(20C)のブロック図が示されている。
2つのデータ係数積のみの合計に関係するというこのフィルタ特有のアーキテクチャにより、データ入力を格納するためのRAMは不要である。チャネルあたり2つのデータ入力のみがいずれかの所与の時間に格納されるため、4つのレジスタ504、505、506、および507が使用される。しかしながら、フィルタは簡略であるにもかかわらず、補間フィルタ2の計算速度は非常に速く、このフィルタのアップサンプリング係数は64であるため、98.304MHzクロックサイクルごとにペアのデータ出力(左および右)が生成される。これは、クロックサイクルごとに4つの乗算を実行する必要があることを示唆するものであり、4つの別々の乗算器508、509、510、および511を並列に実施する必要がある。制御ブロック503は、ルックアップテーブル501および502からフィルタ係数を読み取る責務を負うものである。これら2つのルックアップテーブルは、同じ係数を順序のみ異なって格納する。2つのテーブルの使用が必要なのは、必要なスループットを保証するためである。各データパスの2つの積は、加算器512および513によって合計される。フィルタ出力は加算器出力であり、切捨て器514および515によってそれぞれ24ビットに切り捨てられる。
このフィルタのクロック周波数を200MHzまで上げることのできる技術で実施すると、乗算器、加算器、およびルックアップテーブルの数を半分に減らすことができるので有利であろう。
図10には、ソフトボリューム制御ブロックのアーキテクチャが示されている。各チャネルに1つずつ、2つの同一のソフトボリューム制御ブロックがある。
ユーザ指定の所望のボリュームレベルを表す信号volume_inが、変更レートリミッタフィルタ601を介して送り込まれる。フィルタ601は、レジスタ内に格納されたボリューム制御値をvolume_inの値に向かって(mクロックサイクルごとに1回の限定されたペースで)増分または減分する、単純なカウンタとして実施される。ボリューム制御レジスタ値はフィルタ601の出力である。この値は、乗算器602内で補間フィルタ2(20C)によって駆動される入力データと乗算される。乗算器出力は603で24ビットまで切り捨てられ、ボリューム制御ブロックの出力を表す。
図11には、クロスポイント推定器のアーキテクチャが示されている。2つのチャネル(左および右)それぞれには、1つのクロスポイント推定器ブロックが含まれる。オペレーションは左チャネルについてのみ記載されている。
この図に記載されたオペレーションは、正のランプを横切る正の入力データ信号を想定している。負の入力データに関するオペレーションは、アナログ様式で発生する。図11に示されたランプ生成器701は、ランプ700を24ビットのデジタルランプ信号として生成する。ランプ生成器701の絶対値は、実際には、(電力段の)各スイッチング周期の最初にリセットされ、各クロックサイクルで214ずつ増分される、アップカウンタである。ランプ700は、減算器702によって入力データ信号から減じられる。減算器702の出力はdiffと示されている。前のサイクルからの減算結果はレジスタ705に格納される。レジスタ705の出力はdiff_oldと示されている。最初に減算結果diffが負である場合、精密なクロスポイントソルバ(solver)704が活動化される。このブロックは、24ビット入力データと24ビットランプ700の間の精密なクロスポイントについて、現在(負)および前(正)の減算器出力値を使用して解決する。ソリューションは既存の入力データ間の入力信号の線形近似に基づくものであり、24ビットのクロスポイントtCPは、以下のように算出される。
Figure 2005143090
上式で、ramp700diff<0は、diffが負になるちょうどそのクロックサイクルでのramp700の値を示す。クロスポイントtCPを解決するために、アルゴリズム的な除算器が実施される。クロスポイントtCPは、実際には、スイッチング周期の増分1(223−1)で与えられる出力PWM信号の所望のパルス幅を表す。公称入力DC_bus電圧の場合(プロトタイプでは、+/−50Vに等しい)、ブロック出力PW_leftはtCPに等しく、そうでない場合、PW_leftは、以下の方法で算出される正のデータ入力用である。
Figure 2005143090
(3D.1)では、VDCBUS+は正のDC_bus電圧の最新のサンプルに対応する10ビットワードであり、すべてのゼロは0ボルトに対応し、731は50Vに対応する。負のデータ入力の場合、PW_leftは、(3D.1)のVDCBUS+を負のDC_bus電圧の絶対値で置き換えることによって、アナログ方式で算出される。アルゴリズム的な除算器は(3D.1)の実施に使用され、電力段のスイッチング周期で1回だけこの目的に使用される。クロスポイント推定器ブロックは、周波数が電力段のスイッチング周波数に等しい周期的なslow_clkと命名された1ビット信号も出力する。slow_clkの立ち上がり端は、PW_leftが有効であるとの信号を送る。フィードバック制御ブロック(開ループ制御)がない場合、このブロックの出力はデルタシグマ量子化器50の入力に進み、システム内で使用されるフィードバック制御がある場合、このブロックの出力はフィードバック制御ブロック80に進む。
領域用に最適化するために、ramp700の値は符号なしの8ビット数としてハードウェア内に格納されるが、これが可能であるのは、24ビットの外ではramp700の符号は別々に処理され、下位の15ビットは常に0であるためである。
信号diff(およびdiff_old)は2の16乗未満の最大値を有するため、15ビット数としてハードウェア内に格納される。
デルタシグマ量子化器50のアーキテクチャは、図3に示されている。それぞれのチャネル(左および右)が、デルタシグマ量子化器ブロックのうちの1つを有する。このブロックの実施は、左チャネルについてのみ記載されている。
このブロックへの入力は、出力PWM信号の所望のパルス幅を表す24ビットワードPW_leftである。フィードバック制御ブロック80がある場合、デルタシグマ量子化器50への24ビット入力はクロスポイント推定器ブロック40から直接来るのではなく、フィードバック制御ブロック80から来ることになる。この入力は量子化器50によって量子化され、10ビット出力PWshort_leftを生成し、これが出力PWM信号の実際に実施されるパルス幅となる。量子化雑音の4次雑音形成は、入力24ビット信号を10ビットに直接切り捨てる場合と比べて、当該帯域内での最終PWM信号のTHDを大幅に減少させるために、この量子化器によって実行される。デジタル式で符号化された信号の雑音形成は、原則として入力の最下位ビットを最上位ビットにオーバフローするまで累積し、出力に寄与できるようにすることによって実行される。
加算器804、805、806、および807の出力の14の最下位ビットは、それぞれLSB1、LSB2、LSB3、およびLSB4と示される。加算器804、805、806、および807の10の最上位ビットは、それぞれMSB1、MSB2、MSB3、およびMSB4と示される。すべての加算器および減算器は、24ビットの加算器および乗算器であってよい。アーキテクチャ全体を、以下で説明するような最低のビット数に最適化することができる。
加算器805、806、および807は、実際に2つの14ビット数の加算を実行する。MSB1、MSB3、およびMSB4が、それぞれ加算器805、806、および807の繰上げ(carry)ビットである。したがってアーキテクチャが必要な最低ビット数に最適化される場合、好ましくは算術演算ユニットは、a)加算器805、806、および807が14ビット加算器である、b)減算器811、812、および814が1ビット減算器である、c)減算器813および815が2ビット減算器である、d)減算器816が3ビット減算器である、さらにe)加算器808、809、および810が11ビット加算器である(最終出力PWshort_leftは10ビットに限定される)、という方法で実施される。
