JP2005113363A - Composite of vapor grown carbon fiber and inorganic fine particle and use thereof - Google Patents

Composite of vapor grown carbon fiber and inorganic fine particle and use thereof Download PDF

Info

Publication number
JP2005113363A
JP2005113363A JP2004267848A JP2004267848A JP2005113363A JP 2005113363 A JP2005113363 A JP 2005113363A JP 2004267848 A JP2004267848 A JP 2004267848A JP 2004267848 A JP2004267848 A JP 2004267848A JP 2005113363 A JP2005113363 A JP 2005113363A
Authority
JP
Japan
Prior art keywords
carbon fiber
grown carbon
inorganic fine
composite
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004267848A
Other languages
Japanese (ja)
Other versions
JP4694169B2 (en
Inventor
Toshio Morita
利夫 森田
Chiaki Sotowa
千明 外輪
Tatsuyuki Yamamoto
竜之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004267848A priority Critical patent/JP4694169B2/en
Publication of JP2005113363A publication Critical patent/JP2005113363A/en
Application granted granted Critical
Publication of JP4694169B2 publication Critical patent/JP4694169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide vapor grown carbon fiber suitable for a vapor grown carbon fiber/resin composite having an improved surface properties without destroying carbon crystal structure of the vapor grown carbon fiber. <P>SOLUTION: The present invention relates to a composite of vapor grown carbon fiber and inorganic fine particles comprising vapor grown carbon fiber, each fiber filament of the carbon fiber having a structure with hollow space extending along its axis, a diameter of 0.001 to 1 μm and an aspect ratio of 5 to 15,000, and inorganic fine particles having a particle size of 0.0001 to 5 μm, the particles being deposited onto the surface of the carbon fiber, wherein the ratio of the average diameter of the vapor grown carbon fiber to the average particle size of the inorganic fine particles is 1 : 0.01 to 1 : 5, the ratio by mass of the vapor grown carbon fiber to the inorganic fine particles is 1 : 0.005 to 1 : 50. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は気相法炭素繊維と無機微粒子の複合物及びその用途に関する。詳しくいえば、気相法炭素繊維の表面に無機微粒子を付着させて複合体を形成することにより繊維表面の特性を改質した複合物、及び無機微粒子を担持する担体として気相法炭素繊維を用いた気相法炭素繊維と無機微粒子の複合物(以下、気相法炭素繊維/無機微粒子複合物と略すことがある。)に関する。   The present invention relates to a composite of vapor grown carbon fiber and inorganic fine particles and its use. More specifically, a composite in which inorganic fine particles are attached to the surface of a vapor grown carbon fiber to form a composite, and the properties of the fiber surface are modified, and a vapor grown carbon fiber is used as a carrier for supporting the inorganic fine particles. The present invention relates to a composite of vapor-grown carbon fiber and inorganic fine particles used (hereinafter sometimes abbreviated as vapor-grown carbon fiber / inorganic fine particle composite).

気相法炭素繊維は、炭素の結晶が発達しており、樹脂や他の材料との複合化を図る場合に、樹脂等のマトリックスとの濡れ性が重要な因子となる。濡れ性が悪い場合は、マトリックス中に均一に分散させることが困難で、炭素繊維や気相法炭素繊維同士が凝集し、孤立分散した状態となる。また、炭素結晶が発達している表面は不活性であって、カップリング剤や添加剤の作用を受けにくい。   In the vapor grown carbon fiber, carbon crystals are developed, and wettability with a matrix such as a resin is an important factor when compounding with a resin or other materials. When the wettability is poor, it is difficult to uniformly disperse in the matrix, and the carbon fibers and vapor grown carbon fibers are aggregated and isolated and dispersed. Further, the surface on which the carbon crystal is developed is inactive and is not easily affected by the coupling agent or additive.

炭素繊維や気相法炭素繊維の表面を改質する方法として、表面酸化法がある。酸化法は種々提案されているが、代表的な方法として、(1)硝酸や硫酸による酸処理法、(2)空気酸化法、(3)オゾン酸化法がある(特開昭61-12967号公報(特許文献1)、特開2000-96429号公報(特許文献2)、特開昭61-119767号公報(特許文献3)参照。)。また、近年、プラズマ雰囲気で、表面をフッ素処理する方法等も行われている(特開平3-227325号公報(特許文献4)参照。)。
酸化処理後の表面炭素層には、カルボキシル基、カルボニル基、水酸基等が導入されて活性となっているため、その表面官能基に各種カップリング剤等を作用させて表面をさらに改質することも可能である(大谷著「炭素繊維」近代編集社(1972)(非特許文献1))。
As a method for modifying the surface of carbon fiber or vapor grown carbon fiber, there is a surface oxidation method. Various oxidation methods have been proposed, but representative methods include (1) acid treatment with nitric acid or sulfuric acid, (2) air oxidation, and (3) ozone oxidation (Japanese Patent Laid-Open No. 61-12967). (See Japanese Patent Publication (Patent Document 1), Japanese Patent Application Laid-Open No. 2000-96429 (Patent Document 2), Japanese Patent Application Laid-Open No. 61-119767 (Patent Document 3)). In recent years, a method of treating the surface with fluorine in a plasma atmosphere has also been carried out (see JP-A-3-227325 (Patent Document 4)).
Since the surface carbon layer after the oxidation treatment is activated by introducing carboxyl groups, carbonyl groups, hydroxyl groups, etc., the surface functional groups can be subjected to various coupling agents to further modify the surface. Is also possible (Otani, “Carbon Fiber” Modern Editorial Company (1972) (Non-Patent Document 1)).

特開昭61−12967号公報Japanese Patent Laid-Open No. 61-12967 特開2000−96429号公報JP 2000-96429 A 特開昭61−119767号公報Japanese Patent Laid-Open No. 61-119767 特開平3−227325号公報JP-A-3-227325 大谷著 「炭素繊維」 近代編集社(1972)By Otani “Carbon Fiber” Modern Editorial Company (1972)

従来から行われている気相法炭素繊維表面の酸化処理による官能基の導入方法では、表面特性は改善されるものの、酸化によって強度、導電性、熱伝導性等本来の気相法炭素繊維の物性を発揮する炭素の結晶構造を損なうことになる。
したがって、本発明の目的は、気相法炭素繊維の炭素結晶構造を壊すことなく、表面特性が改質された気相法炭素繊維と無機微粒子の複合物を提供することにある。
In the conventional method for introducing a functional group by oxidation treatment on the surface of a vapor grown carbon fiber, the surface characteristics are improved, but the strength, conductivity, thermal conductivity, etc. of the original vapor grown carbon fiber are improved by oxidation. The crystal structure of carbon that exhibits physical properties is impaired.
Accordingly, an object of the present invention is to provide a composite of vapor grown carbon fiber and inorganic fine particles having improved surface characteristics without breaking the carbon crystal structure of the vapor grown carbon fiber.