実際にブロック50は、出力電力段のスイッチング周波数(384kHzまたは768kHzのいずれか)のペースで動作し、したがって図3の遅延ブロックz−1は、1/384kHzまたは1/768kHzのいずれかの遅延を表す。デルタシグマ量子化器50の作動周波数は非常に遅いため、すべての加算/減算は、周波数98.304MHzで動作する1つの24ビット加算器で実施することができる。
PWM生成ブロック60のアーキテクチャは、図12に示されている。2つのチャネル(左および右)は、それぞれ1つのPWM生成ブロックを有する。
図12に示されるようなブロックアーキテクチャは、ゲート制御される4つのトランジスタを備えた全ブリッジ電力段であるが、アーキテクチャからブロック904のみが省略された場合には、同じ方式が半ブリッジ電力段をカバーするように拡張可能であると想定される。このアーキテクチャは、特に高分解能の196.608MHz/180.6336MHzの出力PWM信号を達成するように編成されるが、大部分の論理はより低いクロック周波数90.3168MHzで動作可能である。この方式は、使用可能なFPGA技術の動作周波数の上限を事実上延長するものである。
PWM生成は、2つのブロック901および902に分割され、どちらも90.3168MHzで動作する。これらのブロックはそれぞれ、10ビット入力PW_short_leftをランプ生成器の10ビット出力と比較する。ランプ生成器は、実際には各スイッチング周期の最初にリセットされるアップカウンタである。ブロック901はクロックの正の端部で動作し、PW_short_leftをramp1と比較する(ramp1は、あらゆるスイッチング周期の最初に1にリセットされ、各クロックサイクルで2ずつ増分される)。同じ様に、ブロック902はクロックの負の端部で動作し、PW_short_leftをramp2と比較する(ramp2は、あらゆるスイッチング周期の最初に0にリセットされ、各クロックサイクルで2ずつ増分される)。Out_posと命名されたブロック901からの出力は、PW_short_leftが正の場合およびPW_short_leftがramp1より大きい場合は1にセットされ、そうでない場合、Out_posは0にリセットされる。Out_negと命名されたブロック901からの出力は、PW_short_leftが負の場合およびPW_short_leftの絶対値がramp1より大きい場合は1にセットされ、そうでない場合、Out_negは0にリセットされる。Out_pos_shiftと命名されたブロック902からの出力は、PW_short_leftが正の場合およびPW_short_leftがramp2より大きい場合は1にセットされ、そうでない場合、Out_pos_shiftは0にリセットされる。Out_neg_shiftと命名されたブロック902からの出力は、PW_short_leftが負の場合およびPW_short_leftの絶対値がramp2より大きい場合は1にセットされ、そうでない場合、Out_neg_shiftは0にリセットされる。
ブロック903および904は、不感時間の持続期間中は0にリセットされ、そうでない場合は1である、信号910、911、912、および913を生成することによって不感時間制御を実施する。ブロック903への入力は、信号Out_pos、Out_neg、および所望の不感時間(不感時間の分解能は1/90.3168MHzである)である。ブロック903の出力は信号910および911であり、これらはOut_posおよびOut_negそれぞれでの変更直後に0にリセットされる。信号910および911は、所望の不感時間に等しい時間については0に維持され、その後で1にセットされる。同様に、ブロック904への入力は、信号Out_pos_shift、Out_neg_shift、および所望の不感時間である。ブロック904の出力は信号912および913であり、Out_pos_shiftおよびOut_neg_shiftそれぞれでの変更直後に0にリセットされる。その後で信号912および913は、所望の不感時間に等しい時間については0に維持され、その後1にセットされる。ブロック903は90.3168MHzクロックの正の端部で動作し、ブロック904は90.3168MHzクロックの負の端部で動作する。
ブロック903および904の出力は、高周波数(2.90.3618MHz)で動作可能なブロック905(このブロックは、1ビット数のみを比較する)で、共に処理される。ブロック905は、4つのPWM出力、P_leg1、N_leg1、P_leg2、N_leg2を生成する。これら4つのPWM出力は、音声増幅器の全ブリッジ電力段の4つのトランジスタのゲート制御(gating)信号として使用され、分解能1/(2.90.3618MHz)で生成される。出力P_leg1は、信号912が1の場合およびOut_pos_shiftが1の場合に、1にセットされる。出力P_leg1は、a)信号912が0、b)Out_pos_shiftが0、c)信号910が0、またはd)Out_posが0の、4つの条件のうちのいずれかが発生した場合に、0にリセットされる。出力N_leg1は、a)信号910が1でありOut_posの補数が1である、またはb)信号912が1でありOut_pos_shiftの補数が1であるという、2つの条件のうちのいずれかが発生した場合に、1にセットされる。出力N_leg1は、Out_pos_shiftが1になったときに0にリセットされる。出力P_leg2は、信号913が1であり、Out_neg_shiftが1である場合に、1にセットされる。出力P_leg2は、a)信号913が0、b)Out_neg_shiftが0、c)信号911が0、またはd)Out_negが0の、4つの条件のうちのいずれかが発生した場合に、0にリセットされる。出力N_leg2は、a)信号911が1でありOut_negの補数が1である、またはb)信号913が1でありOut_neg_shiftの補数が1であるという、2つの条件のうちのいずれかが発生した場合に、1にセットされる。出力N_leg2は、Out_neg_shiftが1の場合に0にリセットされる。
不感時間入力は、1/90.3618MHzの増分で与えられることが想定される。
乗算器のアーキテクチャは、図13に示されている。ここに示されたような乗算器は、速度に関してFPGA用に最適化される(Xilinx Spartan IIE−400 FPGA、速度グレード7では、周波数90.3618MHzで動作可能である)。乗算器は、符号付き24ビット数と符合付き16ビット数の乗算を実行する。乗算器は、クロックサイクルごとに新しいエントリを受け入れることが可能(すなわち、並列乗算器)であり、乗算は6クロックサイクルにパイプライン化される。24ビット入力ainは、最初にレジスタ1001に格納される。16ビット入力binは、最初にレジスタ1002に格納される。次にbinとainの連続するビットペアとの部分的な積が形成され、図13に示されるようにレジスタ1003から1013に格納される。これらの部分的な積は、binと1だけシフトされたbinとの合計によって形成される(binとシフトされたbinとは、0による乗算の場合にすべてゼロで置き換えることができる)。binとainの最上位ビットとの乗算は、正しい結果を得るためにこの部分的な合計が取り消され、すべての他の部分的な積に加えられる必要があることから、別に実行される。この部分的な合計はレジスタ1015に格納される。