本発明者らは、気相法炭素繊維の表面に種々の特性を有する無機微粒子を複合化させることにより、気相法炭素繊維の表面を所望の特性に改質できること、この複合化を物理的(機械的)に行うメカノケミカル法を用いて行うことにより、従来の溶媒分散法に比べて複合化が容易に行われ、かつ炭素繊維表面の結晶構造の破壊が抑えられ良好な特性を有する複合物が得られることを見出した。また、この方法により、触媒等に使用できる無機微粒子を気相法炭素繊維と複合化することにより、気相法炭素繊維が無機微粒子触媒の担持体として使用できることを確認し、本発明を完成した。   The present inventors have made it possible to modify the surface of a vapor grown carbon fiber to a desired characteristic by combining inorganic fine particles having various properties on the surface of the vapor grown carbon fiber, By using the (mechanical) mechanochemical method, it is easier to form a composite than the conventional solvent dispersion method, and the composite has good characteristics with the destruction of the crystal structure of the carbon fiber surface suppressed. It was found that a product was obtained. Also, by this method, it was confirmed that the vapor-grown carbon fiber can be used as a support for the inorganic fine-particle catalyst by compositing inorganic fine-particles that can be used for the catalyst or the like with the vapor-grown carbon fiber, thereby completing the present invention. .

すなわち、本発明は以下の気相法炭素繊維/無機微粒子複合物及びその用途を提供するものである。
1.繊維径0.001〜1μm、アスペクト比5〜15000の中空構造を有する気相法炭素繊維表面に粒径0.0001〜5μmの無機微粒子が付着した複合体を含有する気相法炭素繊維/無機微粒子複合物であって、気相法炭素繊維の平均繊維径と無機微粒子の平均粒子径との比が1:0.01〜1:5である気相法炭素繊維と無機微粒子の複合物。
2.複合体の気相法炭素繊維と無機微粒子との質量比が1:0.005〜1:50である前記1に記載の気相法炭素繊維と無機微粒子の複合物。
3.無機微粒子が、周期律表の2〜15族に属する元素の単体物質、またはその元素を含む化合物からなる前記1または2に記載の気相法炭素繊維と無機微粒子の複合物。
4.周期律表の2〜15族に属する元素が、マグネシウム、カルシウム、チタン、ジルコニウム、バナジウム、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、オスミウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、シリコン、ゲルマニウム、スズ、リンまたはビスマスである前記3に記載の気相法炭素繊維と無機微粒子の複合物。
5.周期律表の2〜15族に属する元素を含む化合物が、その元素を含む酸化物、炭酸塩、硫酸塩、硝酸塩、錯体またはハロゲン化物である前記3に記載の気相法炭素繊維と無機微粒子の複合物。
6.周期律表の2〜15族に属する元素を含む化合物が、その元素を含む酸化物である前記3に記載の気相法炭素繊維と無機微粒子の複合物。
7.無機微粒子が、シリカ、炭酸カルシウム、アルミナ、酸化チタン及び酸化鉄からなる群から選ばれる少なくとも1種である前記1または2に記載の気相法炭素繊維と無機微粒子の複合物。
8.気相法炭素繊維がホウ素を0.01〜5質量%含有する前記1に記載の気相法炭素繊維と無機微粒子の複合物。
9.前記1乃至8のいずれかに記載の気相法炭素繊維と無機微粒子の複合物を含む樹脂複合材。
10.前記1乃至8のいずれかに記載の気相法炭素繊維と無機微粒子の複合物を含むペースト。
11.前記1乃至8のいずれかに記載の気相法炭素繊維と無機微粒子の複合物を含む触媒。
That is, the present invention provides the following vapor grown carbon fiber / inorganic fine particle composite and use thereof.
1. A vapor-grown carbon fiber / inorganic fine particle composite containing a composite in which inorganic fine particles having a particle diameter of 0.0001 to 5 μm are attached to the surface of a vapor-grown carbon fiber having a hollow structure with a fiber diameter of 0.001 to 1 μm and an aspect ratio of 5 to 15000. A composite of vapor grown carbon fiber and inorganic fine particles, wherein the ratio of the average fiber diameter of vapor grown carbon fiber to the average particle diameter of inorganic fine particles is from 1: 0.01 to 1: 5.
2. 2. The composite of vapor-grown carbon fiber and inorganic fine particles according to 1 above, wherein the mass ratio of vapor-grown carbon fiber and inorganic fine particles in the composite is 1: 0.005 to 1:50.
3. 3. The composite of vapor grown carbon fiber and inorganic fine particles according to 1 or 2 above, wherein the inorganic fine particles comprise a single substance of an element belonging to Groups 2 to 15 of the periodic table, or a compound containing the element.
4). Elements belonging to groups 2 to 15 of the periodic table are magnesium, calcium, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, rhodium, nickel, palladium, platinum, copper, silver 4. A composite of vapor grown carbon fiber and inorganic fine particles as described in 3 above, which is gold, zinc, cadmium, aluminum, gallium, indium, silicon, germanium, tin, phosphorus or bismuth.
5). 4. The vapor grown carbon fiber and inorganic fine particles according to 3 above, wherein the compound containing an element belonging to Group 2 to 15 of the periodic table is an oxide, carbonate, sulfate, nitrate, complex or halide containing the element. Composite.
6). 4. The composite of vapor grown carbon fiber and inorganic fine particles according to 3 above, wherein the compound containing an element belonging to Group 2 to 15 of the periodic table is an oxide containing the element.
7). 3. The composite of vapor grown carbon fiber and inorganic fine particles according to 1 or 2 above, wherein the inorganic fine particles are at least one selected from the group consisting of silica, calcium carbonate, alumina, titanium oxide and iron oxide.
8). 2. The composite of vapor grown carbon fiber and inorganic fine particles according to 1 above, wherein the vapor grown carbon fiber contains 0.01 to 5% by mass of boron.
9. 9. A resin composite material comprising a composite of vapor grown carbon fiber and inorganic fine particles according to any one of 1 to 8 above.
10. 9. A paste containing a composite of vapor grown carbon fiber and inorganic fine particles according to any one of 1 to 8 above.
11. 9. A catalyst comprising a composite of vapor grown carbon fiber and inorganic fine particles according to any one of 1 to 8 above.

以下、本発明の気相法炭素繊維と無機微粒子の複合物について詳細に説明する。
本発明で用いる気相法炭素繊維(Vapor Grown Carbon Fiber。以下、VGCF(登録商標)。)は、繊維径0.001〜1μm、アスペクト比5〜15000、好ましくは繊維径0.002〜0.5μm、アスペクト比10〜10000の中空径を有するものである。
Hereinafter, the composite of vapor grown carbon fiber and inorganic fine particles of the present invention will be described in detail.
The vapor grown carbon fiber (Vapor Grown Carbon Fiber; hereinafter, VGCF (registered trademark)) used in the present invention has a fiber diameter of 0.001 to 1 μm and an aspect ratio of 5 to 15000, preferably a fiber diameter of 0.002 to 0.5 μm and an aspect ratio of 10 It has a hollow diameter of ˜10000.

気相法炭素繊維は、炭化水素等のガスを金属触媒の存在下で気相熱分解することによって製造することができる。
例えば、ベンゼン等の有機化合物を原料とし、触媒としてのフェロセン等の有機遷移金属化合物をキャリアーガスとともに高温の反応炉に導入し、基盤上に生成させる方法(特開昭60-27700号公報)、浮遊状態でVGCF(登録商標)を生成させる方法(特開昭60-54998号公報)、あるいは反応炉壁に成長させる方法(特許第2778434号)等が開示されている。これらの方法により得られたVGCFをアルゴン等の不活性雰囲気下600〜1500℃で熱処理し、さらに2000〜3300℃で熱処理を行い黒鉛化を行うことにより得られる。
Vapor grown carbon fiber can be produced by gas phase pyrolysis of a gas such as a hydrocarbon in the presence of a metal catalyst.
For example, a method in which an organic compound such as benzene is used as a raw material, an organic transition metal compound such as ferrocene as a catalyst is introduced into a high-temperature reactor together with a carrier gas, and produced on a substrate (Japanese Patent Laid-Open No. 60-27700), A method of generating VGCF (registered trademark) in a floating state (Japanese Patent Laid-Open No. 60-54998) or a method of growing on a reactor wall (Japanese Patent No. 2778434) is disclosed. The VGCF obtained by these methods is heat-treated at 600-1500 ° C. in an inert atmosphere such as argon, and further heat-treated at 2000-3300 ° C. for graphitization.

これら製法により、比較的細く、導電性や熱伝導性に優れ、アスペクト比の大きいフィラー材に適した炭素繊維が得られる。
VGCFは、形状や結晶構造に特徴があり、炭素六角網面の結晶が年輪状に巻かれ積層した構造を示し、その内部には極めて細い中空構造を有する繊維である。
また、本発明に用いるVGCFは、特開2002-266170号公報に開示した中空構造が互いに結合した分岐状気相法炭素繊維であっても良い。
また、本発明に用いる気相法炭素繊維は、平均繊維径が80〜500nm、好ましくは80〜140nm、さらに好ましくは80〜110nmであり、繊維径のバラツキは少なく、平均繊維径の±20%の範囲に全繊維の65%(本数基準)以上、好ましくは70%(本数基準)以上、さらに好ましくは75%(本数基準)以上が含まれるものであってもよい。また、嵩密度は0.015g/cm3以下、比抵抗は0.015Ωcm以下のものであってもよい。
By these production methods, carbon fibers that are relatively thin, excellent in electrical conductivity and thermal conductivity, and suitable for filler materials having a large aspect ratio can be obtained.
VGCF is characterized by its shape and crystal structure, and shows a structure in which carbon hexagonal network crystals are wound in an annual ring shape, and is a fiber having an extremely thin hollow structure inside.
The VGCF used in the present invention may be a branched vapor grown carbon fiber in which hollow structures disclosed in JP-A-2002-266170 are bonded to each other.
The vapor grown carbon fiber used in the present invention has an average fiber diameter of 80 to 500 nm, preferably 80 to 140 nm, more preferably 80 to 110 nm, and there is little variation in the fiber diameter, and ± 20% of the average fiber diameter. This range may include 65% (number basis) or more, preferably 70% (number basis) or more, more preferably 75% (number basis) or more of all fibers. The bulk density may be 0.015 g / cm 3 or less and the specific resistance may be 0.015 Ωcm or less.

上記のVGCFや分岐状VGCFは、国際公開第00/58536号パンフレット(ホウ素処理)に開示した方法で、ホウ素、あるいは、ホウ酸、ホウ酸塩、酸化ホウ素、炭化ホウ素等のホウ素化合物と共に、アルゴン等の不活性雰囲気下2000〜3300℃で熱処理することにより、あるいは特開2003-20527号公報(ガス接触法)に開示した方法により得られ、ホウ素、あるいはホウ素とホウ素化合物を含有する気相法炭素繊維も使用できる。   The above VGCF and branched VGCF are the methods disclosed in International Publication No. 00/58536 pamphlet (boron treatment), together with boron or boron compounds such as boric acid, borate, boron oxide, boron carbide and the like. Obtained by heat treatment at 2000-3300 ° C. in an inert atmosphere such as, or by the method disclosed in Japanese Patent Application Laid-Open No. 2003-20527 (gas contact method), and a gas phase method containing boron or boron and a boron compound Carbon fiber can also be used.