レジスタ1003および1004の出力は、ビットの位置を考慮に入れながら次のステップで加算される(すなわち、レジスタ1004の出力は2ビットだけ左にシフトされた後、符号拡張されたレジスタ1003の出力に加えられる)。レジスタ1003および1004の出力の合計は、レジスタ1016に格納される。レジスタ1005および1006の出力の合計は、レジスタ1007および1008、1009および1010、1011および1012の出力の合計と同じ方法で形成され、当該合計は、それぞれレジスタ1017、1018、1019、および1020に格納される。レジスタ1013、1014、および1015の出力の合計はレジスタ1021に格納される。レジスタ1016および1017からの出力の合計は次のステップで実行されるが、レジスタ1017の出力は4ビットだけ左にシフトされた後、符号拡張されたレジスタ1016の出力に加えられる。この加算の結果はレジスタ1022に格納される。レジスタ1018および1019の出力は、レジスタ1020および1021の出力と同じ方法で合計され、それぞれレジスタ1022、1023、および1024に格納される。レジスタ1022および1023の出力は次のステップで合計されるが、レジスタ1023の出力は8ビットだけ左にシフトされた後、符号拡張されたレジスタ1022の出力に加えられる。この合計はレジスタ1026に格納される。レジスタ1024の出力は、そのコンテンツにレジスタ1025を通過させることによって1クロックサイクルだけ遅延されるが、これは、次のサイクルでのレジスタ1025の出力時に正しい信号を有するように実行される。最終的に、レジスタ1026の出力はレジスタ1025の出力に加えられるが、レジスタ1025の出力は16ビットだけ左にシフトされた後、符号拡張されたレジスタ1026の出力に加えられる。レジスタ1025および1026の出力のこの最後の加算の結果が最終結果であり、レジスタ1027に格納される。
前述のような乗算器アーキテクチャは必ずしもASIC実施のための最良のアーキテクチャではない可能性もあり、各実施プラットフォーム/技術について、領域および速度の観点から他のアーキテクチャに照らして個別に慎重に評価する必要がある。
フィードバック制御の一実施形態のブロック図が、図4に示されている。提案された制御の記述は、全ブリッジスイッチモード変換器100を有する1つの音声チャネルの場合に関するものであるが、記述された制御ストラテジは、半ブリッジスイッチモード変換器にも同様に容易に適用される。
電力変換器は、固定されたスイッチング周波数で動作する。制御は内部ループ80Aおよび外部ループ80Bからなる。内部ループ80Aは、負荷を横切るろ波されていない(スイッチングされた)電圧である、制御v−vを実行する。外部ループ80Bは、負荷電圧vloadを制御する。
内部ループ80Aは、スピーカを横切るろ波されていない電圧であるv−vの平均値を、その参照値と等しくさせるものである。vおよびvは、図4のブロック図にマーク付けされている。v−vの平均値の参照は(PW_shortVDCBUS)に等しく作成され、この式でPW_shortは出力PWMパルスのコマンド持続期間(デルタシグマ量子化器によって算出される)であり、VDCBUSは対応するDC_busの最新サンプルの値である(正の入力データの場合は正のDC_bus電圧であり、負の入力データの場合は負のDC_bus電圧である)。PW_shortは、左チャネルの場合はPwshort_leftに等しく、右チャネルの場合はPwshort_rightに等しい。Pwshort_leftおよびPwshort_rightは、図5のデルタシグマ量子化器ブロックによって算出される。
具体的に言えば、誤差(v−vの平均値とPW_shortVDCBUSの差)の積分値が、スイッチング周期の整数値に等しい時間間隔にわたって測定される。この誤差の積分値はVswitched_errorとして示される。
n番目のスイッチング周期における出力PWM信号の所望のパルス幅(全24ビット精度で算出)である、PW_left_outは、別々に設定された24ビットコマンド値PW_left_cmdに加えて、Vswitched_errorのk+1最新値の1次関数として算出される。
Figure 2005143090
上式で、A(i)はVswitched_errorの前の各値に対する重み係数である。これらの係数は、出力波形の低THDを達成するために最適化される。(4.1)のVDCBUSは、対応するDC_bus電圧の最新サンプルの値である。
switched_errorは、動作可能な増幅器90とコマンドで放電可能なコンデンサ92とを使用して測定される。実際には、すべての周期をカバーするためには、こうした動作可能な増幅器−コンデンサのセットを2つ有することが必要であり、セットはその後Vswitched_errorの測定時に交替し、その結果、一方のコンデンサ値が読み取られる/リセットされる間に、他方のセットは測定を継続する。Vswitched_errorの測定は、アナログ領域測定の方がより高い精度が達成できるため、デジタル領域ではなくアナログ領域で実行される。
外部ループ80Bは、内部ループ用の入力である値PW_left_cmdを算出する。
単なる出力電圧の調整の場合には、n番目のスイッチング周期におけるPW_left_cmdは、以下のようになる。
Figure 2005143090
(4.2)では、Vload(i)はi番目のスイッチング周期における負荷電圧の平均値であり、i番目のスイッチング周期で取得されたすべてのVloadのサンプルの移動平均として算出される。
入力DC_bus電圧の値であるVDC_bus正およびVDC_bus負は、A/D変換器94によってアナログからデジタル領域に変換された後、それぞれワードVDCbus+およびVDCbus−で表される。VDCbus+およびVDCbus−は、入力DC_bus電圧内の変化に照らして調整するように、最終的にその出力値PW_left(および2チャネルの場合はPW_right)を調節する、クロスポイント推定器ブロックに送られる。この動作の詳細な記述は、上記に示されている。
不感時間/立上り時間/立下り時間を補償するための代替方法には、誤差電圧Vswitched_errorの測定値および対応するiin(iinは、図4にマーク付けされたフィルタへの入力電流)の値の(チップメモリへの)格納が含まれる。Vswitched_errorは、電力段内の有限立下り/立ち上がり時間および不感時間が原因で発生するものであるため、取得されるVswitched_error値のセットは、PWM信号のパルス幅を前もって調節し、誤差電圧の発生を防ぐために使用することができる。
4つ(またはそれ以上)の所望の出力電圧対出力電流特徴のセットをメモリに格納し、実際に検出された出力電圧/出力電流比(すなわち、通常は2、4、8、または16オームのうちのいずれかの値を取ることが可能な、検出されたスピーカのインピーダンス)に応じて自動的に選択することができる。
以上、本発明について特定の実施形態に関係して説明してきたが、当業者であれば、多くの他の変形形態および修正形態ならびにその他の使用が明らかとなろう。したがって本発明は、本明細書に示された特定の開示によってではなく、添付の特許請求の範囲によってのみ限定されるものとする。
本発明に従ってPCMをPWMに変換するための回路を示す全体のブロック図である。 図1のフィルタブロックを示すブロック図である。 1チャネル用の図1のデルタシグマ量子化器を示すブロック図である。 フィードバック制御を示す図1の回路の制御流れを示すブロック図である。 フィードバック制御を省略したより詳細なPCMからPWMへの変換を示すブロック図である。 図1のサンプルレート変換器を示すブロック図である。 図5の低域フィルタを示すブロック図である。 図5の補間フィルタ1を示すブロック図である。 図5の補間フィルタ2を示すブロック図である。 図5の1チャネル用のボリューム制御を示すブロック図である。 図5の1チャネル用のクロスポイント推定器を示すブロック図である。 図1および図5に示された1チャネル用のPWM生成ブロックを示すブロック図である。 本発明で使用される乗算器を示すブロック図である。

Claims (54)

  1. 入力直列パルス符号変調(PCM)デジタル信号から出力パルス幅変調(PWM)デジタル信号に変換してパルス幅変調入力信号を必要とするスイッチング音声増幅器を駆動する回路であって、
    第1のサンプリング周波数で入力直列PCMデジタル信号を受信し、第1のサンプリング周波数が第2の周波数よりも低い場合は、第2の周波数で入力直列PCMデジタル信号を第2の直列PCMデジタル信号に変換するサンプルレート変換器と、
    第2の直列PCMデジタル信号を第3の周波数にアップサンプリングし、第2の直列PCMデジタル信号を並列デジタル信号に変換するデジタルフィルタ段と、
    並列デジタル信号を受信し、デジタルボリュームコマンド制御信号に従ってボリューム調整済み並列デジタル信号を生成するボリューム制御段と、
    ボリューム調整済み並列デジタル信号とデジタルランプ信号との間のクロスポイントを計算し、スイッチング音声増幅器の所望のパルス幅変調を表す並列デジタル信号を生成するデジタルクロスポイント推定器段と、
    所望のパルス幅変調を表す並列デジタル信号を、スイッチング音声増幅器に印加されるパルス幅変調を表す量子化済み並列デジタル信号に量子化する量子化段と、
    量子化済み並列デジタル信号をPWM信号に変換してスイッチング音声増幅器を駆動するPWM生成段とを含むことを特徴とする回路。
  2. スイッチング音声増幅器の出力を入力として受信するフィードバック制御段をさらに含み、前記フィードバック制御段は、前記クロスポイント推定器段から前記並列デジタル信号を受信し、前記スイッチング音声増幅器の出力が所望のレベルであるように、前記クロスポイント推定器段からの前記並列デジタル信号をフィードバック制御済みの並列デジタル信号に調整することを特徴とする請求項1に記載の回路。
  3. 前記サンプルレート変換器は、前記入力直列PCMデジタル信号を直並列変換済み並列デジタル信号に変換するための直並列変換器(deserializer)段と、前記入力直列PCMデジタル信号が第2の周波数未満である場合は、前記直並列済み並列デジタル信号を第2の高周波数の直列デジタルPCM信号に再変換し、または前記入力直列PCMデジタル信号が第2の周波数と同じである場合は前記周波数を維持する並直列変換器段とを含むことを特徴とする請求項1に記載の回路。
  4. 前記デジタルフィルタ段は、
    前記第2の直列PCMデジタル信号から低域ろ波済み並列デジタル信号を生成する第1のデジタル低域フィルタと、
    前記低域ろ波済み並列デジタル信号のサンプリング周波数を上げ、アップサンプリングされたろ波済み並列デジタル信号を提供するアップサンプリング段と、
    補間されアップサンプリングされたろ波済み並列デジタル信号を提供するデジタル補間フィルタとを含むことを特徴とする請求項1に記載の回路。
  5. 前記アップサンプリング段は第1および第2のアップサンプリング段を含み、前記補間フィルタは第1および第2の補間フィルタを含み、前記第1のアップサンプリング段は前記第1の補間フィルタに送り込み、前記第2のアップサンプリング段は前記第1の補間フィルタに続いて前記第2の補間フィルタに送り込むことを特徴とする請求項4に記載の回路。
  6. 前記ボリューム制御段は、前記並列デジタル信号を前記デジタルフィルタ段から受信するデジタル乗算器と、前記ボリューム調整済み並列デジタル信号を生成するデジタルボリュームコマンドとを含むことを特徴とする請求項1に記載の回路。
  7. ボリュームの段階的制御を実施する前記ボリュームコマンド制御を受信して前記ボリューム調整済み並列デジタル信号を提供するデジタル変更レートリミッタフィルタをさらに含むことを特徴とする請求項6に記載の回路。
  8. 前記ボリューム調整済み並列デジタル信号を事前に選択されたデジタルビット数まで切り捨てる、前記デジタル乗算器の出力に結合された切捨て段をさらに含むことを特徴とする請求項7に記載の回路。
  9. 前記デジタルクロスポイント推定器段は、
    並列デジタルランプ信号を生成するデジタルランプ生成器と、
    前記並列デジタルランプ信号および前記ボリューム調整済み並列デジタル信号を受信して、前記並列デジタルランプ信号と前記ボリューム調整済み並列デジタル信号との差に対応するデジタル出力差信号を提供するデジタル減算段と、
    前記デジタル出力差信号を格納済みの差信号として格納するメモリと、
    現在のクロック周期に対するデジタル出力差信号および以前のクロック周期に対する格納済み差信号を入力として受信するクロスポイントソルバであって、格納済みと現在との差信号の差がいつ符号を変更したか判定し、それによってランプ信号とボリューム調整済み信号との間のクロスポイントを決定するクロスポイントソルバとを含むことを特徴とする請求項1に記載の回路。
  10. 前記クロスポイントソルバは、格納済みと現在との差信号の間で線形近似を使用して、前記デジタルランプ信号とボリューム調整済み並列デジタル信号との間のクロスポイントを決定することを特徴とする請求項9に記載の回路。
  11. 前記量子化段は、前記所望のパルス幅変調を表す前記並列デジタル信号を受信し、前記パルス幅変調を表す削減されたビット量子化済みデジタル信号に変換してスイッチング音声増幅器に適用することを特徴とする請求項1に記載の回路。
  12. 前記PWM生成段は、それぞれがクロック信号の正および負の端部でトリガされる第1および第2のPWMブロックを含み、前記第1および第2のPWMブロックはそれぞれ、前記デジタルランプ信号と前記量子化済み並列デジタル信号とを比較し、2つのパルス幅変調信号を生成して、半ブリッジのスイッチング音声増幅器の2つのスイッチを駆動するデジタルランプ生成器およびデジタル比較器を含むことを特徴とする請求項1に記載の回路。
  13. 前記PWM生成段は、前記2つのパルス幅変調信号間の不感時間を保証して半ブリッジのスイッチング音声増幅器の2つのスイッチを駆動する不感時間生成器段をさらに含むことを特徴とする請求項12に記載の回路。
  14. 前記スイッチング音声増幅器を負荷に結合する出力フィルタをさらに含み、前記フィードバック制御段は、
    内部制御ループおよび外部制御ループであって、前記内部制御ループは、前記出力フィルタによるろ波の前に前記スイッチング音声増幅器の出力電圧の平均値を制御し、前記外部制御ループは、前記出力フィルタによるろ波の後に前記スイッチング音声増幅器の出力電圧を制御する内部制御ループおよび外部制御ループを含むことを特徴とする請求項2に記載の回路。
  15. 前記内部制御ループは、不感時間の補償および前記スイッチング音声増幅器のスイッチの有限オフ時間をさらに提供することを特徴とする請求項14に記載の回路。
  16. 前記外部制御ループは、前記出力フィルタおよびスイッチング音声増幅器内の損失に対する補償をさらに提供することを特徴とする請求項14に記載の回路。
  17. 入力直列パルス符号変調(PCM)デジタル信号から出力パルス幅変調(PWM)デジタル信号に変換してパルス幅変調入力信号を必要とするスイッチング回路を駆動する回路であって、
    前記入力直列PCMデジタル信号をより高い周波数にアップサンプリングし、前記入力直列PCMデジタル信号を並列デジタル信号に変換するデジタルフィルタ段と、