本発明で用いる無機微粒子は、周期律表の2〜15族に属する元素の単体物質、あるいはその元素を含む化合物である。中でも、マグネシウム、カルシウム、チタン、ジルコニウム、バナジウム、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、オスミウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、シリコン、ゲルマニウム、スズ、リン、ビスマスの単体物質、あるいはその元素を含む化合物が好ましく、マグネシウム、カルシウム、チタン、ジルコニウム、バナジウム、クロム、モリブデン、タングステン、鉄、ルテニウム、オスミウム、ロジウム、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、シリコン、ゲルマニウム、スズ、リン、ビスマスの単体物質、あるいはその元素を含む化合物がさらに好ましい。
化合物としては、酸化物、炭酸塩、硫酸塩、硝酸塩、錯体、ハロゲン化物が挙げられ、好ましくは酸化物、炭酸塩、ハロゲン化物であり、特に好ましいのは酸化物である。酸化物は酸素と他の元素との化合物であって、過酸化物、超酸化物も含まれる。また、酸性酸化物、塩基性酸化物、両性酸化物も含まれ、例えば複酸化物、酸素酸塩がある。
具体的には、例えばシリカ、炭酸カルシウム、アルミナ、酸化チタン、酸化鉄、チタン酸バリウムなどが挙げられる。
これら無機化合物を用いることにより、気相法炭素繊維の表面を、親水性、疎水性等の特性を有するように改質することができる。
The inorganic fine particle used in the present invention is a simple substance of an element belonging to groups 2 to 15 of the periodic table or a compound containing the element. Among them, magnesium, calcium, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, rhodium, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, aluminum, gallium, A simple substance of indium, silicon, germanium, tin, phosphorus, bismuth, or a compound containing the element is preferable, magnesium, calcium, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, iron, ruthenium, osmium, rhodium, palladium, More preferable are platinum, copper, silver, gold, zinc, cadmium, aluminum, gallium, indium, silicon, germanium, tin, phosphorus, bismuth, or a compound containing the element.
Examples of the compound include oxides, carbonates, sulfates, nitrates, complexes, and halides. Preferred are oxides, carbonates, and halides, and particularly preferred are oxides. An oxide is a compound of oxygen and other elements, and includes peroxides and superoxides. Further, acidic oxides, basic oxides, and amphoteric oxides are also included, for example, double oxides and oxyacid salts.
Specific examples include silica, calcium carbonate, alumina, titanium oxide, iron oxide, and barium titanate.
By using these inorganic compounds, the surface of the vapor grown carbon fiber can be modified to have properties such as hydrophilicity and hydrophobicity.

本発明で用いる気相法炭素繊維と無機微粒子の大きさの範囲は、無機微粒子の平均粒径と気相法炭素繊維の平均繊維径との比が0.01:1〜5:1が好ましく、0.01:1〜3:1がより好ましく、0.1:1〜1:1がさらに好ましい。この比率(0.01:1)より無機微粒子が小さいと無機微粒子の粒径の調整が困難である。また、この比率(5:1)より無機微粒子が大きいと気相法炭素繊維の表面への結合がし難く、表面改質の効果が小さい。   The size range of the vapor grown carbon fiber and the inorganic fine particles used in the present invention is preferably such that the ratio of the average particle diameter of the inorganic fine particles to the average fiber diameter of the vapor grown carbon fiber is 0.01: 1 to 5: 1, : 1-3: 1 are more preferable, and 0.1: 1 to 1: 1 are more preferable. If the inorganic fine particles are smaller than this ratio (0.01: 1), it is difficult to adjust the particle diameter of the inorganic fine particles. Further, if the inorganic fine particles are larger than this ratio (5: 1), it is difficult to bond the vapor grown carbon fiber to the surface, and the effect of surface modification is small.

本発明の無機微粒子と気相法炭素繊維との複合化の配合比は、質量比で0.005:1〜50:1であり、0.01:1〜40:1がより好ましく、0.05:1〜30:1がさらに好ましい。この比率(0.005:1)より小さいと、表面改質の効果は得られ難く、またこの比率(50:1)より大きいと、気相法炭素繊維の表面への結合がし難く表面改質の効果が小さい。   The compounding ratio of the composite of the inorganic fine particles and the vapor grown carbon fiber of the present invention is 0.005: 1 to 50: 1 by mass ratio, more preferably 0.01: 1 to 40: 1, and 0.05: 1 to 30: 1 is more preferable. If this ratio (0.005: 1) is smaller, the effect of surface modification is difficult to obtain, and if this ratio (50: 1) is larger, bonding to the surface of vapor grown carbon fiber is difficult and surface modification is difficult. Small effect.

本発明の気相法炭素繊維と無機微粒子の複合物は、無機微粒子を気相法炭素繊維の表面に物理的(機械的)に付着させるメカノケミカル法により気相法炭素繊維の表面に無機微粒子を複合化する方法等により製造することができる。
メカノケミカル法とは、無機微粒子と気相法炭素繊維とを原理的に溶剤を使用しない乾式法で加圧及び剪断力を加えながら混合することにより、両者を互いに付着させる方法である。メカノケミカル法の利点は、実質的に溶媒を用いないため、気相法炭素繊維や無機微粒子を溶媒に分散させる必要がないこと、溶媒除去の必要がないことである。このメカノケミカル法により、炭素繊維や気相法炭素繊維を構成する炭素結晶を壊すことなく無機微粒子を付着させて表面特性の改善された炭素繊維を得ることができる。
The composite of vapor grown carbon fiber and inorganic fine particles according to the present invention comprises inorganic fine particles on the surface of vapor grown carbon fibers by a mechanochemical method in which inorganic fine particles are physically (mechanically) attached to the surface of vapor grown carbon fibers. Can be produced by a method of compounding.
The mechanochemical method is a method of adhering inorganic fine particles and vapor-grown carbon fibers to each other by mixing them while applying pressure and shearing force by a dry method that does not use a solvent in principle. An advantage of the mechanochemical method is that since a solvent is not substantially used, it is not necessary to disperse the vapor-grown carbon fiber and inorganic fine particles in the solvent, and it is not necessary to remove the solvent. By this mechanochemical method, it is possible to obtain carbon fibers having improved surface characteristics by adhering inorganic fine particles without breaking the carbon crystals constituting the carbon fibers or vapor grown carbon fibers.