    前記並列デジタル信号とデジタルランプ信号との間のクロスポイントを計算し、前記スイッチング回路の所望のパルス幅変調を表す並列デジタル信号を生成するデジタルクロスポイント推定器段と、
    前記スイッチング回路の所望のパルス幅変調を表す前記並列デジタル信号をPWM信号に変換して前記スイッチング回路を駆動するPWM生成段とを含むことを特徴とする回路。
  18. 前記入力直列PCMデジタル信号を第1のサンプリング周波数で受信し、前記第1のサンプリング周波数が第2の周波数よりも低い場合は、前記入力直列PCMデジタル信号を第2の周波数の第2の直列PCMデジタル信号に変換し、前記第2の周波数の前記第2の直列PCMデジタル信号をデジタルフィルタ段に提供する、サンプルレート変換器をさらに含むことを特徴とする請求項17に記載の回路。
  19. 前記デジタルフィルタ段から前記並列デジタル信号を受信し、デジタル利得コマンド制御信号に従って利得調整済み並列デジタル信号を生成する、利得制御段をさらに含むことを特徴とする請求項17に記載の回路。
  20. 前記所望のパルス幅変調を表す前記並列デジタル信号を、前記スイッチング回路に適用される前記パルス幅変調を表す量子化済み並列デジタル信号に量子化する量子化段をさらに含むことを特徴とする請求項17に記載の回路。
  21. スイッチング回路の出力を入力として受信するフィードバック制御段をさらに含み、前記フィードバック制御段は、前記クロスポイント推定器段から前記並列デジタル信号を受信し、前記スイッチング回路の出力が所望のレベルであるように、前記クロスポイント推定器段からの前記並列デジタル信号をフィードバック制御済みの並列デジタル信号に調整することを特徴とする請求項17に記載の回路。
  22. 前記サンプルレート変換器は、前記入力直列PCMデジタル信号を直並列変換済み並列デジタル信号に変換する直並列変換器段と、前記入力直列PCMデジタル信号が第2の周波数未満である場合は、前記直並列済み並列デジタル信号を第2の高周波数の直列デジタルPCM信号に再変換し、または前記入力直列PCMデジタル信号が第2の周波数と同じである場合は前記周波数を維持する並直列変換器段とを含むことを特徴とする請求項18に記載の回路。
  23. 前記デジタルフィルタ段は、
    前記第2の直列PCMデジタル信号から低域ろ波済み並列デジタル信号を生成する第1のデジタル低域フィルタと、
    前記低域ろ波済み並列デジタル信号のサンプリング周波数を上げ、アップサンプリングされたろ波済み並列デジタル信号を提供するアップサンプリング段と、
    補間されアップサンプリングされたろ波済み並列デジタル信号を提供するデジタル補間フィルタとを含むことを特徴とする請求項17に記載の回路。
  24. 前記アップサンプリング段は第1および第2のアップサンプリング段を含み、前記補間フィルタは第1および第2の補間フィルタを含み、前記第1のアップサンプリング段は前記第1の補間フィルタに送り込み、前記第2のアップサンプリング段は前記第1の補間フィルタに続いて前記第2の補間フィルタに送り込むことを特徴とする請求項23に記載の回路。
  25. 前記利得制御段は、前記並列デジタル信号を前記デジタルフィルタ段から受信するデジタル乗算器と、前記利得調整済み並列デジタル信号を生成するためのデジタル利得コマンドとを含むことを特徴とする請求項19に記載の回路。
  26. 利得の段階的制御を実施する前記利得コマンド制御を受信して前記利得調整済み並列デジタル信号を提供するデジタル変更レートリミッタフィルタをさらに含むことを特徴とする請求項25に記載の回路。
  27. 前記デジタル乗算器の出力に結合された、前記利得調整済み並列デジタル信号を事前に選択されたデジタルビット数まで切り捨てる切捨て段をさらに含むことを特徴とする請求項26に記載の回路。
  28. 前記デジタルクロスポイント推定器段は、
    並列デジタルランプ信号を生成するデジタルランプ生成器と、
    前記並列デジタルランプ信号および前記利得調整済み並列デジタル信号とを受信して、前記並列デジタルランプ信号と前記利得調整済み並列デジタル信号との差に対応するデジタル出力差信号を提供するデジタル減算段と、
    前記デジタル出力差信号を格納済みの差信号として格納するためのメモリと、
    現在のクロック周期に対するデジタル出力差信号および以前のクロック周期に対する格納済み差信号を入力として受信するクロスポイントソルバであって、格納済みと現在との差信号の差がいつ符号を変更したか判定し、それによってランプ信号と利得調整済み信号との間のクロスポイントを決定するクロスポイントソルバとを含むことを特徴とする請求項19に記載の回路。
  29. 前記クロスポイントソルバは、格納済みと現在との差信号の間で線形近似を使用して、前記デジタルランプ信号と利得調整済み並列デジタル信号との間のクロスポイントを決定することを特徴とする請求項28に記載の回路。
  30. 前記量子化段は、前記所望のパルス幅変調を表す前記並列デジタル信号を受信し、前記パルス幅変調を表す削減されたビット量子化済みデジタル信号に変換してスイッチング回路に適用することを特徴とする請求項20に記載の回路。
  31. 前記PWM生成段は、それぞれがクロック信号の正および負の端部でトリガされる第1および第2のPWMブロックを含み、前記第1および第2のPWMブロックはそれぞれ、前記デジタルランプ信号と、前記スイッチング回路の所望のパルス幅変調を表す前記並列デジタル信号とを比較し、半ブリッジのスイッチング回路の2つのスイッチを駆動するために2つのパルス幅変調信号を生成するデジタルランプ生成器およびデジタル比較器を含むことを特徴とする請求項17に記載の回路。
  32. 前記PWM生成段は、半ブリッジのスイッチング回路の2つのスイッチを駆動するために前記2つのパルス幅変調信号間の不感時間を保証するための、不感時間生成器段をさらに含むことを特徴とする請求項31に記載の回路。
  33. 前記スイッチング回路を負荷に結合する出力フィルタをさらに含み、前記フィードバック制御段は、
    内部制御ループおよび外部制御ループであって、前記内部制御ループは、前記出力フィルタによるろ波の前に前記スイッチング回路の出力電圧の平均値を制御し、前記外部制御ループは、前記出力フィルタによるろ波の後に前記スイッチング回路の出力電圧を制御する内部制御ループおよび外部制御ループを含むことを特徴とする請求項21に記載の回路。
  34. 前記内部制御ループは、不感時間の補償および前記スイッチング回路のスイッチの有限オフ時間をさらに提供することを特徴とする請求項33に記載の回路。
  35. 前記外部制御ループは、前記出力フィルタおよびスイッチング回路内の損失に対する補償をさらに提供することを特徴とする請求項33に記載の回路。
  36. 入力直列パルス符号変調(PCM)デジタル信号から出力パルス幅変調(PWM)デジタル信号に変換してパルス幅変調入力信号を必要とするスイッチング回路を駆動する方法であって、
    前記入力直列PCMデジタル信号をより高い周波数にアップサンプリングし、前記入力直列PCMデジタル信号を並列デジタル信号に変換するステップと、
    前記並列デジタル信号とデジタルランプ信号との間のクロスポイントを計算し、前記スイッチング回路の所望のパルス幅変調を表す並列デジタル信号を生成するステップと、
    前記スイッチング回路の所望のパルス幅変調を表す前記並列デジタル信号をPWM信号に変換して前記スイッチング回路を駆動するステップとを含むことを特徴とする方法。
  37. 第1のサンプリング周波数で入力直列PCMデジタル信号を受信するステップ、および第1のサンプリング周波数が第2の周波数よりも低い場合は、第2の周波数で入力直列PCMデジタル信号を第2の直列PCMデジタル信号に変換するステップ、および前記第2の周波数の前記第2の直列PCMデジタル信号をアップサンプリング用に提供するステップをさらに含むことを特徴とする請求項36に記載の方法。