本発明の気相法炭素繊維と無機微粒子の複合物は、気相法炭素繊維の炭素結晶構造が損なわれることなく無機微粒子により表面が改質されているため、気相法炭素繊維本来の強度、導電性、熱伝性を持ったフィラー材として導電性樹脂用フィラーや鉛蓄電池の添加材等に有用である。また、気相法炭素繊維を無機微粒子の担持体として用いる際にも、それ自体の持つ強度、導電性、熱伝性の特性が損なわれずに気相法炭素繊維の特性を活用することができる。また、気相法炭素繊維と無機微粒子との複合物は、無機微粒子との複合化の程度(量)を調整することにより、それを含む樹脂複合材の導電性を調整することができる。   The composite of the vapor grown carbon fiber and the inorganic fine particles of the present invention is modified by the inorganic fine particles without damaging the carbon crystal structure of the vapor grown carbon fiber, so that the inherent strength of the vapor grown carbon fiber is reduced. It is useful as a filler material having electrical conductivity and thermal conductivity for fillers for conductive resins, additives for lead-acid batteries, and the like. In addition, when using vapor grown carbon fiber as a support for inorganic fine particles, the properties of vapor grown carbon fiber can be utilized without impairing the strength, conductivity, and thermal conductivity characteristics of the carbon fiber. . In addition, the composite of the vapor grown carbon fiber and the inorganic fine particles can adjust the conductivity of the resin composite containing the composite by adjusting the degree (amount) of the composite with the inorganic fine particles.

以下、実施例により本発明を説明する。なお、気相法炭素繊維及び無機微粒子として下記のものを使用した。
気相法炭素繊維:
ベンゼン及びフェロセン(触媒)を用い、特許第2778434号に記載の方法に従って、平均繊維径150nm、平均繊維長20μmの気相法炭素繊維を得、この繊維をアルゴン雰囲気下、1000℃で熱処理を行い、さらに2800℃で黒鉛化処理をして製造した。この気相法炭素繊維の面間隔C0は0.678nm、繊維と繊維の結合の度合いを示す分岐度は0.2本/μm(SEM画像解析より繊維長1μm当たりの分岐数を算出)であった。
Hereinafter, the present invention will be described by way of examples. In addition, the following were used as vapor grown carbon fiber and inorganic fine particles.
Vapor grown carbon fiber:
Using benzene and ferrocene (catalyst), according to the method described in Japanese Patent No. 2778434, a vapor grown carbon fiber having an average fiber diameter of 150 nm and an average fiber length of 20 μm is obtained, and this fiber is heat-treated at 1000 ° C. in an argon atmosphere. Further, it was produced by graphitization at 2800 ° C. The face-to-face spacing C 0 of this vapor grown carbon fiber was 0.678 nm, and the branching degree indicating the degree of fiber-fiber bonding was 0.2 / μm (the number of branches per 1 μm fiber length was calculated from SEM image analysis).

無機微粒子:
(1)炭酸カルシウム:平均1次粒子径700nm
(白石カルシウム(株)製,SECTACARB HG )、
(2)アルミナ:平均1次粒子径30nm(昭和電工(株)製,UFA-40)、
(3)酸化チタン:平均1次粒子径30nm
(昭和電工(株)製,スーパータイタニア(登録商標)F−4)。
Inorganic fine particles:
(1) Calcium carbonate: average primary particle size 700nm
(Shiraishi Calcium Co., Ltd., SECTACARB HG),
(2) Alumina: average primary particle size 30 nm (manufactured by Showa Denko KK, UFA-40),
(3) Titanium oxide: average primary particle size 30nm
(Manufactured by Showa Denko KK, Super Titania (registered trademark) F-4).

実施例1〜6:気相法炭素繊維と無機微粒子との複合化
気相法炭素繊維と炭酸カルシウムとを98:2(質量比)の比率で、下記の条件でメカノケミカル処理を行い、気相法炭素繊維/炭酸カルシウム複合物(2)(実施例1)を得た。
実施例1の炭酸カルシウムの代わりにアルミナ及び酸化チタンを用いて、気相法炭素繊維/アルミナ複合物(2)(実施例2)、気相法炭素繊維/酸化チタン複合物(2)(実施例3)をそれぞれ得た。
また、気相法炭素繊維と酸化チタンとの混合比を95:5(質量比)として同じ処理を行い、気相法炭素繊維/酸化チタン複合物(5)(実施例4)を得た。
また、気相法炭素繊維と酸化チタンとの混合比を90:10(質量比)として同じ処理を行い、気相法炭素繊維/酸化チタン複合物(10)(実施例5)を得た。
気相法炭素繊維として、嵩密度0.012g/cm3、嵩密度0.8g/cm3に圧縮したときの比抵抗0.007Ωcm、繊維径97nm、繊維径の標準偏差23.4nm、繊維長平均13μm(平均アスペクト比=130)であり、全繊維の75%(本数基準)が平均繊維径の±20%の範囲に含まれるものを用い、実施例3と同様の気相法炭素繊維/酸化チタン複合物(2)(実施例6)を得た。
Examples 1 to 6: Compounding of vapor-grown carbon fiber and inorganic fine particles Vapor-grown carbon fiber and calcium carbonate were subjected to mechanochemical treatment under the following conditions at a ratio of 98: 2 (mass ratio). A phase-processed carbon fiber / calcium carbonate composite (2) (Example 1) was obtained.
Vapor grown carbon fiber / alumina composite (2) (Example 2), vapor grown carbon fiber / titanium oxide composite (2) using alumina and titanium oxide instead of calcium carbonate in Example 1 (implementation) Example 3) was obtained respectively.
Moreover, the same process was performed by setting the mixing ratio of vapor grown carbon fiber and titanium oxide to 95: 5 (mass ratio) to obtain a vapor grown carbon fiber / titanium oxide composite (5) (Example 4).
Moreover, the same process was performed by setting the mixing ratio of vapor grown carbon fiber and titanium oxide to 90:10 (mass ratio) to obtain a vapor grown carbon fiber / titanium oxide composite (10) (Example 5).
As vapor grown carbon fiber, bulk density 0.012 g / cm 3 , specific resistance 0.007 Ωcm when compressed to bulk density 0.8 g / cm 3 , fiber diameter 97 nm, fiber diameter standard deviation 23.4 nm, fiber length average 13 μm (average Vapor grown carbon fiber / titanium oxide composite as in Example 3 using an aspect ratio of 130) and 75% of the total fiber (based on the number of fibers) included in the range of ± 20% of the average fiber diameter. (2) (Example 6) was obtained.

メカノケミカル処理条件:
使用機器:(株)奈良機械製作所 MICROS-O型,
容積:0.75リットル,
有効容積:0.45リットル,
処理量:20g,
主軸回転数:1800rpm,
処理時間:90分。
Mechanochemical treatment conditions:
Equipment used: Nara Machinery Co., Ltd. MICROS-O type
Volume: 0.75 liters,
Effective volume: 0.45 liters,
Processing amount: 20 g,
Spindle speed: 1800 rpm,
Processing time: 90 minutes.

実施例7〜13及び比較例1〜6:気相法炭素繊維/無機微粒子複合物を含む樹脂複合材
実施例1〜6で得た気相法炭素繊維と無機微粒子の複合物を用いて、下記の方法により樹脂(ナイロン66、以下PAと記す。)との複合化を行い、分散性の評価を行った。分散性の指標として樹脂複合材の導電性を測定して評価した。なお、PAは、東レ株式会社製 CM3001を用いた。
PAとの複合化:
ラボプラストミル(東洋精機)を用い、PA:(気相法炭素繊維/無機微粒子複合物)=74g:4g(実施例7〜11及び13)、あるいは70g:8g(実施例12)を温度270℃、40rpm、10分間、溶融混合した。得られたPA複合材を熱プレス(280℃、20MPa(200kgf/cm2)、30秒)により、100mm×100mm×2mmの平板を成形し試料とした。また、比較用試料として、無機微粒子と複合化していない気相法炭素繊維とPAとの複合材、気相法炭素繊維と炭酸カルシウムの混合物を、PA:気相法炭素繊維:炭酸カルシウム=74g:3.9g:0.08gで混合した混合物及びPAのみの試料をも調製した。
試料の導電性は、四探針計、絶縁抵抗計にて測定した。抵抗及び強度(JIS K7194)の測定結果を表1に示す。
Examples 7 to 13 and Comparative Examples 1 to 6: Resin composite material including vapor grown carbon fiber / inorganic fine particle composite Using the composite of vapor grown carbon fiber and inorganic fine particles obtained in Examples 1 to 6, Compounding with a resin (nylon 66, hereinafter referred to as PA) was carried out by the following method, and the dispersibility was evaluated. The conductivity of the resin composite material was measured and evaluated as an index of dispersibility. The PA used was CM3001 manufactured by Toray Industries, Inc.
Compounding with PA:
Using a lab plast mill (Toyo Seiki), PA: (gas phase method carbon fiber / inorganic fine particle composite) = 74 g: 4 g (Examples 7 to 11 and 13) or 70 g: 8 g (Example 12) at a temperature of 270 Melt mixing was performed at a temperature of 40 ° C. for 10 minutes. The obtained PA composite material was molded into a 100 mm × 100 mm × 2 mm flat plate as a sample by hot pressing (280 ° C., 20 MPa (200 kgf / cm 2 ), 30 seconds). In addition, as a comparative sample, a composite material of vapor grown carbon fiber and PA not combined with inorganic fine particles, a mixture of vapor grown carbon fiber and calcium carbonate, PA: vapor grown carbon fiber: calcium carbonate = 74 g : A mixture of 3.9 g: 0.08 g and a sample of PA alone were also prepared.
The conductivity of the sample was measured with a four-probe meter and an insulation resistance meter. Table 1 shows the measurement results of resistance and strength (JIS K7194).

Figure 2005113363
表1から、気相法炭素繊維と無機微粒子の複合物は、気相法炭素繊維の表面に無機微粒子が複合化しているため、樹脂に対する濡れ性が改善され、複合化していないものに比べて、同一条件下での樹脂複合材の導電性が向上していることがわかる。
Figure 2005113363
From Table 1, the composite of vapor-grown carbon fiber and inorganic fine particles has a composite of inorganic fine particles on the surface of vapor-grown carbon fiber, so that the wettability with respect to the resin is improved and compared with the non-complexed one. It can be seen that the conductivity of the resin composite under the same conditions is improved.

実施例14及び比較例7:気相法炭素繊維と無機微粒子の複合物を含むペースト
気相法炭素繊維/アルミナ複合物(2)(実施例14)、及び比較として無機微粒子と複合化していない気相法炭素繊維(比較例7)を用い、各々、キシレン変性フェノキシ樹脂と溶剤のグリコールエーテルを用い、乾燥後のペースト基準で10質量%用いて、3本ロールにて混練りを行い導電性ペーストを得た。
このペーストを用いて、エポキシ基板にパターンをn=5でスクリーン印刷法にて印刷し、200℃で乾燥硬化を行った。乾燥硬化後のパターンの膜厚は10μmであった。
パターンの表面抵抗を測定したところ、表面抵抗値は、200Ω/□(実施例14)及び400Ω/□で(比較例7)あった。この結果から、同一条件下でのペースト系(塗膜)においても、気相法炭素繊維の表面に無機微粒子が複合化している本発明の複合物は複合化していないものに比べて、樹脂に対する濡れ性が改善し、導電性が向上することがわかる。
Example 14 and Comparative Example 7: Paste containing a composite of vapor grown carbon fiber and inorganic fine particles Vapor grown carbon fiber / alumina composite (2) (Example 14) and, as a comparison, not composited with inorganic fine particles Using vapor grown carbon fiber (Comparative Example 7), each using xylene-modified phenoxy resin and solvent glycol ether, kneading with 3 rolls using 10% by mass on the basis of the paste after drying. A paste was obtained.
Using this paste, a pattern was printed on an epoxy substrate with n = 5 by a screen printing method, followed by drying and curing at 200 ° C. The film thickness of the pattern after drying and curing was 10 μm.
When the surface resistance of the pattern was measured, the surface resistance values were 200Ω / □ (Example 14) and 400Ω / □ (Comparative Example 7). From this result, even in the paste system (coating film) under the same conditions, the composite of the present invention in which the inorganic fine particles are combined on the surface of the vapor grown carbon fiber is more resistant to the resin than the uncomposited one. It can be seen that wettability is improved and conductivity is improved.