  38. 前記並列デジタル信号を受信するステップ、およびデジタル利得コマンド制御信号に従って利得調整済み並列デジタル信号を生成するステップをさらに含むことを特徴とする請求項36に記載の方法。
  39. 前記所望のパルス幅変調を表す前記並列デジタル信号を、前記スイッチング回路に適用される前記パルス幅変調を表す量子化済み並列デジタル信号に量子化するステップをさらに含むことを特徴とする請求項36に記載の方法。
  40. スイッチング回路の出力をフィードバック入力として受信するステップ、および前記スイッチング回路の出力が所望のレベルであるように、前記並列デジタル信号をフィードバック制御済みの並列デジタル信号に調整するステップをさらに含むことを特徴とする請求項36に記載の方法。
  41. 前記入力直列PCMデジタル信号を直並列変換済み並列デジタル信号に変換するステップ、および、その後で前記入力直列PCMデジタル信号が第2の周波数未満である場合は、前記直並列済み並列デジタル信号を第2の高周波数の直列デジタルPCM信号に再変換するステップ、または前記入力直列PCMデジタル信号が第2の周波数と同じである場合は前記周波数を維持するステップをさらに含むことを特徴とする請求項37に記載の方法。
  42. 前記第2の直列PCMデジタル信号から低域ろ波済み並列デジタル信号を生成するステップと、
    前記低域ろ波済み並列デジタル信号をアップサンプリングし、アップサンプリングされたろ波済み並列デジタル信号を提供するステップと、
    補間されアップサンプリングされたろ波済み並列デジタル信号を提供するステップとをさらに含むことを特徴とする請求項37に記載の方法。
  43. 前記アップサンプリングするステップは、第1回の前記低域ろ波済み並列デジタル信号のアップサンプリングをするステップ、および次に前記アップサンプリングされた低域ろ波済み並列デジタル信号を補間するステップ、および次に第2回のアップサンプリングをするステップ、および次に第2回の補間をするステップを含むことを特徴とする請求項42に記載の方法。
  44. 利得調整済み並列デジタル信号を生成するステップは、前記並列デジタル信号を受信するステップ、およびデジタル利得コマンド信号によって乗算して前記利得調整済み並列デジタル信号を生成するステップを含むことを特徴とする請求項38に記載の方法。
  45. 前記利得コマンド制御信号を受信するステップ、および、デジタル変更レートリミッタを使用して前記利得調整済み並列デジタル信号を提供する前記利得の段階的制御を実施するステップをさらに含むことを特徴とする請求項44に記載の方法。
  46. 前記利得調整済み並列デジタル信号を事前に選択されたデジタルビット数まで切り捨てるステップをさらに含むことを特徴とする請求項45に記載の方法。
  47. 前記クロスポイントを計算するためのステップは、
    並列デジタルランプ信号を生成するステップと、
    前記並列デジタルランプ信号および前記利得調整済み並列デジタル信号を受信し、前記並列デジタルランプ信号と前記利得調整済み並列デジタル信号との差に対応するデジタル出力差信号を提供するステップと、
    前記デジタル出力差信号を格納済みの差信号として格納するステップと、
    現在のクロック周期に対するデジタル出力差信号および以前のクロック周期に対する格納済み差信号を入力として受信し、格納済みと現在との差信号の差がいつ符号を変更したか判定し、それによってランプ信号と利得調整済み信号との間のクロスポイントを決定するステップとを含むことを特徴とする請求項38に記載の方法。
  48. 前記クロスポイントを決定するステップは、格納済みと現在との差信号の間で線形近似を使用して前記デジタルランプ信号と利得調整済み並列デジタル信号との間のクロスポイントを決定するステップを含むことを特徴とする請求項47に記載の方法。
  49. 前記量子化するステップは、前記所望のパルス幅変調を表す前記並列デジタル信号を受信し、前記パルス幅変調を表す削減されたビット量子化済みデジタル信号に変換してスイッチング回路に適用するステップを含むことを特徴とする請求項39に記載の方法。
  50. 前記PWM信号に変換するステップは、デジタルランプ信号を提供するステップと、前記デジタルランプ信号と、前記スイッチング回路の所望のパルス幅変調を表す前記並列デジタル信号とを比較するステップと、半ブリッジのスイッチング回路の2つのスイッチを駆動するために2つのパルス幅変調信号を生成するステップとを含むことを特徴とする請求項36に記載の方法。
  51. 前記2つのパルス幅変調信号間の不感時間を保証して半ブリッジのスイッチング回路の2つのスイッチを駆動するステップをさらに含むことを特徴とする請求項50に記載の方法。
  52. 負荷に提供された前記スイッチング回路からの出力信号をろ波するステップをさらに含み、
    内部および外部のフィードバック制御ループを提供するステップと、
    前記内部フィードバック制御ループを使用して、前記出力信号のろ波の前に前記スイッチング回路の出力電圧の平均値を制御するステップと、前記外部フィードバック制御ループを使用して、前記出力信号のろ波の後に前記スイッチング回路の出力電圧を制御するステップとをさらに含むことを特徴とする請求項40に記載の方法。
  53. 前記内部フィードバック制御ループに、不感時間の補償と、前記スイッチング回路のスイッチの有限オフ時間とを提供するステップをさらに含むことを特徴とする請求項52に記載の方法。
  54. 前記外部フィードバック制御ループに、前記出力フィルタおよびスイッチング回路内の損失の補償を提供するステップをさらに含むことを特徴とする請求項52に記載の方法。
JP2004280423A 2003-09-25 2004-09-27 Pcmからpwmに変換するための方法および装置 Pending JP2005143090A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50618803P 2003-09-25 2003-09-25
US10/945,625 US7515072B2 (en) 2003-09-25 2004-09-21 Method and apparatus for converting PCM to PWM

Publications (1)

Publication Number Publication Date
JP2005143090A true JP2005143090A (ja) 2005-06-02

Family

ID=34594663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280423A Pending JP2005143090A (ja) 2003-09-25 2004-09-27 Pcmからpwmに変換するための方法および装置

Country Status (4)

Country Link
US (1) US7515072B2 (ja)
JP (1) JP2005143090A (ja)
KR (1) KR100671525B1 (ja)
CN (1) CN100411303C (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150833A (ja) * 2005-11-29 2007-06-14 Rohm Co Ltd D級アンプ及びこれを備えた音響機器
JP2008141447A (ja) * 2006-12-01 2008-06-19 New Japan Radio Co Ltd D級増幅方法およびd級増幅器