実施例15:気相法炭素繊維/無機微粒子複合物を含む触媒
実施例1と同様の方法で気相法炭素繊維と酸化鉄(和光純薬製,平均1次粒子径300nm)を95:5(質量比)として、複合化を行った。得られた気相法炭素繊維/酸化鉄(5)複合物1gをアルミナボードに入れ、内径20mm、長さ600mmの石英管を横置きにした反応炉の中心部に入れ、水素雰囲気下、900℃で60分の還元処理を行った。先の気相法炭素繊維/酸化鉄(5)複合物をX線回折装置で分析したところ、酸化鉄のピークは見られず、鉄のピークが得られた。この気相法炭素繊維/鉄複合物を0.1gアルミナボードに入れ、上記反応炉に戻し、反応炉温度を1150℃とし、水素100ml/min、ベンゼン1ml/minで20分間反応をさせた。反応炉を降温後、気相法炭素繊維/鉄複合物の周囲には、多くの蜘蛛の巣状の気相法炭素繊維物(繊維径200nm、アスペクト比=50、平均面間隔C0は0.69nm)が生成していることがわかった。
この気相法炭素繊維/鉄複合物はベンゼンから気相法炭素繊維製造の触媒としての機能を有することが確認された。
Example 15: Catalyst containing a vapor-grown carbon fiber / inorganic fine particle composite 95: 5 Compounding was performed as (mass ratio). 1 g of the obtained vapor-grown carbon fiber / iron oxide (5) composite was put on an alumina board and placed in the center of a reaction furnace in which a quartz tube having an inner diameter of 20 mm and a length of 600 mm was placed horizontally. Reduction treatment was performed at 60 ° C. for 60 minutes. When the previous vapor-grown carbon fiber / iron oxide (5) composite was analyzed with an X-ray diffractometer, no iron oxide peak was observed, and an iron peak was obtained. This vapor-grown carbon fiber / iron composite was placed in 0.1 g alumina board, returned to the reactor, the reactor temperature was 1150 ° C., and the reaction was carried out for 20 minutes at 100 ml / min hydrogen and 1 ml / min benzene. After the temperature of the reaction furnace is lowered, around the vapor grown carbon fiber / iron composite, there are many spider web-like vapor grown carbon fiber (fiber diameter 200 nm, aspect ratio = 50, average interplanar spacing C 0 is 0.69). nm).
It was confirmed that this vapor grown carbon fiber / iron composite has a function as a catalyst for producing vapor grown carbon fiber from benzene.

Claims (11)

繊維径0.001〜1μm、アスペクト比5〜15000の中空構造を有する気相法炭素繊維表面に粒径0.0001〜5μmの無機微粒子が付着した複合体を含有する気相法炭素繊維/無機微粒子複合物であって、気相法炭素繊維の平均繊維径と無機微粒子の平均粒子径との比が1:0.01〜1:5である気相法炭素繊維と無機微粒子の複合物。   A vapor-grown carbon fiber / inorganic fine particle composite containing a composite in which inorganic fine particles having a particle diameter of 0.0001 to 5 μm are attached to the surface of a vapor-grown carbon fiber having a hollow structure with a fiber diameter of 0.001 to 1 μm and an aspect ratio of 5 to 15000. A composite of vapor-grown carbon fibers and inorganic fine particles, wherein the ratio of the average fiber diameter of vapor-grown carbon fibers to the average particle diameter of inorganic fine particles is 1: 0.01 to 1: 5. 複合体の気相法炭素繊維と無機微粒子との質量比が1:0.005〜1:50である請求項1に記載の気相法炭素繊維と無機微粒子の複合物。   The composite of vapor-grown carbon fiber and inorganic fine particles according to claim 1, wherein the mass ratio of vapor-grown carbon fiber and inorganic fine particles in the composite is 1: 0.005 to 1:50. 無機微粒子が、周期律表の2〜15族に属する元素の単体物質、またはその元素を含む化合物からなる請求項1または2に記載の気相法炭素繊維と無機微粒子の複合物。   The composite of vapor grown carbon fiber and inorganic fine particles according to claim 1 or 2, wherein the inorganic fine particles comprise a single substance of an element belonging to groups 2 to 15 of the periodic table, or a compound containing the element. 周期律表の2〜15族に属する元素が、マグネシウム、カルシウム、チタン、ジルコニウム、バナジウム、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、オスミウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、シリコン、ゲルマニウム、スズ、リンまたはビスマスである請求項3に記載の気相法炭素繊維と無機微粒子の複合物。   Elements belonging to groups 2 to 15 of the periodic table are magnesium, calcium, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, rhodium, nickel, palladium, platinum, copper, silver The composite of vapor grown carbon fiber and inorganic fine particles according to claim 3, which is gold, zinc, cadmium, aluminum, gallium, indium, silicon, germanium, tin, phosphorus or bismuth. 周期律表の2〜15族に属する元素を含む化合物が、その元素を含む酸化物、炭酸塩、硫酸塩、硝酸塩、錯体またはハロゲン化物である請求項3に記載の気相法炭素繊維と無機微粒子の複合物。   The vapor grown carbon fiber according to claim 3, wherein the compound containing an element belonging to Group 2 to 15 of the periodic table is an oxide, carbonate, sulfate, nitrate, complex, or halide containing the element. A composite of fine particles. 周期律表の2〜15族に属する元素を含む化合物が、その元素を含む酸化物である請求項3に記載の気相法炭素繊維と無機微粒子の複合物。   The composite of vapor grown carbon fiber and inorganic fine particles according to claim 3, wherein the compound containing an element belonging to Group 2 to 15 of the periodic table is an oxide containing the element. 無機微粒子が、シリカ、炭酸カルシウム、アルミナ、酸化チタン及び酸化鉄からなる群から選ばれる少なくとも1種である請求項1または2に記載の気相法炭素繊維と無機微粒子の複合物。   The composite of vapor grown carbon fiber and inorganic fine particles according to claim 1 or 2, wherein the inorganic fine particles are at least one selected from the group consisting of silica, calcium carbonate, alumina, titanium oxide and iron oxide. 気相法炭素繊維がホウ素を0.01〜5質量%含有する請求項1に記載の気相法炭素繊維と無機微粒子の複合物。   The composite of vapor grown carbon fiber and inorganic fine particles according to claim 1, wherein the vapor grown carbon fiber contains 0.01 to 5% by mass of boron. 請求項1乃至8のいずれかに記載の気相法炭素繊維と無機微粒子の複合物を含む樹脂複合材。   A resin composite material comprising the composite of vapor grown carbon fiber and inorganic fine particles according to any one of claims 1 to 8. 請求項1乃至8のいずれかに記載の気相法炭素繊維と無機微粒子の複合物を含むペースト。   A paste comprising a composite of vapor grown carbon fiber and inorganic fine particles according to any one of claims 1 to 8. 請求項1乃至8のいずれかに記載の気相法炭素繊維と無機微粒子の複合物を含む触媒。   A catalyst comprising a composite of vapor grown carbon fiber and inorganic fine particles according to any one of claims 1 to 8.
JP2004267848A 2003-09-16 2004-09-15 Composite of vapor grown carbon fiber and inorganic fine particles and use thereof Expired - Fee Related JP4694169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267848A JP4694169B2 (en) 2003-09-16 2004-09-15 Composite of vapor grown carbon fiber and inorganic fine particles and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003322752 2003-09-16
JP2003322752 2003-09-16
JP2004267848A JP4694169B2 (en) 2003-09-16 2004-09-15 Composite of vapor grown carbon fiber and inorganic fine particles and use thereof