JPWO2007010742A1 (ja) * 2005-07-21 2009-01-29 パイオニア株式会社 D級電力増幅装置
CN110034729A (zh) * 2017-12-21 2019-07-19 精工爱普生株式会社 电路装置、振动器件、电子设备和移动体
CN110754040A (zh) * 2017-04-13 2020-02-04 弗劳恩霍夫应用研究促进协会 用于处理输入音频信号的装置和对应方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247955B2 (en) * 2002-09-06 2007-07-24 Eaton Power Quality Corporation PWM power supplies using controlled feedback timing and methods of operating same
GB2408858B (en) * 2003-12-05 2006-11-29 Wolfson Ltd Word length reduction circuit
KR101355580B1 (ko) * 2006-01-05 2014-01-24 댓 코포레이션 나이캠 오디오 신호 리샘플러
WO2008012904A1 (fr) * 2006-07-27 2008-01-31 National University Corporation Nagoya Institute Of Technology Générateurs de signaux mid, dispositif générateur de signaux mid et amplificateur numérique
US20090135897A1 (en) * 2006-10-04 2009-05-28 Yasuhito Soma Semiconductor integrated circuit and electronic device
US7358884B1 (en) * 2006-10-05 2008-04-15 Apple Inc. Methods and systems for implementing a Digital-to-Analog Converter
KR100861920B1 (ko) * 2007-05-10 2008-10-09 삼성전자주식회사 비대칭형 펄스폭 변조 신호 발생기 및 그 방법
US7626519B2 (en) 2007-05-30 2009-12-01 Texas Instruments Incorporated Pulse-width modulation of pulse-code modulated signals at selectable or dynamically varying sample rates
US8315302B2 (en) * 2007-05-31 2012-11-20 Infineon Technologies Ag Pulse width modulator using interpolator
TWI343173B (en) * 2007-08-09 2011-06-01 Ind Tech Res Inst Power amplifier and method for reducing common noise of power amplifier
US8160309B1 (en) 2007-12-21 2012-04-17 Csr Technology Inc. Method, apparatus, and system for object recognition and classification
GB2459271A (en) * 2008-04-15 2009-10-21 Sony Corp Bit reduction in a transmitter, before and after filtering
US7705689B2 (en) * 2008-05-19 2010-04-27 Texas Instruments Incorporated Synchronously stackable double-edge modulated pulse width modulation generators
EP2244383A1 (en) * 2009-04-23 2010-10-27 Mitsubishi Electric R&D Centre Europe B.V. Method and apparatus for controlling the operation of a snubber circuit
US8264392B1 (en) 2009-12-09 2012-09-11 Marvell International Ltd. Compact high-speed analog-to-digital converter for both I and Q analog to digital conversion
KR101682147B1 (ko) * 2010-04-05 2016-12-05 삼성전자주식회사 변환 및 역변환에 기초한 보간 방법 및 장치
US8803723B2 (en) * 2011-07-20 2014-08-12 Texas Instruments Incorporated Low noise front end for pulsed input system
CN103701465B (zh) * 2013-12-02 2016-09-21 苏州上声电子有限公司 一种基于多比特△—σ调制的数字扬声器***实现方法和装置
CN103793190A (zh) * 2014-02-07 2014-05-14 北京京东方视讯科技有限公司 一种信息显示方法、信息显示装置及显示设备
US9213761B1 (en) 2014-06-03 2015-12-15 Freescale Semiconductor, Inc. Electronic systems and methods for integrated, automatic, medium-quality audio
CN105847960A (zh) * 2016-03-29 2016-08-10 乐视控股(北京)有限公司 减少输出音频量化失真的方法及装置
CN106331952B (zh) * 2016-08-29 2018-06-19 黄朝一 全数字化无声卡多声道播放***及播放方法
CN106231529B (zh) * 2016-09-21 2017-10-24 黄朝一 低带宽占用率的全数字化无声卡多声道播放***及播放方法
US10509624B2 (en) * 2017-01-30 2019-12-17 Cirrus Logic, Inc. Single-bit volume control
CN108306648B (zh) * 2017-12-13 2021-06-08 北京时代民芯科技有限公司 一种可编程调节时钟交叉点的高速时钟接收电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3289590B2 (ja) 1996-02-06 2002-06-10 松下電器産業株式会社 D級電力増幅器
US5959501A (en) 1998-01-14 1999-09-28 Harris Corporation Class D amplifier with scaled clock and related methods
JP3748717B2 (ja) * 1998-08-31 2006-02-22 シャープ株式会社 動画像符号化装置
EP1028524B1 (en) 1999-02-11 2004-08-18 STMicroelectronics S.r.l. PWM power amplifier with digital input
US6473457B1 (en) 1999-05-07 2002-10-29 Motorola, Inc. Method and apparatus for producing a pulse width modulated signal
US6498531B1 (en) 2000-08-14 2002-12-24 Spectron Digital class-D audio amplifier
JP3836723B2 (ja) 1999-09-23 2006-10-25 シラス ロジック、インコーポレイテッド スイッチング回路をプッシュ−プルする不感時間の適宜な制御
EP1178388B1 (en) * 2000-08-04 2006-06-28 STMicroelectronics S.r.l. PCM/PWM converter with PWM power amplifier
US6430220B1 (en) 2000-09-19 2002-08-06 Apogee Technology Inc. Distortion reduction method and apparatus for linearization of digital pulse width modulation by efficient calculation
US6605991B2 (en) 2001-08-30 2003-08-12 Motorola, Inc. Circuitry for creating a spectral null in a differential output switching amplifier and method therefor
JP3942857B2 (ja) 2001-10-15 2007-07-11 シャープ株式会社 パルス符号変調信号再生装置
DE10156744B4 (de) * 2001-11-19 2007-01-25 Infineon Technologies Ag Linearer PCM/PWM-Modulator
US6606044B2 (en) * 2002-01-02 2003-08-12 Motorola, Inc. Method and apparatus for generating a pulse width modulated signal
JP3826813B2 (ja) 2002-02-18 2006-09-27 ソニー株式会社 ディジタル信号処理装置及びディジタル信号処理方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007010742A1 (ja) * 2005-07-21 2009-01-29 パイオニア株式会社 D級電力増幅装置
JP4688175B2 (ja) * 2005-07-21 2011-05-25 パイオニア株式会社 D級電力増幅装置
JP2007150833A (ja) * 2005-11-29 2007-06-14 Rohm Co Ltd D級アンプ及びこれを備えた音響機器
JP4587222B2 (ja) * 2005-11-29 2010-11-24 ローム株式会社 D級アンプ及びこれを備えた音響機器
JP2008141447A (ja) * 2006-12-01 2008-06-19 New Japan Radio Co Ltd D級増幅方法およびd級増幅器
CN110754040A (zh) * 2017-04-13 2020-02-04 弗劳恩霍夫应用研究促进协会 用于处理输入音频信号的装置和对应方法
US10886883B2 (en) 2017-04-13 2021-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for processing an input audio signal and corresponding method
CN110754040B (zh) * 2017-04-13 2023-08-11 弗劳恩霍夫应用研究促进协会 用于处理输入音频信号的装置和对应方法
CN110034729A (zh) * 2017-12-21 2019-07-19 精工爱普生株式会社 电路装置、振动器件、电子设备和移动体
CN110034729B (zh) * 2017-12-21 2023-07-25 精工爱普生株式会社 电路装置、振动器件、电子设备和移动体

Also Published As

Publication number Publication date
CN100411303C (zh) 2008-08-13
KR20050030875A (ko) 2005-03-31
CN1607728A (zh) 2005-04-20
US7515072B2 (en) 2009-04-07
KR100671525B1 (ko) 2007-01-19
US20050110667A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP2005143090A (ja) Pcmからpwmに変換するための方法および装置
EP0978165B1 (en) Delta-sigma pwm dac for reduced switching
US6150969A (en) Correction of nonlinear output distortion in a Delta Sigma DAC
JP3226099B2 (ja) アナログ及びディジタル変換器
US7557744B2 (en) PWM driver and class D amplifier using same
KR100979075B1 (ko) 펄스폭 변조 신호를 생성하기 위한 방법 및 장치
JP3580555B2 (ja) 補聴器装置
JP2006303618A (ja) スピーカ駆動システム
JP2006507743A (ja) パルス幅変調型ノイズシェーパ
US7061415B2 (en) Word length reduction circuit
US5877716A (en) Word length convertor
US6256395B1 (en) Hearing aid output clipping apparatus
KR102581334B1 (ko) 에너지 재활용 성능을 가진 구동 회로 및 그 방법
US10224950B2 (en) Digital to analogue conversion
CN114070320A (zh) 非线性数模转换器
JP3226660B2 (ja) ディジタルδς変調器
JP2001237707A (ja) デジタル信号処理装置及び方法、並びにδς変調器
JP6401929B2 (ja) Δσd/aコンバータおよびそれを用いた信号処理回路および電子機器
JPH09307447A (ja) 高次δς変調器とδς変調型コンバータ
JP2018506900A (ja) ノイズシェーピングを使用した信号のデータ変換のためのシステムおよび方法
WO2020003745A1 (ja) オーディオ装置、オーディオ再生方法及びオーディオ再生プログラム
JP2004247930A (ja) デルタシグマ型マルチビットa/dコンバータおよびそれを用いる光ディスク記録/再生装置ならびにダウンサンプリング方法
JP3558911B2 (ja) D/a変換装置
JP2002009624A (ja) ディジタルδς変調器
US8560101B2 (en) Audio signal processing apparatus and audio signal processing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623