Publications (2)

Publication Number Publication Date
JP2005113363A true JP2005113363A (en) 2005-04-28
JP4694169B2 JP4694169B2 (en) 2011-06-08

Family

ID=34554440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267848A Expired - Fee Related JP4694169B2 (en) 2003-09-16 2004-09-15 Composite of vapor grown carbon fiber and inorganic fine particles and use thereof

Country Status (1)

Country Link
JP (1) JP4694169B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123462A (en) * 2005-10-27 2007-05-17 Showa Denko Kk Conductive magnetic fluid and its application
JP2007118112A (en) * 2005-10-26 2007-05-17 National Institute For Materials Science Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure
JP2013231245A (en) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology Surface-treated carbon fiber and carbon fiber-resin composite material
CN104088132A (en) * 2014-07-23 2014-10-08 昆明理工恒达科技股份有限公司 Surface modification method for carbon fiber powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283750A (en) * 1987-05-14 1988-11-21 Asahi Chem Ind Co Ltd Catalyst using carbon fibers as carrier
JPH0354199A (en) * 1989-07-21 1991-03-08 Nikkiso Co Ltd Method for improving surface of whisker
JP2001200096A (en) * 2000-01-20 2001-07-24 Showa Denko Kk Electroconductive thermoplastic resin composition
JP2003020527A (en) * 2001-07-04 2003-01-24 Showa Denko Kk Carbon fiber, method for producing the same and use thereof
JP2003105640A (en) * 2001-09-28 2003-04-09 Hitachi Chem Co Ltd Method for producing catalyst substance-supporting carbon fiber and method for storing hydrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283750A (en) * 1987-05-14 1988-11-21 Asahi Chem Ind Co Ltd Catalyst using carbon fibers as carrier
JPH0354199A (en) * 1989-07-21 1991-03-08 Nikkiso Co Ltd Method for improving surface of whisker
JP2001200096A (en) * 2000-01-20 2001-07-24 Showa Denko Kk Electroconductive thermoplastic resin composition
JP2003020527A (en) * 2001-07-04 2003-01-24 Showa Denko Kk Carbon fiber, method for producing the same and use thereof
JP2003105640A (en) * 2001-09-28 2003-04-09 Hitachi Chem Co Ltd Method for producing catalyst substance-supporting carbon fiber and method for storing hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118112A (en) * 2005-10-26 2007-05-17 National Institute For Materials Science Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure
JP2007123462A (en) * 2005-10-27 2007-05-17 Showa Denko Kk Conductive magnetic fluid and its application
JP2013231245A (en) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology Surface-treated carbon fiber and carbon fiber-resin composite material
CN104088132A (en) * 2014-07-23 2014-10-08 昆明理工恒达科技股份有限公司 Surface modification method for carbon fiber powder

Also Published As

Publication number Publication date
JP4694169B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US20110091724A1 (en) Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
Choi et al. Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes
KR101583916B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
JP5179979B2 (en) Carbon nanofiber and method for producing the same, method for producing carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP5633821B2 (en) Graphene oxide sheet, article containing graphene-containing material obtained by reducing the same, and method for producing the same
Cheng et al. Glycera‐inspired synergistic interfacial interactions for constructing ultrastrong graphene‐based nanocomposites
Wu et al. Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites
WO2009157529A1 (en) Carbon nanotube assembly and method for producing same
KR100895696B1 (en) A Method for Preparation of Silicone Rubber/Carbon Nanotube Composites with Electrical Insulating Properties
JP2008248457A (en) Carbon fiber composite and method for producing the carbon fiber composite
TWI604021B (en) Conductive filler, its manufacturing method, conductive paste, and its manufacturing method
KR101436594B1 (en) Film heater and manufacturing method of thereof
JP2019001701A (en) Carbon-modified boron nitride, production method thereof and high thermal conducting resin composition
JP2012149161A (en) Electroconductive resin composition, and conductive coating and conductive adhesive using the same
JP4694169B2 (en) Composite of vapor grown carbon fiber and inorganic fine particles and use thereof
Xie et al. Graphene/carbon nanotube/polypyrrole composite films for electromagnetic interference shielding
WO2018230638A1 (en) Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition
Shariatzadeh et al. Surface functionalization of multiwalled carbon nanotubes with chitosan and magnesium oxide nanoparticles by microwave‐assisted synthesis
JP3606782B2 (en) Conductive paint
JP2011084844A (en) Carbon nanofiber, carbon nanofiber assembly, method for producing carbon nanofiber, method for producing carbon fiber composite material, and carbon fiber composite material
Tseng et al. Thermal conductivity and morphology of silver‐filled multiwalled carbon nanotubes/polyimide nanocomposite films
JP6241586B2 (en) Method for producing carbon nanofiber and method for producing dispersion and composition thereof
JP4953224B2 (en) Composite particle-containing slurry and method for producing composite particles
JP4719875B2 (en) Expanded carbon fiber-containing composite material and method for producing the same
WO2014084042A1 (en) Complex containing double-walled carbon nanotubes

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees